1
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Manole S, Nguyen DH, Min JJ, Zhou S, Forbes N. Setting "cold" tumors on fire: Cancer therapy with live tumor-targeting bacteria. MED 2025; 6:100549. [PMID: 39689707 DOI: 10.1016/j.medj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy with checkpoint blockade has shown remarkable efficacy in many patients with a variety of different types of cancer. However, the majority of patients with cancer have yet to benefit from this revolutionary therapy. Studies have shown that checkpoint blockade works best against immune-inflamed tumors characterized by the presence of tumor-infiltrating lymphocytes (TILs). In this review, we summarize studies using live tumor-targeting bacteria to treat cancer and describe various strategies to engineer the tumor-targeting bacteria for maximized immunoregulatory effects. We propose that tumor-localized infections by such engineered bacteria can create an immune microenvironment in favor of a more effective antitumor immunity with or without other therapies, such as immune checkpoint blockade (ICB). Finally, we will briefly outline some exemplary oncology clinical trials involving ICB plus live therapeutic bacteria, with a focus on their ability to modulate antitumor immune responses.
Collapse
Affiliation(s)
- Simin Manole
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam 58128, South Korea.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Neil Forbes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
3
|
Gonçalves M, Warwas KM, Meyer M, Schwartz-Albiez R, Bulbuc N, Zörnig I, Jäger D, Momburg F. Reversal of Endothelial Cell Anergy by T Cell-Engaging Bispecific Antibodies. Cancers (Basel) 2024; 16:4251. [PMID: 39766150 PMCID: PMC11674949 DOI: 10.3390/cancers16244251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after cross-linking with EC cell surface antigens. Methods: Recombinant T-cell stimulatory anti-VEGFR2-anti-CD3 and costimulatory anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 bsAb were engineered and expressed. Primary lines of human umbilical vein endothelial cells (HUVEC) that constitutively express VEGFR2 and TIE2 growth factor receptors and PD-L1, but very low levels of adhesion molecules, served as models for anergic tumor EC. Results: In cocultures with HUVEC, anti-VEGFR2-anti-CD3 bsAb increased T cell binding and elicited rapid T cell activation. The release of proinflammatory cytokines TNF-α, IFN-γ, and IL-6 was greatly augmented by the addition of anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 costimulatory bsAb. Concomitantly, T cell-released cytokines upregulated E-selectin, ICAM1, and VCAM1 adhesion molecules on HUVEC. HUVEC cultured in breast cancer cell-conditioned medium to mimic the influence of tumor-secreted factors were similarly activated by T cell-engaging bsAb. Migration of T cells in transwell assays was significantly increased by anti-VEGFR2-anti-CD3 bsAb. The combination with costimulatory anti-TIE2-anti-CD28 bsAb augmented activation and proliferation of migrated T cells and their cytotoxic capacity against spheroids of the MCF-7 breast cancer cell line seeded in the lower transwell chamber. Conclusions: T cells activated by anti-VEGFR2-anti-CD3 and costimulatory EC-targeting bsAb can reverse the energy of quiescent EC in vitro, resulting in improved T cell migration through an EC layer.
Collapse
Affiliation(s)
- Márcia Gonçalves
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten M. Warwas
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Reinhard Schwartz-Albiez
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Wu J, Chen Y, Xie M, Yu X, Su C. cGAS-STING signaling pathway in lung cancer: Regulation on antitumor immunity and application in immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:257-264. [PMID: 39834588 PMCID: PMC11742360 DOI: 10.1016/j.pccm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/31/2024] [Accepted: 11/03/2024] [Indexed: 01/22/2025]
Abstract
The innate immune system has a primary role in defending against external threats, encompassing viruses, bacteria, and fungi, thereby playing a pivotal role in establishing robust protection. Recent investigations have shed light on its importance in the progression of tumors, with a particular emphasis on lung cancer. Among the various signaling pathways implicated in this intricate process, the cGAS-STING pathway emerges as a significant participant. Cyclic GMP-AMP synthase (cGAS) discerns free DNA and activates the stimulator of interferon genes (STING), subsequently culminating in the secretion of cytokines and exerting inhibitory effects on tumor development. Consequently, researchers are increasingly interested in creating anticancer drugs that specifically target the cGAS-STING pathway, offering promising avenues for novel therapeutic interventions. The objective of this review is to present a comprehensive overview of the ongoing research on the cGAS-STING signaling pathway within the realm of lung cancer. The primary emphasis is on understanding its involvement in lung cancer development and assessing its viability as a target for innovative therapeutic options.
Collapse
Affiliation(s)
- Jing Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yingyao Chen
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengqing Xie
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Yu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
5
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Chuang L, Qifeng J, Shaolei Y. The tumor immune microenvironment and T-cell-related immunotherapies in colorectal cancer. Discov Oncol 2024; 15:244. [PMID: 38918278 PMCID: PMC11199466 DOI: 10.1007/s12672-024-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment includes a complex network of immune T-cell subsets that play important roles in colorectal cancer (CRC) progression and are key elements of CRC immunotherapy. T cells develop and migrate within tumors, recognizing tumor-specific antigens to regulate immune surveillance. Current immunotherapies are divided into the following main categories based on the regulatory role of T-cell subsets in the tumor immune microenvironment (TIME): cytokines, monoclonal antibodies, peptide vaccines, CAR-T cells and more. This review describes the composition of the tumor immune microenvironment in colorectal cancer and the involvement of T cells in the pathogenesis and progression of CRC as well as current T-cell-related immunotherapies. Further studies on CRC-specific tumor antigens, the gene regulation of T cells, and the regulation of immune activity are needed.
Collapse
Affiliation(s)
- Liu Chuang
- Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Guogoli Street, Nangang District, Harbin, China
| | - Ju Qifeng
- The First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Shaolei
- Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Guogoli Street, Nangang District, Harbin, China.
| |
Collapse
|
7
|
Kment J, Newsted D, Young S, Vermeulen MC, Laight BJ, Greer PA, Lan Y, Craig AW. Blockade of TGF-β and PD-L1 by bintrafusp alfa promotes survival in preclinical ovarian cancer models by promoting T effector and NK cell responses. Br J Cancer 2024; 130:2003-2015. [PMID: 38622286 PMCID: PMC11183086 DOI: 10.1038/s41416-024-02677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Failure of immunotherapy in high-grade serous ovarian cancer (HGSC) may be due to high levels of transforming growth factor-β (TGF-β) in ascites or tumour immune microenvironment (TIME). Here, we test whether coordinated blockade of TGF-β and PD-L1 with bintrafusp alfa (BA) can provoke anti-tumour immune responses in preclinical HGSC models. METHODS BA is a first-in-class bifunctional inhibitor of TGF-β and PD-L1, and was tested for effects on overall survival and altered TIME in syngeneic HGSC models. RESULTS Using a mouse ID8-derived HGSC syngeneic model with IFNγ-inducible PD-L1 expression, BA treatments significantly reduced ascites development and tumour burden. BA treatments depleted TGF-β and VEGF in ascites, and skewed the TIME towards cytotoxicity compared to control. In the BR5 HGSC syngeneic model, BA treatments increased tumour-infiltrating CD8 T cells with effector memory and cytotoxic markers, as well as cytolytic NK cells. Extended BA treatments in the BR5 model produced ∼50% BA-cured mice that were protected from re-challenge. These BA-cured mice had increased peritoneal T-effector memory and NK cells compared to controls. CONCLUSIONS Our preclinical studies of BA in advanced ovarian cancer models support further testing of BA as an improved immunotherapy option for patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Jacob Kment
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Daniel Newsted
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephanie Young
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Michael C Vermeulen
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Brian J Laight
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Peter A Greer
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Andrew W Craig
- Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Peng X, Lu X, Yang D, Liu J, Wu H, Peng H, Zhang Y. A novel CD8+ T cell-related gene signature as a prognostic biomarker in hepatocellular carcinoma. Medicine (Baltimore) 2024; 103:e37496. [PMID: 38489709 PMCID: PMC10939595 DOI: 10.1097/md.0000000000037496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
CD8+ T cells have great roles in tumor suppression and elimination of various tumors including hepatocellular carcinoma (HCC). Nonetheless, potential prognostic roles of CD8+ T cell-related genes (CD8Gs) in HCC remains unknown. In our study, 416 CD8Gs were identified in HCC, which were enriched in inflammatory and immune signaling pathways. Using The Cancer Genome Atlas dataset, a 5-CD8Gs risk model (KLRB1, FYN, IL2RG, FCER1G, and DGKZ) was constructed, which was verified in International Cancer Genome Consortium and gene expression omnibus datasets. Furthermore, we found that overall survival was independently correlated with the CD8Gs signature, and it was associated with immune- and cancer-related signaling pathways and immune cells infiltration. Finally, drug sensitivity data indicated that 10 chemotherapeutic drugs held promise as therapeutics for HCC patients with high-risk. In conclusion, multi-databases analysis showed that 5-CD8Gs and their signature could be an indicator to predict candidate drugs for HCC therapy.
