1
|
Zhao Z, Tang X, Chen Y, Tao J, Polat M, Yang Z, Yang L, Wang M, Liang S, Zhang K, Zhang Y, Zhang C, Wang L, Wang Y, Konnerth A, Jia H, Xiong W, Liao X, Li SC, Chen X. A parallel tonotopically arranged thalamocortical circuit for sound processing. Neuron 2025:S0896-6273(25)00222-3. [PMID: 40239654 DOI: 10.1016/j.neuron.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
The perception of the sensory world in mammals requires information flow from the thalamus to the cortex. Although the first-order sensory thalamus and its surrounding nuclei are considered the major hub for feedforward thalamocortical transmission, it remains unknown whether any other thalamic input could also contribute to this transmission. We found a thalamic region, the basal region of the ventromedial nucleus of the thalamus (bVM), that sends dense, tonotopically arranged projections to auditory cortex (AuC) fields. Silencing these AuC-projecting neurons severely impaired the mouse's ability to discriminate sound frequencies. These projections exhibited strong frequency-tuning preferences that matched the cortical tonotopic map. Moreover, bVM inputs were excitatory and primarily terminated on neuron-derived neurotrophic factor-positive interneurons in cortical layer 1. Silencing these inputs significantly reduced sound-evoked responses of AuC neurons. Our results reveal a non-canonical, tonotopically arranged thalamic input to cortical layer 1 that contributes to sound processing, in parallel to the classic auditory thalamocortical pathway.
Collapse
Affiliation(s)
- Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Xiaojing Tang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Yiheng Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Jie Tao
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Mahiber Polat
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Linhan Yang
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Yun Zhang
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Lina Wang
- LFC Laboratory and State Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing 100854, China
| | - Yanjiang Wang
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Arthur Konnerth
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802 Munich, Germany
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China; Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China.
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; NewLight Neuroscience Unit, Chongqing 400064, China.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China; LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
2
|
Simone L, Caruana F, Elena B, Del Sorbo S, Jezzini A, Rozzi S, Luppino G, Gerbella M. Anatomo-functional organization of insular networks: From sensory integration to behavioral control. Prog Neurobiol 2025; 247:102748. [PMID: 40074022 DOI: 10.1016/j.pneurobio.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Classically, the insula is considered an associative multisensory cortex where emotional awareness emerges through the integration of interoceptive and exteroceptive information, along with autonomic regulation. However, since early intracortical microstimulation (ICMS) studies, the insular cortex has also been conceived as a mosaic of anatomo-functional sectors processing various types of sensory information to generate specific overt behaviors. Based on this, the insula has been subdivided into distinct functional fields: an anterior field associated with oroalimentary behaviors, a middle field involved dorsally in hand movements and ventrally in emotional reactions, and a posterior field engaged in axial and proximal movements. Nevertheless, the anatomo-functional networks through which these fields produce motor behaviors remain largely unknown. To fill this gap in the present study, we investigated the connectivity of the macaque insula using a multimodal approach which combines resting-state fMRI with data from tract-tracing injections in insular functional fields defined by ICMS, as well as in brain areas known to be connected to the insula and characterized by specific somatotopic organization. The results revealed that each insular functional field takes part in distinct somatotopically organized network modulating specific motor or visceromotor behaviors, extending previous models that subdivide the insula primarily based on the types of interoceptive and exteroceptive information it receives. Our findings posit the various insular sectors as interfaces that synthesize diverse interoceptive and exteroceptive inputs into coherent subjective experiences and decision-making processes, within an embodied and enactive framework, that moves beyond the traditional dichotomy between sensory experience and motor behavior.
Collapse
Affiliation(s)
- Luciano Simone
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Borra Elena
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Simone Del Sorbo
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Ahmad Jezzini
- Department of Medical Education, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Stefano Rozzi
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
3
|
Nguyen TT, Hashiguchi K, Waschek JA, Miyata A, Kambe Y. The pivotal role of PACAP/PAC1R signaling from the anterior insular cortex to the locus coeruleus on anxiety-related behaviors of mice. Neurochem Int 2024; 180:105879. [PMID: 39396708 DOI: 10.1016/j.neuint.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its specific receptor (PAC1R) are widely present in the central nervous system (CNS), and PACAP/PAC1R signaling has been implicated in anxiety-related behaviors. The locus coeruleus (LC), with its extensive noradrenergic (NA) projections throughout the CNS, is also implicated in anxiety. Although the LC exhibits a high expression of PAC1R, the precise role of PACAP/PAC1R signaling in the LC's involvement in anxiety remains unclear. Histochemical analysis confirmed high levels of PAC1R mRNA in the LC and showed that PAC1R gene transcripts were highly localized to NA neurons. Targeted deletion of PAC1R from these cells led to a hyperactive/low anxiety phenotype in the open field and elevated-plus maze tests. Retrograde neurocircuit tracing indicated PACAP neurons from the anterior insular cortex (aIC) and a few other regions projected axons to the LC. The selective activation of PACAP neurons in the aIC led to significantly increased anxiety behavior without a change in overall locomotor activity. Moreover, shRNA PACAP knockdown in the aIC in wild-type mice led to a selective decrease in anxiety. The present results identify an aIC to LC neurocircuit controlling anxiety that critically requires PACAP/PAC1R signaling.
Collapse
Affiliation(s)
- Thi Thu Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Kohei Hashiguchi
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Atsuro Miyata
- Department of Drug Discovery for DDS, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan.
| |
Collapse
|
4
|
Grootjans Y, Byczynski G, Vanneste S. The use of non-invasive brain stimulation in auditory perceptual learning: A review. Hear Res 2023; 439:108881. [PMID: 37689034 DOI: 10.1016/j.heares.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Auditory perceptual learning is an experience-dependent form of auditory learning that can improve substantially throughout adulthood with practice. A key mechanism associated with perceptual learning is synaptic plasticity. In the last decades, an increasingly better understanding has formed about the neural mechanisms related to auditory perceptual learning. Research in animal models found an association between the functional organization of the primary auditory cortex and frequency discrimination ability. Several studies observed an increase in the area of representation to be associated with improved frequency discrimination. Non-invasive brain stimulation techniques have been related to the promotion of plasticity. Despite its popularity in other fields, non-invasive brain stimulation has not been used much in auditory perceptual learning. The present review has discussed the application of non-invasive brain stimulation methods in auditory perceptual learning by discussing the mechanisms, current evidence and challenges, and future directions.
Collapse
Affiliation(s)
- Yvette Grootjans
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
5
|
Banks MI, Krause BM, Berger DG, Campbell DI, Boes AD, Bruss JE, Kovach CK, Kawasaki H, Steinschneider M, Nourski KV. Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology. PLoS Biol 2023; 21:e3002239. [PMID: 37651504 PMCID: PMC10499207 DOI: 10.1371/journal.pbio.3002239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - D. Graham Berger
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Declan I. Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Boes
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joel E. Bruss
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher K. Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Mitchell Steinschneider
- Department of Neurology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
6
|
Huang JK, Yin B. Phylogenic evolution of beat perception and synchronization: a comparative neuroscience perspective. Front Syst Neurosci 2023; 17:1169918. [PMID: 37325439 PMCID: PMC10264645 DOI: 10.3389/fnsys.2023.1169918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
The study of music has long been of interest to researchers from various disciplines. Scholars have put forth numerous hypotheses regarding the evolution of music. With the rise of cross-species research on music cognition, researchers hope to gain a deeper understanding of the phylogenic evolution, behavioral manifestation, and physiological limitations of the biological ability behind music, known as musicality. This paper presents the progress of beat perception and synchronization (BPS) research in cross-species settings and offers varying views on the relevant hypothesis of BPS. The BPS ability observed in rats and other mammals as well as recent neurobiological findings presents a significant challenge to the vocal learning and rhythm synchronization hypothesis if taken literally. An integrative neural-circuit model of BPS is proposed to accommodate the findings. In future research, it is recommended that greater consideration be given to the social attributes of musicality and to the behavioral and physiological changes that occur across different species in response to music characteristics.
