1
|
Estévez-Arias B, Matalonga L, Yubero D, Polavarapu K, Codina A, Ortez C, Carrera-García L, Expósito-Escudero J, Jou C, Meyer S, Kilicarslan OA, Aleman A, Thompson R, Luknárová R, Esteve-Codina A, Gut M, Laurie S, Demidov G, Yépez VA, Beltran S, Gagneur J, Topf A, Lochmüller H, Nascimento A, Hoenicka J, Palau F, Natera-de Benito D. Phenotype-driven genomics enhance diagnosis in children with unresolved neuromuscular diseases. Eur J Hum Genet 2025; 33:239-247. [PMID: 39333429 PMCID: PMC11840105 DOI: 10.1038/s41431-024-01699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Establishing a molecular diagnosis remains challenging in half of individuals with childhood-onset neuromuscular diseases (NMDs) despite exome sequencing. This study evaluates the diagnostic utility of combining genomic approaches in undiagnosed NMD patients. We performed deep phenotyping of 58 individuals with unsolved childhood-onset NMDs that have previously undergone inconclusive exome studies. Genomic approaches included trio genome sequencing and RNASeq. Genetic diagnoses were reached in 23 out of 58 individuals (40%). Twenty-one individuals carried causal single nucleotide variants (SNVs) or small insertions and deletions, while 2 carried pathogenic structural variants (SVs). Genomic sequencing identified pathogenic variants in coding regions or at the splice site in 17 out of 21 resolved cases, while RNA sequencing was additionally required for the diagnosis of 4 cases. Reasons for previous diagnostic failures included low coverage in exonic regions harboring the second pathogenic variant and involvement of genes that were not yet linked to human diseases at the time of the first NGS analysis. In summary, our systematic genetic analysis, integrating deep phenotyping, trio genome sequencing and RNASeq, proved effective in diagnosing unsolved childhood-onset NMDs. This approach holds promise for similar cohorts, offering potential improvements in diagnostic rates and clinical management of individuals with NMDs.
Collapse
Affiliation(s)
- Berta Estévez-Arias
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Delia Yubero
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laura Carrera-García
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jesica Expósito-Escudero
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Universitat de Barcelona (UB), Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Stefanie Meyer
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | | | - Alberto Aleman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Rebeka Luknárová
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ana Topf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Hanns Lochmüller
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Andres Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
- ERN ITHACA, Barcelona, Spain.
- Division of Pediatrics, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain.
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
2
|
Kediha MI, Tazir M, Sternberg D, Eymard B, Ali Pacha L. Congenital myasthenic syndromes by Epsilon subunit mutations: Phenotypic profiles of 17 Algerian families. Rev Neurol (Paris) 2025; 181:79-84. [PMID: 39379219 DOI: 10.1016/j.neurol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2023] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are a heterogeneous group of rare genetic disorders. The acetyl choline receptor contains five subunits, with a predominance of mutations affecting the epsilon subunit gene called cholinergic receptor nicotinic epsilon (CHRNE) gene. OBJECTIVE To study the clinical phenotype of 17 families with CHRNE gene mutations. METHODS We report a series of 17 families with 22 affected patients carrying different mutations encoding CHRNE proteins. RESULTS We studied their clinical and biological phenotypes, as well as their evolutionary profile and their response to the different therapies proposed. A phenotypic comparison was made between the families carrying the founding Maghrebian mutation and the other mutations found in this series. CONCLUSION The CHRNE gene mutations are the most frequent ones in CMS. The phenotypes reported in this study are heterogeneous, and can depend on the causative mutation.
Collapse
Affiliation(s)
- M I Kediha
- Neurology department Mustapha Bacha university hospital, Benyoucef Benkhedda medical school, Algiers, Algeria.
| | - M Tazir
- Neurology department Mustapha Bacha university hospital, Benyoucef Benkhedda medical school, Algiers, Algeria
| | - D Sternberg
- Myogenetics laboratory, Pitié Salpetriere university hospital, Paris, France
| | - B Eymard
- Neurology department, Pitié Saleptriere university hospital, Paris, France
| | - L Ali Pacha
- Neurology department Mustapha Bacha university hospital, Benyoucef Benkhedda medical school, Algiers, Algeria
| |
Collapse
|
3
|
Karimi N, Ghasemi A, Panahi A, Ziaadini B, Nafissi S. CHRNE-related congenital myasthenic syndrome in Iran: Clinical and molecular insights. Neuromuscul Disord 2025; 46:105234. [PMID: 39550999 DOI: 10.1016/j.nmd.2024.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Variants in the CHRNE gene can lead to a condition called congenital myasthenic syndrome (CMS), which affects the neuromuscular junction (NMJ). CHRNE mutations are the most common cause of CMS. Seventy-seven patients with a possible diagnosis of CMS were referred to the neuromuscular clinic of Shariati Hospital affiliated with the Tehran University of Medical Sciences. We performed whole-exome sequencing (WES) to determine the underlying defect in a group of individuals with a possible diagnosis of CMS. Clinical features and morphological and molecular data on 33 patients with mutations in CHRNE were described. Age of onset, age at diagnosis, consanguinity, family history, motor milestone delay, ophthalmoparesis, generalized fatigue, dysphagia, neurophysiologic findings, and response to treatment of the patients were assessed. Nineteen CHRNE variants including 10 novel ones were identified. The most common mutations were c.1327del; (p.Glu443LysfsTer64) in four different families and c.1252-1267dup; (p.Cys423SerfsTer38) in three families. Clinical onset was mostly at birth or under one year with bilateral fatigable ptosis, ophthalmoplegia, bulbar weakness, and proximal muscle weakness. All patients were treated with pyridostigmine ± salbutamol, which resulted in improvement of motor function, dysphagia, and breathing.
Collapse
Affiliation(s)
- Narges Karimi
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Panahi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ghosh R, Dubey S, Roy D, Mayo S, Benito-León J. Congenital myasthenia syndrome with demyelinating sensorimotor neuropathy responsive to salbutamol monotherapy: a novel clinical phenotype of CHRNE mutation. Neurol Sci 2024; 45:3555-3558. [PMID: 38411853 DOI: 10.1007/s10072-024-07420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan, West Bengal, India
| | - Souvik Dubey
- Department of Neuromedicine, Institute of Post Graduate Medical Education & Research, Bangur Institute of Neurosciences, Kolkata, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Patna, Bihar, India
- Indian Institute of Technology (IIT), Madras, Tamil Nadu, India
- School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Sonia Mayo
- Department of Genetics, University Hospital "12 de Octubre,", Madrid, Spain
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre,", Madrid, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital "12 de Octubre," (imas12), Madrid, Spain.
| |
Collapse
|
5
|
Machado R, Costa C, Fineza I, Ribeiro JA. Prevalence and Classification of Pediatric Neuromuscular Disorders in the Central Region of Portugal. J Child Neurol 2024; 39:233-240. [PMID: 39090974 DOI: 10.1177/08830738241256154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Neuromuscular disorders are a group of rare heterogenous diseases with profound impact on quality of life, for which overall pediatric prevalence has rarely been reported. The purpose of this study was to determine the point prevalence of pediatric neuromuscular disorders and its subcategories in the central region of Portugal. Retrospective case identification was carried out in children with neuromuscular disorders seen between 1998 and 2020 from multiple data sources. Demographics, clinical and molecular diagnoses were registered. On January 1, 2020, the point overall prevalence in the population <18 years of age was 41.20/100 000 (95% confidence interval 34.51-49.19) for all neuromuscular disorders. The main case proportion were genetic disorders (95.7%). We found a relatively higher occurrence of limb-girdle muscular dystrophies, congenital myopathies, and spinal muscular atrophy and a slightly lower occurrence of Duchenne muscular dystrophy, hereditary spastic paraparesis, and acquired neuropathies compared to previous studies in other countries. Molecular confirmation was available in 69.5% of pediatric neuromuscular patients in our cohort.Total prevalence is high in comparison with the data reported in the only previous study on the prevalence of pediatric neuromuscular disorders in our country. Our high definitive diagnostic rate underscores the importance of advances in investigative genetic techniques, particularly new sequencing technologies, in the diagnostic workup of neuromuscular patients.