Collapse
Affiliation(s)
- Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Daqing Yang
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Jinyan Liu
- Hunan Normal University, Changsha, China
| | - Honglin Wu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Hong Peng
- Medical School, Huanghe Science & Technology College, Zhengzhou, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Wang S, Wang H, Li C, Liu B, He S, Tu C. Tertiary lymphoid structures in cancer: immune mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e489. [PMID: 38469550 PMCID: PMC10925885 DOI: 10.1002/mco2.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
Cancer is a major cause of death globally, and traditional treatments often have limited efficacy and adverse effects. Immunotherapy has shown promise in various malignancies but is less effective in tumors with low immunogenicity or immunosuppressive microenvironment, especially sarcomas. Tertiary lymphoid structures (TLSs) have been associated with a favorable response to immunotherapy and improved survival in cancer patients. However, the immunological mechanisms and clinical significance of TLS in malignant tumors are not fully understood. In this review, we elucidate the composition, neogenesis, and immune characteristics of TLS in tumors, as well as the inflammatory response in cancer development. An in-depth discussion of the unique immune characteristics of TLSs in lung cancer, breast cancer, melanoma, and soft tissue sarcomas will be presented. Additionally, the therapeutic implications of TLS, including its role as a marker of therapeutic response and prognosis, and strategies to promote TLS formation and maturation will be explored. Overall, we aim to provide a comprehensive understanding of the role of TLS in the tumor immune microenvironment and suggest potential interventions for cancer treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Hua Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chenbei Li
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Binfeng Liu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shasha He
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Shenzhen Research Institute of Central South UniversityGuangdongChina
- Changsha Medical UniversityChangshaChina
| |
Collapse
|
10
|
Saijo A, Ogino H, Butowski NA, Tedesco MR, Gibson D, Watchmaker PB, Okada K, Wang AS, Shai A, Salazar AM, Molinaro AM, Rabbitt JE, Shahin M, Perry A, Clarke JL, Taylor JW, Daras M, Oberheim Bush NA, Hervey-Jumper SL, Phillips JJ, Chang SM, Hilf N, Mayer-Mokler A, Keler T, Berger MS, Okada H. A combinatory vaccine with IMA950 plus varlilumab promotes effector memory T-cell differentiation in the peripheral blood of patients with low-grade gliomas. Neuro Oncol 2024; 26:335-347. [PMID: 37758193 PMCID: PMC10836773 DOI: 10.1093/neuonc/noad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.
Collapse
Affiliation(s)
- Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Meghan R Tedesco
- Department of Neurology, University of California, San Francisco, CA, USA
| | - David Gibson
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | | | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Jane E Rabbitt
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maryam Shahin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Andrea Mayer-Mokler
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Tibor Keler
- Celldex Theraepeutics, Inc., Hampton, NJ, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
11
|
Muhuri AK, Alapan Y, Camargo CP, Thomas SN. Microengineered In Vitro Assays for Screening and Sorting Manufactured Therapeutic T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:199-207. [PMID: 38166247 PMCID: PMC10783858 DOI: 10.4049/jimmunol.2300488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024]
Abstract
Adoptively transferred T cells constitute a major class of current and emergent cellular immunotherapies for the treatment of disease, including but not limited to cancer. Although key advancements in molecular recognition, genetic engineering, and manufacturing have dramatically enhanced their translational potential, therapeutic potency remains limited by poor homing and infiltration of transferred cells within target host tissues. In vitro microengineered homing assays with precise control over micromechanical and biological cues can address these shortcomings by enabling interrogation, screening, sorting, and optimization of therapeutic T cells based on their homing capacity. In this article, the working principles, application, and integration of microengineered homing assays for the mechanistic study of biophysical and biomolecular cues relevant to homing of therapeutic T cells are reviewed. The potential for these platforms to enable scalable enrichment and screening of next-generation manufactured T cell therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Abir K. Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Camila P. Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
- Winship Cancer Institute, Emory University
| |
Collapse
|
12
|
Su NW, Dai SH, Hsu K, Chang KM, Ko CC, Kao CW, Chang YF, Chen CG. PD-L1-positive circulating endothelial progenitor cells associated with immune response to PD-1 blockade in patients with head and neck squamous cell carcinoma. Cancer Immunol Immunother 2024; 73:3. [PMID: 38175307 DOI: 10.1007/s00262-023-03595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
A number of the inhibitors against programmed death protein 1 (PD-1) have been approved to treat recurrent or metastatic squamous cell carcinoma of head and neck (HNSCC). The interaction between PD-1 and its ligand (PD-L1) serves as an immune checkpoint that governs cytotoxic immune effectors against tumors. Numerous clinical trials of PD-1/PD-L1 inhibitors have so far been discordant about having sufficient PD-L1 expression in the tumor as a prerequisite for a successful anti-PD-1 treatment. On the other hand, vascular endothelial cells modulate immune activities through PD-L1 expression, and thus it is possible that the expressions of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CPCs) could affect antitumor immunity as well as neoangiogenesis. Here we investigated the potential involvement of PD-L1+ CECs and PD-L1+ CPCs in PD-1 blockade treatments for HNSCC patients. We measured CD8+ T cells, CECs, and CPCs in the peripheral blood of the HNSCC patients treated by anti-PD-1 therapies. We found that their PD-L1+ CPC expression before anti-PD1 therapies was strongly correlated with treatment responses and overall survival. Moreover, if the first infusion of PD-1 inhibitors reduced ≥ 50% PD-L1+ CPCs, a significantly better outcome could be predicted. In these patients as well as in an animal model of oral cancer, Pd-l1+ CPC expression was associated with limited CD8+ T-cell infiltration into the tumors, and anti-PD-1 treatments also targeted Pd-l1+ CPCs and increased CD8+ T-cell infiltration. Our results highlight PD-L1+ CPC as a potential regulator in the anti-PD-1 treatments for HNSCC.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei, 25245, Taiwan
| | - Shuen-Han Dai
- Department of Pathology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Kate Hsu
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei, 25245, Taiwan
- Department of Medicine, Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 25245, Taiwan
- The Immunogenetics Laboratory, Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Kuo-Ming Chang
- Department of Pathology and Laboratory Medicine, MacKay Memorial Hospital, Hsinchu, 35071, Taiwan
| | - Chun-Chuan Ko
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Chen-Wei Kao
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Yi-Fang Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Caleb G Chen
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei, 25245, Taiwan.
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan.
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu, Taiwan.
| |
Collapse
|
13
|
Li P, Li F, Zhang Y, Yu X, Li J. Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics. Cancer Immunol Immunother 2023; 72:3453-3460. [PMID: 37733059 PMCID: PMC10992207 DOI: 10.1007/s00262-023-03540-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
Collapse
Affiliation(s)
- Peipei Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- BGI Tech Solutions, Co., Ltd. BGI Shenzhen, Shenzhen, 518000, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Fangchao Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Yanfei Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Xiaoyang Yu
- Weibei Prison Hospital, Weifang, Shandong, 261109, China
| | - Jingjing Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China.
