1
|
Iațentiuc A, Iațentiuc IM, Frăsinariu OE, Cozma SR, Bitere-Popa OR, Olariu R, Rădulescu LM, Ioniuc I, Cuciureanu M, Alecsa M, Guma C, Miron IC. The Role of Genetic and Non-Genetic Factors in the Occurrence of Cisplatin-Associated Ototoxicity. Int J Mol Sci 2025; 26:4787. [PMID: 40429930 PMCID: PMC12112311 DOI: 10.3390/ijms26104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/13/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
There is significant inter-individual variability in the prevalence and severity of cisplatin-induced ototoxicity, which is greatly influenced by genetic and non-genetic factors that predispose the patient to the development of hearing loss. Currently, the focus should be on identifying patients who are more likely to develop ototoxicity based on genetic and non-genetic factors, as therapies to combat ototoxicity are limited or still under study. The severity of hearing loss and the time of its onset may be influenced by certain genetic polymorphisms or the dose administered, age, sex, diet, the administration of other drugs with ototoxic potential, and association with radiotherapy of the head and neck. Knowing the risk factors allows the doctor to manage each case in a personalized manner, preventing hearing damage, especially in the long term. With the help of PubMed and Scopus, we searched for relevant studies documenting the genetic and non-genetic risk in patients treated with cisplatin. This review article is a synthesis of the literature that points out the importance of these factors, encouraging genetic screening and improving quality of life in patients treated with cisplatin.
Collapse
Affiliation(s)
- Andreea Iațentiuc
- Departament of Mother and Child Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (A.I.); (I.I.); (I.C.M.)
- Doctoral School “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (I.M.I.); (C.G.)
| | - Iustin Mihai Iațentiuc
- Doctoral School “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (I.M.I.); (C.G.)
| | - Otilia Elena Frăsinariu
- Departament of Mother and Child Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (A.I.); (I.I.); (I.C.M.)
| | - Sebastian Romică Cozma
- Surgery II Department, ENT Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (S.R.C.); (R.O.)
| | - Oana Roxana Bitere-Popa
- Biomedical Sciences Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania;
| | - Raluca Olariu
- Surgery II Department, ENT Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (S.R.C.); (R.O.)
| | - Luminița Mihaela Rădulescu
- Surgery II Department, ENT Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (S.R.C.); (R.O.)
| | - Ileana Ioniuc
- Departament of Mother and Child Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (A.I.); (I.I.); (I.C.M.)
| | - Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mirabela Alecsa
- Departament of Mother and Child Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (A.I.); (I.I.); (I.C.M.)
| | - Constantin Guma
- Doctoral School “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania; (I.M.I.); (C.G.)
| | - Ingrith Crenguța Miron
- Departament of Mother and Child Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (A.I.); (I.I.); (I.C.M.)
| |
Collapse
|
2
|
Shahrahmani F, Badamchizadeh S, Kaihani F, Alavi-Moghadam S, Keshtkari S, Rezaei-Tavirani M, Arjmand R, Larijani B, Arjmand B. Platinum-based chemotherapies-induced nephrotoxicity: mechanisms, potential treatments, and management. Int Urol Nephrol 2025; 57:1563-1583. [PMID: 39630371 DOI: 10.1007/s11255-024-04303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/20/2024] [Indexed: 04/17/2025]
Abstract
Platinum-based chemotherapies are essential in the treatment of several malignancies. However, such medications can damage the kidneys, frequently leading to both acute and chronic kidney disease. Treatment becomes more difficult for such problems. Physicians may alter chemotherapy regimens and utilize kidney-protecting medications to lessen renal damage. New imaging techniques and biomarkers also aid in the early detection of renal issues. To effectively handle the mentioned situation, oncologists, nephrologists, and pharmacists must collaborate. However, additional study is still required to develop customized therapies, discover strategies to minimize kidney injury and produce new platinum medicines. Hereupon, the present review's authors are being sought to address the causes, prospective treatments, and management of nephrotoxicity caused by platinum-based chemotherapy.
Collapse
Affiliation(s)
- Fatemeh Shahrahmani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Badamchizadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Keshtkari
- Department of Internal Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hammami MB, Gudino P, Rodriguez Salazar JD, Vegivinti C, Qasim A, Acharya A. Assessing the prevalence and severity of cisplatin-induced nephrotoxicity in a minority- low socioeconomic population in the Bronx, New York. J Chemother 2025; 37:278-283. [PMID: 38946180 DOI: 10.1080/1120009x.2024.2363105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Studies evaluating Cisplatin-induced nephrotoxicity in minorities are limited. We conducted a retrospective review of adult patients receiving cisplatin from 2019 to 2023 at an inner-city hospital. Renal indices were obtained at baseline and after cycles 1, 2, and 3 of Cisplatin. A total of 93 patients were included, 46% were male. Median age was 57 years. About 40% were Black, 13% White, and 42% Hispanic. About 54% were uninsured. About 16% of the patients developed AKI after cycle 1 of cisplatin, 5% after cycle 2%, and 17% after cycle 3. There was no statistically significant correlation between race, sex, BMI and development of cisplatin-induced AKI. Repeated measures ANOVA test indicated a statistically significant and cumulative rise in creatinine level following cisplatin therapy [Wilks' Lambda = 0.003, F(1,26)=13.7, η2 = 0.44]. Our study in a minority, low socioeconomic population highlights the progressive kidney injury following each cycle of cisplatin therapy. Further studies targeting this specific population are warranted to develop tailored interventions.