Collapse
Affiliation(s)
- Jin-Kun Huang
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
- Department of Applied Psychology, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Kumar N, Jaiswal A, Roy D, Banerjee A. Effective networks mediate right hemispheric dominance of human 40 Hz auditory steady-state response. Neuropsychologia 2023; 184:108559. [PMID: 37040848 DOI: 10.1016/j.neuropsychologia.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Auditory steady-state responses (ASSR) are induced from the brainstem to the neocortex when humans hear periodic amplitude-modulated tonal signals. ASSRs have been argued to be a key marker of auditory temporal processing and pathological reorganization of ASSR - a biomarker of neurodegenerative disorders. However, most of the earlier studies reporting the neural basis of ASSRs were focused on looking at individual brain regions. Here, we seek to characterize the large-scale directed information flow among cortical sources of ASSR entrained by 40 Hz external signals. Entrained brain rhythms with power peaking at 40 Hz were generated using both monaural and binaural tonal stimulation. First, we confirm the presence of ASSRs and their well-known right hemispheric dominance during binaural and both monaural conditions. Thereafter, reconstruction of source activity employing individual anatomy of the participant and subsequent network analysis revealed that while the sources are common among different stimulation conditions, differential levels of source activation and differential patterns of directed information flow using Granger causality among sources underlie processing of binaurally and monaurally presented tones. Particularly, we show bidirectional interactions involving the right superior temporal gyrus and inferior frontal gyrus underlie right hemispheric dominance of 40 Hz ASSR during both monaural and binaural conditions. On the other hand, for monaural conditions, the strength of inter-hemispheric flow from left primary auditory areas to right superior temporal areas followed a pattern that comply with the generally observed contralateral dominance of sensory signal processing.
Collapse
Affiliation(s)
- Neeraj Kumar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India.
| | - Amit Jaiswal
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, 122052, India.
| |
Collapse
|
8
|
Nakagawa Y, Yamada S. The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 PMCID: PMC11414457 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
9
|
Leite Filho CA, Rocha-Muniz CN, Pereira LD, Schochat E. Auditory temporal resolution and backward masking in musicians with absolute pitch. Front Neurosci 2023; 17:1151776. [PMID: 37139520 PMCID: PMC10149789 DOI: 10.3389/fnins.2023.1151776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Among the many questions regarding the ability to effortlessly name musical notes without a reference, also known as absolute pitch, the neural processes by which this phenomenon operates are still a matter of debate. Although a perceptual subprocess is currently accepted by the literature, the participation of some aspects of auditory processing still needs to be determined. We conducted two experiments to investigate the relationship between absolute pitch and two aspects of auditory temporal processing, namely temporal resolution and backward masking. In the first experiment, musicians were organized into two groups according to the presence of absolute pitch, as determined by a pitch identification test, and compared regarding their performance in the Gaps-in-Noise test, a gap detection task for assessing temporal resolution. Despite the lack of statistically significant difference between the groups, the Gaps-in-Noise test measures were significant predictors of the measures for pitch naming precision, even after controlling for possible confounding variables. In the second experiment, another two groups of musicians with and without absolute pitch were submitted to the backward masking test, with no difference between the groups and no correlation between backward masking and absolute pitch measures. The results from both experiments suggest that only part of temporal processing is involved in absolute pitch, indicating that not all aspects of auditory perception are related to the perceptual subprocess. Possible explanations for these findings include the notable overlap of brain areas involved in both temporal resolution and absolute pitch, which is not present in the case of backward masking, and the relevance of temporal resolution to analyze the temporal fine structure of sound in pitch perception.
Collapse
Affiliation(s)
- Carlos Alberto Leite Filho
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Alberto Leite Filho,
| | - Caroline Nunes Rocha-Muniz
- Speech-Language Pathology Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Liliane Desgualdo Pereira
- Neuroaudiology Lab, Department of Speech Therapy, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Eliane Schochat
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust P, Bonetti L. Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences. Commun Biol 2022; 5:1272. [PMID: 36402843 PMCID: PMC9675809 DOI: 10.1038/s42003-022-04217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG). Results reveal qualitative changes in neural activity dependent on stimulus complexity: recognition of tonal sequences engages hippocampal and cingulate areas, whereas recognition of atonal sequences mainly activates the auditory processing network. Our findings reveal the involvement of a cortico-subcortical brain network for auditory recognition and support the idea that stimulus complexity qualitatively alters the neural pathways of recognition memory.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Taddeo S, Schulz M, Andermann M, Rupp A. Neuromagnetic representation of melodic contour processing in human auditory cortex. Front Hum Neurosci 2022; 16:909159. [PMID: 36393993 PMCID: PMC9644163 DOI: 10.3389/fnhum.2022.909159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The pattern of ups and downs in a sequence with varying pitch can be heard as a melodic contour. Contrary to single pitch, the neural representation of melodic contour information in the auditory cortex is rarely investigated, and it is not clear whether the processing entails a hemispheric asymmetry. The present magnetoencephalography study assessed the neuromagnetic responses of N = 18 normal-hearing adults to four-note sequences with fixed vs. varying pitch that were presented either monaurally or diotically; data were analyzed using minimum-norm reconstructions. The first note of the sequences elicited prominent transient activity in posterior auditory regions (Planum temporale), especially contralateral to the ear of entry. In contrast, the response to the subsequent notes originated from more anterior areas (Planum polare) and was larger for melodic contours than for fixed pitch sequences, independent from the ear of entry and without hemispheric asymmetry. Together, the results point to a gradient in the early cortical processing of melodic contours, both in spatial and functional terms, where posterior auditory activity reflects the onset of a pitch sequence and anterior activity reflects its subsequent notes, including the difference between sequences with fixed pitch and melodic contours.
Collapse
Affiliation(s)
- Sabrina Taddeo
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center of Tübingen, Tübingen, Germany
| | - Martin Schulz
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Hajizadeh A, Matysiak A, Wolfrum M, May PJC, König R. Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation. BIOLOGICAL CYBERNETICS 2022; 116:475-499. [PMID: 35718809 PMCID: PMC9287241 DOI: 10.1007/s00422-022-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.
Collapse
Affiliation(s)
- Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Artur Matysiak
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Matthias Wolfrum
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany
| | - Patrick J. C. May
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF UK
| | - Reinhard König
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| |
Collapse
|
13
|
Nonspecific hebbian neural network model predicts musical scales discreteness and just intonation without using octave-equivalency mapping. Sci Rep 2022; 12:8795. [PMID: 35614338 PMCID: PMC9132910 DOI: 10.1038/s41598-022-12922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
This study continues investigating the consonance-pattern emerging neural network model introduced in our previous publication, specifically to test if it will reproduce the results using 100-fold finer precision of 1/100th of a semitone (1 cent). The model is a simplistic feed-forward generic Hebbian-learning generic neural network trained with multiple-harmonic complex sounds from the full auditory sound spectrum of 10 octaves. We use the synaptic weights between the neural correlates of each two-tone from the said spectrum to measure the model's preference to their inter-tonal interval (12,0002 intervals), considering familiarity as a consonance predictor. We analyze all the 12,000 intervals of a selected tone (the tonic), and the results reveal three distinct yet related features. Firstly, Helmholtz's list of consonant intervals re-emerges from the synaptic weights of the model, although with disordered dissonant intervals. Additionally, the results show a high preference to a small number of selected intervals, mapping the virtually continual input sound spectrum to a discrete set of intervals. Finally, the model's most preferred (most consonant) intervals are from the Just Intonation scales. The model does not need to use cross-octave interval mapping due to octave equivalence to produce the said results.