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China.
| |
Collapse
|
14
|
Yang R, Yang M, Wu Z, Liu B, Zheng M, Lu L, Wu S. Tespa1 deficiency reduces the antitumour immune response by decreasing CD8 +T cell activity in a mouse Lewis lung cancer model. Int Immunopharmacol 2023; 124:110865. [PMID: 37660596 DOI: 10.1016/j.intimp.2023.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is a key molecule in T-cell development and has been linked to immune diseases. However, its role in antitumour CD8+T cell immunity remains unclear. Here, we demonstrated that Tespa1 plays an important role in antitumour CD8+T cell immunity. First, compared with wild-type (WT) mice, Lewis lung cancer cells grew faster in Tespa1 knockout (Tespa1-/-) mice, with reduced apoptosis, and decreased CD8+T cells in peripheral blood and tumor tissues. Second, the proportion of CD8+T and Th1 cells in the splenocytes of Tespa1-/- mice was lower than that in WT mice. Third, Tespa1-/- CD8+ tumor-infiltrating lymphocytes (TILs) showed weakened proliferation, invasion, cytotoxicity, and protein expression of IL-2 signalling pathway components compared to WT CD8+TILs. Furthermore, PD-1 expression in CD8+TILs was higher in Tespa1-/- than in WT mice. Lastly, CD8+TILs in WT mice improved the antitumour ability of Tespa1-/- mice. In conclusion, these findings suggest that Tespa1 plays a critical role in the tumor immune system by regulating CD8+T cells.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China; Department of Pharmacology, Lishui University School of Medicine, Lishui 323000, China
| | - Mingyue Yang
- The First Clinical Department, China Medical University, Shenyang 110122, China
| | - Zehua Wu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315000, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui 323000, China.
| |
Collapse
|
15
|
Manca MA, Simula ER, Cossu D, Solinas T, Madonia M, Cusano R, Sechi LA. Association of HLA-A*11:01, -A*24:02, and -B*18:01 with Prostate Cancer Risk: A Case-Control Study. Int J Mol Sci 2023; 24:15398. [PMID: 37895076 PMCID: PMC10607162 DOI: 10.3390/ijms242015398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The major histocompatibility complex (MHC) loci, the most polymorphic regions within the human genome, encode protein complexes responsible for antigen presentation and CD4+ and CD8+ cell activation. In prostate cancer (PCa), the second most diagnosed cancer in the male population, MHC loci undergo significant changes in their expression patterns, which affect the ability of the immune system to attack and eliminate malignant cells. The purpose of this study was to explore the genetic diversity of human leukocyte antigen (HLA)-A and HLA-B in patients with PCa and healthy controls (HCs) by performing HLA genotyping using NGS technology. The analysis highlighted statistically significant differences (p < 0.05) in the prevalence of three alleles (A*11:01, A*24:02, and B*18:01). Among the HCs analyzed, 14.89% had A*11:01, 20.21% had A*24:02, and 30.61% had B*18:01; while 5.21% of patients with PCa presented A*11:01, 9.38% presented A*24:02, 18.08% presented B*18:01. Odds ratio (OR) calculations underlined a negative association between the three alleles and the risk of PCa (OR < 1). The results presented in this study suggest a protective role of A*11:01, A*24:02, and B*18:01 in PCa.
Collapse
Affiliation(s)
- Maria Antonietta Manca
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (D.C.)
| | - Elena Rita Simula
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (D.C.)
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (D.C.)
| | - Tatiana Solinas
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, 07100 Sassari, Italy; (T.S.); (M.M.)
- Struttura Complessa di Urologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| | - Massimo Madonia
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, 07100 Sassari, Italy; (T.S.); (M.M.)
- Struttura Complessa di Urologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| | | | - Leonardo Antonio Sechi
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (D.C.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
16
|
Wen Z, Zhang Y, Wang X, Wu Y, Mao J, Li Q, Gong S. THBS1-Mediated Degradation of Collagen via the PI3K/AKT Pathway Facilitates the Metastasis and Poor Prognosis of OSCC. Int J Mol Sci 2023; 24:13312. [PMID: 37686118 PMCID: PMC10488045 DOI: 10.3390/ijms241713312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent form of malignant tumor, characterized by a persistently high incidence and mortality rate. The extracellular matrix (ECM) plays a crucial role in the initiation, progression, and diverse biological behaviors of OSCC, facilitated by mechanisms such as providing structural support, promoting cell migration and invasion, regulating cell morphology, and modulating signal transduction. This study investigated the involvement of ECM-related genes, particularly THBS1, in the prognosis and cellular behavior of OSCC. The analysis of ECM-related gene data from OSCC samples identified 165 differentially expressed genes forming two clusters with distinct prognostic outcomes. Seventeen ECM-related genes showed a significant correlation with survival. Experimental methods were employed to demonstrate the impact of THBS1 on proliferation, migration, invasion, and ECM degradation in OSCC cells. A risk-prediction model utilizing four differentially prognostic genes demonstrated significant predictive value in overall survival. THBS1 exhibited enrichment of the PI3K/AKT pathway, indicating its potential role in modulating OSCC. In conclusion, this study observed and verified that ECM-related genes, particularly THBS1, have the potential to influence the prognosis, biological behavior, and immunotherapy of OSCC. These findings hold significant implications for enhancing survival outcomes and providing guidance for precise treatment of OSCC.
Collapse
Affiliation(s)
- Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
17
|
Quan Y, He J, Zou Q, Zhang L, Sun Q, Huang H, Li W, Xie K, Wei F. Low molecular weight heparin synergistically enhances the efficacy of adoptive and anti-PD-1-based immunotherapy by increasing lymphocyte infiltration in colorectal cancer. J Immunother Cancer 2023; 11:e007080. [PMID: 37597850 PMCID: PMC10441131 DOI: 10.1136/jitc-2023-007080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Immunotherapy, including adoptive cell therapy (ACT) and immune checkpoint inhibitors (ICIs), has a limited effect in most patients with colorectal cancer (CRC), and the efficacy is further limited in patients with liver metastasis. Lack of antitumor lymphocyte infiltration could be a major cause, and there remains an urgent need for more potent and safer therapies for CRC. METHODS In this study, the antitumoral synergism of low molecular weight heparin (LMWH) combined with immunotherapy in the microsatellite stable (MSS) highly aggressive murine model of CRC was fully evaluated. RESULTS Dual LMWH and ACT objectively mediated the stagnation of tumor growth and inhibition of liver metastasis, neither LMWH nor ACT alone had any antitumoral activity on them. The combination of LMWH and ACT obviously increased the infiltration of intratumor CD8+ T cells, as revealed by multiplex immunohistochemistry, purified CD8+ T-cell transfer assay, and IVIM in vivo imaging. Mechanistically, evaluation of changes in the tumor microenvironment revealed that LMWH improved tumor vascular normalization and facilitated the trafficking of activated CD8+ T cells into tumors. Similarly, LMWH combined with anti-programmed cell death protein 1 (PD-1) therapy provided superior antitumor activity as compared with the single PD-1 blockade in murine CT26 tumor models. CONCLUSIONS LMWH could enhance ACT and ICIs-based immunotherapy by increasing lymphocyte infiltration into tumors, especially cytotoxic CD8+ T cells. These results indicate that combining LMWH with an immunotherapy strategy presents a promising and safe approach for CRC treatment, especially in MSS tumors.
Collapse
Affiliation(s)
- Yibo Quan
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie He
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Zou
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Liuxi Zhang
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Qihui Sun
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongli Huang
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanglin Li
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| | - Fang Wei
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
- Center for Pancreatic Cancer Research and Department of Immunology, The South China University of Technology School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Sakamoto K, Kittikulsuth W, Miyako E, Steeve A, Ishimura R, Nakagawa S, Ago Y, Nishiyama A. The VIPR2-selective antagonist KS-133 changes macrophage polarization and exerts potent anti-tumor effects as a single agent and in combination with an anti-PD-1 antibody. PLoS One 2023; 18:e0286651. [PMID: 37405999 PMCID: PMC10321640 DOI: 10.1371/journal.pone.0286651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
We have previously demonstrated that KS-133 is a specific and potent antagonist of vasoactive intestinal peptide receptor 2 (VIPR2). We have also shown that vasoactive intestinal peptide-VIPR2 signaling affects the polarity and activation of tumor-associated macrophages, which is another strategy for cancer immunotherapy apart from the activation of effector T cells. In this study, we aimed to examine whether the selective blockade of VIPR2 by KS-133 changes the polarization of macrophages and induces anti-tumor effects. In the presence of KS-133, genetic markers indicative of tumor-aggressive M1-type macrophages were upregulated, and conversely, those of tumor-supportive M2-type macrophages were downregulated. Daily subcutaneous administration of KS-133 tended to suppress the growth of CT26 tumors (murine colorectal cancer-derived cells) implanted subcutaneously in Balb/c mice. To improve the pharmacological efficacy and reduce the number of doses, we examined a nanoformulation of KS-133 using the US Food and Drug Administration-approved pharmaceutical additive surfactant Cremophor® EL. KS-133 nanoparticles (NPs) were approximately 15 nm in size and stable at 4°C after preparation. Meanwhile, KS-133 was gradually released from the NPs as the temperature was increased. Subcutaneous administration of KS-133 NPs once every 3 days had stronger anti-tumor effects than daily subcutaneous administration of KS-133. Furthermore, KS-133 NPs significantly enhanced the pharmacological efficacy of an immune checkpoint-inhibiting anti-PD-1 antibody. A pharmacokinetic study suggested that the enhancement of anti-tumor activity was associated with improvement of the pharmacokinetic profile of KS-133 upon nanoformulation. Our data have revealed that specific blockade of VIPR2 by KS-133 has therapeutic potential for cancer both alone and in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Depertment, Ichimaru Pharcos Company Limited, Motosu, Gifu, Japan
| | - Wararat Kittikulsuth
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Akumwami Steeve
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Rika Ishimura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Shinsaku Nakagawa
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
- Laboratory of Biopharmaceutics, Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Yukio Ago
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Akira Nishiyama
- Depertment of Pharmacology, Faculty of Medcine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
19
|
Yan R, Moresco P, Gegenhuber B, Fearon DT. T cell-Mediated Development of Stromal Fibroblasts with an Immune-Enhancing Chemokine Profile. Cancer Immunol Res 2023; 11:OF1-OF11. [PMID: 37285176 PMCID: PMC10700667 DOI: 10.1158/2326-6066.cir-22-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Stromal fibroblasts reside in inflammatory tissues that are characterized by either immune suppression or activation. Whether and how fibroblasts adapt to these contrasting microenvironments remains unknown. Cancer-associated fibroblasts (CAF) mediate immune quiescence by producing the chemokine CXCL12, which coats cancer cells to suppress T-cell infiltration. We examined whether CAFs can also adopt an immune-promoting chemokine profile. Single-cell RNA sequencing of CAFs from mouse pancreatic adenocarcinomas identified a subpopulation of CAFs with decreased expression of Cxcl12 and increased expression of the T cell-attracting chemokine Cxcl9 in association with T-cell infiltration. TNFα and IFNγ containing conditioned media from activated CD8+ T cells converted stromal fibroblasts from a CXCL12+/CXCL9- immune-suppressive phenotype into a CXCL12-/CXCL9+ immune-activating phenotype. Recombinant IFNγ and TNFα acted together to augment CXCL9 expression, whereas TNFα alone suppressed CXCL12 expression. This coordinated chemokine switch led to increased T-cell infiltration in an in vitro chemotaxis assay. Our study demonstrates that CAFs have a phenotypic plasticity that allows their adaptation to contrasting immune tissue microenvironments.