Collapse
Affiliation(s)
- M Bakri Hammami
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paola Gudino
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Charan Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Asma Qasim
- Department of Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Anjali Acharya
- Department of Nephrology, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Ma R, Zheng L, Yu H, Huo D, Zhao H, Zhang H. Chirality engineering-regulated liquid-liquid phase separation of stress granules and its role in chemo-sensitization and side effect mitigation. J Colloid Interface Sci 2025; 685:637-647. [PMID: 39862843 DOI: 10.1016/j.jcis.2025.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism. The role and mechanism of chiral nanomaterials in modulating stress granules remain unclear. This study aimed to investigate the expression and structural characteristics of stress granules under the influence of chiral nanomaterials, both individually and in combination with chemotherapy. A library of chiral ligand-modified materials was constructed, and techniques such as immunofluorescence, live-cell imaging, fluorescence recovery after photobleaching assays, and proximity labeling combined with proteomics analysis were employed. These methods helped identify the protein corona adsorbed on the surface of the nanomaterials and explore their relationship with nanomaterial chirality. The findings suggest that the assembly of stress granules is influenced by chirality and can be regulated by chiral nanomaterials. Additionally, chemotherapy sensitivity in cancer cells was enhanced, and normal cells were protected by leveraging the chiral-dependent modulation of material assembly in stress granules. This study offers insights into the regulation of membraneless cellular structures based on chiral biological effects.
Collapse
Affiliation(s)
- Ruxuan Ma
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China
| | - Liuting Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Han Yu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Da Huo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, PR China.
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
5
|
Latif S, Sohaib M, Iqbal S, Mushtaq MH, Sultan MT. Nephroprotective Potential of Lyophilized Grewia asiatica Powder Against Renal Biomarkers and Inflammation In Vivo. J Nutr Metab 2025; 2025:3726752. [PMID: 40291032 PMCID: PMC12033067 DOI: 10.1155/jnme/3726752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction: Phalsa (Grewia asiatica) fruit is known for its rich nutritional profile and diverse pharmacological properties such as antioxidants, anti-inflammatory, and anti-cancer, making it a promising contender for preventive measures against cisplatin-induced acute kidney injury (AKI) in living organisms. Material and Methods: In the present study, rats were provided with different levels of lyophilized Grewia asiatica, i.e., 200, 300, and 400 mg/kg body weight along with control, fed on the basal diet. After trial completion, blood serum samples of rats subjected to renal biomarkers, hematology, and liver function tests, interleukin-6 (IL-6), whereas enzymes (alanine aminotransferase (ALT); sodium oxide dismutase, and glutathione) for kidney tissues along with photomicrographs for kidney tissue damage were measured. Results: The findings revealed that lyophilized Grewia asiatica provision effectively reduced renal biomarkers, blood urea nitrogen, and creatinine with AKI in the rats as well as treatments demonstrated significant improvements in antioxidant activity by reducing malonaldehyde levels and increasing the activity of glutathione, catalase, and superoxide dismutase in groups treated with dosages of 300 and 400 mg/kg powder. Conclusion: Grewia asiatica exhibited remarkable hepatoprotective properties by decreasing ALT and displayed anti-inflammatory properties, as evidenced by a substantial decrease in interleukin-6 serum levels. The study findings also added valuable insight into the multiform nephroprotective reverberation of lyophilized phalsa powder, emphasizing its plausible protective use in reducing cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Saima Latif
- Department of Food Science & Human Nutrition, University of Veterinary & Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Muhammad Sohaib
- Department of Food Science & Human Nutrition, University of Veterinary & Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Sanaullah Iqbal
- Department of Food Science & Human Nutrition, University of Veterinary & Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Muhammad Hassan Mushtaq
- Department of Epidemiology & Public Health, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | | |
Collapse
|
6
|
Wang Y, Zhao Q, Ding L, Liu X, Li Z, Zhou X, Wang D, Du M, Yang G, Yin M, Guo X. Transcriptome analysis of key genes and pathways associated with cisplatin resistance in oral squamous cell carcinoma Cal27 cells. Clin Transl Oncol 2025:10.1007/s12094-025-03924-y. [PMID: 40227535 DOI: 10.1007/s12094-025-03924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has a poor postoperative recovery and is prone to drug resistance during long-term chemotherapy, but the molecular mechanism of its resistance has not been fully elucidated. METHODS In the present study, a cisplatin-resistant cell line Cal27R was established and the key genes and pathways associated with drug resistance were explored using bioinformatics analysis and molecular biology experimental techniques. RESULTS Transcriptome analysis reveals a total of 1927 differentially expressed genes (DEGs). GO and further KEGG analysis revealed the DEGs were primarily concentrated in the tumor necrosis factor (TNF) and the mitogen-activated protein kinase (MAPK) signaling pathway. PPI network analysis identified six genes exhibiting significant interactions. Among these, interrogation of the TCGA database revealed elevated expression levels of TNF, TGFB1, and IL1B in tumors from drug-resistant patients, whereas EGF and FOS expression was significantly downregulated. The level of immune infiltration was positive correlated with the expression of TNF, TGFB1, IL6 and EGF, conversely, negative correlated with that of IL1B. Furthermore, low expression of TNF and FOS, as well as high expression of TGFB1, IL6 and EGF, was associated with poor overall prognosis. Based on the comprehensive analysis above, TNF, TGFB1, and EGF were ultimately selected as target genes to positively regulate the cisplatin resistance of Cal27R cells. Furthermore, we validated the expression of target genes in human tongue carcinoma tissues and paired adjacent normal tissues. Knockout of these genes significantly reduced drug resistance, consistent with our initial hypothesis. Whole-exome sequencing (WES) analysis confirmed the absence of underlying mutations, thereby corroborating the bioinformatics predictions. CONCLUSION TNF, TGFB1 and EGF were regarded as the key genes associated with cisplatin resistance and poor prognosis in OSCC. Meanwhile, their related TNF and MAPK pathways were considered as the pivotal signaling pathways. Our results provide a theoretical and experimental basis for potential diagnostic and therapeutic targets to address drug resistance in clinical settings.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Qiwei Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Long Ding
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xiayang Liu
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Zhuang Li
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinyue Zhou
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Danru Wang
- Wuhan Bioeagle Biological Science and Technology Co. Ltd, Wuhan, 430073, China
| | - Mengtian Du
- Wuhan Bioeagle Biological Science and Technology Co. Ltd, Wuhan, 430073, China
| | - Guohua Yang
- Wuhan Bioeagle Biological Science and Technology Co. Ltd, Wuhan, 430073, China
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Mingzhu Yin
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China.
- Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Xiaohong Guo
- Department of Basic Medicine, Hubei University of Chinese Medicine, Hongshan District, 16 Huangjiahu West Road, Wuhan, 430065, Hubei, China.
- Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
7
|
Jin C, Wu P, Wu W, Chen W, Liu W, Zhu Y, Wu Q, Chen B, Ji C, Qian H. Therapeutic role of hucMSC-sEV-enriched miR-13896 in cisplatin-induced acute kidney injury through M2 macrophage polarization. Cell Biol Toxicol 2025; 41:50. [PMID: 39992453 PMCID: PMC11850457 DOI: 10.1007/s10565-025-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEV) have recently garnered attention as a potential therapeutic approach for kidney diseases with anti-inflammatory effects. Infiltrated macrophages play an important role in facilitating tissue regeneration. However, the intricate regulatory effects of hucMSC-sEV on macrophages during cisplatin-induced acute kidney injury (AKI) remain unknown. In this study, we uncovered that hucMSC-sEV exhibited potent anti-inflammation and effectively inhibited the polarization of M1 phenotype macrophages. Mechanically, miRNA sequencing analysis and qRT-PCR indicated that a novel miRNA, named miR-13896, was enriched in hucMSC-sEV. When transfected with miR-13896 mimic, macrophages displayed M2 phenotype with elevated levels of Arg1 and IL-10, while miR-13896 inhibitor promoted M1 phenotype. Furthermore, we firstly established that miR-13896 repressed Tradd expression by targeting its 3' untranslated region and subsequently inhibited NF-κB signaling pathway in macrophages. Additionally, to improve therapeutic effects, hucMSC-sEV were engineered with elevated levels of miR-13896 through electroporation, which resulted in promoting M2 phenotype macrophages, inhibiting inflammatory factors, and enhancing kidney repair. Conclusively, our findings provide novel insights into the mechanisms underlying the effects of hucMSC-sEV on macrophages and AKI, while also highlighting electroporation as a promising strategy for treating cisplatin-induced AKI.
Collapse
Affiliation(s)
- Can Jin
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Wu
- Department of Emergency Surgery, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai, China
| | - Wenya Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wanzhu Liu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yuan Zhu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - QiShun Wu
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Cheng Ji
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- Institute of Translational Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Zhou Y, Wan Z, Xiong D, Gong Z, Liu F. Nur77 Promotes Inflammation in Cisplatin-Induced Acute Kidney Injury Through Transactivation of SERPINA3 Mediating Wnt/β-Catenin Pathway. Nephrology (Carlton) 2025; 30:e70006. [PMID: 39957271 DOI: 10.1111/nep.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025]
Abstract
AIM Acute kidney injury (AKI) is the most common complication in the treatment of cisplatin, which is a clinically effective and classical anticancer drug. Orphan Nuclear Receptor Nur77 has been found to promote renal ischaemia-reperfusion injury. In this study, we aim to explore the effects of Nur77 on cisplatin-induced AKI (CI-AKI) and its underlying mechanism. METHODS HK-2 cells treated with cisplatin were used to construct the CI-AKI model in vitro. Cell viability and cell proliferation were analysed using CCK-8 and EdU assays, respectively. Cell apoptosis was analysed by flow cytometry. The inflammation release level was detected using ELISA. Molecular abundance was evaluated using qPCR, Western blot and immunofluorescence. The interaction between Nur77 and SERPINA3 was clarified using ChIP and dual-luciferase reporter gene assays. RESULTS Our works demonstrated that Nur77 and SERPINA3 expression were considerably ascended in cisplatin-induced HK-2 cells. The silence of SERPINA3 alleviated cisplatin-stimulated HK-2 cell injury, which was characterised by increased cell viability and proliferation, and decreased apoptosis and inflammatory cytokine release. In addition, Nur77 promotes SERPINA3 transcription by binding to the SERPINA3 promoter region (-182 to -175), thereby upregulating SERPINA3 expression and activating the Wnt/β-catenin pathway. Moreover, HK-2 cell injury induced by cisplatin was notably inhibited by the knockdown of Nur77. Furthermore, the efficacy of Nur77 downregulation on the cell injury in cisplatin-stimulated HK-2 cells was antagonised by SERPINA3 overexpression. CONCLUSION Taken together, our findings revealed that Nur77 knockdown resisted cisplatin-induced HK-2 cells injury through lessening the expression of SERPINA3 mediated by transcriptional regulation and inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Zhen Wan
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Di Xiong
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Zhijun Gong
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| | - Feiyan Liu
- Hemodialysis Room, The First Hospital of Nanchang, Nanchang, China
| |
Collapse
|
9
|