Collapse
|
14
|
Pürner D, Schirkonyer V, Janssen T. Changes in the peripheral and central auditory performance in the elderly—A cross‐sectional study. J Neurosci Res 2022; 100:1791-1811. [DOI: 10.1002/jnr.25068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/02/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Dominik Pürner
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
- Department of Neurology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| | - Volker Schirkonyer
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| | - Thomas Janssen
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| |
Collapse
|
15
|
Tanaka S, Kirino E. Right-Lateralized Enhancement of the Auditory Cortical Network During Imagined Music Performance. Front Neurosci 2022; 16:739858. [PMID: 35221895 PMCID: PMC8866933 DOI: 10.3389/fnins.2022.739858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Although the primary role of the auditory cortical areas is to process actual sounds, these areas are also activated by tasks that process imagined music, suggesting that the auditory cortical areas are involved in the processes underlying musical imagery. However, the mechanism by which these areas are involved in such processes is unknown. To elucidate this feature of the auditory cortical areas, we analyzed their functional networks during imagined music performance in comparison with those in the resting condition. While imagined music performance does not produce any musical sounds, the participants heard the same actual sounds from the MRI equipment in both experimental conditions. Therefore, if the functional connectivity between these conditions differs significantly, one can infer that the auditory cortical areas are actively involved in imagined music performance. Our functional connectivity analysis revealed a significant enhancement in the auditory network during imagined music performance relative to the resting condition. The reconfiguration profile of the auditory network showed a clear right-lateralized increase in the connectivity of the auditory cortical areas with brain regions associated with cognitive, memory, and emotional information processing. On the basis of these results, we hypothesize that auditory cortical areas and their networks are actively involved in imagined music performance through the integration of auditory imagery into mental imagery associated with music performance.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, Tokyo, Japan
- *Correspondence: Shoji Tanaka,
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
- Juntendo University Shizuoka Hospital, Shizuoka, Japan
| |
Collapse
|
16
|
Miceli G, Caccia A. Cortical disorders of speech processing: Pure word deafness and auditory agnosia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:69-87. [PMID: 35964993 DOI: 10.1016/b978-0-12-823493-8.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective disorders of auditory speech processing due to brain lesions are reviewed. Over 120 years after the first anatomic report (Dejerine and Sérieux, 1898), fewer than 80 cumulative cases of generalized auditory agnosia and pure word deafness with documented brain lesions are on record. Most patients (approximately 70%) had vascular lesions. Damage is very frequently bilateral in generalized auditory agnosia, and more frequently unilateral in pure word deafness. In unilateral cases, anatomical disconnection is not a prerequisite, and disorders may be due to functional disconnection. Regardless of whether lesions are unilateral or bilateral, speech processing difficulties emerge in the presence of damage to the superior temporal regions of the language-dominant hemisphere, suggesting that speech input is processed asymmetrically at early stages already. Extant evidence does not allow establishing whether processing asymmetry originates in the primary auditory cortex or in higher associative cortices, nor whether auditory processing in the brainstem is entirely symmetric. Results are consistent with the view that the difficulty in processing auditory input characterized by quick spectral and/or temporal changes is one of the critical dimensions of the disorder. Forthcoming studies should focus on detailed audiologic, neurolinguistic, and neuroanatomic descriptions of each case.
Collapse
Affiliation(s)
- Gabriele Miceli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy; Centro Interdisciplinare Linceo 'Beniamino Segre'-Accademia dei Lincei, Rome, Italy.
| | - Antea Caccia
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy; Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Abstract
The idea of a temporal lobe separated from the rest of the hemisphere by reason of its unique structural and functional properties is a clinically useful artifact. While the temporal lobe can be safely defined as the portion of the cerebrum lodged in the middle cranial fossa, the pattern of its connections is a more revealing description of its functional subdivisions and specific contribution to higher cognitive functions. This chapter provides an historical overview of the anatomy of the temporal lobe and an updated framework of temporal lobe connections based on tractography studies of human and nonhuman primates and patients with brain disorders. Compared to monkeys, the human temporal lobe shows a relatively increased connectivity with perisylvian frontal and parietal regions and a set of unique intrinsic connections, which may have supported the evolution of working memory, semantic representation, and language in our species. Conversely, the decreased volume of the anterior (limbic) interhemispheric temporal connections in humans is related to a reduced reliance on olfaction and a partial transference of functions from the anterior commissure to the posterior corpus callosum. Overall the novel data from tractography suggest a revision of current dual stream models for visual and auditory processing.
Collapse
Affiliation(s)
- Marco Catani
- Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom.
| |
Collapse
|
18
|
Is the MSB hypothesis (music as a coevolved system for social bonding) testable in the Popperian sense? Behav Brain Sci 2021; 44:e70. [PMID: 34588070 DOI: 10.1017/s0140525x20001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
"Music As a Coevolved System for Social Bonding" (MSB) is a brilliant synthesis and appealing hypothesis offering insights into the evolution and social bonding of musicality, but is so broad and sweeping it will be challenging to test, prove or falsify in the Popperian sense (Popper, 1959). After general comments, I focus my critique on underlying neurobiological mechanisms, and offer some suggestions for experimental tests of MSB.
Collapse
|
19
|
Trébuchon A, Alario FX, Liégeois-Chauvel C. Functional Topography of Auditory Areas Derived From the Combination of Electrophysiological Recordings and Cortical Electrical Stimulation. Front Hum Neurosci 2021; 15:702773. [PMID: 34489664 PMCID: PMC8418073 DOI: 10.3389/fnhum.2021.702773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
The posterior part of the superior temporal gyrus (STG) has long been known to be a crucial hub for auditory and language processing, at the crossroad of the functionally defined ventral and dorsal pathways. Anatomical studies have shown that this "auditory cortex" is composed of several cytoarchitectonic areas whose limits do not consistently match macro-anatomic landmarks like gyral and sulcal borders. The only method to record and accurately distinguish neuronal activity from the different auditory sub-fields of primary auditory cortex, located in the tip of Heschl and deeply buried in the Sylvian fissure, is to use stereotaxically implanted depth electrodes (Stereo-EEG) for pre-surgical evaluation of patients with epilepsy. In this prospective, we focused on how anatomo-functional delineation in Heschl's gyrus (HG), Planum Temporale (PT), the posterior part of the STG anterior to HG, the posterior superior temporal sulcus (STS), and the region at the parietal-temporal boundary commonly labeled "SPT" can be achieved using data from electrical cortical stimulation combined with electrophysiological recordings during listening to pure tones and syllables. We show the differences in functional roles between the primary and non-primary auditory areas, in the left and the right hemispheres. We discuss how these findings help understanding the auditory semiology of certain epileptic seizures and, more generally, the neural substrate of hemispheric specialization for language.
Collapse
Affiliation(s)
- Agnès Trébuchon
- INSERM, Institute of Systems Neuroscience, Aix-Marseille University, Marseille, France
| | - F.-Xavier Alario
- CNRS, LPC, Aix-Marseille University, Marseille, France
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Catherine Liégeois-Chauvel
- INSERM, Institute of Systems Neuroscience, Aix-Marseille University, Marseille, France
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Khalighinejad B, Patel P, Herrero JL, Bickel S, Mehta AD, Mesgarani N. Functional characterization of human Heschl's gyrus in response to natural speech. Neuroimage 2021; 235:118003. [PMID: 33789135 PMCID: PMC8608271 DOI: 10.1016/j.neuroimage.2021.118003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Heschl's gyrus (HG) is a brain area that includes the primary auditory cortex in humans. Due to the limitations in obtaining direct neural measurements from this region during naturalistic speech listening, the functional organization and the role of HG in speech perception remain uncertain. Here, we used intracranial EEG to directly record neural activity in HG in eight neurosurgical patients as they listened to continuous speech stories. We studied the spatial distribution of acoustic tuning and the organization of linguistic feature encoding. We found a main gradient of change from posteromedial to anterolateral parts of HG. We also observed a decrease in frequency and temporal modulation tuning and an increase in phonemic representation, speaker normalization, speech sensitivity, and response latency. We did not observe a difference between the two brain hemispheres. These findings reveal a functional role for HG in processing and transforming simple to complex acoustic features and inform neurophysiological models of speech processing in the human auditory cortex.
