1
|
Dich A, Abdelmoumene W, Belyagoubi L, Assadpour E, Belyagoubi Benhammou N, Zhang F, Jafari SM. Olive oil wastewater: a comprehensive review on examination of toxicity, valorization strategies, composition, and modern management approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6349-6379. [PMID: 40025331 DOI: 10.1007/s11356-025-36127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Olive mill wastewater (OMWW), a by-product of olive oil production, poses severe environmental challenges due to its toxicity, primarily caused by its high organic load and phenolic compounds, along with organic acids, lipids, and heavy metals. These components contribute to its elevated chemical and biological oxygen demand, making OMWW a persistent pollutant that necessitates urgent and effective treatment strategies. The ecological risks, including water contamination, soil degradation, and biodiversity loss, underscore the need for sustainable management approaches. This review explores the composition and toxicity of OMWW, examining advanced treatment technologies, e.g., bioremediation, membrane filtration, advanced oxidation processes, and integrated systems that enhance efficiency while minimizing environmental impact. In addition, this study investigates the potential for OMWW valorization as a rich source of polyphenols with antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds have significant economic value in industries such as pharmaceuticals, cosmetics, and functional foods. By evaluating sustainable extraction techniques and integrating advanced treatments with economic valorization, OMWW can be transformed from an environmental pollutant into a valuable resource. Such integrated approaches support a circular economy within the olive oil industry, reducing its ecological footprint and fostering sustainable development.
Collapse
Affiliation(s)
- Asmaâ Dich
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Waffa Abdelmoumene
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Larbi Belyagoubi
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nabila Belyagoubi Benhammou
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Alshammari MS, H. Taha R, Almutlq NJ, Mohamed SH. Olive leaf extract-assisted green synthesis of cd nano complex: A combined experimental and theoretical study. PLoS One 2024; 19:e0306040. [PMID: 39093887 PMCID: PMC11296625 DOI: 10.1371/journal.pone.0306040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Research in the synthesis of Schiff base ligands and their metal complexes using olive leaf extracts as a green reducing agent is an exciting area of study. In this research, a Schiff base ligand is created by combining 1-hydroxy-2-naphthaldehyde and amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide. The synthetic Schiff base is then utilized for the production of a Cd(II) nano complex for the first time with olive leaf extracts serving as the green reducing agent. The extract is obtained by harvesting, drying, and grinding the olive leaves. Various analytical techniques, including 1H NMR, 13C NMR spectroscopy, scanning electron microscope (SEM), and conductivity studies, are employed to analyze the Schiff base and its Cd(II) complex. Quantum chemical calculations are also conducted to explore the different conformers of the Cd(II) complex and their stabilities, shedding light on the synthesis pathways of the Schiff base ligand and Cd(II) complex. Extensive DFT-based geometry optimizations and frequency calculations are carried out for 1-hydroxy-2-naphthaldehyde,amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide, the Schiff base ligand, and the corresponding Cd(II) complex. Experimental and theoretical analyses confirm the presence of the azomethine (-HC = N-) group in the Schiff base and validate the formation of the Cd(II) complex in a 2:1 metal-to-ligand ratio through physicochemical characterization methods, highlighting the nanoscale structure of the complex. Combining thorough physicochemical investigations with molecular modeling simulations and the sustainable synthesis of metal complexes, valuable insights into their properties and potential applications in catalysis and drug delivery are obtained.
Collapse
Affiliation(s)
| | - Rania H. Taha
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nowarah J. Almutlq
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sabrein H. Mohamed
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Lino C, Bongiorno D, Pitonzo R, Indelicato S, Barbera M, Di Gregorio G, Pane D, Avellone G. Chemical Characterization, Stability and Sensory Evaluation of Sicilian Extra Virgin Olive Oils: Healthiness Evidence at Nose Reach. Foods 2024; 13:2149. [PMID: 38998654 PMCID: PMC11240965 DOI: 10.3390/foods13132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to assess the nutraceutical qualities of extra virgin olive oil (EVOO) samples obtained from three Sicilian olive cultivars: Nocellara, Biancolilla, and Cerasuola. We also evidenced the relationship among biophenols, base parameters and panel test scores, and evaluated the stability of the biophenols in EVOO. The assessment also took into consideration variations in olive harvesting periods and the influence of four different milling methods. A statistical analysis of the collected data revealed that the cultivar and harvesting period were the primary factors influencing the bio-phenol content, while the milling methods employed did not significantly affect the levels of biophenols in the oils. The panel test results were also illuminating as they were strongly related to the cultivar and polyphenol content. Following the criteria outlined in EC Regulation 432/2012, we selected three samples, each representing one of the cultivars, which exhibited the highest bio-phenol content to evaluate the biophenol stability during a time span of 16 months.
Collapse
Affiliation(s)
- Claudia Lino
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Rosa Pitonzo
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Manfredi Barbera
- Manfredi Barbera & figli S.p.a., Via E. Amari, 55/A, 90139 Palermo, Italy
| | | | - Domenico Pane
- Manfredi Barbera & figli S.p.a., Via E. Amari, 55/A, 90139 Palermo, Italy
| | - Giuseppe Avellone
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
4
|
Buzzi R, Gugel I, Costa S, Molesini S, Boreale S, Baldini E, Marchetti N, Vertuani S, Pinelli P, Urciuoli S, Baldisserotto A, Manfredini S. Up-Cycling of Olea europaea L. Ancient Cultivars Side Products: Study of a Combined Cosmetic-Food Supplement Treatment Based on Leaves and Olive Mill Wastewater Extracts. Life (Basel) 2023; 13:1509. [PMID: 37511885 PMCID: PMC10381166 DOI: 10.3390/life13071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, a reversal of the global economic framework has been taking place: from the linear model, there has been a gradual transition to a circular model where by-products from the agri-food industry are taken and transformed into value products (upcycling) rather than being disposed of. Olive tree pruning represents an important biomass currently used for combustion; however, the leaf part of the olive tree is rich in phenolic substances, including hydroxytyrosol. Mill wastewater is also discarded, but it still contains high amounts of hydroxytyrosol. In this study, cosmetic and food supplement formulations were prepared using biophenols extracted from leaves and wastewater and were tested in a placebo-controlled study on healthy volunteers using a combined cosmetic and food supplement treatment. A significant improvement in skin health indicators (collagen density, elasticity, etc.) and a 17% improvement against Photo-induced Irritative Stimulus was observed.