Collapse
Affiliation(s)
- Rita Machado
- Neurology Department, Hospital Universitário de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Carmen Costa
- Neuropediatrics, Centro de Desenvolvimento da Criança, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Isabel Fineza
- Neuropediatrics, Centro de Desenvolvimento da Criança, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Joana Afonso Ribeiro
- Neuropediatrics, Centro de Desenvolvimento da Criança, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Kediha MI, Tazir M, Sternberg D, Eymard B, Ali Pacha L. Innovative Therapeutic Approaches in Congenital Myasthenic Syndromes. Neurol Clin Pract 2024; 14:e200277. [PMID: 38737513 PMCID: PMC11081764 DOI: 10.1212/cpj.0000000000200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024]
Abstract
Background and Objectives To provide real-word clinical follow-up data on patients carrying variations of congenital myasthenic syndromes (CMS) and who respond to some innovative drugs. Methods Patients recruited from the Neurology Department of the Mustapha Bacha university hospital in Algiers. Treated with innovative drugs, they were monitored and their clinical progress was evaluated on the basis of clinical arguments suggestive of CMSs, but also para clinical arguments (electromyography and genetic study). Results Six patients carrying different mutations in different genes of CMSs were studied. They had different pathophysiologic profiles (slow or fast channel syndromes, low expressor of receptor). Their therapeutic management was based on innovative drugs, normally indicated in other, non-neurological pathologies. Their outcome was toward a clear clinical improvement. Discussion This work relates the interest of proposing treatments (outside of Pyridostigmine) in the management of CMSs. These therapies can greatly modify the prognosis of patients suffering from this orphan disease. Classification of Evidence This study provides Class IV evidence that for patients with congenital myasthenic syndromes, some innovative treatments are effective.
Collapse
Affiliation(s)
- Mohamed I Kediha
- Neurology Department (MIK, MT, LAP), Mustapha Bacha University Hospital Algiers, Algeria; Myology Department (DS), Pitié Salpetriere, Paris; and Functional Unit for Neuromuscular Pathology (BE), Pitié Salpetriere, France
| | - Meriem Tazir
- Neurology Department (MIK, MT, LAP), Mustapha Bacha University Hospital Algiers, Algeria; Myology Department (DS), Pitié Salpetriere, Paris; and Functional Unit for Neuromuscular Pathology (BE), Pitié Salpetriere, France
| | - Damien Sternberg
- Neurology Department (MIK, MT, LAP), Mustapha Bacha University Hospital Algiers, Algeria; Myology Department (DS), Pitié Salpetriere, Paris; and Functional Unit for Neuromuscular Pathology (BE), Pitié Salpetriere, France
| | - Bruno Eymard
- Neurology Department (MIK, MT, LAP), Mustapha Bacha University Hospital Algiers, Algeria; Myology Department (DS), Pitié Salpetriere, Paris; and Functional Unit for Neuromuscular Pathology (BE), Pitié Salpetriere, France
| | - Lamia Ali Pacha
- Neurology Department (MIK, MT, LAP), Mustapha Bacha University Hospital Algiers, Algeria; Myology Department (DS), Pitié Salpetriere, Paris; and Functional Unit for Neuromuscular Pathology (BE), Pitié Salpetriere, France
| |
Collapse
|
7
|
Ohkawara B, Tomita H, Inoue T, Zhang S, Kanbara S, Koshimizu H, Miyasaka Y, Takeda JI, Nishiwaki H, Nakashima H, Ito M, Masuda A, Ishiguro N, Ogi T, Ohno T, Imagama S, Ohno K. Calcitriol ameliorates motor deficits and prolongs survival of Chrne-deficient mouse, a model for congenital myasthenic syndrome, by inducing Rspo2. Neurotherapeutics 2024; 21:e00318. [PMID: 38233267 DOI: 10.1016/j.neurot.2024.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Tomita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Inoue
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Kanbara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Koshimizu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyasaka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
8
|
Zirek F, Özcan G, Tekin MN, Uçar Çİ, Kartal AT, Balaban B, Kendirli T, Teber ST, Çobanoğlu N. An infant with episodic stridor and respiratory crises since birth: A challenging diagnosis. Pediatr Pulmonol 2024. [PMID: 38251867 DOI: 10.1002/ppul.26866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Affiliation(s)
- Fazılcan Zirek
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Gizem Özcan
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Merve Nur Tekin
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Çiğdem İlter Uçar
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ayşe Tuğba Kartal
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Burak Balaban
- Department of Pediatrics, Division of Pediatric Intensive Care Unit, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatrics, Division of Pediatric Intensive Care Unit, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Serap Tıraş Teber
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Nazan Çobanoğlu
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Özsoy Ö, Cinleti T, Günay Ç, Sarıkaya Uzan G, Giray Bozkaya Ö, Çağlayan AO, Hız Kurul S, Yiş U. Genetic, serological and clinical evaluation of childhood myasthenia syndromes- single center subgroup analysis experience in Turkey. Acta Neurol Belg 2023; 123:2325-2335. [PMID: 37656362 DOI: 10.1007/s13760-023-02370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Congenital myasthenic syndrome is a disease that occurs due to several types such as mutations in different pre-synaptic, synaptic, post-synaptic proteins and, glycosylation defects associated with congenital myopathy. Juvenile myasthenia gravis is an autoimmune condition usually caused by antibodies targeting the acetylcholine receptor. AIMS Our objective is to conduct an analysis on the subgroup traits exhibited by patients who have been diagnosed with congenital myasthenic syndrome and juvenile myasthenia gravis, with a focus on their long-term monitoring and management. METHODS This study was conducted on children diagnosed with myasthenia gravis, who were under the care of Dokuz Eylul University's Department of Pediatric Neurology for a period of ten years. RESULTS A total of 22 (12 congenital myasthenic syndrome, 10 juvenile myasthenia gravis) patients were identified. Defects in the acetylcholine receptor (6/12) were the most common type in the congenital myasthenic syndrome group. Basal-lamina-related defects (5/12) were the second most prevalent. One patient had a GFPT1 gene mutation (1/12). Patients with ocular myasthenia gravis (n = 6) exhibited milder symptoms. In the generalized myasthenia gravis group (n = 4), specifically in postpubertal girls, a more severe clinical progression was observed, leading to the implementation of more aggressive treatment strategies. CONCLUSION This study highlights that clinical recognition of congenital myasthenic syndrome and knowledge of related genes will aid the rapid diagnosis and treatment of these rare neuromuscular disorders. Findings in the juvenile myasthenia gravis group demonstrate the impact of pubertal development and the need for timely and appropriate active therapy, including thymectomy, to improve prognosis.
Collapse
Affiliation(s)
- Özlem Özsoy
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey.