Collapse
Affiliation(s)
- Bahar Khalighinejad
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Prachi Patel
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Jose L. Herrero
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stephan Bickel
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ashesh D. Mehta
- Hofstra Northwell School of Medicine, Manhasset, NY, United States,The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Nima Mesgarani
- Mortimer B. Zuckerman Brain Behavior Institute, Columbia University, New York, NY, United States,Department of Electrical Engineering, Columbia University, New York, NY, United States,Corresponding author at: Department of Electrical Engineering, Columbia University, New York, NY, United States. (B. Khalighinejad), (P. Patel), (J.L. Herrero), (S. Bickel), (A.D. Mehta), (N. Mesgarani)
| |
Collapse
|
21
|
Levy DF, Wilson SM. Categorical Encoding of Vowels in Primary Auditory Cortex. Cereb Cortex 2021; 30:618-627. [PMID: 31241149 DOI: 10.1093/cercor/bhz112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 11/14/2022] Open
Abstract
Speech perception involves mapping from a continuous and variable acoustic speech signal to discrete, linguistically meaningful units. However, it is unclear where in the auditory processing stream speech sound representations cease to be veridical (faithfully encoding precise acoustic properties) and become categorical (encoding sounds as linguistic categories). In this study, we used functional magnetic resonance imaging and multivariate pattern analysis to determine whether tonotopic primary auditory cortex (PAC), defined as tonotopic voxels falling within Heschl's gyrus, represents one class of speech sounds-vowels-veridically or categorically. For each of 15 participants, 4 individualized synthetic vowel stimuli were generated such that the vowels were equidistant in acoustic space, yet straddled a categorical boundary (with the first 2 vowels perceived as [i] and the last 2 perceived as [i]). Each participant's 4 vowels were then presented in a block design with an irrelevant but attention-demanding level change detection task. We found that in PAC bilaterally, neural discrimination between pairs of vowels that crossed the categorical boundary was more accurate than neural discrimination between equivalently spaced vowel pairs that fell within a category. These findings suggest that PAC does not represent vowel sounds veridically, but that encoding of vowels is shaped by linguistically relevant phonemic categories.
Collapse
Affiliation(s)
- Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Nourski KV, Steinschneider M, Rhone AE, Krause BM, Mueller RN, Kawasaki H, Banks MI. Cortical Responses to Vowel Sequences in Awake and Anesthetized States: A Human Intracranial Electrophysiology Study. Cereb Cortex 2021; 31:5435-5448. [PMID: 34117741 PMCID: PMC8568007 DOI: 10.1093/cercor/bhab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Elucidating neural signatures of sensory processing across consciousness states is a major focus in neuroscience. Noninvasive human studies using the general anesthetic propofol reveal differential effects on auditory cortical activity, with a greater impact on nonprimary and auditory-related areas than primary auditory cortex. This study used intracranial electroencephalography to examine cortical responses to vowel sequences during induction of general anesthesia with propofol. Subjects were adult neurosurgical patients with intracranial electrodes placed to identify epileptic foci. Data were collected before electrode removal surgery. Stimuli were vowel sequences presented in a target detection task during awake, sedated, and unresponsive states. Averaged evoked potentials (AEPs) and high gamma (70-150 Hz) power were measured in auditory, auditory-related, and prefrontal cortex. In the awake state, AEPs were found throughout studied brain areas; high gamma activity was limited to canonical auditory cortex. Sedation led to a decrease in AEP magnitude. Upon LOC, there was a decrease in the superior temporal gyrus and adjacent auditory-related cortex and a further decrease in AEP magnitude in core auditory cortex, changes in the temporal structure and increased trial-to-trial variability of responses. The findings identify putative biomarkers of LOC and serve as a foundation for future investigations of altered sensory processing.
Collapse
Affiliation(s)
- Kirill V Nourski
- Address correspondence to Kirill V. Nourski, MD, PhD, Department of Neurosurgery, The University of Iowa, 200 Hawkins Dr. 1815 JCP, Iowa City, IA 52242, USA.
| | - Mitchell Steinschneider
- Department of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA,Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
23
|
Gale DJ, Areshenkoff CN, Honda C, Johnsrude IS, Flanagan JR, Gallivan JP. Motor Planning Modulates Neural Activity Patterns in Early Human Auditory Cortex. Cereb Cortex 2021; 31:2952-2967. [PMID: 33511976 PMCID: PMC8107793 DOI: 10.1093/cercor/bhaa403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Claire Honda
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ingrid S Johnsrude
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
24
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
25
|
Abstract
The cochlear implant (CI) as a treatment option for single-sided deafness (SSD) started with a clinical study looking in to the influence of cochlear implantation with a MED-EL device on incapacitating unilateral tinnitus in SSD. The study began in 2003 and was conducted by P. Van de Heyning and his team in Antwerp, Belgium. The first CI in SSD without tinnitus in Germany was implanted by J. Mueller and R. Jacob in Koblenz in 2005. Translational research activities took place since then to evaluate the CI as a treatment option for SSD not only in adults but also in children. They assessed the hearing performance of SSD patients implanted with CI, importance of long electrode arrays in SSD patients, degree of acceptance of CI by SSD children, importance of early CI implantation in SSD children in developing language skills, music enjoyment by hearing with two ears and evidence on spiral ganglion cell body distribution. In 2013, MED-EL was the first CI manufacturer to receive the CE mark for the indication of SSD and asymmetric hearing loss (AHL) in adults and children. In 2019, MED-EL was the first CI manufacturer to get its CI device approved for patients over the age of five with SSD and AHL, by the FDA in the USA. This article covers the milestones of translational research from the first concept to the widespread clinical use of CI in SSD.
Collapse
Affiliation(s)
| | - Ingeborg Hochmair
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
| |
Collapse
|
26
|
Balkenhol T, Wallhäusser-Franke E, Rotter N, Servais JJ. Cochlear Implant and Hearing Aid: Objective Measures of Binaural Benefit. Front Neurosci 2020; 14:586119. [PMID: 33381008 PMCID: PMC7768047 DOI: 10.3389/fnins.2020.586119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Cochlear implants (CI) improve hearing for the severely hearing impaired. With an extension of implantation candidacy, today many CI listeners use a hearing aid on their contralateral ear, referred to as bimodal listening. It is uncertain, however, whether the brains of bimodal listeners can combine the electrical and acoustical sound information and how much CI experience is needed to achieve an improved performance with bimodal listening. Patients with bilateral sensorineural hearing loss undergoing implant surgery were tested in their ability to understand speech in quiet and in noise, before and again 3 and 6 months after provision of a CI. Results of these bimodal listeners were compared to age-matched, normal hearing controls (NH). The benefit of adding a contralateral hearing aid was calculated in terms of head shadow, binaural summation, binaural squelch, and spatial release from masking from the results of a sentence recognition test. Beyond that, bimodal benefit was estimated from the difference in amplitudes and latencies of the N1, P2, and N2 potentials of the brains' auditory evoked response (AEP) toward speech. Data of fifteen participants contributed to the results. CI provision resulted in significant improvement of speech recognition with the CI ear, and in taking advantage of the head shadow effect for understanding speech in noise. Some amount of binaural processing was suggested by a positive binaural summation effect 6 month post-implantation that correlated significantly with symmetry of pure tone thresholds. Moreover, a significant negative correlation existed between binaural summation and latency of the P2 potential. With CI experience, morphology of the N1 and P2 potentials in the AEP response approximated that of NH, whereas, N2 remained different. Significant AEP differences between monaural and binaural processing were shown for NH and for bimodal listeners 6 month post-implantation. Although the grand-averaged difference in N1 amplitude between monaural and binaural listening was similar for NH and the bimodal group, source localization showed group-dependent differences in auditory and speech-relevant cortex, suggesting different processing in the bimodal listeners.