Collapse
Affiliation(s)
- Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Bruno Gegenhuber
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
20
|
Ferrarotto R, Sousa LG, Feng L, Mott F, Blumenschein G, Altan M, Bell D, Bonini F, Li K, Marques-Piubelli ML, Dal Lago EA, Johnson JJ, Mitani Y, Godoy M, Lee A, Kupferman M, Hanna E, Glisson BS, Elamin Y, El-Naggar A. Phase II Clinical Trial of Axitinib and Avelumab in Patients With Recurrent/Metastatic Adenoid Cystic Carcinoma. J Clin Oncol 2023; 41:2843-2851. [PMID: 36898078 PMCID: PMC10414730 DOI: 10.1200/jco.22.02221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE We conducted a phase II trial evaluating the efficacy of VEGFR inhibitor axitinib and PD-L1 inhibitor avelumab in patients with recurrent/metastatic adenoid cystic carcinoma (R/M ACC). PATIENTS AND METHODS Eligible patients had R/M ACC with progression within 6 months before enrollment. Treatment consisted of axitinib and avelumab. The primary end point was objective response rate (ORR) per RECIST 1.1; secondary end points included progression-free survival (PFS), overall survival (OS), and toxicity. Simon's optimal two-stage design tested the null hypothesis of ORR ≤5% versus ORR ≥20% at 6 months; ≥4 responses in 29 patients would reject the null hypothesis. RESULTS Forty patients enrolled from July 2019 to June 2021; 28 were evaluable for efficacy (six screen failures; six evaluable for safety only). The confirmed ORR was 18% (95% CI, 6.1 to 36.9); there was one unconfirmed partial response (PR). Two patients achieved PR after 6 months; thus, the ORR at 6 months was 14%. The median follow-up time for surviving patients was 22 months (95% CI, 16.6 to 39.1 months). The median PFS was 7.3 months (95% CI, 3.7 to 11.2 months), 6-month PFS rate was 57% (95% CI, 41 to 78), and median OS was 16.6 months (95% CI, 12.4 to not reached months). Most common treatment-related adverse events (TRAEs) included fatigue (62%), hypertension (32%), and diarrhea (32%). Ten (29%) patients had serious TRAEs, all grade 3; four patients (12%) discontinued avelumab, and nine patients (26%) underwent axitinib dose reduction. CONCLUSION The study reached its primary end point with ≥4 PRs in 28 evaluable patients (confirmed ORR of 18%). The potential added benefit of avelumab to axitinib in ACC requires further investigation.
Collapse
Affiliation(s)
- Renata Ferrarotto
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luana G. Sousa
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frank Mott
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mehmet Altan
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Diana Bell
- Department of Pathology, City of Hope, Duarte, CA
| | - Flavia Bonini
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kaiyi Li
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo A. Dal Lago
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason J. Johnson
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Myrna Godoy
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Kupferman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ehab Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bonnie S. Glisson
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yasir Elamin
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
22
|
Yang C, He Y, Chen F, Zhang F, Shao D, Wang Z. Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207029. [PMID: 36703529 DOI: 10.1002/smll.202207029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting β-adrenergic receptor (β-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a β-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of β-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined β-AR signaling-targeting strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
23
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
24
|
Su S, You S, Wang Y, Tamukong P, Quist MJ, Grasso CS, Kim HL. PAK4 inhibition improves PD1 blockade immunotherapy in prostate cancer by increasing immune infiltration. Cancer Lett 2023; 555:216034. [PMID: 36509363 DOI: 10.1016/j.canlet.2022.216034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Antitumor immunity requires lymphocytes to localize to the tumor. Prostate cancers (PCs) are immunologically cold and tend to lack T-cell infiltration. Most advanced PCs are insensitive to PD1 blockade therapies. Using syngeneic RM1 prostate tumors, p21-activated kinase-4 (PAK4) knockdown (KD) and pharmacological inhibition was assessed in C57BL/6J mice treated with PD1 antibodies (αPD1). RNASeq was used to characterize the immune response in the tumor. Immunohistochemistry, flow cytometry, and in vivo blocking studies confirmed the role of cell surface proteins in the generation of immune responses. In The Cancer Genome Atlas, PAK4 expression was inversely correlated with immune cell infiltration. PAK4 expression was controlled by the androgen receptor and its pioneering factor, FOXA1. PAK4 KD increased CD8+ T-cell infiltration and expression of IFNγ response genes. PAK4 KD also upregulated angiogenesis and endothelial cell adhesion molecules in the tumor microenvironment, contributing to CD8+ lymphocyte recruitment. Pharmacological inhibition of PAK4 made PC more responsive to immunotherapy with αPD1. A decrease in PAK4 activity increases immune activation and vascularity, which increases CD8+ lymphocyte infiltration into the tumor. Therefore, targeting PAK4 may improve the response of human PC to immunotherapy.