Collapse
Affiliation(s)
- Raissa Buzzi
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Irene Gugel
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Stefania Costa
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | | | - Silvia Boreale
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Erika Baldini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Nicola Marchetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Patrizia Pinelli
- Department of Statistics, Computer Sciences and Applications DiSIA-PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Silvia Urciuoli
- Department of Statistics, Computer Sciences and Applications DiSIA-PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Baldisserotto
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Cometa S, Zannella C, Busto F, De Filippis A, Franci G, Galdiero M, De Giglio E. Natural Formulations Based on Olea europaea L. Fruit Extract for the Topical Treatment of HSV-1 Infections. Molecules 2022; 27:molecules27134273. [PMID: 35807518 PMCID: PMC9268399 DOI: 10.3390/molecules27134273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
In the present study, a hydroxytyrosol-rich Olea europaea L. fruit extract (OFE) was added to three thoroughly green formulations—hydrogel, oleogel, and cream—in order to evaluate their antiviral activity against HSV-1. The extract was characterized by different analytical techniques, i.e., FT-IR, XPS, and TGA. HPLC analyses were carried out to monitor the content and release of hydroxytyrosol in the prepared formulations. The total polyphenol content and antioxidant activity were investigated through Folin–Ciocâlteu’s reagent, DPPH, and ABTS assays. The ability of the three formulations to convey active principles to the skin was evaluated using a Franz cell, showing that the number of permeated polyphenols in the hydrogel (272.1 ± 1.8 GAE/g) was significantly higher than those in the oleogel and cream (174 ± 10 and 179.6 ± 2 GAE/g, respectively), even if a negligible amount of hydroxytyrosol crossed the membrane for all the formulations. The cell viability assay indicated that the OFE and the three formulations were not toxic to cultured Vero cells. The antiviral activity tests highlighted that the OFE had a strong inhibitory effect against HSV-1 with a 50% inhibitory concentration (IC50) at 25 µg/mL, interfering directly with the viral particles. Among the three formulations, the hydrogel exhibited the highest antiviral activity also against the acyclovir-resistant strain.
Collapse
Affiliation(s)
| | - Carla Zannella
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.Z.); (A.D.F.)
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
| | - Anna De Filippis
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.Z.); (A.D.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.Z.); (A.D.F.)
- Correspondence: (M.G.); (E.D.G.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- Correspondence: (M.G.); (E.D.G.)
| |
Collapse
|
6
|
Effect of p-Tyrosol on the Process of Left-Ventricular Remodeling in the Long Period after Myocardial Infarction. Bull Exp Biol Med 2022; 173:17-20. [PMID: 35624349 DOI: 10.1007/s10517-022-05483-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 10/18/2022]
Abstract
The effect of p-tyrosol on the main hemodynamic parameters and contractile function of the heart was studied and a morphometric assessment of left-ventricular remodeling was performed in Wistar rats 2 months after acute 1-h myocardial ischemia followed by reperfusion. p-Tyrosol in a dose of 20 mg/kg was injected intraperitoneally 5 times: 20 min before the start of reperfusion, 4 h after the start of reperfusion, and then once a day over the next 3 days. Administration of p-tyrosol to animals in the acute period of myocardial infarction slowed down the formation of systolic and diastolic myocardial dysfunction, improved the pumping function of the heart, maintained the hemodynamic parameters at a significantly higher level, and reduced left-ventricular remodeling in the late period of myocardial infarction. In 2 months after acute myocardial ischemia modeling, the dimensions of the left-ventricular cavity, the area of the postinfarction focus, and the area of connective tissue in rats treated with p-tyrosol were significantly lower than in the control group. In the group treated with p-tyrosol, no anterior left-ventricular wall aneurysms were found.
Collapse
|
7
|
Marković Filipović J, Miler M, Kojić D, Karan J, Ivelja I, Čukuranović Kokoris J, Matavulj M. Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. Int J Mol Sci 2022; 23:6062. [PMID: 35682741 PMCID: PMC9181519 DOI: 10.3390/ijms23116062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/16/2022] Open
Abstract
Acrylamide (AA) toxicity is associated with oxidative stress. During detoxification, AA is either coupled to gluthatione or biotransformed to glycidamide by the enzyme cytochrome P450 2E1 (CYP2E1). The aim of our study was to examine the hepatotoxicity of AA in vivo and in vitro. Thirty male Wistar rats were treated with 25 or 50 mg/kg b.w. of AA for 3 weeks. Qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), CYP2E1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 expression in liver was carried out. Bearing in mind that the liver is consisted mainly of hepatocytes, in a parallel study, we used the rat hepatoma cell line H4IIE to investigate the effects of AA at IC20 and IC50 concentrations on the redox status and the activity of CAT, SOD, and glutathione-S-transferase (GST), their gene expression, and CYP2E1 and iNOS expression. Immunohistochemically stained liver sections showed that treatment with AA25mg induced a significant decrease of CYP2E1 protein expression (p < 0.05), while treatment with AA50mg led to a significant increase of iNOS protein expression (p < 0.05). AA treatment dose-dependently elevated SOD2 protein expression (p < 0.05), while SOD1 protein expression was significantly increased only at AA50mg (p < 0.05). CAT protein expression was not significantly affected by AA treatments (p > 0.05). In AA-treated H4IIE cells, a concentration-dependent significant increase in lipid peroxidation and nitrite levels was observed (p < 0.05), while GSH content and SOD activity significantly decreased in a concentration-dependent manner (p < 0.05). AA IC50 significantly enhanced GST activity (p < 0.05). The level of mRNA significantly increased in a concentration-dependent manner for iNOS, SOD2, and CAT in AA-treated H4IIE cells (p < 0.05). AA IC50 significantly increased the transcription of SOD1, GSTA2, and GSTP1 genes (p < 0.05), while AA IC20 significantly decreased mRNA for CYP2E1 in H4IIE cells (p < 0.05). Obtained results indicate that AA treatments, both in vivo and in vitro, change hepatocytes; drug-metabolizing potential and disturb its redox status.