Salah TM, Rabie MA, El Sayed NS. Renoprotective effect of berberine in cisplatin-induced acute kidney injury: Role of Klotho and the AMPK/mtor/ULK1/Beclin-1 pathway. Food Chem Toxicol 2025; 196:115179. [PMID: 39645019 DOI: 10.1016/j.fct.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (Cisp) is a potent cancer drug, but its use is limited by acute kidney injury (AKI). Autophagy, a process that removes damaged proteins and maintains cellular homeostasis, has been shown to alleviate Cisp-induced AKI. The balance between autophagy and apoptosis is crucial to kidney protection. Treatment with Berberine, known for its antioxidant and anti-inflammatory effects in nephrotoxicity models, was studied for its potential to enhance autophagy in Cisp-induced AKI. Treatment with Berberine (Berb) upregulated Klotho gene expression, enhancing autophagy as indicated by elevated protein levels of pS486-AMPK, pS638-ULK1, and Beclin-1, accompanied by a decrease in pS248-mTOR protein expression. Also, Berb mitigated oxidative stress by reducing elevated MDA levels and boosting SOD activity, which in turn suppressed inflammation by down-regulating HMGB1 and RAGE gene expression, as well as reducing pS536-NF-κB and IL-6 protein contents. Additionally, Berb reduced apoptosis by increasing Bcl-2 and decreasing Bax. This coordinated action preserved kidney function, evidenced by reductions in early injury markers (cystatin C, KIM-1, NGAL) and late markers (creatinine, BUN), along with attenuation of histopathological alterations. The use 3-MA, autophagy inhibitor, nullified these protective effects, highlighting Berb's role in promoting autophagy, reducing oxidative stress, inflammation, and apoptosis, and preserving renal health in Cisp-induced AKI.
Collapse
Affiliation(s)
- Tasneem M Salah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
10
|
Hao X, Gao Z, Hu M. Anti-tumor role and molecular mechanism of vanillic acid. Discov Oncol 2025; 16:20. [PMID: 39775208 PMCID: PMC11711440 DOI: 10.1007/s12672-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vanillic Acid (VA) is an aromatic acid extracted from traditional Chinese medicine such as Angelica sinensis and Panax ginseng, which has demonstrated potent anti-cancer activity, inhibiting the onset and progression of various malignant tumors. This review highlights the principal mechanism by which VA exerts its anticancer activity, including apoptosis induction, specifically promoting the generation of intracellular reactive oxygen species (ROS), which in turn triggers mitochondrial apoptosis. Furthermore, VA disrupts the cancer cell cycle, arresting most cancer cells at the G1 phase, curtails cell migration, invasion, angiogenesis, and potentiates the therapeutic efficacy of chemotherapeutic drugs, all while minimizing adverse reactions. This paper offers a comprehensive review of VA's anti-tumor effects and underlying mechanisms, aiming to provide some references for scientists and clinical physicians in the research of anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Xunxing Hao
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shangdong, China
| | - Zhixiao Gao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingzhe Hu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
11
|
Dugbartey GJ, Alornyo KK, Adams I, Adjei S, Amoah D, Obeng-Kyeremeh R. Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways. Int J Mol Sci 2025; 26:384. [PMID: 39796237 PMCID: PMC11720986 DOI: 10.3390/ijms26010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (H2S) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN. Twenty-five male Sprague Dawley rats were randomly assigned to the following groups: HC: Healthy control (received 10 mL/kg/day of 0.9% saline intraperitoneally (ip), [n = 5]), CIN: Cisplatin (received single dose of 7 mg/kg cisplatin ip [n = 5]); CIN + PAG: Cisplatin and daily ip administration of 40 mg/kg of the H2S inhibitor, DL-propargylglycine (PAG) for 28 days (n = 5); CIN + PAG + STS: Cisplatin and daily PAG and STS (150 µM) ip injection for 28 days; CIN + STS: Cisplatin and daily STS ip administration for 28 days (n = 5). Rats in each group were kept in metabolic cages for 24 h on day 0, 14 and 29 after cisplatin administration for urine collection. Rats were then euthanized, and kidney and blood samples were collected for analysis. Histologically, CIN was characterized by glomerular and tubular injury and significant macrophage influx and tubular apoptosis, as well as markedly increased levels of plasma and renal IL-1β, IL-6 and TNF-α and impaired renal antioxidant status compared to HC rats (p < 0.001). These pathological changes were exacerbated in CIN + PAG rats and were strongly reduced in CIN + PAG + STS rats relative to CIN + PAG rats (p < 0.01), while superior renal protection was observed in CIN + STS rats. Functionally, CIN was evidenced by markedly increased levels of serum creatinine and BUN, and significantly decreased urine creatinine, renal creatinine clearance, as well as electrolyte imbalance and urinary concentrating defect in comparison with HC (p < 0.01). These functional changes worsened significantly in CIN + PAG rats (p < 0.05) but improved in CIN + PAG + STS rats, with further improvement in CIN + STS rats to levels comparable to HC rats. Mechanistically, STS increased renal and plasma levels of H2S, arginine, cAMP, nitric oxide (NO) and cGMP as well as SIRT3 and PGC-1α. We have shown for the first time that STS provides chemoprotection against CIN by activating renal arginine/cAMP and NO/cGMP signaling pathways and their downstream mechanisms through increased renal H2S production.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, Accra P.O. Box CT9828, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Accra P.O. Box KB52, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana
| |
Collapse
|
12
|
Wang Z, Kregel M, Meijers JL, Franch J, Cuijpers VMJI, Ahlers D, Karst U, Slootweg P, van der Geest IC, Leeuwenburgh SC, van den Beucken JJ. Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection. Acta Biomater 2025; 191:158-176. [PMID: 39551330 DOI: 10.1016/j.actbio.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.