Collapse
Affiliation(s)
- Tobias Balkenhol
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Wallhäusser-Franke
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Jérôme J Servais
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
Gowen CL, Khwaounjoo P, Cakmak YO. EMG-Free Monitorization of the Acoustic Startle Reflex with a Mobile Phone: Implications of Sound Parameters with Posture Related Responses. SENSORS 2020; 20:s20215996. [PMID: 33105890 PMCID: PMC7660167 DOI: 10.3390/s20215996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
(1) Background: Acute acoustic (sound) stimulus prompts a state of defensive motivation in which unconscious muscle responses are markedly enhanced in humans. The orbicularis oculi (OO) of the eye is an easily accessed muscle common for acoustic startle reaction/response/reflex (ASR) investigations and is the muscle of interest in this study. Although the ASR can provide insights about numerous clinical conditions, existing methodologies (Electromyogram, EMG) limit the usability of the method in real clinical conditions. (2) Objective: With EMG-free muscle recording in mind, our primary aim was to identify and investigate potential correlations in the responses of individual and cooperative OO muscles to various acoustic stimuli using a mobile and wire-free system. Our secondary aim was to investigate potential altered responses to high and also relatively low intensity acoustics at different frequencies in both sitting and standing positions through the use of biaural sound induction and video diagnostic techniques and software. (3) Methods: This study used a mobile-phone acoustic startle response monitoring system application to collect blink amplitude and velocity data on healthy males, aged 18–28 community cohorts during (n = 30) in both sitting and standing postures. The iPhone X application delivers specific sound parameters and detects blinking responses to acoustic stimulus (in millisecond resolution) to study the responses of the blinking reflex to acoustic sounds in standing and sitting positions by using multiple acoustic test sets of different frequencies and amplitudes introduced as acute sound stimuli (<0.5 s). The single acoustic battery of 15 pure-square wave sounds consisted of frequencies and amplitudes between 500, 1000, 2000, 3000, and 4000 Hz scales using 65, 90, and 105 dB (e.g., 3000 Hz_90 dB). (4) Results: Results show that there was a synchronization of amplitude and velocity between both eyes to all acoustic startles. Significant differences (p = 0.01) in blinking reaction time between sitting vs. standing at the high intensity (105 dB) 500 Hz acoustic test set was discovered. Interestingly, a highly significant difference (p < 0.001) in response times between test sets 500 Hz_105 dB and 4000 Hz_105 dB was identified. (5) Conclusions: To our knowledge, this is the first mobile phone-based acoustic battery used to detect and report significant ASR responses to specific frequencies and amplitudes of sound stimulus with corresponding sitting and standing conditions. The results from this experiment indicate the potential significance of using the specific frequency, amplitude, and postural conditions (as never before identified) which can open new horizons for ASR to be used for diagnosis and monitoring in numerous clinical and remote or isolated conditions.
Collapse
Affiliation(s)
- Christopher L. Gowen
- Department of Anatomy, School of Biomedical Sciences, University Of Otago, Po Box 56, Dunedin 9054, New Zealand; (C.L.G.); (P.K.)
| | - Prashanna Khwaounjoo
- Department of Anatomy, School of Biomedical Sciences, University Of Otago, Po Box 56, Dunedin 9054, New Zealand; (C.L.G.); (P.K.)
- Medtech Core, Auckland 1010, New Zealand
| | - Yusuf O. Cakmak
- Department of Anatomy, School of Biomedical Sciences, University Of Otago, Po Box 56, Dunedin 9054, New Zealand; (C.L.G.); (P.K.)
- Medtech Core, Auckland 1010, New Zealand
- Brain Health Research Centre, Dunedin 9054, New Zealand
- Centre for Health Systems and Technology, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-03-479-4030
| |
Collapse
|
28
|
Hribar M, Šuput D, Battelino S, Vovk A. Review article: Structural brain alterations in prelingually deaf. Neuroimage 2020; 220:117042. [PMID: 32534128 DOI: 10.1016/j.neuroimage.2020.117042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022] Open
Abstract
Functional studies show that our brain has a remarkable ability to reorganize itself in the absence of one or more sensory modalities. In this review, we gathered all the available articles investigating structural alterations in congenitally deaf subjects. Some concentrated only on specific regions of interest (e.g., auditory areas), while others examined the whole brain. The majority of structural alterations were observed in the auditory white matter and were more pronounced in the right hemisphere. A decreased white matter volume or fractional anisotropy in the auditory areas were the most common findings in congenitally deaf subjects. Only a few studies observed alterations in the auditory grey matter. Preservation of the grey matter might be due to the cross-modal plasticity as well as due to the lack of sensitivity of methods used for microstructural alterations of grey matter. Structural alterations were also observed in the frontal, visual, and other cerebral regions as well as in the cerebellum. The observed structural brain alterations in the deaf can probably be attributed mainly to the cross-modal plasticity in the absence of sound input and use of sign instead of spoken language.
Collapse
Affiliation(s)
- Manja Hribar
- Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Slovenia; Clinic for Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Slovenia; Department of Otorhinolaryngology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Dušan Šuput
- Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Saba Battelino
- Clinic for Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Slovenia; Department of Otorhinolaryngology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Andrej Vovk
- Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
29
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
30
|
Abstract
OBJECTIVE. Functional MRI (fMRI) is clinically used for localization of eloquent cortex before surgical intervention, most commonly motor and language function in patients with tumors or epilepsy. In the pediatric population, special considerations for fMRI relate to limited examination tolerance, small head size, developing anatomy and physiology, and diverse potential abnormalities. In this article, we will highlight pearls and pitfalls of clinical pediatric fMRI including blood oxygenation level-dependent imaging principles, patient preparation, study acquisition, data postprocessing, and examination interpretation. CONCLUSION. Clinical fMRI is indicated for presurgical localization of eloquent cortex in patients with tumors, epilepsy, or other neurologic conditions and requires a solid understanding of technical considerations and data processing. In children, special approaches are needed for patient preparation as well as study design, acquisition, and interpretation. Radiologists should be cognizant of developmental neuroanatomy, causes of neuropathology, and capacity for neuroplasticity in the pediatric population.
Collapse
|
31
|
Di Cesare G, Gerbella M, Rizzolatti G. The neural bases of vitality forms. Natl Sci Rev 2020; 7:202-213. [PMID: 34692032 PMCID: PMC8288905 DOI: 10.1093/nsr/nwz187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/05/2022] Open
Abstract
Unlike emotions, which are short-lasting events accompanied by viscero-motor responses, vitality forms are continuous internal states that modulate the motor behaviors of individuals and are devoid of the autonomic modifications that characterize real emotions. Despite the importance of vitality forms in social life, only recently have neurophysiological studies been devoted to this issue. The first part of this review describes fMRI experiments, showing that the dorso-central insula is activated during the execution, the perception and the imagination of arm actions endowed with different vitality forms as well as during the hearing and the production of speech conveying vitality forms. In the second part, we address the means by which the dorso-central insula modulates the networks for controlling action execution and how the sensory and interoceptive information is conveyed to this insular sector. Finally, we present behavioral data showing the importance of vitality forms in social interactions.
Collapse
Affiliation(s)
- Giuseppe Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma 43125, Italy
| | - Giacomo Rizzolatti
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma 43125, Italy.,Istituto di Neuroscienze, Consiglio nazionale delle Ricerche, Parma 43125, Italy
| |
Collapse
|
32
|
Jones RG, Briggs RG, Conner AK, Bonney PA, Fletcher LR, Ahsan SA, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME. Measuring graphical strength within the connectome: A neuroanatomic, parcellation-based study. J Neurol Sci 2020; 408:116529. [DOI: 10.1016/j.jns.2019.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
|
33
|
Bodin C, Belin P. Exploring the cerebral substrate of voice perception in primate brains. Philos Trans R Soc Lond B Biol Sci 2019; 375:20180386. [PMID: 31735143 PMCID: PMC6895549 DOI: 10.1098/rstb.2018.0386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One can consider human language to be the Swiss army knife of the vast domain of animal communication. There is now growing evidence suggesting that this technology may have emerged from already operational material instead of being a sudden innovation. Sharing ideas and thoughts with conspecifics via language constitutes an amazing ability, but what value would it hold if our conspecifics were not first detected and recognized? Conspecific voice (CV) perception is fundamental to communication and widely shared across the animal kingdom. Two questions that arise then are: is this apparently shared ability reflected in common cerebral substrate? And, how has this substrate evolved? The paper addresses these questions by examining studies on the cerebral basis of CV perception in humans' closest relatives, non-human primates. Neuroimaging studies, in particular, suggest the existence of a ‘voice patch system’, a network of interconnected cortical areas that can provide a common template for the cerebral processing of CV in primates. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Clémentine Bodin
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Pascal Belin
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France.,Département de Psychologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
34
|
Baker CM, Burks JD, Briggs RG, Conner AK, Glenn CA, Robbins JM, Sheets JR, Sali G, McCoy TM, Battiste JD, O'Donoghue DL, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 5: The Insula and Opercular Cortex. Oper Neurosurg (Hagerstown) 2019; 15:S175-S244. [PMID: 30260456 DOI: 10.1093/ons/opy259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 5, we specifically address regions relevant to the insula and opercular cortex.