Collapse
Affiliation(s)
- Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Marko Miler
- Department of Cytology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Jelena Karan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Ivana Ivelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| | - Jovana Čukuranović Kokoris
- Department of Anatomy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18000 Niš, Serbia;
| | - Milica Matavulj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (D.K.); (J.K.); (I.I.); (M.M.)
| |
Collapse
|
8
|
De Luca P, Macario A, Siciliano C, B.Nagy J. Recovery of Biophenols from Olive Vegetation Waters by Carbon Nanotubes. MATERIALS 2022; 15:ma15082893. [PMID: 35454586 PMCID: PMC9025687 DOI: 10.3390/ma15082893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022]
Abstract
In this work, the possibility of using carbon nanotubes for the treatment of olive vegetation waters (OVWs) was investigated. In general, the disposal of OVWs represents an important environmental problem. The possibility of considering these waters no longer just as a problem but as a source of noble substances, thanks to the recovery of biophenols from them, was tested. In particular, predetermined quantities of olive vegetation waters were treated with carbon nanotubes. The quantities of adsorbed biophenols were studied as a function of the quantities of carbon nanotubes used and the contact time. The experimental conditions for obtaining both the highest possible quantities of biophenol and a purer adsorbate with the highest percentage of biophenols were studied. After the adsorption tests, the vegetation waters were analyzed by UV spectrophotometry to determine, in particular, the variation in the concentration of biophenols. The carbon nanotubes were weighed before and after each adsorption test. In addition, kinetic studies of the adsorption processes were considered. Carbon nanotubes proved their effectiveness in recovering biophenols.
Collapse
Affiliation(s)
- Pierantonio De Luca
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, University of Calabria, I-87036 Arcavacata di Rende, Italy;
- Correspondence: ; Tel.: +39-0984-496757
| | - Anastasia Macario
- Dipartimento di Ingegneria per l’Ambiente, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Carlo Siciliano
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Janos B.Nagy
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, University of Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
9
|
Tyrosol and Hydroxytyrosol Determination in Extra Virgin Olive Oil with Direct Liquid Electron Ionization-Tandem Mass Spectrometry. SEPARATIONS 2021. [DOI: 10.3390/separations8100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extra virgin olive oil (EVOO) is one of the main ingredients of the Mediterranean diet. It is claimed as a functional food for its unique content of health-promoting compounds. Tyrosol (Tyr), Hydroxytyrosol (Htyr), and their phenolic derivatives present in EVOO show beneficial properties, and their identification and quantification, both in their free form and after the hydrolysis of more complex precursors, are important to certify its quality. An alternative method for quantifying free and total Tyr and Htyr in EVOO is presented using an LC–MS interface based on electron ionization (EI), called liquid electron ionization (LEI). This method requires neither sample preparation nor chromatography; the sample is diluted and injected. The selectivity and sensitivity were assessed in multiple reaction monitoring mode (MRM), obtaining confirmation and quantification in actual samples ranging from 5 to 11 mg/Kg for the free forms and from 32 to 80 mg/Kg for their total amount after hydrolysis. Two MS/MS transitions were acquired for both compounds using the Q/q ratios as confirmatory parameters. Standard addition calibration curves demonstrated optimal linearity and negligible matrix effects, allowing a correct quantification even without expensive and difficult to find labeled internal standards. After several weeks of operation, the system’s repeatability was excellent, with an intraday RSD (%) spanning from five to nine and an interday RSD (%) spanning from 9 to 11.
Collapse
|
10
|
Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021; 10:foods10061236. [PMID: 34072297 PMCID: PMC8227576 DOI: 10.3390/foods10061236] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This aspect is particularly important since the cited by-products are rich in bioactive compounds, which, once extracted, may represent ingredients with remarkable added value for food, cosmetic and nutraceutical industries. Indeed, they contain considerable amounts of valuable organic acids, carbohydrates, proteins, fibers, and above all, phenolic compounds, that are variably distributed among the different wastes, depending on the employed production process of olive oils and table olives and agronomical practices. Yet, extraction and recovery of bioactive components from selected by-products constitute a critical issue for their rational valorization and detailed identification and quantification are mandatory. The most used analytical methods adopted to identify and quantify bioactive compounds in olive oil by-products are based on the coupling between gas- (GC) or liquid chromatography (LC) and mass spectrometry (MS), with MS being the most useful and successful detection tool for providing structural information. Without derivatization, LC-MS with electrospray (ESI) or atmospheric pressure chemical (APCI) ionization sources has become one of the most relevant and versatile instrumental platforms for identifying phenolic bioactive compounds. In this review, the major LC-MS accomplishments reported in the literature over the last two decades to investigate olive oil processing by-products, specifically olive leaves and pomace and olive oil mill wastewaters, are described, focusing on phenolics and related compounds.