Collapse
Affiliation(s)
- Zhule Wang
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Mark Kregel
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jean-Luc Meijers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jordi Franch
- Department of Small Animal Medicine and Surgery, Veterinary School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vincent M J I Cuijpers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - David Ahlers
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Piet Slootweg
- Department of Pathology, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Ingrid Cm van der Geest
- Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands; Department of Orthopedics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Sander Cg Leeuwenburgh
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Jeroen Jjp van den Beucken
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Wei M, Chen S, Huang Z, Zhang P, Yang Y, Chen S, Wan P, Huang Z, Chen X. Multi-omics analysis reveals the protective effects of Chinese yam polysaccharide against cisplatin-induced renal interstitial fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156200. [PMID: 39603894 DOI: 10.1016/j.phymed.2024.156200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Chinese yam polysaccharide (SYDT) has been reported to protect renal function and mitigate renal fibrosis in mice with diabetic nephropathy. Based on a multi-omics analysis, the objectives of this study were to determine the effect of SYDT on cisplatin (CDDP)-induced chronic renal interstitial fibrosis (RIF) and the underlying molecular mechanisms using an in vivo model. METHODS Rats were intraperitoneally injected with a single dose of CDDP and then treated with SYDT or amifostine (AMF). The levels of urinary N-acetyl-β-d-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were detected to assess renal function. Renal tissue damage and fibrosis were evaluated using hematoxylin and eosin (H&E) and Masson's trichrome staining, respectively. In addition, this study applied transcriptomics and metabolomics to predict the possible mechanism of SYDT action, which was verified by several relevant examinations. RESULTS SYDT significantly protected the renal function, alleviated renal tissue damage and fibrosis, as well as decreased the protein levels of vimentin, α-SMA and CTGF, whereas SYDT significantly increased MMP-1 protein level in renal tissues from rats treated with CDDP. There were 1130 differently expressed genes (DEGs) between the CDDP model and SYDT-M groups proved by transcriptome analysis, indicating that metabolic pathways were likely the primary targets of relevance. Consistent with the transcriptome analysis, metabolome analysis identified 276 differentially expressed metabolites (DEMs) between the SYDT-M and CDDP model groups, with predominant clustering within glycerophospholipid metabolism. Integrative analysis of the transcriptome and metabolome indicated that SYDT inhibited the glycerophospholipid metabolism pathway by regulating the target genes Gpd2, Gpam, Agpat3, Lcat, and Pla2g4b. Notably, integrative analysis showed that the Phospholipase D (PLD) signaling pathway may be the most relevant target. Moreover, related signaling pathway analysis confirmed that SYDT inhibited CDDP-induced RIF in rats by down-regulating the PLD pathway. CONCLUSION Our study showed that the alleviation of CDDP-induced RIF in vivo can be achieved through the inhibition of glycerophospholipid metabolism and PLD signaling pathways by SYDT.