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Çağatay Günay
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gamze Sarıkaya Uzan
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Özlem Giray Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Semra Hız Kurul
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- İzmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
10
|
Uyen Dao TM, Barbeau S, Messéant J, Della-Gaspera B, Bouceba T, Semprez F, Legay C, Dobbertin A. The collagen ColQ binds to LRP4 and regulates the activation of the Muscle-Specific Kinase-LRP4 receptor complex by agrin at the neuromuscular junction. J Biol Chem 2023; 299:104962. [PMID: 37356721 PMCID: PMC10382678 DOI: 10.1016/j.jbc.2023.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.
Collapse
Affiliation(s)
- Thi Minh Uyen Dao
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Susie Barbeau
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Julien Messéant
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | - Tahar Bouceba
- Sorbonne Université, CNRS, IBPS, Protein Engineering Platform, Paris, France
| | - Fannie Semprez
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Claire Legay
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Alexandre Dobbertin
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
| |
Collapse
|
11
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
12
|
Younger DS. Critical illness-associated weakness and related motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:707-777. [PMID: 37562893 DOI: 10.1016/b978-0-323-98818-6.00031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Weakness of limb and respiratory muscles that occurs in the course of critical illness has become an increasingly common and serious complication of adult and pediatric intensive care unit patients and a cause of prolonged ventilatory support, morbidity, and prolonged hospitalization. Two motor disorders that occur singly or together, namely critical illness polyneuropathy and critical illness myopathy, cause weakness of limb and of breathing muscles, making it difficult to be weaned from ventilatory support, commencing rehabilitation, and extending the length of stay in the intensive care unit, with higher rates of morbidity and mortality. Recovery can take weeks or months and in severe cases, and may be incomplete or absent. Recent findings suggest an improved prognosis of critical illness myopathy compared to polyneuropathy. Prevention and treatment are therefore very important. Its management requires an integrated team approach commencing with neurologic consultation, creatine kinase (CK) measurement, detailed electrodiagnostic, respiratory and neuroimaging studies, and potentially muscle biopsy to elucidate the etiopathogenesis of the weakness in the peripheral and/or central nervous system, for which there may be a variety of causes. These tenets of care are being applied to new cases and survivors of the coronavirus-2 disease pandemic of 2019. This chapter provides an update to the understanding and approach to critical illness motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
13
|
Younger DS. On the path to evidence-based therapy in neuromuscular disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:315-358. [PMID: 37562877 DOI: 10.1016/b978-0-323-98818-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuromuscular disorders encompass a diverse group of acquired and genetic diseases characterized by loss of motor functionality. Although cure is the goal, many therapeutic strategies have been envisioned and are being studied in randomized clinical trials and entered clinical practice. As in all scientific endeavors, the successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value and feasibility of the clinical models. This chapter focuses on five exemplary diseases: childhood spinal muscular atrophy (SMA), Charcot-Marie-Tooth (CMT) disorders, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), acquired autoimmune myasthenia gravis (MG), and Duchenne muscular dystrophy (DMD), to illustrate the progress made on the path to evidenced-based therapy.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
14
|
Younger DS. Neonatal and infantile hypotonia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:401-423. [PMID: 37562880 DOI: 10.1016/b978-0-323-98818-6.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The underlying etiology of neonatal and infantile hypotonia can be divided into primary peripheral and central nervous system and acquired or genetic disorders. The approach to identifying the likeliest cause of hypotonia begins with a bedside assessment followed by a careful review of the birth history and early development and family pedigree and obtaining available genetic studies and age- and disease-appropriate laboratory investigations. Until about a decade ago, the main goal was to identify the clinical signs and a battery of basic investigations including electrophysiology to confirm or exclude a given neuromuscular disorder, however the availability of whole-exome sequencing and next generation sequencing and transcriptome sequencing has simplified the identification of specific underlying genetic defect and improved the accuracy of diagnosis in many related Mendelian disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
15
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Öztürk S, Güleç A, Erdoğan M, Demir M, Canpolat M, Gümüş H, Çağlayan AO, Dündar M, Per H. Congenital Myasthenic Syndromes in Turkey: Clinical and Molecular Characterization of 16 Cases With Three Novel Mutations. Pediatr Neurol 2022; 136:43-49. [PMID: 36099689 DOI: 10.1016/j.pediatrneurol.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are composed of numerous hereditary disorders involving genetic mutations in proteins essential to the integrity of neuromuscular transmission. The symptoms of CMS vary according to the age at onset of symptoms, and the type and severity of muscle weakness. Effective treatment and genetic counseling depend upon the underlying pathogenic molecular mechanism and subtype of CMS. METHODS A retrospective and cross-sectional study was performed with 16 patients with a genetically confirmed diagnosis of CMS to share our experience with clinical symptoms, demographic data, genetic variants, and treatments applied. RESULTS Sixteen patients with a specific CMS genetic diagnosis (three novel mutations) were identified, including CHRNE (n = 7), DOK7 (n = 2), AGRN (n = 2), RAPSN (n = 1), CHRNA1 (n = 1), CHRNB1 (n = 1), CHAT (n = 1), and SCN4A (n = 1). Age at onset of symptoms ranged from the neonatal period to 12 years. Genetic diagnosis was confirmed between the ages of three months and 17 years. A significant delay was determined between the onset of symptoms and genetic diagnosis of the disease. CONCLUSIONS This study highlights the importance of genetic testing in CMS. Due to the rarity of CMS, more cases will be recognized and reported as the use of laboratory and genetic testing accelerates. We hope that our experience will grow and contribute further to the literature as clinical follow-up and treatment increase.
Collapse
Affiliation(s)
- Selcan Öztürk
- Fellow in Pediatric Neurology, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Ayten Güleç
- Fellow in Pediatric Neurology, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Murat Erdoğan
- Medical Doctor, Department of Medical Genetics, Kayseri State Hospital, Kayseri, Turkey
| | - Mikail Demir
- Medical Doctor, Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Hakan Gümüş
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Ahmet Okay Çağlayan
- Professor of Genetics, Faculty of Medicine, Department of Genetics, Dokuz Eylül University, Izmir, Turkey
| | - Munis Dündar
- Professor of Genetics, Faculty of Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Hüseyin Per
- Professor of Pediatrics, Faculty of Medicine, Division of Pediatric Neurology, Department of Pediatrics, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
17
|
Hyde LF, Kong Y, Zhao L, Rao SR, Wang J, Stone L, Njaa A, Collin GB, Krebs MP, Chang B, Fliesler SJ, Nishina PM, Naggert JK. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci 2022; 23:12005. [PMID: 36233305 PMCID: PMC9570038 DOI: 10.3390/ijms231912005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
| | - Yang Kong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Andrew Njaa
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | | | | |
Collapse
|
18
|
Huang K, Duan HQ, Li QX, Luo YB, Bi FF, Yang H. Clinicopathological-genetic features of congenital myasthenic syndrome from a Chinese neuromuscular centre. J Cell Mol Med 2022; 26:3828-3836. [PMID: 35670010 PMCID: PMC9279597 DOI: 10.1111/jcmm.17417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) encompasses a heterogeneous group of inherited disorders affecting nerve transmission across the neuromuscular junction. The aim of this study was to characterize the clinical, physiological, pathohistological and genetic features of nine unrelated Chinese patients with CMS from a single neuromuscular centre. A total of nine patients aged from neonates to 34 years were enrolled who exhibited initial symptoms. Physical examinations revealed that all patients exhibited muscle weakness. Muscle biopsies demonstrated multiple myopathological changes, including increased fibre size variation, myofibrillar network disarray, necrosis, myofiber grouping, regeneration, fibre atrophy and angular fibres. Genetic testing revealed six different mutated genes, including AGRN (2/9), CHRNE (1/9), GFPT1 (1/9), GMPPB (1/9), PLEC (3/9) and SCN4A (1/9). In addition, patients exhibited differential responses to pharmacological treatment. Prompt utilization of genetic testing will identify novel variants and expand our understanding of the phenotype of this rare syndrome. Our findings contribute to the clinical, pathohistological and genetic spectrum of congenital myasthenic syndrome in China.