Collapse
Affiliation(s)
- Shengchen Su
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yanping Wang
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Patrick Tamukong
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Michael J Quist
- Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Catherine S Grasso
- Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
25
|
Camargo CP, Muhuri AK, Alapan Y, Sestito LF, Khosla M, Manspeaker MP, Smith AS, Paulos CM, Thomas SN. A dhesion analysis via a tumor vasculature-like microfluidic device identifies CD8 + T cells with enhanced tumor homing to improve cell therapy. Cell Rep 2023; 42:112175. [PMID: 36848287 DOI: 10.1016/j.celrep.2023.112175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
CD8+ T cell recruitment to the tumor microenvironment is critical for the success of adoptive cell therapy (ACT). Unfortunately, only a small fraction of transferred cells home to solid tumors. Adhesive ligand-receptor interactions have been implicated in CD8+ T cell homing; however, there is a lack of understanding of how CD8+ T cells interact with tumor vasculature-expressed adhesive ligands under the influence of hemodynamic flow. Here, the capacity of CD8+ T cells to home to melanomas is modeled ex vivo using an engineered microfluidic device that recapitulates the hemodynamic microenvironment of the tumor vasculature. Adoptively transferred CD8+ T cells with enhanced adhesion in flow in vitro and tumor homing in vivo improve tumor control by ACT in combination with immune checkpoint blockade. These results show that engineered microfluidic devices can model the microenvironment of the tumor vasculature to identify subsets of T cells with enhanced tumor infiltrating capabilities, a key limitation in ACT.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Megha Khosla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aubrey S Smith
- Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
26
|
Tran CA, Lynch KT, Meneveau MO, Katyal P, Olson WC, Slingluff CL. Intratumoral IFN-γ or topical TLR7 agonist promotes infiltration of melanoma metastases by T lymphocytes expanded in the blood after cancer vaccine. J Immunother Cancer 2023; 11:e005952. [PMID: 36746511 PMCID: PMC9906378 DOI: 10.1136/jitc-2022-005952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immune-mediated melanoma regression relies on melanoma-reactive T cells infiltrating tumor. Cancer vaccines increase circulating melanoma-reactive T cells, but little is known about vaccine-induced circulating lymphocytes (viCLs) homing to tumor or whether interventions are needed to enhance infiltration. We hypothesized that viCLs infiltrate melanoma metastases, and intratumoral interferon (IFN)-γ or Toll-like receptor 7 (TLR7) agonism enhances infiltration. METHODS Patients on two clinical trials (Mel51 (NCT00977145), Mel53 (NCT01264731)) received vaccines containing 12 class I major histocompatibility complex-restricted melanoma peptides (12MP). In Mel51, tumor was injected with IFN-γ on day 22, and biopsied on days 1, 22, and 24. In Mel53, dermal metastases were treated with topical imiquimod, a TLR7 agonist, for 12 weeks, and biopsied on days 1, 22, and 43. For patients with circulating T-cell responses to 12MP by IFN-γ ELISpot assays, DNA was extracted from peripheral blood mononuclear cells (PBMCs) pre-vaccination and at peak T-cell response, and from tumor biopsies, which underwent T-cell receptor sequencing. This enabled identification of clonotypes induced in PBMCs post-vaccination (viCLs) and present in tumor post-vaccination, but not pre-vaccination. RESULTS Six patients with T-cell responses post-vaccination (Mel51 n = 4, Mel53 n = 2) were evaluated for viCLs and vaccine-induced tumor infiltrating lymphocytes (viTILs). All six patients had viCLs, five of whom were evaluable for viTILs in tumor post-vaccination alone. Mel51 patients had viTILs identified in day 22 tumors, post-vaccination and before IFN-γ (median = 2, range = 0-24). This increased in day 24 tumors after IFN-γ (median = 30, range = 4-74). Mel53 patients had viTILs identified in day 22 tumors, post-vaccination plus imiquimod (median = 33, range = 2-64). Three of five evaluable patients across both trials had viTILs with vaccination alone. All five had enhancement of viTILs with tumor-directed therapy. viTILs represented 0.0-2.9% of total T cells after vaccination alone, which increased to 0.6-8.7% after tumor-directed therapy. CONCLUSION Cancer vaccines induce expansion of new viCLs, which infiltrate melanoma metastases in some patients. Our findings identify opportunities to combine vaccines with tumor-directed therapies to enhance T-cell infiltration and T cell-mediated tumor control. These combinations hold promise in improving the therapeutic efficacy of antigen-specific therapies for solid malignancies.
Collapse
Affiliation(s)
- Christine A Tran
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Kevin T Lynch
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Max O Meneveau
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Priya Katyal
- University of Virginia College and Graduate School of Arts and Sciences, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Jalkanen S, Salmi M. Lymphocyte Adhesion and Trafficking. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
28
|
Fernandes D, Barbeiro CDO, Palaçon MP, Biancardi MR, Ferrisse TM, Silveira HA, Castilho RM, de Almeida LY, Leon JE, Bufalino A. High density of CD8 T cell and immune imbalance of T lymphocytes subsets are associated with proliferative verrucous leukoplakia. Immunol Suppl 2023; 168:96-109. [PMID: 36056642 DOI: 10.1111/imm.13565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
Abstract
Oral leukoplakia (OL) and proliferative verrucous leukoplakia (PVL) are oral potentially malignant disorders (OPMDs) that microscopically show no or varying degrees of dysplasia. Even sharing clinical and microscopic aspects, PVL shows a more aggressive clinical behaviour, with a malignant transformation rate greater than 40%. Inflammatory infiltrate associated with dysplastic lesions may favour malignant transformation of OPMDs. This study aimed to evaluate the density of T cells and cytokines in dysplastic lesions from OL and PVL patients. Additionally, we evaluated whether soluble products produced in vitro by dysplastic keratinocytes are capable of modulating apoptosis rates and Th phenotype (Th1, Th2, Th17 and Treg) of peripheral blood mononuclear cells. The density of CD3, CD4 and CD8 T cells was assessed by immunohistochemistry. Cytokines and chemokines profile from frozen tissue samples were analysed using the LUMINEX system. Apoptosis rates and Th phenotype modulation were evaluated by flow cytometry. Our results showed an increase in the number of CD8 T cell in the subepithelial region from PVL dysplastic lesions in relation to OL samples. PVL showed increased levels of IL-5 and a decrease in IL-1β and IFN-γ levels compared to OL. Soluble products of PVL and oral carcinoma cell cultures were able to reduce apoptosis rate and promote an imbalance of Th1/Th2 and Th17/Treg. The high-subepithelial density of CD8 T cells and immune imbalance of T lymphocytes subsets probably play an important role in the pathogenesis of PVL and may explain its more aggressive behaviour in relation to OL.
Collapse
Affiliation(s)
- Darcy Fernandes
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Camila de Oliveira Barbeiro
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Mariel Ruivo Biancardi
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Túlio Morandin Ferrisse
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Heitor Albergoni Silveira
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, Michigan, USA
| | - Luciana Yamamoto de Almeida
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Jorge Esquiche Leon
- Oral Pathology, Department of Stomatology, Public Oral Health and Forensic Dentistry, Ribeirão Preto Dental School, University of São Paulo (FORP/USP), Ribeirão Preto, São Paulo, Brazil
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
29
|
Marriott M, Post B, Chablani L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat Res Commun 2023; 34:100667. [PMID: 36516613 DOI: 10.1016/j.ctarc.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cancer treatment has come a long way in increasing overall survival; however, evasion of the immune system continues to be a challenge in treating individuals with established disease burdens. Due to the difficulty in stimulating an immune response against cancer, approaches utilizing combination adjuvants with different mechanisms may be beneficial. A combination of these adjuvants with other adjuvants or other treatments has demonstrated synergistic effects in the form of a robust and sustained immune response, demonstrating the importance of further development. This review discusses the intricacies of immune evasion, applications of adjuvants with different mechanisms of action, and adjuvants used for cancer immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Morgan Marriott
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY, 14618, USA
| | - Brittany Post
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY, 14618, USA
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY, 14618, USA.
| |
Collapse
|
30
|
Jia M, Liu C, Liu Y, Bao Z, Jiang Y, Sun X. Discovery and Validation of a SIT1-Related Prognostic Signature Associated with Immune Infiltration in Cutaneous Melanoma. J Pers Med 2022; 13:jpm13010013. [PMID: 36675674 PMCID: PMC9866779 DOI: 10.3390/jpm13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Signaling threshold regulating transmembrane adaptor 1 (SIT1) encodes a disulfide-linked homodimeric lymphocyte-specific glycoprotein involved in immune cell activation. However, the relationship between SIT1 and the prognosis of skin cutaneous melanoma (SKCM) and tumor-infiltrating lymphocytes remains elusive. Here, we first compared the differences in SIT1 expression levels between SKCM tissues and adjacent normal tissues. Next, we found that the immune cell infiltration levels and signature pattern of immune infiltration were positively associated with the SIT1 gene mRNA levels. TCGA_SKCM RNA-seq data unveiled that the SIT1 upregulated several immune-associated signaling pathways in GSEA analysis. The high expression of SIT1 was closely related to improved survival in patients with SKCM. A pathway enrichment analysis of SIT1-associated immunomodulators indicated the involvement of the NF-κB signaling pathways. Based on SIT1-associated immunomodulators, we built a 13-gene signature by LASSO Cox regression which served as an independent prognostic factor for the survival of melanoma patients. By using the signature risk score, we achieved a good prediction result for the immunotherapy response and survival of SKCM patients. Our findings provided evidence for SIT1's implication in tumor immunity and survival of SKCM patients. The nominated immune signature is a promising predictive model for prognosis and immunotherapy sensitivity in SKCM patients.