Collapse
|
11
|
Plotnikov MB, Plotnikova TM. Tyrosol as a Neuroprotector: Strong Effects of a "Weak" Antioxidant. Curr Neuropharmacol 2021; 19:434-448. [PMID: 32379590 PMCID: PMC8206466 DOI: 10.2174/1570159x18666200507082311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
The use of neuroprotective agents for stroke is pathogenetically justified, but the translation of the results of preclinical studies of neuroprotectors into clinical practice has been a noticeable failure. One of the leading reasons for these failures is the one-target mechanism of their activity. p-Tyrosol (Tyr), a biophenol, is present in a variety of natural sources, mainly in foods, such as olive oil and wine. Tyr has a wide spectrum of biological activity: antioxidant, stress-protective, anti-inflammatory, anticancer, cardioprotective, neuroprotective and many others. This review analyzes data on the neuroprotective, antioxidant, anti-inflammatory, anti-apoptotic and other kinds of Tyr activity as well as data on the pharmacokinetics of the substance. The data presented in the review substantiate the acceptability of tyr as the basis for the development of a new neuroprotective drug with multitarget activity for the treatment of ischemic stroke. Tyr is a promising molecule for the development of an effective neuroprotective agent for use in ischemic stroke.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk 634028, Russian Federation
| | | |
Collapse
|
12
|
Omri A, Abdelhamid S, Ayadi M, Araouki A, Gharsallaoui M, Gouiaa M, Benincasa C. The investigation of minor and rare Tunisian olive cultivars to enrich and diversify the olive genetic resources of the country. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Leto G, Flandina C, Crescimanno M, Giammanco M, Sepporta MV. Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases. Life Sci 2020; 264:118694. [PMID: 33130080 DOI: 10.1016/j.lfs.2020.118694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oleuropein (Ole) is the main bioactive phenolic compound present in olive leaves, fruits and olive oil. This molecule has been shown to exert beneficial effects on several human pathological conditions. In particular, recent preclinical and observational studies have provided evidence that Ole exhibits chemo-preventive effects on different types of human tumors. Studies undertaken to elucidate the specific mechanisms underlying these effects have shown that this molecule may thwart several key steps of malignant progression, including tumor cell proliferation, survival, angiogenesis, invasion and metastasis, by modulating the expression and activity of several growth factors, cytokines, adhesion molecules and enzymes involved in these processes. Interestingly, experimental observations have highlighted the fact that most of these signalling molecules also appear to be actively involved in the homing and growth of disseminating cancer cells in bones and, ultimately, in the development of metastatic bone diseases. These findings, and the experimental and clinical data reporting the preventive activity of Ole on various pathological conditions associated with a bone loss, are indicative of a potential therapeutic role of this molecule in the prevention and treatment of cancer-related bone diseases. This paper provides a current overview regarding the molecular mechanisms and the experimental findings underpinning a possible clinical role of Ole in the prevention and development of cancer-related bone diseases.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Carla Flandina
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marilena Crescimanno
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Nikou T, Witt M, Stathopoulos P, Barsch A, Halabalaki M. Olive Oil Quality and Authenticity Assessment Aspects Employing FIA-MRMS and LC-Orbitrap MS Metabolomic Approaches. Front Public Health 2020; 8:558226. [PMID: 33102421 PMCID: PMC7545581 DOI: 10.3389/fpubh.2020.558226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
Edible vegetable oils comprise integral components of humans' daily diet during the lifetime. Therefore, they constitute a central part of dietary-exposome, which among other factors regulates human health. In particular, the regular consumption of olive oil (OO) has been largely accepted as a healthy dietary pattern. Responsible for its recognition as a superior edible oil is its exceptional aroma and flavor. Its unique composition is characterized by high levels of monounsaturated fatty acids and the presence of minor constituents with important biological properties, such as the so-called OO polyphenols. Being a high added value product, OO suffers from extensive fraud and adulteration phenomena. However, its great chemical complexity, variability, and the plethora of parameters affecting OO composition hamper significantly the selection of the absolute criteria defining quality and authenticity, and a reliable and robust methodology is still unavailable. In the current study, Flow Injection Analysis-Magnetic Resonance Mass Spectrometry (FIA-MRMS) was investigated under a metabolic profiling concept for the analysis of Greek Extra Virgin Olive Oils (EVOO). More than 200 monovarietal (Koroneiki) EVOO samples were collected from the main Greek OO producing regions and investigated. Both intact oil and the corresponding polyphenols were analyzed in fast analysis time of 2 and 8 min, respectively. In parallel, an LC-Orbitrap MS platform was used to verify the efficiency of the method as well as a tool to increase the identification confidence of the proposed markers. Based on the results, with FIA-MRMS, comparable and improved projection and prediction models were generated in comparison to those of the more established LC-MS methodology. With FIA-MRMS more statistically significant compounds and chemical classes were identified as quality and authenticity markers, associated with specific parameters, i.e. geographical region, cultivation practice, and production procedure. Furthermore, it was possible to monitor both lipophilic and hydrophilic compounds with a single analysis. To our knowledge, this approach is among the few studies in which two FT-MS platforms combining LC and FIA methods were integrated to provide solutions to quality control aspects of OO. Moreover, both lipophilic and hydrophilic components are analyzed together, providing a holistic quality control workflow for OO.