Collapse
Affiliation(s)
- Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Qian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Xiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Gómez-García de la Banda M, Simental-Aldaba E, Fahmy N, Sternberg D, Blondy P, Quijano-Roy S, Malfatti E. Case Report: A Novel AChR Epsilon Variant Causing a Clinically Discordant Salbutamol Responsive Congenital Myasthenic Syndrome in Two Egyptian Siblings. Front Neurol 2022; 13:909715. [PMID: 35720108 PMCID: PMC9201482 DOI: 10.3389/fneur.2022.909715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/05/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are inherited disorders that lead to abnormal neuromuscular transmission. Post-synaptic mutations are the main cause of CMS, particularly mutations in CHRNE. We report a novel homozygous CHRNE pathogenic variant in two Egyptian siblings showing a CMS. Interestingly, they showed different degrees of extraocular and skeletal muscle involvement; both presented only a partial response to cholinesterase inhibitors, and rapidly and substantially ameliorated after the addition of oral β2 adrenergic agonists. Here, we enlarge the genetic spectrum of CHRNE-related congenital myasthenic syndromes and highlight the importance of a β2 adrenergic agonists treatment.
Collapse
Affiliation(s)
- Marta Gómez-García de la Banda
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, Hôpital Raymond Poincaré, Garches, France
- Reference Center for Neuromuscular Diseases Centre “Nord- Est- Ile de France”, FILNEMUS, Creteil, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Emmanuel Simental-Aldaba
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor University Hospital, Créteil, France
- Department of Neurorehabilitation, Instituto Nacional de Rehabilitación “LGII”, Mexico City, Mexico
| | - Nagia Fahmy
- Neuromuscular Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Damien Sternberg
- European Reference Center Network (Euro-NMD ERN), Paris, France
- Service de Biochimie Métabolique, Centre de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Patricia Blondy
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Susana Quijano-Roy
- Pediatric Neurology and ICU Department, AP-HP Université Paris Saclay, Hôpital Raymond Poincaré, Garches, France
- Reference Center for Neuromuscular Diseases Centre “Nord- Est- Ile de France”, FILNEMUS, Creteil, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
- Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Diseases Centre “Nord- Est- Ile de France”, FILNEMUS, Creteil, France
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor University Hospital, Créteil, France
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Mondor, Service d'histologie, Créteil, France
- *Correspondence: Edoardo Malfatti
| |
Collapse
|
20
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
21
|
Roesl C, Evans ER, Dissanayake KN, Boczonadi V, Jones RA, Jordan GR, Ledahawsky L, Allen GCC, Scott M, Thomson A, Wishart TM, Hughes DI, Mead RJ, Shone CC, Slater CR, Gillingwater TH, Skehel PA, Ribchester RR. Confocal Endomicroscopy of Neuromuscular Junctions Stained with Physiologically Inert Protein Fragments of Tetanus Toxin. Biomolecules 2021; 11:1499. [PMID: 34680132 PMCID: PMC8534034 DOI: 10.3390/biom11101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066-1315 (emGFP-1066:TetC), 1093-1315 (emGFP-1093:TetC) and 1109-1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-α-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs.
Collapse
Affiliation(s)
- Cornelia Roesl
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Elizabeth R. Evans
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Kosala N. Dissanayake
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Veronika Boczonadi
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Ross A. Jones
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Graeme R. Jordan
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Leire Ledahawsky
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Guy C. C. Allen
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Molly Scott
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Alanna Thomson
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Thomas M. Wishart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - David I. Hughes
- Spinal Cord Research Group, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Glossop Road, Sheffield S10 2HQ, UK;
| | - Clifford C. Shone
- Public Health England, National Infection Service, Porton Down, Salisbury SP4 0JG, UK; (E.R.E.); (C.C.S.)
| | - Clarke R. Slater
- Applied Neuromuscular Junction Facility, Bio-Imaging Unit, Biosciences Institute, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (V.B.); (C.R.S.)
| | - Thomas H. Gillingwater
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Paul A. Skehel
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| | - Richard R. Ribchester
- Centre for Discovery Brain Sciences and the Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK; (C.R.); (K.N.D.); (R.A.J.); (G.R.J.); (L.L.); (G.C.C.A.); (M.S.); (A.T.); (T.H.G.)
| |
Collapse
|
22
|
Gangfuß A, Schara-Schmidt U, Roos A. [Genomics and proteomics in the research of neuromuscular diseases]. DER NERVENARZT 2021; 93:114-121. [PMID: 34622318 DOI: 10.1007/s00115-021-01201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Neurological diseases affect 3-5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; "NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases".
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Ulrike Schara-Schmidt
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Andreas Roos
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland. .,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Kanada.
| |
Collapse
|
23
|
Prior DE, Ghosh PS. Congenital Myasthenic Syndrome From a Single Center: Phenotypic and Genotypic features. J Child Neurol 2021; 36:610-617. [PMID: 33471587 DOI: 10.1177/0883073820987755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Congenital myasthenic syndrome is a group of rare genetic disorders affecting transmission across the neuromuscular junction. Patients present with variable ocular, bulbar, respiratory, and extremity weakness that may respond to symptomatic therapies. METHODS We identified 18 patients with congenital myasthenic syndrome from a pediatric neuromuscular center over a decade. Through a retrospective chart review, we characterize demographic profile, clinical features, genetic variants, treatment, and follow-up of these patients. RESULTS Patients had the following genetic subtypes: CHRNE (6), CHAT (2), MUSK (2), DOK7 (2), COLQ (1), RAPSN (1), PREPL (1), GFPT1 (1), CHRBB1 (1), and CHRNA1 (1). The phenotype varied based on the genetic variants, though most patients have generalized fatigable weakness affecting ocular, bulbar, and extremity muscles. There was a significant delay in the diagnosis of this condition from the onset of symptoms. Although most patients improved with pyridostigmine, some subtypes showed worsening with pyridostigmine and others benefited from albuterol, ephedrine, or 3,4-diaminopyridine treatment. CONCLUSION Increasing recognition of this rare syndrome will lead to early diagnosis and prompt treatment. Prompt utilization of genetic testing will identify novel variants and the expanding phenotype of this condition.