Collapse
Affiliation(s)
- Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chengfei Liu
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuean Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhengqiang Bao
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuhua Jiang
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Correspondence: (Y.J.); (X.S.)
| | - Xifeng Sun
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan 250012, China
- Correspondence: (Y.J.); (X.S.)
| |
Collapse
|
31
|
Ji C, He Y, Wang Y. Identification of necroptosis subtypes and development of necroptosis-related risk score model for in ovarian cancer. Front Genet 2022; 13:1043870. [PMID: 36568363 PMCID: PMC9773578 DOI: 10.3389/fgene.2022.1043870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: ith the ongoing development of targeted therapy, non-apoptotic cell death, including necroptosis, has become a popular topic in the field of prevention and treatment. The purpose of this study was to explore the effect of necroptosis-related genes (NRGs) on the classification of ovarian cancer (OV) subtypes and to develop a necroptosis-related risk score (NRRS) classification system. Methods: 74 NRGs were obtained from the published studies, and univariate COX regression analysis was carried out between them and OV survival. Consensus clustering analysis was performed on OV samples according to the expression of NRGs related to prognosis. Furthermore, the NRRS model was developed by combining Weighted Gene Co-Expression Network Analysis (WGCNA) with least absolute shrinkage and selection operator (Lasso)-penalized Cox regression and multivariate Cox regression analysis. And the decision tree model was constructed based on the principle of random forest screening factors principle. Results: According to the post-related NRGs, OV was divided into two necroptosis subtypes. Compared with Cluster 1 (C1), the overall survival (OS) of Cluster 2 (C2) was significantly shorter, stromal score and immune score, the infiltration level of tumor associated immune cells and the expression of 20 immune checkpoints were significantly higher. WGCNA identified the blue module most related to necroptosis subtype, and 12 genes in the module were used to construct NRRS. NRRS was an independent prognostic variable of OV. The OS of samples with lower NRRS was significantly longer, and tumor mutation burden and homologous recombination defect were more obvious. Conclusion: This study showed that necroptosis plays an important role in the classification, prognosis, immune infiltration and biological characteristics of OV subtypes. The evaluation of tumor necroptosis may provide a new perspective for OV treatment.
Collapse
|
32
|
Lindsay RS, Melssen MM, Stasiak K, Annis JL, Woods AN, Rodriguez AB, Brown MG, Engelhard VH. NK cells reduce anergic T cell development in early-stage tumors by promoting myeloid cell maturation. Front Oncol 2022; 12:1058894. [PMID: 36531040 PMCID: PMC9755581 DOI: 10.3389/fonc.2022.1058894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Studies of NK cells in tumors have primarily focused on their direct actions towards tumor cells. We evaluated the impact of NK cells on expression of homing receptor ligands on tumor vasculature, intratumoral T cell number and function, and T cell activation in tumor draining lymph node. Methods Using an implantable mouse model of melanoma, T cell responses and homing receptor ligand expression on the vasculature were evaluated with and without NK cells present during the early stages of the tumor response by flow cytometry. Results NK cells in early-stage tumors are one source of IFNγ that augments homing receptor ligand expression. More significantly, NK cell depletion resulted in increased numbers of intratumoral T cells with an anergic phenotype. Anergic T cell development in tumor draining lymph node was associated with increased T-cell receptor signaling but decreased proliferation and effector cell activity, and an incomplete maturation phenotype of antigen presenting cells. These effects of NK depletion were similar to those of blocking CD40L stimulation. Discussion We conclude that an important function of NK cells is to drive proper APC maturation via CD40L during responses to early-stage tumors, reducing development of anergic T cells. The reduced development of anergic T cells resulting in improved tumor control and T cell responses when NK cells were present.
Collapse
Affiliation(s)
- Robin S. Lindsay
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Marit M. Melssen
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Katarzyna Stasiak
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jessica L. Annis
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Amber N. Woods
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anthony B. Rodriguez
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Michael G. Brown
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H. Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
33
|
Qiu Z, Wang Y, Zhang Z, Qin R, Peng Y, Tang W, Xi Y, Tian G, Zhang Y. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol 2022; 12:1052672. [PMID: 36505809 PMCID: PMC9728583 DOI: 10.3389/fonc.2022.1052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major global health problem and one of the major causes of cancer-related death worldwide. It is very important to understand the pathogenesis of CRC for early diagnosis, prevention strategies and identification of new therapeutic targets. Intercellular adhesion molecule-1 (ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and immune process. It is also expressed by tumor cells and modulates their functions, including apoptosis, cell motility, invasion and angiogenesis. The interaction between ICAM-1 and its ligand may facilitate adhesion of tumor cells to the vascular endothelium and subsequently in the promotion of metastasis. ICAM-1 expression determines malignant potential of cancer. In this review, we will discuss the expression, function, prognosis, tumorigenesis, polymorphisms and therapeutic implications of ICAM-1 in CRC.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao Zhang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qin
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Peng
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yan Xi
- Department of Geriatrics, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
34
|
Yuan M, Zhai Y, Hui Z. Application basis of combining antiangiogenic therapy with radiotherapy and immunotherapy in cancer treatment. Front Oncol 2022; 12:978608. [PMID: 36439496 PMCID: PMC9681994 DOI: 10.3389/fonc.2022.978608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/24/2022] [Indexed: 10/01/2023] Open
Abstract
How to further optimize the combination of radiotherapy and immunotherapy is among the current hot topics in cancer treatment. In addition to adopting the preferred dose-fractionation of radiotherapy or the regimen of immunotherapy, it is also very promising to add antiangiogenic therapy to this combination. We expound the application basis of cancer radiotherapy combined with immunotherapy and antiangiogenic therapy.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Tian R, Sun Y, Han X, Wang J, Gu H, Wang W, Liang L. Identification and validation of prognostic autophagy-related genes associated with immune microenvironment in human gastric cancer. Aging (Albany NY) 2022; 14:7617-7634. [PMID: 36173625 PMCID: PMC9550254 DOI: 10.18632/aging.204313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Autophagy-related genes (ATGs) play critical roles in tumorigenesis and progression in gastric cancer (GC). The present study aimed to identify immune-based prognostic ATGs and verify their functions in tumor immune microenvironment (TIME) in GC. Macrophage infiltration was found to negatively correlate with prognosis in GC patients. After stratifying by infiltration levels of macrophages, we screened The Cancer Genome Atlas and Human Autophagy Database to identify the differentially expressed ATGs (DE-ATGs). Of 1,433 differentially expressed genes between the two groups, seven genes qualified as DE-ATGs. Of these, CXCR4, DLC1, and MAP1LC3C, exhibited strong prognostic prediction ability in Kaplan-Meier survival–log-rank test. High expression of these genes correlated with increased occurrence of advanced grade 3 tumors and poor prognoses. Furthermore, GSEA indicated that they were significantly associated with oncogenic and immune-related pathways. The comprehensive evaluation of TIME via GEPIA, ESTIMATE, CIBERSORT, and TIMER suggested that the three DE-ATGs were closely associated with immune condition, both in terms of immune cells and immune scores. Thus, the outcome of this study may aid in better understanding of the ATGs and their interaction with the immune microenvironment, which would allow the development of novel inhibitors, personalized treatment, and immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ruyue Tian
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Ya Sun
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Xuedi Han
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Jiajun Wang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Hongli Gu
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Wenhai Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Lei Liang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| |
Collapse
|
36
|
Vavolizza RD, Petroni GR, Mauldin IS, Chianese-Bullock KA, Olson WC, Smith KT, Dengel LT, Haden K, Grosh WW, Kaur V, Varhegyi N, Gaughan EM, Slingluff CL. Phase I/II clinical trial of a helper peptide vaccine plus PD-1 blockade in PD-1 antibody-naïve and PD-1 antibody-experienced patients with melanoma (MEL64). J Immunother Cancer 2022; 10:e005424. [PMID: 36100309 PMCID: PMC9472210 DOI: 10.1136/jitc-2022-005424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND A vaccine containing 6 melanoma-associated peptides to stimulate helper T cells (6MHP) is safe, immunogenic, and clinically active. A phase I/II trial was designed to evaluate safety and immunogenicity of 6MHP vaccines plus programmed death 1 (PD-1) blockade. PARTICIPANTS AND METHODS Participants with advanced melanoma received 6MHP vaccines in an incomplete Freund's adjuvant (6 vaccines over 12 weeks). Pembrolizumab was administered intravenously every 3 weeks. Tumor biopsies at baseline and day 22 were analyzed by multiplex immunohistochemistry. Primary end points were safety (Common Terminology Criteria for Adverse Events V.4.03) and immunogenicity (ex vivo interferon-γ ELISpot assay). Additional end points included changes in the tumor microenvironment (TME) and clinical outcomes. RESULTS Twenty-two eligible participants were treated: 6 naïve to PD-1 antibody (Ab) and 16 PD-1 Ab-experienced. Median follow-up was 24.4 months. Most common treatment-related adverse events (any grade) included injection site reactions, fatigue, anemia, lymphopenia, fever, elevated aspartate aminotransferase, pruritus, and rash. Treatment-related dose-limiting toxicities were observed in 3 (14%) participants, which did not cross the study safety bound. A high durable T cell response (Rsp) to 6MHP was detected in only one participant, but twofold T cell Rsps to 6MHP were detected in 7/22 (32%; 90% CI (16% to 52%)) by week 13. Objective clinical responses were observed in 23% (1 complete response, 4 partial responses), including 4/6 PD-1 Ab-naïve (67%) and 1/16 PD-1 Ab-experienced (6%). Overall survival (OS) was longer for PD-1 Ab-naïve than Ab-experienced participants (HR 6.3 (90% CI (2.1 to 28.7)). In landmark analyses at 13 weeks, OS was also longer for those with T cell Rsps (HR 6.5 (90% CI (2.1 to 29.2)) and for those with objective clinical responses. TME evaluation revealed increased densities of CD8+ T cells, CD20+ B cells, and Tbet+ cells by day 22. CONCLUSIONS Treatment with the 6MHP vaccine plus pembrolizumab was safe, increased intratumoral lymphocytes, and induced T cell Rsps associated with prolonged OS. The low T cell Rsp rate in PD-1 Ab-experienced participants corroborates prior murine studies that caution against delaying cancer vaccines until after PD-1 blockade. The promising objective response rate and OS in PD-1 Ab-naïve participants support consideration of a larger study in that setting.