Collapse
Affiliation(s)
- Theodora Nikou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Mehmood A, Usman M, Patil P, Zhao L, Wang C. A review on management of cardiovascular diseases by olive polyphenols. Food Sci Nutr 2020; 8:4639-4655. [PMID: 32994927 PMCID: PMC7500788 DOI: 10.1002/fsn3.1668] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Noncommunicable diseases have increasingly grown the cause of morbidities and mortalities worldwide. Among them, cardiovascular diseases (CVDs) continue to be the major contributor to deaths. CVDs are common in the urban community population due to the substandard living conditions, which have a significant impact on the healthcare system, and over 23 million human beings are anticipated to suffer from the CVDs before 2030. At the moment, CVD physicians are immediately advancing both primary and secondary prevention modalities in high-risk populations. The cornerstone of CVD prevention is a healthy lifestyle that is more cost-effective than the treatments after disease onset. In fact, in the present scenario, comprehensive research conducted on food plant components is potentially efficacious in reducing some highly prevalent CVD risk factors, such as hypercholesterolemia, hypertension, and atherosclerosis. Polyphenols of olive oil (OO), virgin olive oil (VOO), and extra virgin olive oil contribute an essential role for the management of CVDs. Olive oil induces cardioprotective effects due to the presence of a plethora of polyphenolic compounds, for example, oleuropein (OL), tyrosol, and hydroxytyrosol. The present study examines the bioavailability and absorption of major olive bioactive compounds, for instance, oleacein, oleocanthal, OL, and tyrosol. This review also elucidates the snobbish connection of olive polyphenols (OP) and the potential mechanism involved in combating various CVD results taken up from the in vitro and in vivo studies, such as animal and human model studies.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Prasanna Patil
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
16
|
Hanafy DM, Burrows GE, Prenzler PD, Hill RA. Potential Role of Phenolic Extracts of Mentha in Managing Oxidative Stress and Alzheimer's Disease. Antioxidants (Basel) 2020; 9:antiox9070631. [PMID: 32709074 PMCID: PMC7402171 DOI: 10.3390/antiox9070631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
With an increase in the longevity and thus the proportion of the elderly, especially in developed nations, there is a rise in pathological conditions that accompany ageing, such as neurodegenerative disorders. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive and memory decline. The pathophysiology of the disease is poorly understood, with several factors contributing to its development, such as oxidative stress, neuroinflammation, cholinergic neuronal apoptotic death, and the accumulation of abnormal proteins in the brain. Current medications are only palliative and cannot stop or reverse the progression of the disease. Recent clinical trials of synthetic compounds for the treatment of AD have failed because of their adverse effects or lack of efficacy. Thus, there is impetus behind the search for drugs from natural origins, in addition to the discovery of novel, conventional therapeutics. Mints have been used traditionally for conditions relevant to the central nervous system. Recent studies showed that mint extracts and/or their phenolic constituents have a neuroprotective potential and can target multiple events of AD. In this review, we provide evidence of the potential role of mint extracts and their derivatives as possible sources of treatments in managing AD. Some of the molecular pathways implicated in the development of AD are reviewed, with focus on apoptosis and some redox pathways, pointing to mechanisms that may be modulated for the treatment of AD, and the need for future research invoking knowledge of these pathways is highlighted.
Collapse
Affiliation(s)
- Doaa M. Hanafy
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Pugsley Place, Wagga Wagga, NSW 2650, Australia
- Department of Pharmacognosy, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Geoffrey E. Burrows
- School of Agricultural & Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| | - Paul D. Prenzler
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Pugsley Place, Wagga Wagga, NSW 2650, Australia
- School of Agricultural & Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Correspondence: (P.D.P.); (R.A.H.); Tel.: +61-2-693-32978 (P.D.P.); +61-2-693-32018 (R.A.H.)
| | - Rodney A. Hill
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
- Correspondence: (P.D.P.); (R.A.H.); Tel.: +61-2-693-32978 (P.D.P.); +61-2-693-32018 (R.A.H.)
| |
Collapse
|
17
|
Stavro Santarosa A, Berti F, Tommasini M, Calabretti A, Forzato C. Signal-On Fluorescent Imprinted Nanoparticles for Sensing of Phenols in Aqueous Olive Leaves Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1011. [PMID: 32466364 PMCID: PMC7353427 DOI: 10.3390/nano10061011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 01/23/2023]
Abstract
The activation of signals in fluorescent nanosensors upon interaction with their targets is highly desirable. To this aim, several molecularly imprinted nanogels have been synthetized for the recognition of tyrosol, hydroxytyrosol and oleuropein in aqueous extracts using the non-covalent approach. Two of them contain fluorescein derivatives as co-monomers, and their fluorescence emission is switched on upon binding of the target phenols. The selection of functional monomers was previously done by analyzing the interactions by nuclear magnetic resonance (NMR) in deuterated dimethylsulfoxide (DMSO-d6) of the monomers with tyrosol and hydroxytyrosol. Polymers were synthetized under high dilution conditions to obtain micro- and nano-particles, as verified by transmission electron microscopy (TEM). 1,4-Divinylbenzene (DVB) was used in the fluorescent polymers in order to enhance the interactions with the aromatic ring of the templates tyrosol and hydroxytyrosol by π-π stacking. The results were fully satisfactory as to rebinding: DVB-crosslinked molecularly imprinted polymers (MIPs) gave over 50 nmol/mg rebinding. The sensitivity of the fluorescent MIPs was excellent, with LODs in the pM range. The sensing polymers were tested on real olive leaves extracts, with very good performance and negligible matrix effects.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Forzato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (A.S.S.); (F.B.); (M.T.); (A.C.)
| |
Collapse
|
18
|
Khozeimeh F, Golestannejad Z, Abtahi R, Zarei Z, Sadeghalbanaei L, Sadeghian R. Inhibitory effects of ethanolic, methanolic, and hydroalcoholic extracts of olive (Olea europaea) leaf on growth, acid production, and adhesion of Streptococcus mutans. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.284730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Mediterranean and MIND Diets Containing Olive Biophenols Reduces the Prevalence of Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20112797. [PMID: 31181669 PMCID: PMC6600544 DOI: 10.3390/ijms20112797] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
The risk of Alzheimer’s disease (AD) increases with nonmodifiable conditions including age and lack of effective efficacious pharmacotherapy. During the past decades, the non-pharmacotherapy mode of treatment of dietary modification received extensive attention in AD research. In order to reduce the AD pathology and cognitive decline, various dietary patterns have been attempted including caloric restriction (CR), dietary approaches to stop hypertension (DASH), ketogenic diets (KD), Mediterranean diet (MedDi) and Mediterranean-DASH diet Intervention for Neurological Delay (MIND) diet. Higher adherence to the MedDi diet was associated with decreases in cardiovascular and neurological disorders including AD and related cognitive decline. However, another emerging healthy dietary pattern MIND diet has also been associated with slower rates of cognitive decline and significant reduction of AD rate. Olive serves as one of the building block components of MedDi and MIND diets and the exerted potential health beneficial might be suggested due to the presence of its bioactive constituents such as oleic acids and phenolic compounds (biophenols). A few trials using medical food showed an optimal result in presymptomatic or early stages of AD. The review supports the notion that MedDi and MIND diets display potential for maintaining the cognitive function as nonpharmacological agents against AD pathology and proposed preventative mechanism through the presence of olive biophenols and presents the gaps along with the future directions.