Collapse
Affiliation(s)
- Meizhen Wei
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Shurui Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Pingli Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Shasha Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Peiyuan Wan
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhiling Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Xingqing Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| |
Collapse
|
14
|
Wang Y, Du M, Wang J, Bai Z, Cui C, Tong J, Liu Y, Guo S, Zhang W, Wu X, Li B. Carbon dots-cisplatin nano drug delivery system induces the death of oral tongue squamous cell under self-targeting chemical/photodynamic combined therapy. Colloids Surf A Physicochem Eng Asp 2025; 704:135511. [DOI: 10.1016/j.colsurfa.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Basheer I, Wang H, Li G, Jehan S, Raza A, Du C, Ullah N, Li D, Sui G. β-caryophyllene sensitizes hepatocellular carcinoma cells to chemotherapeutics and inhibits cell malignancy through targeting MAPK signaling pathway. Front Pharmacol 2024; 15:1492670. [PMID: 39734415 PMCID: PMC11671526 DOI: 10.3389/fphar.2024.1492670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background β-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene extracted from various plants, and widely used as a medicinal agent for various diseases. During hepatocellular carcinoma (HCC) development, cancer cells generally exhibit increased cell proliferation due to mutations or aberrant expression of key regulatory genes. The current study determines the cytotoxic effects of BCP alone or in combination with doxorubicin (DOX) and cisplatin (DDP) on HCC cells, and elucidates the underlying mechanism of BCP to exert its anticancer activities. Materials and methods HepG2, SMMC-7721 HCC cells, and HL-7702 normal liver cells were treated with BCP, DOX, and DDP individually or combinatorially. Cell proliferation assay, flow cytometric assay, and Western blot were employed to evaluate the cytotoxic effects of these treatments. Transwell assays were used to examine BCP's effects on HCC cell migration and invasion. RNA-seq analysis was used to determine BCP's primary target genes in HepG2 cells. Integrative analysis of differentially expressed genes (DEGs) of RNA-seq data with an HCC TCGA dataset identified BCP-targeted genes that were verified by RT-qPCR analysis. Ectopic gene expression, cell viability, and colony formation assay were performed to validate the primary targets of BCP. Results BCP selectively inhibited HCC cell proliferation while exhibited relatively low toxicity in normal liver cells; however, DOX and DDP showed higher toxicity in normal cells than that in HCC cells. In combinatorial treatments, BCP synergistically enhanced cytotoxicity of DOX and DDP in HCC cells but this effect was markedly reduced in HL-7702 cells. BCP treatment reduced migration and invasion of HCC cells. Furthermore, RNA-seq analyses of BCP-treated HepG2 cells identified 433 protein-coding DEGs. Integrative analyses revealed five BCP-targeted DEGs regulating the MAPK signaling pathway. Among these five genes, three displayed a significantly positive correlation of their expression with the overall survival of HCC patients. As a primary target, PGF was significantly downregulated by BCP treatment, and its exogenous expression desensitized HCC cells to BCP-mediated inhibition. Discussion BCP inhibits malignant properties of HCC and synergistically sensitizes the anticancer activity of DOX and DDP. In HCC cells, BCP primarily targets the PGF gene and MAPK signaling pathway.
Collapse
Affiliation(s)
- Irum Basheer
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hai Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Intelligent Biomedical Labs, Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shah Jehan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ali Raza
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chentao Du
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Najeeb Ullah
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Feldman LER, Mohapatra S, Jones RT, Scholtes M, Tilton CB, Orman MV, Joshi M, Deiter CS, Broneske TP, Qu F, Gutierrez C, Ye H, Clambey ET, Parker S, Mahmoudi T, Zuiverloon T, Costello JC, Theodorescu D. Regulation of volume-regulated anion channels alters sensitivity to platinum chemotherapy. SCIENCE ADVANCES 2024; 10:eadr9364. [PMID: 39671496 PMCID: PMC11641020 DOI: 10.1126/sciadv.adr9364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Cisplatin-based chemotherapy is used across many common tumor types, but resistance reduces the likelihood of long-term survival. We previously found the puromycin-sensitive aminopeptidase, NPEPPS, as a druggable driver of cisplatin resistance in vitro and in vivo and in patient-derived organoids. Here, we present a general mechanism where NPEPPS interacts with the volume-regulated anion channels (VRACs) to control cisplatin import into cells and thus regulate cisplatin response across a range of cancer types. We also find the NPEPPS/VRAC gene expression ratio is a predictive measure of cisplatin response in multiple cancer cohorts, showing the broad applicability of this mechanism. Our work describes a specific mechanism of cisplatin resistance, which, given the characteristics of NPEPPS as a drug target, has the potential to improve cancer patient outcomes. In addition, we describe an intracellular mechanism regulating VRAC activity, which is critical for volume regulation in normal cells - a finding with functional implications beyond cancer.
Collapse
Affiliation(s)
| | - Saswat Mohapatra
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Robert T. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mathijs Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Charlene B. Tilton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cailin S. Deiter
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Travis P. Broneske
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fangyuan Qu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Corazon Gutierrez
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Huihui Ye
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric T. Clambey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah Parker
- Smidt Heart Institute & Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tahlita Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Tian R, Tang S, Zhao J, Hao Y, Zhao L, Han X, Wang X, Zhang L, Li R, Zhou X. β-Hydroxybutyrate Protects Against Cisplatin-Induced Renal Damage via Regulating Ferroptosis. Ren Fail 2024; 46:2354918. [PMID: 38757723 PMCID: PMC11104694 DOI: 10.1080/0886022x.2024.2354918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that β-hydroxybutyrate (β-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of β-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or β-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of β-HB on cisplatin-induced AKI. Exogenous or endogenous β-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, β-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. β-HB also improved mitochondrial morphology and function. Moreover, β-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that β-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by β-HB. This study provided evidence of the protective effects of β-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.
Collapse
Affiliation(s)
- Ruixue Tian
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shuqin Tang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingyu Zhao
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yajie Hao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiutao Han
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xingru Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
18
|
Xu N, Mu R, Deng S, Han Y, Shi Y, Fu X, Li H, Yao Q. Reserpine alleviates cisplatin-induced acute kidney injury via anti-ferroptosis and cGAS/STING pathway. Ren Fail 2024; 46:2406395. [PMID: 39377110 PMCID: PMC11463010 DOI: 10.1080/0886022x.2024.2406395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Cisplatin plays a pivotal role in the chemotherapy treatment of various cancers, but its use is often limited due to its nephrotoxic side effects. Identifying compounds that can mitigate cisplatin-induced nephrotoxicity is therefore of great importance. This study focused on evaluating the protective effects of reserpine against cisplatin-induced acute kidney injury. Reserpine was found to significantly safeguard against kidney damage caused by cisplatin, as indicated by the decreased levels of serum creatinine, blood urea nitrogen, and lactate dehydrogenase induced by cisplatin. Moreover, reserpine improved kidney histology damage caused by cisplatin treatment, with hematoxylin-eosin and periodic acid-Schiff staining revealing notable recovery from renal injury. Mechanistically, reserpine mitigated oxidative stress triggered by cisplatin and exhibits the ability to inhibit ferroptosis both in vivo and in vitro. Additionally, reserpine blocked the activation of the cGAS/STING signaling pathway and the subsequent expression of inflammatory genes, thus reducing inflammation-driven kidney damage. In summary, the findings suggest that reserpine offers a promising new strategy for preventing nephrotoxicity induced by cisplatin.