Collapse
Affiliation(s)
- Devin E Prior
- Department of Neurology, 2094Mount Auburn Hospital, Cambridge, MA, USA.,Department of Neurology, 1862Boston Children's Hospital, Boston MA, USA
| | - Partha S Ghosh
- Department of Neurology, 1862Boston Children's Hospital, Boston MA, USA
| |
Collapse
|
24
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
25
|
The association between RAPSN methylation in peripheral blood and breast cancer in the Chinese population. J Hum Genet 2021; 66:1069-1078. [PMID: 33958711 DOI: 10.1038/s10038-021-00933-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/05/2023]
Abstract
DNA methylation in peripheral blood is associated with breast cancer (BC) but has mainly been studied in Caucasian populations. We investigated the association between blood-based methylation of receptor-associated protein of the synapse (RAPSN) and BC in Chinese population. The methylation levels of 12 RAPSN CpG sites were quantitatively evaluated by mass spectrometry in two case-control studies with 283 sporadic BC cases and 331 controls totally. The association was analyzed by logistic regression adjusted for covariants. The RAPSN methylation levels in patients with variant clinical characteristics were investigated by non-parametric tests. We found a significant association between BC and altered RAPSN methylation in blood in women at premenopausal and perimenopausal (age < 50 years old), but not in the elder women. This was approved by two independent case-control studies as well as by combining the subjects of the two studies (taken all subjects together, age < 50 years old, per 5% of methylation, odds ratio (OR) range from 1.17 to 1.30 for two CpG sites; OR = 0.75 for one CpG site; all p values < 0.02). This age-related RAPSN methylation was further modified by human epidermal growth factor receptor 2 (HER2) status (age < 50 years old, HER2 negative, per 5% of methylation, OR range from 1.27 to 1.48 for two CpG sites; OR = 0.76 for one CpG site; all p values < 0.02). We elucidated an association between BC and blood-based RAPSN methylation influenced by age and the status of HER2 in Chinese population.
Collapse
|
26
|
Gül Mert G, Özcan N, Hergüner Ö, Altunbaşak Ş, Incecik F, Bişgin A, Ceylaner S. Congenital myasthenic syndrome in Turkey: clinical and genetic features in the long-term follow-up of patients. Acta Neurol Belg 2021; 121:529-534. [PMID: 31773638 DOI: 10.1007/s13760-019-01246-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022]
Abstract
Congenital Myasthenic Syndromes (CMS) are rare disorders that occur as a result of defects in the structure and in the function of neuromuscular junctions. Molecular genetic diagnosis is important to select the most suitable therapeutic option and treatment. Eight patients with congenital myasthenic syndromes who presented to the Çukurova University Pediatric Neurology Department Outpatient Clinic between June 2015 and May 2018 were reviewed. Mutations in the acetylcholine receptor (subunits in epsilon) (CHRNE) in three and mutations in the collagenic tail of endplate acetylcholinesterase (COLQ) gene in five patients were identified; p.W148 mutation was detected to be homozygous in four, c.1169A > G novel mutation in COLQ gene was homozygous in one, c452_454delAGG mutation was homozygous in the other patient, IVS7 + 2T > C(c.802 + 2T > C) mutation was homozygous in a patient and compound heterozygous mutations of c.865C > T(p.Leu289Phe) and c.872C > G(p.A2916)(p.Arg291Gly) in the CHRNE gene in the last patient. The parents of all the evaluated patients were consanguineous. Ptosis, ophthalmoplegia, generalized hypotonia, bulbar weakness, and respiratory crisis were the main findings at the time of presentation. Pyridostigmine is the first-line drug therapy in primary AChR deficiency. Beta adrenergic agonists, ephedrine, and albuterol are the other treatment options for CMS subtypes caused by mutations in COLQ. This study points out the genetic and phenotypic features of CMS patients in the Turkish population and it also reports previously unreported mutations in the literature. CHRNE and COLQ gene mutations are common in the Turkish population. Patients can get serious benefits and recover after the treatment. The treatment should be planned according to genetic tests and clinical findings.
Collapse
Affiliation(s)
- Gülen Gül Mert
- Department of Pediatrics, Division of Pediatric Neurology, Cukurova University, Adana, Turkey.
| | - Neslihan Özcan
- Department of Pediatrics, Division of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Özlem Hergüner
- Department of Pediatrics, Division of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Şakir Altunbaşak
- Department of Pediatrics, Division of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Faruk Incecik
- Department of Pediatrics, Division of Pediatric Neurology, Cukurova University, Adana, Turkey
| | - Atıl Bişgin
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
| | | |
Collapse
|
27
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
28
|
François-Heude MC, Walther-Louvier U, Espil-Taris C, Beze-Beyrie P, Rivier F, Baudou E, Uro-Coste E, Rigau V, Martin Negrier ML, Rendu J, Morales RJ, Pégeot H, Thèze C, Lacourt D, Coville AC, Cossée M, Cances C. Evaluating next-generation sequencing in neuromuscular diseases with neonatal respiratory distress. Eur J Paediatr Neurol 2021; 31:78-87. [PMID: 33667896 DOI: 10.1016/j.ejpn.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.
Collapse
Affiliation(s)
- Marie-Céline François-Heude
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Ulrike Walther-Louvier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Caroline Espil-Taris
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Bordeaux University Hospital, Aquitaine, France
| | | | - François Rivier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Eloise Baudou
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France; INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France
| | - Valérie Rigau
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Aquitaine, France; Department of Pathology, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - John Rendu
- INSERM U1216, Grenoble Alpes University Hospital, University of Grenoble Alpes, Grenoble, France
| | - Raul Juntas Morales
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France
| | - Henri Pégeot
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Corinne Thèze
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Delphine Lacourt
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Anne Cécile Coville
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Mireille Cossée
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France; Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
29
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
30
|
Freed AS, Schwarz AC, Brei BK, Clowes Candadai SV, Thies J, Mah JK, Chabra S, Wang L, Innes AM, Bennett JT. CHRNB1-associated congenital myasthenia syndrome: Expanding the clinical spectrum. Am J Med Genet A 2020; 185:827-835. [PMID: 33296147 DOI: 10.1002/ajmg.a.62011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
CHRNB1 encodes the β subunit of the acetylcholine receptor (AChR) at the neuromuscular junction. Inherited defects in the neuromuscular junction can lead to congenital myasthenia syndrome (CMS), a clinically and genetically heterogeneous group of disorders which includes fetal akinesia deformation sequence (FADS) on the severe end of the spectrum. Here, we report two unrelated families with biallelic CHRNB1 variants, and in each family, one child presented with lethal FADS. We contrast the diagnostic odysseys in the two families, one of which lasted 16 years while the other, utilizing rapid exome sequencing, led to specific treatment in the first 2 weeks of life. Furthermore, we note that CHRNB1 variants may be under-recognized because in both families, one of the variants is a single exon deletion that has been previously described but may not easily be detected in clinically available genetic testing.
Collapse
Affiliation(s)
- Amanda S Freed
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Genetics, SCPMG, Panorama City, California, USA
| | - Anisha C Schwarz
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA.,General & Neuromuscular Pediatric Neurology, Mary Bridge Children's Hospital, Tacoma, Washington, USA
| | - Brianna K Brei
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Neonatology, Children's Hospital & Medical Center, Omaha, Nebraska, USA
| | - Sarah V Clowes Candadai
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA.,Patient-Centered Laboratory Utilization Guidance Services (PLUGS), Seattle Children's Hospital, Seattle, Washington, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Jean K Mah
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shilpi Chabra
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Leo Wang
- Division of Neuromuscular Neurology, Department of Neurology, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James T Bennett
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Neonatology, Children's Hospital & Medical Center, Omaha, Nebraska, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
31
|
Stephens BD, Kang MK. Pearls & Oy-sters: The Myasthenic Double Humps. Neurology 2020; 96:545-547. [PMID: 33277409 DOI: 10.1212/wnl.0000000000011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brian D Stephens
- From the Department of Neurology, University of California, San Francisco.