Collapse
|
20
|
Abstract
Olive trees (Olea europaea) and their processed products, such as olive oil, play a major role in the Mediterranean way of life. Their positive impact on human health is being intensely investigated. One research topic is the identification of new application areas of olive mill wastewater (OMWW). OMWW is characterized by the high content of polyphenols possessing many positive health effects. Thus, the phenol-enriched OMWW extract offers the potential for the treatment of skin disorders and for cosmetic application. The aim of the present study was to evaluate cell viability and proliferation, the anti-inflammatory and anti-oxidative properties of a phenol-enriched OMWW extract on an immortal keratinocyte cell line (HaCaT cells). Moreover, the influence on the growth of various microorganisms was investigated; furthermore, the effects on normal human epidermal keratinocytes (NHEK) and human melanoma cells (A375) were studied in a commercially available tumor invasion skin model. The phenol-enriched OMWW extract showed excellent antimicrobial activity. Moreover, a noticeable reduction in reactive oxygen species formation as well as Interleukin-8 release in HaCaT cells were observed. Finally, the inhibited growth of A375 melanoma nodules in the melanoma skin model could be shown. Our results indicate that the OMWW extract is a promising ingredient for dermal applications to improve skin health and skin protection as well as having a positive impact on skin ageing.
Collapse
|
21
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
22
|
Marx W, George ES, Mayr HL, Thomas CJ, Sarapis K, Moschonis G, Kennedy G, Pipingas A, Willcox JC, Prendergast LA, Itsiopoulos C. Effect of high polyphenol extra virgin olive oil on markers of cardiovascular disease risk in healthy Australian adults (OLIVAUS): A protocol for a double‐blind randomised, controlled, cross‐over study. Nutr Diet 2019; 77:523-528. [DOI: 10.1111/1747-0080.12531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wolfgang Marx
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
- Food & Mood Centre, IMPACT SRC, School of Medicine Deakin University Geelong Victoria Australia
| | - Elena S. George
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition Deakin University Geelong Victoria Australia
| | - Hannah L. Mayr
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
- Faculty of Health Sciences and Medicine Bond University Nutrition and Dietetics Research Group Gold Coast Queensland Australia
- Nutrition and Dietetics Department Princess Alexandra Hospital Brisbane Queensland Australia
| | - Colleen J. Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering La Trobe University Melbourne Victoria Australia
| | - Katerina Sarapis
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
| | - George Moschonis
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
| | - Greg Kennedy
- Centre for Human Psychopharmacology Swinburne University of Technology Melbourne Victoria Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology Swinburne University of Technology Melbourne Victoria Australia
| | - Jane C. Willcox
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
| | - Luke A. Prendergast
- Department of Mathematics and Statistics, School of Engineering and Mathematical Sciences, College of Science, Health and Engineering La Trobe University Melbourne Victoria Australia
| | - Catherine Itsiopoulos
- Department of Dietetics, Nutrition and Sport School of Allied Health, Human Services and Sport, College of Science Melbourne Victoria Australia
| |
Collapse
|
23
|
Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front Cell Neurosci 2018; 12:373. [PMID: 30405355 PMCID: PMC6206263 DOI: 10.3389/fncel.2018.00373] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a pathological feature of quite a number of Central Nervous System diseases such as Alzheimer and Parkinson's disease among others. The hallmark of brain neuroinflammation is the activation of microglia, which are the immune resident cells in the brain and represents the first line of defense when injury or disease occur. Microglial activated cells can adopt different phenotypes to carry out its diverse functions. Thus, the shift into pro-inflammatory/neurotoxic or anti-inflammatory/neuroprotective phenotypes, depending of the brain environment, has totally changed the understanding of microglia in neurodegenerative disease. For this reason, novel therapeutic strategies which aim to modify the microglia polarization are being developed. Additionally, the understanding of how nutrition may influence the prevention and/or treatment of neurodegenerative diseases has grown greatly in recent years. The protective role of Mediterranean diet (MD) in preventing neurodegenerative diseases has been reported in a number of studies. The Mediterranean dietary pattern includes as distinctive features the moderate intake of red wine and extra virgin olive oil, both of them rich in polyphenolic compounds, such as resveratrol, oleuropein and hydroxytyrosol and their derivatives, which have demonstrated anti-inflammatory effects on microglia on in vitro studies. This review summarizes our understanding of the role of dietary phenolic compounds characteristic of the MD in mitigating microglia-mediated neuroinflammation, including explanation regarding their bioavailability, metabolism and blood-brain barrier.
Collapse
Affiliation(s)
- Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Ana B. Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Stéphanie Krisa
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Tristan Richard
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - M. Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
24
|
Stability effects of methyl β-cyclodextrin on Olea europaea leaf extracts in a natural deep eutectic solvent. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3090-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules 2017; 22:molecules22111858. [PMID: 29109370 PMCID: PMC6150248 DOI: 10.3390/molecules22111858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Plant biophenols have been shown to be effective in the modulation of Alzheimer’s disease (AD) pathology resulting from free radical-induced oxidative stress and imbalance of the redox chemistry of transition metal ions (e.g., iron and copper). On the basis of earlier reported pharmacological activities, olive biophenols would also be expected to have anti-Alzheimer’s activity. In the present study, the antioxidant activity of individual olive biophenols (viz. caffeic acid, hydroxytyrosol, oleuropein, verbascoside, quercetin, rutin and luteolin) were evaluated using superoxide radical scavenging activity (SOR), hydrogen peroxide (H2O2) scavenging activity, and ferric reducing ability of plasma (FRAP) assays. The identification and antioxidant activities in four commercial olive extracts—Olive leaf extractTM (OLE), Olive fruit extractTM (OFE), Hydroxytyrosol ExtremeTM (HTE), and Olivenol plusTM (OLP)—were evaluated using an on-line HPLC-ABTS•+ assay, and HPLC-DAD-MS analysis. Oleuropein and hydroxytyrosol were the predominant biophenols in all the extracts. Among the single compounds examined, quercetin (EC50: 93.97 μM) and verbascoside (EC50: 0.66 mM) were the most potent SOR and H2O2 scavengers respectively. However, OLE and HTE were the highest SOR (EC50: 1.89 μg/mL) and H2O2 (EC50: 115.8 μg/mL) scavengers among the biophenol extracts. The neuroprotection of the biophenols was evaluated against H2O2-induced oxidative stress and copper (Cu)-induced toxicity in neuroblastoma (SH-SY5Y) cells. The highest neuroprotection values (98% and 92%) against H2O2-induced and Cu-induced toxicities were shown by the commercial extract HTETM. These were followed by the individual biophenols, caffeic acid (77% and 64%) and verbascoside (71% and 72%). Our results suggest that olive biophenols potentially serve as agents for the prevention of neurodegenerative diseases such as AD, and other neurodegenerative ailments that are caused by oxidative stress.