Collapse
Affiliation(s)
- Nahua Xu
- Zunyi Medical University, Zunyi, China
| | - Rong Mu
- Zunyi Medical University, Zunyi, China
| | - Siyuan Deng
- School of Medicine, Chongqing University, Chongqing, China
| | - Ye Han
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing, China
| | - Yanyun Shi
- Medical College of Guizhou University, Guiyang, China
| | - Xuemei Fu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing, China
| | - Hui Li
- Zunyi Medical University, Zunyi, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
19
|
Wu F, Wang S, Zhang J, Wang P, Zhang A. Prevalence of kidney disease in patients with different types of cancer or hematological malignancies: a cross-sectional study. Int Urol Nephrol 2024; 56:3835-3844. [PMID: 38916787 DOI: 10.1007/s11255-024-04130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE This study investigated the prevalence and risk factors of acute kidney injury (AKI) and chronic kidney disease (CKD) in cancer patients with the aim of providing guidance for clinical treatment of cancer patients. METHODS A retrospective study was conducted on all cancer and hematological malignancy patients admitted to Xuanwu Hospital, Capital Medical University, from January 2018 to July 2023. The study population included patients aged 18-80 years with a confirmed cancer or malignancy diagnosis. Chi-square tests, Spearman's correlation, and logistic regression were used to evaluate the relationships between demographic factors, comorbidities, cancer types, antitumor drugs and the prevalence of AKI/CKD. RESULTS Among the 2438 participants, the prevalence rates of AKI and CKD were 3.69% and 7.88%, respectively. Patients with diabetes had higher prevalence of AKI/CKD than those without diabetes (OR = 1.66, 95% CI 1.01-2.68, p = 0.040; OR = 1.60, 95% CI 1.10-2.31, p = 0.012, respectively). In addition, a higher prevalence of CKD was observed in patients with hypertension (OR = 3.49, 95% CI 2.43-5.06, p < 0.001). Underweight patients were more likely to develop AKI (OR = 2.66, 95% CI 1.03-6.08, p = 0.029). Anthracyclines may contribute to a higher risk of AKI, and antimetabolites and immunomodulators may be associated with the development of CKD. Overall, patients with hematological malignancies had significantly higher rates of AKI/CKD than those with solid tumors. Among solid tumor patients, the prevalence of AKI/CKD was low in patients with lung and breast cancer. CONCLUSIONS AKI and CKD prevalence varies across cancer types, influenced by factors, such as diabetes, hypertension, body weight, and antitumor drugs. Tailored treatment plans are essential for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Feng Wu
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Changchun Street 45#, Beijing, 100053, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Changchun Street 45#, Beijing, 100053, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Changchun Street 45#, Beijing, 100053, China
| | - Peixin Wang
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Changchun Street 45#, Beijing, 100053, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital of Capital Medical University, Changchun Street 45#, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Artanti AN, Jenie RI, Rumiyati R, Meiyanto E. Hesperidin and Diosmin Increased Cytotoxic Activity Cisplatin on Hepatocellular Carcinoma and Protect Kidney Cells Senescence. Asian Pac J Cancer Prev 2024; 25:4247-4255. [PMID: 39733416 PMCID: PMC12008348 DOI: 10.31557/apjcp.2024.25.12.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE Cisplatin (Cisp) is a chemotherapy drug for treating liver cancer. Hesperidin (HSD), a flavanone, is known for its anticancer, and anti-inflammatory properties. Diosmin (DSM), a flavone glycoside, is known for its anti-oxidant effect. This research investigated the synergism cytotoxic effect and senescence selectivity effect of HSD or DSM co-treatment with Cisp on HepG2 cells and Vero cells. METHODS The cytotoxicity and cell viability of HSD or DSM combined with Cisp on HepG2 and Vero cells were assessed using the MTT assay with IC50 parameters, selectivity index (SI), and Combination Index (CI), while the antiproliferative profile was determined by colony-forming assay. Cellular senescence on HepG2 and Vero cell lines was determined using senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, the impact of apoptosis was evaluated using flowcitometry. RESULT In the MTT assay, HSD, DSM, and cisplatin exhibited cytotoxic effects on HepG2 cells, with IC50 values of 321 µM, 148 µM, and 5 µM, respectively. Co-treatment with HSD and DSM with cisplatin enhanced cell sensitivity, resulting in a combination index of < 1. HSD and DSM exhibited minimal cytotoxicity against Vero cells, with IC50 values exceeding 500 µM. Both HSD and DSM reduced cellular senescence in Vero cells caused by cisplatin exposure. These findings suggest that co-treatment with HSD and DSM alongside cisplatin can synergistically lessen the viability of HepG2 cells. The Annexin V-FITC/PI apoptosis assay also showed more cells undergoing apoptosis in the co-treatment group. Both co-treatment HSD and DSM with Cisp independently induced the senescence of HepG2 cells and reduced the cellular senescence of normal kidney cells. CONCLUSION Consequently, both HSD and DSM show potential for development as co-treatment agents in combination with Cisp for hepatocellular carcinoma, and they may also be useful for reducing senescence in normal kidney cells.