| | - Min K Kang
- From the Department of Neurology, University of California, San Francisco
| |
Collapse
|
32
|
Herman I, Lopez MA, Marafi D, Pehlivan D, Calame DG, Abid F, Lotze TE. Clinical exome sequencing in the diagnosis of pediatric neuromuscular disease. Muscle Nerve 2020; 63:304-310. [PMID: 33146414 DOI: 10.1002/mus.27112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The diagnosis of uncommon pediatric neuromuscular disease (NMD) is challenging due to genetic and phenotypic heterogeneity, yet is important to guide treatment, prognosis, and recurrence risk. Patients with diagnostically challenging presentations typically undergo extensive testing with variable molecular diagnostic yield. Given the advancement in next generation sequencing (NGS), we investigated the value of clinical whole exome sequencing (ES) in uncommon pediatric NMD. METHODS A retrospective cohort study of 106 pediatric NMD patients with a combination of ES, chromosomal microarray (CMA), and candidate gene testing was completed at a large tertiary referral center. RESULTS A molecular diagnosis was achieved in 37/79 (46%) patients with ES, 4/44 (9%) patients with CMA, and 15/74 (20%) patients with candidate gene testing. In 2/79 (3%) patients, a dual molecular diagnosis explaining the neuromuscular disease process was identified. A total of 42 patients (53%) who received ES remained without a molecular diagnosis at the conclusion of the study. CONCLUSIONS Due to NGS, molecular diagnostic yield of rare neurological diseases is at an all-time high. We show that ES has a higher diagnostic rate compared to other genetic tests in a complex pediatric neuromuscular disease cohort and should be considered early in the diagnostic journey for select NMD patients with challenging presentations in which a clinical diagnosis is not evident.
Collapse
Affiliation(s)
- Isabella Herman
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA
| | - Michael A Lopez
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Davut Pehlivan
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel G Calame
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA
| | - Farida Abid
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA
| | - Timothy E Lotze
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine & Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
33
|
Vivekanandam V, Männikkö R, Matthews E, Hanna MG. Improving genetic diagnostics of skeletal muscle channelopathies. Expert Rev Mol Diagn 2020; 20:725-736. [PMID: 32657178 DOI: 10.1080/14737159.2020.1782195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes have improved diagnostic accuracy and yield. AREAS COVERED We discuss diagnostic advances since the advent of next-generation sequencing and the role of whole exome and genome sequencing. Advances in genotype-phenotype-functional correlations have improved understanding of inheritance and phenotypes. We outline new phenotypes, particularly in the pediatric setting and consider co-existing mutations that may act as genetic modifiers. We also discuss four newly identified genes associated with skeletal muscle channelopathies. EXPERT OPINION Next-generation sequencing using gene panels has improved diagnostic rates, identified new mutations, and discovered patients with co-existing pathogenic mutations ('double trouble'). This field has previously focussed on single genes, but we are now beginning to understand interactions between co-existing mutations, genetic modifiers, and their role in pathomechanisms. New genetic observations in pediatric presentations of channelopathies broadens our understanding of the conditions. Genetic and mechanistic advances have increased the potential to develop treatments.
Collapse
Affiliation(s)
- Vinojini Vivekanandam
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Roope Männikkö
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Emma Matthews
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| |
Collapse
|
34
|
Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020; 19:522-532. [PMID: 32470424 DOI: 10.1016/s1474-4422(20)30028-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Advances in DNA sequencing technologies have resulted in a near doubling, in under 10 years, of the number of causal genes identified for inherited neuromuscular disorders. However, around half of patients, whether children or adults, do not receive a molecular diagnosis after initial diagnostic workup. Massively parallel technologies targeting RNA, proteins, and metabolites are being increasingly used to diagnose these unsolved cases. The use of these technologies to delineate pathways, biomarkers, and therapeutic targets has led to new approaches entering the drug development pipeline. However, these technologies might give rise to misleading conclusions if used in isolation, and traditional techniques including comprehensive neurological evaluation, histopathology, and biochemistry continue to have a crucial role in diagnostics. For optimal diagnosis, prognosis, and precision medicine, no single ruling technology exists. Instead, an interdisciplinary approach combining novel and traditional neurological techniques with computer-aided analysis and international data sharing is needed to advance the diagnosis and treatment of neuromuscular disorders.
Collapse
|
35
|
Rudell JC, Borges LS, Yarov-Yarovoy V, Ferns M. The MX-Helix of Muscle nAChR Subunits Regulates Receptor Assembly and Surface Trafficking. Front Mol Neurosci 2020; 13:48. [PMID: 32265653 PMCID: PMC7105636 DOI: 10.3389/fnmol.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric channels that mediate fast transmission at the neuromuscular junction (NMJ) and defects in receptor expression underlie neuromuscular disorders such as myasthenia gravis and congenital myasthenic syndrome (CMS). Nicotinic receptor expression at the NMJ is tightly regulated and we previously identified novel Golgi-retention signals in the β and δ subunit cytoplasmic loops that regulate trafficking of the receptor to the cell surface. Here, we show that the Golgi retention motifs are localized in the MX-helix, a juxta-membrane alpha-helix present in the proximal cytoplasmic loop of receptor subunits, which was defined in recent crystal structures of cys-loop receptor family members. First, mutational analysis of CD4-MX-helix chimeric proteins showed that the Golgi retention signal was dependent on both the amphipathic nature of the MX-helix and on specific lysine residues (βK353 and δK351). Moreover, retention was associated with ubiquitination of the lysines, and βK353R and δK351R mutations reduced ubiquitination and increased surface expression of CD4-β and δ MX-helix chimeric proteins. Second, mutation of these lysines in intact β and δ subunits perturbed Golgi-based glycosylation and surface trafficking of the AChR. Notably, combined βK353R and δK351R mutations increased the amount of surface AChR with immature forms of glycosylation, consistent with decreased Golgi retention and processing. Third, we found that previously identified CMS mutations in the ε subunit MX-helix decreased receptor assembly and surface levels, as did an analogous mutation introduced into the β subunit MX-helix. Together, these findings indicate that the subunit MX-helix contributes to receptor assembly and is required for normal expression of the AChR and function of the NMJ. In addition, specific determinants in the β and δ subunit MX-helix contribute to quality control of AChR expression by intracellular retention and ubiquitination of unassembled subunits, and by facilitating the appropriate glycosylation of assembled surface AChR.