Collapse
Affiliation(s)
- Rick Daniel Vavolizza
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Gina R Petroni
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Ileana S Mauldin
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | | | - Walter C Olson
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Kelly T Smith
- Cancer Center and Office of Research Core Administration, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Lynn T Dengel
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Kathleen Haden
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - William W Grosh
- Department of Medicine, Division of Hematology/Oncology University of Virginia, Charlottesville, Virginia, USA
| | - Varinder Kaur
- Department of Medicine, Division of Hematology/Oncology University of Virginia, Charlottesville, Virginia, USA
| | - Nikole Varhegyi
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M Gaughan
- Department of Medicine, Division of Hematology/Oncology University of Virginia, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Surendran S, Aboelkheir U, Tu AA, Magner WJ, Sigurdson SL, Merzianu M, Hicks WL, Suresh A, Kirkwood KL, Kuriakose MA. T-Cell Infiltration and Immune Checkpoint Expression Increase in Oral Cavity Premalignant and Malignant Disorders. Biomedicines 2022; 10:1840. [PMID: 36009387 PMCID: PMC9404942 DOI: 10.3390/biomedicines10081840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The immune cell niche associated with oral dysplastic lesion progression to carcinoma is poorly understood. We identified T regulatory cells (Treg), CD8+ effector T cells (Teff) and immune checkpoint molecules across oral dysplastic stages of oral potentially malignant disorders (OPMD). OPMD and oral squamous cell carcinoma (OSCC) tissue sections (N = 270) were analyzed by immunohistochemistry for Treg (CD4, CD25 and FoxP3), Teff (CD8) and immune checkpoint molecules (PD-1 and PD-L1). The Treg marker staining intensity correlated significantly (p < 0.01) with presence of higher dysplasia grade and invasive cancer. These data suggest that Treg infiltration is relatively early in dysplasia and may be associated with disease progression. The presence of CD8+ effector T cells and the immune checkpoint markers PD-1 and PD-L1 were also associated with oral cancer progression (p < 0.01). These observations indicate the induction of an adaptive immune response with similar Treg and Teff recruitment timing and, potentially, the early induction of exhaustion. FoxP3 and PD-L1 levels were closely correlated with CD8 levels (p < 0.01). These data indicate the presence of reinforcing mechanisms contributing to the immune suppressive niche in high-risk OPMD and in OSCC. The presence of an adaptive immune response and T-cell exhaustion suggest that an effective immune response may be reactivated with targeted interventions coupled with immune checkpoint inhibition.
Collapse
Affiliation(s)
- Subin Surendran
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - Usama Aboelkheir
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - Andrew A. Tu
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - William J. Magner
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - S. Lynn Sigurdson
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - Mihai Merzianu
- Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Wesley L. Hicks
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
| | - Amritha Suresh
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation Bangalore, Bangalore 560099, India
| | - Keith L. Kirkwood
- Periodontics and Endodontics, University at Buffalo School of Dental Medicine, Buffalo, NY 14214, USA;
| | - Moni A. Kuriakose
- Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (U.A.); (A.A.T.); (W.J.M.); (S.L.S.); (W.L.H.J.); (A.S.)
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation Bangalore, Bangalore 560099, India
| |
Collapse
|
38
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
39
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
40
|
Liu J, Tu X, Liu L, Fang W. Advances in CAR-T cell therapy for malignant solid tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:175-184. [PMID: 36161290 DOI: 10.3724/zdxbyxb-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
T cells modified by chimeric antigen receptor (CAR) have the advantage of major histocompatibility complex-independent recognition of tumor-associated antigens, so can achieve efficient response to tumor targets. Chimeric antigen receptor (CAR) T cell therapy has shown a good therapeutic effect in hematological malignancies; however, its efficacy is generally not satisfactory for solid tumors. The reasons include the lack of tumor specific antigen target on solid tumors, the uncertainty of homing ability of engineered T cells and the inhibitory immune microenvironment of tumors. In clinical trials, the targets of CAR-T cell therapy for solid tumors are mainly disialoganglioside (GD2), claudin-18 isoform 2 (CLDN18.2), mesenchymal, B7 homolog 3 (B7H3), glypican (GPC) 3 and epidermal growth factor receptor variant Ш (EGFRvШ)Ⅲ. Combination of CAR-T cells with oncolytic viruses, tyrosine kinase inhibitors, and programmed death ligand-1 monoclonal antibodies may increase its efficacy. The CAR-T cell therapy for solid tumors can be optimized through gene editing to enhance the activity of CAR-T cells, adding corresponding regulatory components to make the activation of CAR-T cells safer and more controllable, and enhancing the persistence of CAR-T cells. In this article, we review the latest advances of CAR-T cell therapy in solid tumors to provide new insights for clinical application.
Collapse
Affiliation(s)
- Jiao Liu
- 1. Department of General Medicine, People's Hospital of Changshan County, Quzhou 324200, Zhejiang Province, China
| | - Xiaoxuan Tu
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| | - Lulu Liu
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| | - Weijia Fang
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| |
Collapse
|
41
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
42
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 326] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
43
|
Tang S, Qin C, Hu H, Liu T, He Y, Guo H, Yan H, Zhang J, Tang S, Zhou H. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells 2022; 11:cells11030320. [PMID: 35159131 PMCID: PMC8834198 DOI: 10.3390/cells11030320] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer is one of the most common types of malignances worldwide and the main cause of cancer-related deaths. Current treatment for NSCLC is based on surgical resection, chemotherapy, radiotherapy, and targeted therapy, with poor therapeutic effectiveness. In recent years, immune checkpoint inhibitors have applied in NSCLC treatment. A large number of experimental studies have shown that immune checkpoint inhibitors are safer and more effective than traditional therapeutic modalities and have allowed for the development of better guidance in the clinical treatment of advanced NSCLC patients. In this review, we describe clinical trials using ICI immunotherapies for NSCLC treatment, the available data on clinical efficacy, and the emerging evidence regarding biomarkers.
Collapse
Affiliation(s)
- Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Yiwei He
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563002, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| |
Collapse
|
44
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
46
|
Guo CX, Huang X, Xu J, Zhang XZ, Shen YN, Liang TB, Bai XL. Combined targeted therapy and immunotherapy for cancer treatment. World J Clin Cases 2021; 9:7643-7652. [PMID: 34621816 PMCID: PMC8462242 DOI: 10.12998/wjcc.v9.i26.7643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Although targeted therapies and immunotherapies have been effective against several malignancies, the respective monotherapies are limited by low and/or short-term responses. Specific inhibitors of oncogenic signaling pathways and tumor-associated angiogenesis can activate the anti-tumor immune responses by increasing tumor antigen presentation or intratumor T cell infiltration. Additional insights into the effects and mechanisms of targeted therapies on the induction of anti-tumor immunity will facilitate development of rational and effective combination strategies that synergize rapid tumor regression and durable response. In this review, we have summarized the recent combinations of targeted therapies and immunotherapies, along with the associated clinical challenges.