Collapse
|
26
|
Composition and Statistical Analysis of Biophenols in Apulian Italian EVOOs. Foods 2017; 6:foods6100090. [PMID: 29057813 PMCID: PMC5664029 DOI: 10.3390/foods6100090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Extra-virgin olive oil (EVOO) is among the basic constituents of the Mediterranean diet. Its nutraceutical properties are due mainly, but not only, to a plethora of molecules with antioxidant activity known as biophenols. In this article, several biophenols were measured in EVOOs from South Apulia, Italy. Hydroxytyrosol, tyrosol and their conjugated structures to elenolic acid in different forms were identified and quantified by high performance liquid chromatography (HPLC) together with lignans, luteolin and α-tocopherol. The concentration of the analyzed metabolites was quite high in all the cultivars studied, but it was still possible to discriminate them through multivariate statistical analysis (MVA). Furthermore, principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were also exploited for determining variances among samples depending on the interval time between harvesting and milling, on the age of the olive trees, and on the area where the olive trees were grown.
Collapse
|
27
|
Effect of Methyl β-cyclodextrin on Radical Scavenging Kinetics of Olive Leaf Extracts and Interactions with Ascorbic Acid. CHEMENGINEERING 2017. [DOI: 10.3390/chemengineering1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, Xiao J. Chemical composition and nutritional function of olive (Olea europaea L.): a review. PHYTOCHEMISTRY REVIEWS 2017. [DOI: 10.1007/s11101-017-9526-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Kouka P, Priftis A, Stagos D, Angelis A, Stathopoulos P, Xinos N, Skaltsounis AL, Mamoulakis C, Tsatsakis AM, Spandidos DA, Kouretas D. Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts. Int J Mol Med 2017; 40:703-712. [PMID: 28731131 PMCID: PMC5547916 DOI: 10.3892/ijmm.2017.3078] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
Olive oil (OO) constitutes the basis of the Mediterranean diet, and it seems that its biophenols, such as hydroxytyrosol (HT) may scavenge free radicals, attracting distinct attention due to their beneficial effects in many pathological conditions, such as cancer. To the best of our knowedge, this is the first study in which the functional properties of an OO total polyphenolic fraction (TPF) and pure HT were examined in order to determine their antioxidant effects at a cellular level in endothelial cells and myoblasts. The test compounds were isolated using a green gradient-elution centrifugal partition chromatography-based method that allows the isolation of large volumes of OO in a continuous extraction procedure and with extremely low solvent consumption. For the isolation of HT, a combination of two chromatographic techniques was used, which is effective for the recovery of pure compounds from complex natural extracts. Moreover, TPF and HT exhibited potent free radical scavenging activity in vitro. The cells were treated with non-cytotoxic concentrations and their redox status [in terms of glutathione (GSH) and reactive oxygen species (ROS) levels] was assessed. TPF extract was less cytotoxic than HT, and the observed differences between the two cell lines used suggest a tissue-specific activity. Finally, flow cytometric analysis revealed that both TPF and HT improved the redox status by increasing the levels of GSH, one of the most important antioxidant molecules, in both endothelial cells and myoblasts, while the ROS levels were not significantly affected.
Collapse
Affiliation(s)
- Paraskevi Kouka
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | | | - Alexios-Léandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, 71003 Heraklion, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
30
|
Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting Alzheimer’s disease treatment. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
32
|
Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). ENVIRONMENTS 2017. [DOI: 10.3390/environments4020031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Thielmann J, Kohnen S, Hauser C. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int J Food Microbiol 2017; 251:48-66. [PMID: 28395179 DOI: 10.1016/j.ijfoodmicro.2017.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/10/2017] [Accepted: 03/26/2017] [Indexed: 01/13/2023]
Abstract
The antimicrobial activity of phenolic compounds from Olea (O.) europaea Linné (L.) is part of the scientific discussion regarding the use of natural plant extracts as alternative food preservative agents. Although, the basic knowledge on the antimicrobial potential of certain molecules such as oleuropein, hydroxytyrosol or elenolic acid derivatives is given, there is still little information regarding their applicability for food preservation. This might be primarily due to the lack of information regarding the full antimicrobial spectrum of the compounds, their synergisms in natural or artificial combinations and their interaction with food ingredients. The present review accumulates available literature from the past 40 years, investigating the antimicrobial activity of O. europaea L. derived extracts and compounds in vitro and in food matrices, in order to evaluate their food applicability. In summary, defined extracts from olive fruit or leaves, containing the strongest antimicrobial compounds hydroxytyrosol, oleacein or oleacanthal in considerable concentrations, appear to be suitable for food preservation. Nonetheless there is still need for consequent research on the compounds activity in food matrices, their effect on the natural microbiota of certain foods and their influence on the sensorial properties of the targeted products.