Collapse
Affiliation(s)
- Jolene Chang Rudell
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Lucia Soares Borges
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
36
|
Mathot F, Rbia N, Thaler R, Bishop AT, Van Wijnen AJ, Shin AY. Gene expression profiles of differentiated and undifferentiated adipose derived mesenchymal stem cells dynamically seeded onto a processed nerve allograft. Gene 2019; 724:144151. [PMID: 31626959 DOI: 10.1016/j.gene.2019.144151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells onto processed nerve allografts may support peripheral nerve repair. The purpose of this study was to understand the biological characteristics of undifferentiated and differentiated MSCs before and after seeding onto a processed nerve allograft by comparing gene expression profiles. METHODS MSCs from Lewis rats were cultured in maintenance media or differentiated into Schwann-like cells. Both treatment groups were dynamically seeded onto decellularized nerve allografts derived from Sprague-Dawley rats. Gene expression was quantified by quantitative polymerase chain reaction (qPCR) analysis of representative biomarkers, including neurotrophic (GDNF, PTN, GAP43, PMP22), angiogenic (CD31, VEGF1), extracellular matrix (ECM) (COL1A1, COL3A1, FBLN1, LAMB2) or cell cycle (CAPS3, CCBN2) genes. Gene expression values were statistically evaluated using a 2-factor ANOVA with repeated measures. RESULTS Baseline gene expression of undifferentiated and differentiated MSCs was significantly altered upon interaction with processed nerve allografts. Interaction between processed allografts and undifferentiated MSCs enhanced expression of neurotrophic (NGF, GDNF, PMP22), ECM (FBLN1, LAMB2) and regulatory cell cycle genes (CCNB2) during a 7-day time course. Interactions of differentiated MSCs with nerve allografts enhanced expression of neurotrophic (NGF, GDNF, GAP43), angiogenic (VEGF1), ECM (FBLN1) and regulatory cell cycle genes (CASP3, CCNB2) within one week. CONCLUSIONS Dynamic seeding onto processed nerve allografts modulates temporal gene expression profiles of differentiated and undifferentiated MSCs. These changes in gene expressions may support the reparative functions of MSCs in supporting nerve regeneration in different stages of axonal growth.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Stålberg E, van Dijk H, Falck B, Kimura J, Neuwirth C, Pitt M, Podnar S, Rubin DI, Rutkove S, Sanders DB, Sonoo M, Tankisi H, Zwarts M. Standards for quantification of EMG and neurography. Clin Neurophysiol 2019; 130:1688-1729. [DOI: 10.1016/j.clinph.2019.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
38
|
Slater CR. 'Fragmentation' of NMJs: a sign of degeneration or regeneration? A long journey with many junctions. Neuroscience 2019; 439:28-40. [PMID: 31129203 DOI: 10.1016/j.neuroscience.2019.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Mammalian neuromuscular junctions (NMJs) often consist of curved bands of synaptic contact, about 3-6 μm wide, which resemble pretzels. This contrasts with the NMJs of most animal species which consist of a cluster of separate synaptic spots, each of which is also about 3-6 μm across. In a number of situations, including a variety of disease states as well as normal ageing, mammalian NMJs acquire a more 'fragmented' appearance that resembles somewhat that of other species. This 'fragmentation' of the NMJ has sometimes been interpreted as a 'disintegration' or 'degeneration', with the suggestion that it might be associated with impaired neuromuscular transmission. An alternative view is that NMJ fragmentation is the outcome of a normal process by which the NMJ is maintained in an effective state. In this highly personal commentary, I cite a number of examples of this and point out that although the 'pretzel' form arises during normal development as a result of the sculpting of an immature synaptic 'plaque', in virtually all situations where new synaptic contact is established in adult mammals this occurs by the addition of new synaptic 'spots' rather than by the extension, or neoformation, of 'pretzels'. Further, where appropriate studies have been performed, no evidence of a correlation between the degree of fragmentation and the efficacy of transmission has emerged. It may therefore be more appropriate to consider NMJ 'fragmentation' as a form of regeneration, rather than of degeneration. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Clarke R Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
39
|
Carrera-García L, Natera-de Benito D, Dieterich K, de la Banda MGG, Felter A, Inarejos E, Codina A, Jou C, Roldan M, Palau F, Hoenicka J, Pijuan J, Ortez C, Expósito-Escudero J, Durand C, Nugues F, Jimenez-Mallebrera C, Colomer J, Carlier RY, Lochmüller H, Quijano-Roy S, Nascimento A. CHRNG-related nonlethal multiple pterygium syndrome: Muscle imaging pattern and clinical, histopathological, and molecular genetic findings. Am J Med Genet A 2019; 179:915-926. [PMID: 30868735 DOI: 10.1002/ajmg.a.61122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the CHRNG gene cause autosomal recessive multiple pterygium syndrome (MPS). Herein we present a long-term follow-up of seven patients with CHRNG-related nonlethal MPS and we compare them with the 57 previously published patients. The objective is defining not only the clinical, histopathological, and molecular genetic characteristics, but also the type and degree of muscle involvement on whole-body magnetic resonance imaging (WBMRI). CHRNG mutations lead to a distinctive phenotype characterized by multiple congenital contractures, pterygium, and facial dysmorphism, with a stable clinical course over the years. Postnatal abnormalities at the neuromuscular junction were observed in the muscle biopsy of these patients. WBMRI showed distinctive features different from other arthrogryposis multiple congenita. A marked muscle bulk reduction is the predominant finding, mostly affecting the spinal erector muscles and gluteus maximus. Fatty infiltration was only observed in deep paravertebral muscles and distal lower limbs. Mutations in CHRNG are mainly located at the extracellular domain of the protein. Our study contributes to further define the phenotypic spectrum of CHRNG-related nonlethal MPS, including muscle imaging features, which may be useful in distinguishing it from other diffuse arthrogryposis entities.
Collapse
Affiliation(s)
- Laura Carrera-García
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Klaus Dieterich
- Département de Génétique et Procréation, CHU de Grenoble Alpes, Grenoble Cedex 9, France
| | - Marta G G de la Banda
- Neuromuscular Unit, Department of Pediatric Neurology, Intensive Care and Rehabilitation, Raymond Poincaré University Hospital (AP-HP; UVSQ Paris Saclay), Garches, France
| | - Adrien Felter
- Department of Medical Radiology, Raymond Poincaré University Hospital (AP-HP; UVSQ Paris Saclay), Garches, France
| | - Emili Inarejos
- Department of Radiology, Hospital Universitari Sant Joan de Deu, Barcelona, Spain
| | - Anna Codina
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Cristina Jou
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain.,Department of Pathology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Monica Roldan
- Confocal Microscopy Unit, Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain.,Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Pediatrics, University of Barcelona School of Medicine, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Barcelona, Spain
| | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Jessica Expósito-Escudero
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Chantal Durand
- Department of Radiology, CHU de Grenoble Alpes, Grenoble, France
| | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Robert Y Carlier
- Department of Medical Radiology, Raymond Poincaré University Hospital (AP-HP; UVSQ Paris Saclay), Garches, France
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Susana Quijano-Roy
- Neuromuscular Unit, Department of Pediatric Neurology, Intensive Care and Rehabilitation, Raymond Poincaré University Hospital (AP-HP; UVSQ Paris Saclay), Garches, France
| | - Andres Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
40
|
Liu Z, Zhang L, Shen D, Ding C, Yang X, Zhang W, Li J, Deng J, Gong S, Liu J, Qian S, Fang F. Compound Heterozygous CHAT Gene Mutations of a Large Deletion and a Missense Variant in a Chinese Patient With Severe Congenital Myasthenic Syndrome With Episodic Apnea. Front Pharmacol 2019; 10:259. [PMID: 30914958 PMCID: PMC6422987 DOI: 10.3389/fphar.2019.00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/28/2019] [Indexed: 01/28/2023] Open
Abstract
Congenital myasthenic syndromes (CMSs) are a group of inherited disorders caused by genetic defects in neuromuscular junctions. Mutations in CHAT, encoding choline acetyltransferase, cause congenital myasthenic syndrome with episodic apnea (CMS-EA), a rare autosomal recessive disease characterized by respiratory insufficiency with cyanosis and apnea after infections, fever, vomiting, or excitement. To date, no studies have reported deletions comprised of multiple exons. Here, using next generation sequencing, we identified compound heterozygous mutations, namely a large maternally inherited deletion, including exons 4, 5, and 6, and a paternally inherited missense variant (c.914T>C [p.Ile305Thr]) in CHAT in a Chinese patient with a severe phenotype of CMS-EA. Furthermore, the large deletion was also validated by real-time fluorescence quantitative polymerase chain reaction. The patient was a 10-month-old boy, who presented with a weak cry and feeding difficulties soon after birth, ptosis at 4 months old, episodic apnea after fever at 9 months old, and respiratory insufficiency with cyanosis and apnea that required intubation after a respiratory tract infection at 10 months old. Unfortunately, he died in the Pediatric Intensive Care Unit soon after hospitalization. The patient's elder sister had similar clinical manifestations, and she died prior to the age of 2 months old without a diagnosis. Genotype-phenotype correlation analysis revealed that loss-of-function mutations in exons 4-6 of CHAT might cause more severe CMS-EA. To our knowledge, this is the first study to show compound heterozygous CHAT mutations consisting of a large deletion and missense mutation in a patient with CMS-EA.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- School of Statistics, Faculty of Economics and Management, East China Normal University, Shanghai, China
| | - Danmin Shen
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xinying Yang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Deng
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shuai Gong
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jun Liu
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Suyun Qian
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
41
|
Oury J, Liu Y, Töpf A, Todorovic S, Hoedt E, Preethish-Kumar V, Neubert TA, Lin W, Lochmüller H, Burden SJ. MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. J Cell Biol 2019; 218:1686-1705. [PMID: 30842214 PMCID: PMC6504910 DOI: 10.1083/jcb.201810023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Oury et al. show that the scaffolding protein MACF1 links Rapsyn, which binds acetylcholine receptors, to the microtubule- and actin-network at neuromuscular synapses. MACF1 thereby plays a role in synaptic maturation in mice, and mutations of MACF1 are associated with congenital myasthenia in humans. Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.