Collapse
Affiliation(s)
- Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Justin M Robbins
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John R Sheets
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tressie M McCoy
- Department of Physical Therapy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
35
|
Hill VB, Cankurtaran CZ, Liu BP, Hijaz TA, Naidich M, Nemeth AJ, Gastala J, Krumpelman C, McComb EN, Korutz AW. A Practical Review of Functional MRI Anatomy of the Language and Motor Systems. AJNR Am J Neuroradiol 2019; 40:1084-1090. [PMID: 31196862 DOI: 10.3174/ajnr.a6089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Abstract
Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice-specifically, the regions involved in movement and language.
Collapse
Affiliation(s)
- V B Hill
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Z Cankurtaran
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - B P Liu
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Radiation Oncology (B.P.L.), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T A Hijaz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - M Naidich
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A J Nemeth
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Neurology (A.J.N.)
| | - J Gastala
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Krumpelman
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - E N McComb
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A W Korutz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| |
Collapse
|
36
|
Calabrò RS, Naro A, Filoni S, Pullia M, Billeri L, Tomasello P, Portaro S, Di Lorenzo G, Tomaino C, Bramanti P. Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson's disease. J Neuroeng Rehabil 2019; 16:68. [PMID: 31174570 PMCID: PMC6555981 DOI: 10.1186/s12984-019-0533-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhythmic Auditory Stimulation (RAS) can compensate for the loss of automatic and rhythmic movements in patients with idiopathic Parkinson's disease (PD). However, the neurophysiological mechanisms underlying the effects of RAS are still poorly understood. We aimed at identifying which mechanisms sustain gait improvement in a cohort of patients with PD who practiced RAS gait training. METHODS We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical, kinematic, and electrophysiological effects of both the gait trainings. RESULTS We found a greater improvement in Functional Gait Assessment (p < 0.001), Tinetti Falls Efficacy Scale (p < 0.001), Unified Parkinson Disease Rating Scale (p = 0.001), and overall gait quality index (p < 0.001) following RAS than non_RAS training. In addition, the RAS gait training induced a stronger EEG power increase within the sensorimotor rhythms related to specific periods of the gait cycle, and a greater improvement of fronto-centroparietal/temporal electrode connectivity than the non_RAS gait training. CONCLUSIONS The findings of our study suggest that the usefulness of cueing strategies during gait training consists of a reshape of sensorimotor rhythms and fronto-centroparietal/temporal connectivity. Restoring the internal timing mechanisms that generate and control motor rhythmicity, thus improving gait performance, likely depends on a contribution of the cerebellum. Finally, identifying these mechanisms is crucial to create patient-tailored, RAS-based rehabilitative approaches in PD. TRIAL REGISTRATION NCT03434496 . Registered 15 February 2018, retrospectively registered.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, San Giovanni Rotondo, FG, Italy
| | - Massimo Pullia
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Provvidenza Tomasello
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Giuseppe Di Lorenzo
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Concetta Tomaino
- Institute for Music and Neurologic Function, Mount Vernon, NY, USA
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| |
Collapse
|
37
|
Kirino E, Hayakawa Y, Inami R, Inoue R, Aoki S. Simultaneous fMRI-EEG-DTI recording of MMN in patients with schizophrenia. PLoS One 2019; 14:e0215023. [PMID: 31071097 PMCID: PMC6508624 DOI: 10.1371/journal.pone.0215023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and diffusion tensor imaging (DTI) recording have complementary spatiotemporal resolution limitations but can be powerful methods when used together to enable both functional and anatomical modeling, with each neuroimaging procedure used to maximum advantage. We recorded EEGs during event-related fMRI followed by DTI in 15 healthy volunteers and 12 patients with schizophrenia using an omission mismatch negativity (MMN) paradigm. Blood oxygenation level-dependent (BOLD) signal changes were calculated in a region of interest (ROI) analysis, and fractional anisotropy (FA) in the white matter fibers related to each area was compared between groups using tract-specific analysis. Patients with schizophrenia had reduced BOLD activity in the left middle temporal gyrus, and BOLD activity in the right insula and right parahippocampal gyrus significantly correlated with positive symptoms on the Positive and Negative Syndrome Scale (PANSS) and hostility subscores. BOLD activation of Heschl’s gyri also correlated with the limbic system, including the insula. FA values in the left anterior cingulate cortex (ACC) significantly correlated with changes in the BOLD signal in the right superior temporal gyrus (STG), and FA values in the right ACC significantly correlated with PANSS scores. This is the first study to examine MMN using simultaneous fMRI, EEG, and DTI recording in patients with schizophrenia to investigate the potential implications of abnormalities in the ACC and limbic system, including the insula and parahippocampal gyrus, as well as the STG. Structural changes in the ACC during schizophrenia may represent part of the neural basis for the observed MMN deficits. The deficits seen in the feedback/feedforward connections between the prefrontal cortex and STG modulated by the ACC and insula may specifically contribute to impaired MMN generation and clinical manifestations.
Collapse
Affiliation(s)
- Eiji Kirino
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Izunokuni City, Shizuoka, Japan
- Department of Psychiatry, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Juntendo Institute of Mental Health, Fukuroyama, Koshigaya City, Saitama, Japan
- * E-mail:
| | - Yayoi Hayakawa
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, Fukuroyama, Koshigaya City, Saitama, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
38
|
Campbell N, Verschuur C, Mitchell S, McCaffrey O, Deane L, Taylor H, Smith R, Foulkes L, Glazier J, Darekar A, Haacke ME, Bulters D, Galea I. Hearing impairment after subarachnoid hemorrhage. Ann Clin Transl Neurol 2019; 6:420-430. [PMID: 30911566 PMCID: PMC6414479 DOI: 10.1002/acn3.714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Subarachnoid hemorrhage (SAH) survivors experience significant neurological disability, some of which is under-recognized by neurovascular clinical teams. We set out to objectively determine the occurrence of hearing impairment after SAH, characterize its peripheral and/or central origin, and investigate likely pathological correlates. Methods In a case-control study (n = 41), participants were asked about new onset hearing difficulty 3 months post-SAH, compared with pre-SAH. Formal audiological assessment included otoscopy, pure tone audiometry, a questionnaire identifying symptoms of peripheral hearing loss and/or auditory processing disorder, and a test of speech understanding in noise. A separate cohort (n = 21) underwent quantitative susceptibility mapping (QSM) of the auditory cortex 6 months after SAH, for correlation with hearing difficulty. Results Twenty three percent of SAH patients reported hearing difficulty that was new in onset post-SAH. SAH patients had poorer pure tone thresholds compared to controls. The proportion of patients with peripheral hearing loss as defined by the World Health Organization and British Audiological Society was however not increased, compared to controls. All SAH patients experienced symptoms of auditory processing disorder post-SAH, with speech-in-noise test scores significantly worse versus controls. Iron deposition in the auditory cortex was higher in patients reporting hearing difficulty versus those who did not. Conclusion This study firmly establishes hearing impairment as a frequent clinical feature after SAH. It primarily consists of an auditory processing disorder, mechanistically linked to iron deposition in the auditory cortex. Neurovascular teams should inquire about hearing, and refer SAH patients for audiological assessment and management.