Collapse
Affiliation(s)
- Cheng-Xiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Zhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Nan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
47
|
Asperud J, Arous D, Edin NFJ, Malinen E. Spatially fractionated radiotherapy: tumor response modelling including immunomodulation. Phys Med Biol 2021; 66. [PMID: 34298527 DOI: 10.1088/1361-6560/ac176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023]
Abstract
A mathematical tumor response model has been developed, encompassing the interplay between immune cells and cancer cells initiated by either partial or full tumor irradiation. The iterative four-compartment model employs the linear-quadratic radiation response theory for four cell types: active and inactive cytotoxic T lymphocytes (immune cells, CD8+T cells in particular), viable cancer cells (undamaged and reparable cells) and doomed cells (irreparably damaged cells). The cell compartment interactions are calculated per day, with total tumor volume (TV) as the main quantity of interest. The model was fitted to previously published data on syngeneic xenografts (67NR breast carcinoma and Lewis lung carcinoma; (Markovskyet al2019Int. J. Radiat. Oncol. Biol. Phys.103697-708)) subjected to single doses of 10 or 15 Gy by 50% (partial) or 100% (full) TV irradiation. The experimental data included effects from anti-CD8+antibodies and immunosuppressive drugs. Using a new optimization method, promising fits were obtained where the lowest and highest root-mean-squared error values were observed for anti-CD8+treatment and unirradiated control data, respectively, for both cell types. Additionally, predictive capabilities of the model were tested by using the estimated model parameters to predict scenarios for higher doses and different TV irradiation fractions. Here, mean relative deviations in the range of 19%-34% from experimental data were found. However, more validation data is needed to conclude on the model's predictive capabilities. In conclusion, the model was found useful in evaluating the impact from partial and full TV irradiation on the immune response and subsequent tumor growth. The model shows potential to support and guide spatially fractionated radiotherapy in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Jonas Asperud
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
| | - Delmon Arous
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
48
|
Doyle HA, Gee RJ, Masters TD, Gee CR, Booth CJ, Peterson-Roth E, Koski RA, Helfand SC, Price L, Bascombe D, Jackson D, Ho R, Post GR, Mamula MJ. Vaccine-induced ErbB (EGFR/HER2)-specific immunity in spontaneous canine cancer. Transl Oncol 2021; 14:101205. [PMID: 34419682 PMCID: PMC8379704 DOI: 10.1016/j.tranon.2021.101205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022] Open
Abstract
Spontaneous dog cancers closely resemble human cancer. Dogs with EGFR associated tumors were immunized with an EGFR/HER2 peptide vaccine. EGFR peptide vaccinated dogs developed anti-EGFR/HER2 antibodies. Vaccinated dogs have anti-EGFR antibody and T cells infiltrating tumors. Vaccinated dogs with osteosarcoma had tumor regression and increased survival.
Epidermal Growth Factor Receptor (EGFR) is overexpressed on a number of human cancers, and often is indicative of a poor outcome. Treatment of EGFR/HER2 overexpressing cancers includes monoclonal antibody therapy (cetuximab/trastuzumab) either alone or in conjunction with other standard cancer therapies. While monoclonal antibody therapy has been proven to be efficacious in the treatment of EGFR/HER2 overexpressing tumors, drawbacks include the lack of long-lasting immunity and acquired resistance to monoclonal therapy. An alternative approach is to induce a polyclonal anti-EGFR/HER2 tumor antigen response by vaccine therapy. In this phase I/II open-label study, we examined anti-tumor immunity in companion dogs with spontaneous EGFR expressing tumors. Canine cancers represent an outbred population in which the initiation, progression of disease, mutations and growth factors closely resemble that of human cancers. Dogs with EGFR expressing tumors were immunized with a short peptide of the EGFR extracellular domain with sequence homology to HER2. Serial serum analyses demonstrated high titers of EGFR/HER2 binding antibodies with biological activity similar to that of cetuximab and trastuzumab. Canine antibodies bound both canine and human EGFR on tumor cell lines and tumor tissue. CD8 T cells and IgG deposition were evident in tumors from immunized dogs. The antibodies inhibited EGFR intracellular signaling and inhibited tumor growth in vitro. Additionally, we illustrate objective responses in reducing tumors at metastatic sites in host animals. The data support the approach of amplifying anti-tumor immunity that may be relevant in combination with other immune modifying therapies such as checkpoint inhibitors.
Collapse
Key Words
- Abbreviations: BSA, bovine serum albumin
- CTLA-4, cytotoxic T-lymphocyte associated protein 4
- Canine
- DAPI, 4′,6-diamidino-2-phenylindole
- EGF, epidermal growth factor
- EGFR
- EGFR, epidermal growth factor receptor
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3 phosphate dehydrogenase
- HER2, human epidermal growth factor receptor 2, HER3, human epidermal growth factor receptor 3
- HER4, human epidermal growth factor receptor 4
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- OD, optical density
- OSA, osteosarcoma
- Osteosarcoma
- PBS, phosphate buffered saline
- Peptide
- RT, room temperature
- Vaccine
- pERK, phosphorylated extracellular signal-regulated kinase
- pNPP, p-nitrophenyl phosphate
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Renelle J Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Tyler D Masters
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Christian R Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | - Stuart C Helfand
- Oregon State University (Professor, retired), Corvallis, OR 97330, USA
| | - Lauren Price
- Clinton Veterinary Hospital, Clinton, CT 06413, USA
| | | | | | - Rita Ho
- MedVet, Norwalk, CT 06850, USA
| | - Gerald R Post
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; MedVet, Norwalk, CT 06850, USA
| | - Mark J Mamula
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA.
| |
Collapse
|
49
|
Chen H, Jiang T, Lin F, Guan H, Zheng J, Liu Q, Du B, Huang Y, Lin X. PD-1 inhibitor combined with apatinib modulate the tumor microenvironment and potentiate anti-tumor effect in mice bearing gastric cancer. Int Immunopharmacol 2021; 99:107929. [PMID: 34343940 DOI: 10.1016/j.intimp.2021.107929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore the effect of programmed death 1 (PD-1) inhibitor combined with apatinib on immune regulation and efficacy of the combined therapy in mice bearing gastric cancer (MBGC), and to provide a research basis for enhancing the benefit of immunotherapy in advanced gastric cancer (AGC). METHODS MBGC were divided into normal saline group (group NS), apatinib group (group A), PD-1 inhibitors group (group B) and PD-1 inhibitors combined with apatinib group (group C). Tumor inhibition rates were calculated. Cytokine levels and expression of immune cells and molecules were detected, and the pathological manifestations of tumor tissues were observed. RESULTS Group C had the smallest tumor volume (115.17 ± 16.08 mm3) with a tumor inhibition rate of 89.4% ± 0.69%, significantly increased levels of CD4+T and CD8+T cells in tumor tissues (P < 0.01), the down-regulated proportion of myeloid-derived suppressor cells (MDSCs) (P < 0.01), and levels of PD-1 of CD8+T cells (PD-1+CD8+T) (P < 0.01). There was no difference in the levels of PD-1+CD8+T, CD4+T cells, and MDSCs between groups B and C. Besides, combination therapy increased the levels of interleukin-2 (IL-2), interferon-gamma (IFN-γ), and tumor necrosis factor-ɑ (TNF-ɑ) in tumor tissue and serum. We also found that the anti-angiogenic effect of apatinib increased programmed death ligand-1 (PD-L1) levels, down-regulated vascular endothelial growth factor receptor 2 (VEGFR-2) levels, and induced an increase in the extent of tumor tissue necrosis. CONCLUSION PD-1 inhibitors in combination with apatinib may help improve treatment outcomes and increase survival benefits in patients with AGC.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Fangyu Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Hongdan Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jianwei Zheng
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Qing Liu
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Bing Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Yeyuan Huang
- Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiaoyan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
50
|
HER2-antigen-specific humoral immune response in breast cancer lymphocytes transplanted in hu-PBL hIL-4 NOG mice. Sci Rep 2021; 11:12798. [PMID: 34140620 PMCID: PMC8211648 DOI: 10.1038/s41598-021-92311-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
The status of humoral immunity of cancer patients is not clear compared to cellular immunity because the ability of specific antibody production is difficult to analyze in vitro. We previously developed a humanized mouse model to evaluate antigen-specific antibody production by transplanting human peripheral blood mononuclear cells (PBMCs) into NOG-hIL-4-Tg mice (hu-PBL hIL-4 NOG). In this study, these mice were transplanted with PBMCs derived from breast cancer patients (BC) and immunized with a human epidermal growth factor receptor 2 (HER2) peptide, CH401MAP, to analyze humoral immunity of BCs. The hu-PBL hIL-4 NOG mice recapitulated immune environment of BCs as the ratio of CD8+/CD4+T cells was lower and that of PD-1 + T cells was higher compared to healthy donors (HDs). Diverse clusters were detected in BC-mouse (BC-M) plasma components involving immunoglobulins and complements unlike HD-M, and there was a significant diversity in CH401MAP-specific IgG titers in BC-M. The number of B cell clones producing high CH401MAP-specific IgG was not increased by immunization in BC-M unlike HD-M. These results demonstrated that the humoral immunity of BCs appeared as diverse phenotypes different from HDs in hu-PBL hIL-4 NOG mice, which may provide important information for the study of personalized medicine.
Collapse
|