Collapse
Affiliation(s)
- Julien Oury
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Slobodanka Todorovic
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Esthelle Hoedt
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | | | - Thomas A Neubert
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Steven J Burden
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| |
Collapse
|
42
|
Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome. Emerg Top Life Sci 2019; 3:19-37. [PMID: 30931400 PMCID: PMC6436731 DOI: 10.1042/etls20180100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent scientific advances, most rare genetic diseases — including most neuromuscular diseases — do not currently have curative gene-based therapies available. However, in some cases, such as vitamin, cofactor or enzyme deficiencies, channelopathies and disorders of the neuromuscular junction, a confirmed genetic diagnosis provides guidance on treatment, with drugs available that may significantly alter the disease course, improve functional ability and extend life expectancy. Nevertheless, many treatable patients remain undiagnosed or do not receive treatment even after genetic diagnosis. The growth of computer-aided genetic analysis systems that enable clinicians to diagnose their undiagnosed patients has not yet been matched by genetics-based decision-support systems for treatment guidance. Generating a ‘treatabolome’ of treatable variants and the evidence for the treatment has the potential to increase treatment rates for treatable conditions. Here, we use the congenital myasthenic syndromes (CMS), a group of clinically and genetically heterogeneous but frequently treatable neuromuscular conditions, to illustrate the steps in the creation of a treatabolome for rare inherited diseases. We perform a systematic review of the evidence for pharmacological treatment of each CMS type, gathering evidence from 207 studies of over 1000 patients and stratifying by genetic defect, as treatment varies depending on the underlying cause. We assess the strength and quality of the evidence and create a dataset that provides the foundation for a computer-aided system to enable clinicians to gain easier access to information about treatable variants and the evidence they need to consider.
Collapse
|
43
|
Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology 2019; 92:e587-e593. [PMID: 30635494 DOI: 10.1212/wnl.0000000000006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.
Collapse
Affiliation(s)
- Guy Helman
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Suvasini Sharma
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Joanna Crawford
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Bijoy Patra
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Puneet Jain
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Stephen J Bent
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - J Andoni Urtizberea
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ravindra K Saran
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ryan J Taft
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| | - Cas Simons
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Thompson R, Abicht A, Beeson D, Engel AG, Eymard B, Maxime E, Lochmüller H. A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era. Orphanet J Rare Dis 2018; 13:211. [PMID: 30477555 PMCID: PMC6260762 DOI: 10.1186/s13023-018-0955-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are a heterogeneous group of inherited neuromuscular disorders sharing the common feature of fatigable weakness due to defective neuromuscular transmission. Despite rapidly increasing knowledge about the genetic origins, specific features and potential treatments for the known CMS entities, the lack of standardized classification at the most granular level has hindered the implementation of computer-based systems for knowledge capture and reuse. Where individual clinical or genetic entities do not exist in disease coding systems, they are often invisible in clinical records and inadequately annotated in information systems, and features that apply to one disease but not another cannot be adequately differentiated. RESULTS We created a detailed classification of all CMS disease entities suitable for use in clinical and genetic databases and decision support systems. To avoid conflict with existing coding systems as well as with expert-defined group-level classifications, we developed a collaboration with the Orphanet nomenclature for rare diseases, creating a clinically understandable name for each entity and placing it within a logical hierarchy that paves the way towards computer-aided clinical systems and improved knowledge bases for CMS that can adequately differentiate between types and ascribe relevant expert knowledge to each. CONCLUSIONS We suggest that data science approaches can be used effectively in the clinical domain in a way that does not disrupt preexisting expert classification and that enhances the utility of existing coding systems. Our classification provides a comprehensive view of the individual CMS entities in a manner that supports differential diagnosis and understanding of the range and heterogeneity of the disease but that also enables robust computational coding and hierarchy for machine-readability. It can be extended as required in the light of future scientific advances, but already provides the starting point for the creation of FAIR (Findable, Accessible, Interoperable and Reusable) knowledge bases of data on the congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Rachel Thompson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
| | | | | | - Emmanuel Maxime
- INSERM US14 - Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, ON K1H 8L1 Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
45
|
Gisselmann G, Alisch D, Welbers-Joop B, Hatt H. Effects of Quinine, Quinidine and Chloroquine on Human Muscle Nicotinic Acetylcholine Receptors. Front Pharmacol 2018; 9:1339. [PMID: 30515099 PMCID: PMC6255974 DOI: 10.3389/fphar.2018.01339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/30/2018] [Indexed: 11/24/2022] Open
Abstract
The genus Cinchona is known for a range of alkaloids, such as quinine, quinidine, cinchonine, and cinchonidine. Cinchona bark has been used as an antimalarial agent for more than 400 years. Quinine was first isolated in 1820 and is still acknowledged in the therapy of chloroquine-resistant falciparum malaria; in lower dosage quinine has been used as treatment for leg cramps since the 1940s. Here we report the effects of the quinoline derivatives quinine, quinidine, and chloroquine on human adult and fetal muscle nicotinic acetylcholine receptors (nAChRs). It could be demonstrated that the compounds blocked acetylcholine (ACh)-evoked responses in Xenopus laevis oocytes expressing the adult nAChR composed of αβ𝜀δ subunits in a concentration-dependent manner, with a ranked potency of quinine (IC50 = 1.70 μM), chloroquine (IC50 = 2.22 μM) and quinidine (IC50 = 3.96 μM). At the fetal nAChR composed of αβγδ subunits, the IC50 for quinine was found to be 2.30 μM. The efficacy of the block by quinine was independent of the ACh concentration. Therefore, quinine is proposed to inhibit ACh-evoked currents in a non-competitive manner. The present results add to the pharmacological characterization of muscle nAChRs and indicate that quinine is effective at the muscular nAChRs close to therapeutic blood concentrations required for the therapy and prophylaxis of nocturnal leg cramps, suggesting that the clinically proven efficacy of quinine could be based on targeting nAChRs.
Collapse
Affiliation(s)
- Günter Gisselmann
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | - Desiree Alisch
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University-Bochum, Bochum, Germany
| |
Collapse
|