Collapse
Affiliation(s)
- Nicci Campbell
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Carl Verschuur
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Sophie Mitchell
- Clinical NeurosciencesClinical and Experimental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Orlaith McCaffrey
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Lewis Deane
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Hannah Taylor
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Rory Smith
- Auditory Implant ServiceFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Lesley Foulkes
- Wessex Neurological CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonUnited Kingdom
| | - James Glazier
- Clinical NeurosciencesClinical and Experimental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Angela Darekar
- Medical PhysicsUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Mark E. Haacke
- Department of RadiologyWayne State UniversityDetroitMichigan
| | - Diederik Bulters
- Wessex Neurological CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Ian Galea
- Clinical NeurosciencesClinical and Experimental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
- Wessex Neurological CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
39
|
Koshimori Y, Strafella AP, Valli M, Sharma V, Cho SS, Houle S, Thaut MH. Motor Synchronization to Rhythmic Auditory Stimulation (RAS) Attenuates Dopaminergic Responses in Ventral Striatum in Young Healthy Adults: [ 11C]-(+)-PHNO PET Study. Front Neurosci 2019; 13:106. [PMID: 30837831 PMCID: PMC6382688 DOI: 10.3389/fnins.2019.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Auditory-motor entrainment using rhythmic auditory stimulation (RAS) has been shown to improve motor control in healthy persons and persons with neurologic motor disorders such as Parkinson's disease and stroke. Neuroimaging studies have shown the modulation of corticostriatal activity in response to RAS. However, the underlying neurochemical mechanisms for auditory-motor entrainment are unknown. The current study aimed to investigate RAS-induced dopamine (DA) responses in basal ganglia (BG) during finger tapping tasks combined with [11C]-(+)-PHNO-PET in eight right-handed young healthy participants. Each participant underwent two PET scans with and without RAS. Binding potential relative to the non-displaceable compartment (BPND) values were derived using the simplified reference tissue method. The task performance was measured using absolute tapping period error and its standard deviation. We found that the presence of RAS significantly improved the task performance compared to the absence of RAS, demonstrated by reductions in the absolute tapping period error (p = 0.007) and its variability (p = 0.006). We also found that (1) the presence of RAS reduced the BG BPND variability (p = 0.013) and (2) the absence of RAS resulted in a greater DA response in the left ventral striatum (VS) compared to the presence of RAS (p = 0.003), These suggest that the absence of external cueing may require more DA response in the left VS associated with more motivational and sustained attentional efforts to perform the task. Additionally, we demonstrated significant age effects on D2/3 R availability in BG: increasing age was associated with reduced D2/3 R availability in the left putamen without RAS (p = 0.026) as well as in the right VS with RAS (p = 0.02). This is the first study to demonstrate the relationships among RAS, DA response/D2/3 R availability, motor responses and age, providing the groundwork for future studies to explore mechanisms for auditory-motor entrainment in healthy elderly and patients with dopamine-based movement disorders.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson’s Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vivek Sharma
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Sang-soo Cho
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Zhu S, Allitt B, Samuel A, Lui L, Rosa MGP, Rajan R. Sensitivity to Vocalization Pitch in the Caudal Auditory Cortex of the Marmoset: Comparison of Core and Belt Areas. Front Syst Neurosci 2019; 13:5. [PMID: 30774587 PMCID: PMC6367263 DOI: 10.3389/fnsys.2019.00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Based on anatomical connectivity and basic response characteristics, primate auditory cortex is divided into a central core surrounded by belt and parabelt regions. The encoding of pitch, a prototypical element of sound identity, has been studied in primary auditory cortex (A1) but little is known about how it is encoded and represented beyond A1. The caudal auditory belt and parabelt cortical fields process spatial information but also contain information on non-spatial aspects of sounds. In this study, we examined neuronal responses in these areas to pitch-varied marmoset vocalizations, to derive the consequent representation of pitch in these regions and the potential underlying mechanisms, to compare to the encoding and representation of pitch of the same sounds in A1. With respect to response patterns to the vocalizations, neurons in caudal medial belt (CM) showed similar short-latency and short-duration response patterns to A1, but caudal lateral belt (CL) neurons at the same hierarchical level and caudal parabelt (CPB) neurons at a higher hierarchical level showed delayed or much delayed response onset and prolonged response durations. With respect to encoding of pitch, neurons in all cortical fields showed sensitivity to variations in the vocalization pitch either through modulation of spike-count or of first spike-latency. The utility of the encoding mechanism differed between fields: pitch sensitivity was reliably represented by spike-count variations in A1 and CM, while first spike-latency variation was better for encoding pitch in CL and CPB. In summary, our data show that (a) the traditionally-defined belt area CM is functionally very similar to A1 with respect to the representation and encoding of complex naturalistic sounds, (b) the CL belt area, at the same hierarchical level as CM, and the CPB area, at a higher hierarchical level, have very different response patterns and appear to use different pitch-encoding mechanisms, and (c) caudal auditory fields, proposed to be specialized for encoding spatial location, can also contain robust representations of sound identity.
Collapse
Affiliation(s)
- Shuyu Zhu
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Benjamin Allitt
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Anil Samuel
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Leo Lui
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| |
Collapse
|
41
|
Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Kawasaki H, Howard MA. Differential responses to spectrally degraded speech within human auditory cortex: An intracranial electrophysiology study. Hear Res 2018; 371:53-65. [PMID: 30500619 DOI: 10.1016/j.heares.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Understanding cortical processing of spectrally degraded speech in normal-hearing subjects may provide insights into how sound information is processed by cochlear implant (CI) users. This study investigated electrocorticographic (ECoG) responses to noise-vocoded speech and related these responses to behavioral performance in a phonemic identification task. Subjects were neurosurgical patients undergoing chronic invasive monitoring for medically refractory epilepsy. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands). ECoG responses were obtained from Heschl's gyrus (HG) and superior temporal gyrus (STG), and were examined within the high gamma frequency range (70-150 Hz). All subjects performed at chance accuracy with speech degraded to 1 and 2 spectral bands, and at or near ceiling for clear speech. Inter-subject variability was observed in the 3- and 4-band conditions. High gamma responses in posteromedial HG (auditory core cortex) were similar for all vocoded conditions and clear speech. A progressive preference for clear speech emerged in anterolateral segments of HG, regardless of behavioral performance. On the lateral STG, responses to all vocoded stimuli were larger in subjects with better task performance. In contrast, both behavioral and neural responses to clear speech were comparable across subjects regardless of their ability to identify degraded stimuli. Findings highlight differences in representation of spectrally degraded speech across cortical areas and their relationship to perception. The results are in agreement with prior non-invasive results. The data provide insight into the neural mechanisms associated with variability in perception of degraded speech and potentially into sources of such variability in CI users.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
42
|
Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson's disease. Ageing Res Rev 2018; 47:133-139. [PMID: 30005957 DOI: 10.1016/j.arr.2018.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized primarily by a dysfunctional basal ganglia (BG) system, producing motor and non-motor symptoms. A significant number of studies have demonstrated that rhythmic auditory stimulation can improve gait and other motor behaviors in PD that are not well managed by the conventional therapy. As music, being highly complex stimulus, can modulate brain activity/function in distributed areas of brain, the therapeutic properties of music potentially extend to alleviate non-motor symptoms of PD. Despite the clinical, behavioral evidence and promises of rhythm and music based interventions, the neural substrates underlying the effectiveness are poorly understood. The goal of this review is to appraise the current state of knowledge in order to direct further neuroimaging studies that help to determine the therapeutic effects of rhythm and music based interventions for motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada.
| | - Michael H Thaut
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada
| |
Collapse
|
43
|
Nourski KV, Steinschneider M, Rhone AE, Kawasaki H, Howard MA, Banks MI. Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study. Neuroimage 2018; 183:412-424. [PMID: 30114466 DOI: 10.1016/j.neuroimage.2018.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 11/15/2022] Open
Abstract
Under the predictive coding hypothesis, specific spatiotemporal patterns of cortical activation are postulated to occur during sensory processing as expectations generate feedback predictions and prediction errors generate feedforward signals. Establishing experimental evidence for this information flow within cortical hierarchy has been difficult, especially in humans, due to spatial and temporal limitations of non-invasive measures of cortical activity. This study investigated cortical responses to auditory novelty using the local/global deviant paradigm, which engages the hierarchical network underlying auditory predictive coding over short ('local deviance'; LD) and long ('global deviance'; GD) time scales. Electrocorticographic responses to auditory stimuli were obtained in neurosurgical patients from regions of interest (ROIs) including auditory, auditory-related and prefrontal cortex. LD and GD effects were assayed in averaged evoked potential (AEP) and high gamma (70-150 Hz) signals, the former likely dominated by local synaptic currents and the latter largely reflecting local spiking activity. AEP LD effects were distributed across all ROIs, with greatest percentage of significant sites in core and non-core auditory cortex. High gamma LD effects were localized primarily to auditory cortex in the superior temporal plane and on the lateral surface of the superior temporal gyrus (STG). LD effects exhibited progressively longer latencies in core, non-core, auditory-related and prefrontal cortices, consistent with feedforward signaling. The spatial distribution of AEP GD effects overlapped that of LD effects, but high gamma GD effects were more restricted to non-core areas. High gamma GD effects had shortest latencies in STG and preceded AEP GD effects in most ROIs. This latency profile, along with the paucity of high gamma GD effects in the superior temporal plane, suggest that the STG plays a prominent role in initiating novelty detection signals over long time scales. Thus, the data demonstrate distinct patterns of information flow in human cortex associated with auditory novelty detection over multiple time scales.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew I Banks
- Department of Anesthesiology and Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| |
Collapse
|
44
|
What's what in auditory cortices? Neuroimage 2018; 176:29-40. [DOI: 10.1016/j.neuroimage.2018.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
|
45
|
Abstract
Hearing is often viewed as a passive process: Sound enters the ear, triggers a cascade of activity through the auditory system, and culminates in an auditory percept. In contrast to a passive process, motor-related signals strongly modulate the auditory system from the eardrum to the cortex. The motor modulation of auditory activity is most well documented during speech and other vocalizations but also can be detected during a wide variety of other sound-generating behaviors. An influential idea is that these motor-related signals suppress neural responses to predictable movement-generated sounds, thereby enhancing sensitivity to environmental sounds during movement while helping to detect errors in learned acoustic behaviors, including speech and musicianship. Findings in humans, monkeys, songbirds, and mice provide new insights into the circuits that convey motor-related signals to the auditory system, while lending support to the idea that these signals function predictively to facilitate hearing and vocal learning.