Collapse
Affiliation(s)
- J Thielmann
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.
| | | | - C Hauser
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
34
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer's disease. J Nutr Biochem 2017; 47:1-20. [PMID: 28301805 DOI: 10.1016/j.jnutbio.2017.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Self-assembly of amyloid beta peptide (Aβ) into the neurotoxic oligomers followed by fibrillar aggregates is a defining characteristic of Alzheimer's disease (AD). Several lines of proposed hypotheses have suggested the mechanism of AD pathology, though the exact pathophysiological mechanism is not yet elucidated. The poor understanding of AD and multitude of adverse responses reported from the current synthetic drugs are the leading cause of failure in the drug development to treat or halt the progression of AD and mandate the search for safer and more efficient alternatives. A number of natural compounds have shown the ability to prevent the formation of the toxic oligomers and disrupt the aggregates, thus attracted much attention. Referable to the abundancy and multitude of pharmacological activities of the plant active constituents, biophenols that distinguish them from the other phytochemicals as a natural weapon against the neurodegenerative disorders. This review provides a critical assessment of the current literature on in vitro and in vivo mechanistic activities of biophenols associated with the prevention and treatment of AD. We have contended the need for more comprehensive approaches to evaluate the anti-AD activity of biophenols at various pathologic levels and to assess the current evidences. Consequently, we highlighted the various problems and challenges confronting the AD research, and offer recommendations for future research.
Collapse
Affiliation(s)
- Syed H Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
35
|
Fatty Acid and Phenolic Compound Concentrations in Eight Different Monovarietal Virgin Olive Oils from Extremadura and the Relationship with Oxidative Stability. Int J Mol Sci 2016; 17:ijms17111960. [PMID: 27886101 PMCID: PMC5133954 DOI: 10.3390/ijms17111960] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022] Open
Abstract
Olive oils have been shown to be more resistant to oxidation than other vegetable fats, mainly due to their fatty acid (FA) profile which is rich in oleic acid and to their high content of antioxidants, principally phenols and tocopherols. This has situated virgin olive oils (VOOs) among the fats of high nutritional quality. However, it is important to stress that the oil’s commercial category (olive oil, virgin olive oil, extra-virgin olive oil), the variety of the source plant, and the extraction-conservation systems all decisively influence the concentration of these antioxidants and the oil’s shelf-life. The present work studied the fatty acid (FA) and phenolic composition and the oxidative stability (OS) of eight olive varieties grown in Extremadura (Arbequina, Cornicabra, Manzanilla Cacereña, Manzanilla de Sevilla, Morisca, Pico Limón, Picual, and Verdial de Badajoz), with the olives being harvested at different locations and dates. The Cornicabra, Picual, and Manzanilla Cacereña VOOs were found to have high oleic acid contents (>77.0%), while the VOOs of Morisca and Verdial de Badajoz had high linoleic acid contents (>14.5%). Regarding the phenol content, high values were found in the Cornicabra (633 mg·kg−1) and Morisca (550 mg·kg−1) VOOs, and low values in Arbequina (200 mg·kg−1). The OS was found to depend upon both the variety and the date of harvesting. It was higher in the Cornicabra and Picual oils (>55 h), and lower in those of Verdial de Badajoz (26.3 h), Arbequina (29.8 h), and Morisca (31.5 h). In relating phenols and FAs with the OS, it was observed that, while the latter, particularly the linoleic content (R = −0.710, p < 0.001, n = 135), constitute the most influential factors, the phenolic compounds, especially o-diphenols, are equally influential when the oils’ linoleic content is ≥12.5% (R = 0.674, p < 0.001, n = 47). The results show that VOOs’ resistance to oxidation depends not only on the FA or phenolic profile, but also on the interaction of these compounds within the same matrix.
Collapse
|
36
|
Lim A, Subhan N, Jazayeri JA, John G, Vanniasinkam T, Obied HK. Plant Phenols as Antibiotic Boosters: In Vitro Interaction of Olive Leaf Phenols with Ampicillin. Phytother Res 2016; 30:503-9. [PMID: 26931616 DOI: 10.1002/ptr.5562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Abstract
The antimicrobial properties of olive leaf extract (OLE) have been well recognized in the Mediterranean traditional medicine. Few studies have investigated the antimicrobial properties of OLE. In this preliminary study, commercial OLE and its major phenolic secondary metabolites were evaluated in vitro for their antimicrobial activities against Escherichia coli and Staphylococcus aureus, both individually and in combination with ampicillin. Besides luteolin 7-O-glucoside, OLE and its major phenolic secondary metabolites were effective against both bacteria, with more activity on S. aureus. In combination with ampicillin, OLE, caffeic acid, verbascoside and oleuropein showed additive effects. Synergistic interaction was observed between ampicillin and hydroxytyrosol. The phenolic composition of OLE and the stability of olive phenols in assay medium were also investigated. While OLE and its phenolic secondary metabolites may not be potent enough as stand-alone antimicrobials, their abilities to boost the activity of co-administered antibiotics constitute an imperative future research area.
Collapse
Affiliation(s)
- Anxy Lim
- School of Dentistry & Health Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Nusrat Subhan
- School of Biomedical Sciences & Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences & Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | - George John
- School of Biomedical Sciences & Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | - Thiru Vanniasinkam
- School of Biomedical Sciences & Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | - Hassan K Obied
- School of Biomedical Sciences & Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
37
|
Guinda Á, Castellano JM, Santos-Lozano JM, Delgado-Hervás T, Gutiérrez-Adánez P, Rada M. Determination of major bioactive compounds from olive leaf. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Sousa A, Malheiro R, Casal S, Bento A, Pereira JA. Optimal harvesting period for cvs. Madural and Verdeal Transmontana, based on antioxidant potential and phenolic composition of olives. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:839019. [PMID: 25054150 PMCID: PMC4098616 DOI: 10.1155/2014/839019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/02/2023]
Abstract
Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents.
Collapse
|
40
|
Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants (Basel) 2013; 3:1-23. [PMID: 26784660 PMCID: PMC4665453 DOI: 10.3390/antiox3010001] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.
Collapse
Affiliation(s)
- Maurizio Servili
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Beatrice Sordini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Sonia Esposto
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Stefania Urbani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Gianluca Veneziani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Ilona Di Maio
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Roberto Selvaggini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Agnese Taticchi
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| |
Collapse
|