Collapse
Affiliation(s)
- David M Schneider
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
- Current affiliation: Center for Neural Science, New York University, New York, New York 10003, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
46
|
Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M. Cognitive Decline, Dementia, Alzheimer's Disease and Presbycusis: Examination of the Possible Molecular Mechanism. Front Neurosci 2018; 12:394. [PMID: 29937713 PMCID: PMC6002513 DOI: 10.3389/fnins.2018.00394] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
The incidences of presbycusis and dementia are high among geriatric diseases. Presbycusis is the general term applied to age-related hearing loss and can be caused by many risk factors, such as noise exposure, smoking, medication, hypertension, family history, and other factors. Mutation of mitochondrial DNA in hair cells, spiral ganglion cells, and stria vascularis cells of the cochlea is the basic mechanism of presbycusis. Dementia is a clinical syndrome that includes the decline of cognitive and conscious states and is caused by many neurodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The amyloid cascade hypothesis and tau hypothesis are the two major hypotheses that describe the AD pathogenic mechanism. Recent studies have shown that deposition of Aβ and hyperphosphorylation of the tau protein may cause mitochondrial dysfunction. An increasing number of papers have reported that, on one hand, the auditory system function in AD patients is damaged as their cognitive ability declines and that, on the other hand, hearing loss may be a risk factor for dementia and AD. However, the relationship between presbycusis and AD is still unknown. By reviewing the relevant literature, we found that the SIRT1-PGC1α pathway and LKB1 (or CaMKKβ)-AMPK pathway may play a role in the preservation of cerebral neuron function by taking part in the regulation of mitochondrial function. Then vascular endothelial growth factor signal pathway is activated to promote vascular angiogenesis and maintenance of the blood–brain barrier integrity. Recently, experiments have also shown that their expression levels are altered in both presbycusis and AD mouse models. Therefore, we propose that exploring the specific molecular link between presbycusis and AD may provide new ideas for their prevention and treatment.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otolaryngology & Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yilai Shu
- Department of Otolaryngology & Head and Neck Surgery, EENT Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
47
|
Hoglen NEG, Larimer P, Phillips EAK, Malone BJ, Hasenstaub AR. Amplitude modulation coding in awake mice and squirrel monkeys. J Neurophysiol 2018; 119:1753-1766. [PMID: 29364073 DOI: 10.1152/jn.00101.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both mice and primates are used to model the human auditory system. The primate order possesses unique cortical specializations that govern auditory processing. Given the power of molecular and genetic tools available in the mouse model, it is essential to understand the similarities and differences in auditory cortical processing between mice and primates. To address this issue, we directly compared temporal encoding properties of neurons in the auditory cortex of awake mice and awake squirrel monkeys (SQMs). Stimuli were drawn from a sinusoidal amplitude modulation (SAM) paradigm, which has been used previously both to characterize temporal precision and to model the envelopes of natural sounds. Neural responses were analyzed with linear template-based decoders. In both species, spike timing information supported better modulation frequency discrimination than rate information, and multiunit responses generally supported more accurate discrimination than single-unit responses from the same site. However, cortical responses in SQMs supported better discrimination overall, reflecting superior temporal precision and greater rate modulation relative to the spontaneous baseline and suggesting that spiking activity in mouse cortex was less strictly regimented by incoming acoustic information. The quantitative differences we observed between SQM and mouse cortex support the idea that SQMs offer advantages for modeling precise responses to fast envelope dynamics relevant to human auditory processing. Nevertheless, our results indicate that cortical temporal processing is qualitatively similar in mice and SQMs and thus recommend the mouse model for mechanistic questions, such as development and circuit function, where its substantial methodological advantages can be exploited. NEW & NOTEWORTHY To understand the advantages of different model organisms, it is necessary to directly compare sensory responses across species. Contrasting temporal processing in auditory cortex of awake squirrel monkeys and mice, with parametrically matched amplitude-modulated tone stimuli, reveals a similar role of timing information in stimulus encoding. However, disparities in response precision and strength suggest that anatomical and biophysical differences between squirrel monkeys and mice produce quantitative but not qualitative differences in processing strategy.
Collapse
Affiliation(s)
- Nerissa E G Hoglen
- Center for Integrative Neuroscience, University of California , San Francisco, California.,Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California.,Coleman Memorial Laboratory, University of California , San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California , San Francisco, California.,Department of Psychiatry, University of California , San Francisco, California.,Neuroscience Graduate Program, University of California , San Francisco, California
| | - Phillip Larimer
- Center for Integrative Neuroscience, University of California , San Francisco, California.,Coleman Memorial Laboratory, University of California , San Francisco, California.,Department of Neurology, University of California , San Francisco, California
| | - Elizabeth A K Phillips
- Center for Integrative Neuroscience, University of California , San Francisco, California.,Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California.,Coleman Memorial Laboratory, University of California , San Francisco, California.,Neuroscience Graduate Program, University of California , San Francisco, California
| | - Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California.,Coleman Memorial Laboratory, University of California , San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California , San Francisco, California
| | - Andrea R Hasenstaub
- Center for Integrative Neuroscience, University of California , San Francisco, California.,Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California.,Coleman Memorial Laboratory, University of California , San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California , San Francisco, California
| |
Collapse
|
48
|
Fan CSD, Zhu X, Dosch HG, von Stutterheim C, Rupp A. Language related differences of the sustained response evoked by natural speech sounds. PLoS One 2017; 12:e0180441. [PMID: 28727776 PMCID: PMC5519032 DOI: 10.1371/journal.pone.0180441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC). Using magnetoencephalography (MEG), we recorded transient and sustained auditory evoked fields (AEF) in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF) evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl’s gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction between superior temporal gyrus and sulcus.
Collapse
Affiliation(s)
- Christina Siu-Dschu Fan
- Institut für Theoretische Physik, Heidelberg, Germany
- Storz Medical AG, Tägerwilen, Switzerland
| | - Xingyu Zhu
- Department for General and Applied Linguistics, University of Heidelberg, Heidelberg, Germany
| | | | | | - André Rupp
- Section of Biomagnetism, Department of Neurology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Nourski KV, Banks MI, Steinschneider M, Rhone AE, Kawasaki H, Mueller RN, Todd MM, Howard MA. Electrocorticographic delineation of human auditory cortical fields based on effects of propofol anesthesia. Neuroimage 2017; 152:78-93. [PMID: 28254512 PMCID: PMC5432407 DOI: 10.1016/j.neuroimage.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA.
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Rashmi N Mueller
- Department of Anesthesia, The University of Iowa, Iowa City, IA, USA
| | - Michael M Todd
- Department of Anesthesia, The University of Iowa, Iowa City, IA, USA; Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype. NEUROIMAGE-CLINICAL 2017; 16:383-389. [PMID: 28861339 PMCID: PMC5568880 DOI: 10.1016/j.nicl.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/19/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022]
Abstract
Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18–40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group (p= 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning. Autism and schizotypal spectra share a trait phenotype, Social Disorganisation (SD). Auditory mismatch paradigm demonstrates processing differences between high and low SD. High SD scorers have reduced fronto-temporal response to auditory change. Reduced fronto-temporal source activation in high SD is right lateralised. Psychosocial function is related to auditory deviant processing.
Collapse
|