Collapse
Affiliation(s)
- Anif Nur Artanti
- Doctoral Programme in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Department of Pharmacy, Vocational College, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia.
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Rumiyati Rumiyati
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| |
Collapse
|
21
|
Shirmard LR, Khezri S, Ahadzadeh S, Azadimoghaddam P, Azizian S, Salimi A. Preparation of gallic acid-loaded chitosan nanoparticles and their chemoprotective effects on N-ethyl-N-nitrosourea-induced hepatotoxicity and mortality in rats. J Mol Histol 2024; 56:1. [PMID: 39585491 DOI: 10.1007/s10735-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
N-ethyl-N-nitrosourea (ENU) as n-nitrosamine and alkylating agent, ubiquitous within living cells and in the environment can act as a full carcinogen and induce tumor formation in various tissues such as liver. In this study, gallic acid-loaded chitosan nanoparticles (GANPs) were synthesized and evaluated for their chemopreventive effect against ENU-induced hepatotoxicity and mortality in rats. Twenty-four male Wistar rats were divided into four groups including: control, ENU (single doses of 50 mg/kg via intraperitoneal injection), GA + ENU and GANPs + ENU. Animals were orally pretreated with GA (50 mg/kg) and GANPs (50 mg/kg) for 30 days, and liver injuries induced by ENU on the 31st day of study. After ENU administration, weight changes and mortality were monitored during 30 days, and then the animals were sacrificed and alpha-fetoprotein (AFP) as a tumor marker, liver function tests (ALT, AST and ALP), oxidative stress markers (GSH and MDA), mitochondrial toxicity parameters, and histopathological assessment were evaluated. Except for AFP and MDA, ENU caused significant elevation of liver enzymes, mitochondrial ROS formation, collapse of mitochondrial membrane potential depletion of GSH, histopathological abnormalities and mortality in rats. Our data showed that GANPs significantly increased the survival of rats by up to 66%, delayed in death time and prevented weight changes after exposure to ENU. Moreover, GANPs restored liver enzyme levels, ROS formation, mitochondrial dysfunction, GSH levels, and histopathological abnormalities towards normal. Our findings suggest that GANPs revealed a significant protective effect against deadly toxicity induced by ENU as an alkylating full carcinogen agent in liver tissue.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Sara Ahadzadeh
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paniiiz Azadimoghaddam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
22
|
Aloke C, Onisuru OO, Achilonu I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem Biophys Res Commun 2024; 734:150774. [PMID: 39366175 DOI: 10.1016/j.bbrc.2024.150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
23
|
Alqahtani MM. Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2468. [PMID: 39594134 PMCID: PMC11593308 DOI: 10.3390/diagnostics14222468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Cisplatin is a potent agent commonly used to treat cancer, but its effects pose a significant risk to renal function. Therefore, the present study aimed to evaluate the impact of cisplatin on renal function as measured by glomerular filtration rate (GFR) using diethyltriamine-penta-acetic acid (DTPA) renal scintigraphy. Methods: Extensive literature searches were performed using PRISMA guidelines that investigated cisplatin-induced renal failure by measuring GFR with DTPA. Eligible studies were included based on predefined criteria. Data on GFR, serum creatinine levels, and acute kidney injury (AKI) before and after cisplatin therapy were extracted and analyzed. A meta-analysis was performed utilizing RevMan 5.4 to determine the overall effect of cisplatin on GFR before and after treatment. For non-randomized controlled trials (RCTs), quality assessment was performed using the Newcastle-Ottawa Scale, while for RCT, the Cochrane risk of bias tool was utilized. Results: Initially, 1003 studies were searched from different databases, including ScienceDirect, PubMed, Scopus, Google Scholar, and The Cochrane Library, and after screening, 8 studies (PubMed, Scopus, and GoogleS cholar) with 489 patients were found eligible for inclusion in the present study. Cisplatin was administrated with varying doses ranging from 20 mg/m2 to 114.02 mg/m2. The findings underscore the nephrotoxic effects of cisplatin, a widely used chemotherapeutic agent, as demonstrated by the significant decline in GFR observed across multiple treatment cycles, and these findings were also supported by the findings of a meta-analysis that showed a significant (p < 0.01) difference between peri- and post-treatment GFR level with 37.06 (95% CI, 10.90-63.23) effect size and 96% heterogeneity. In addition, the included studies were found to be of high quality. Conclusions: Cisplatin significantly affects renal function, as evidenced by a decrease in GFR measured with DTPA. The findings underscore the importance of the routine monitoring of GFR to detect early renal injury and guide treatment modification. Future research should focus on strategies to reduce cisplatin-induced toxicity and explore alternative therapies with reduced renal risk.
Collapse
Affiliation(s)
- Mansour M Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| |
Collapse
|
24
|
Lin K, Xiong L, Zhang W, Chen X, Zhu J, Li X, Zhang J. Exploring the pharmacological mechanism of fermented Eucommia ulmoides leaf extract in the treatment of cisplatin-induced kidney injury in mice: Integrated traditional pharmacology, metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124358. [PMID: 39527890 DOI: 10.1016/j.jchromb.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin (CP) is a widely utilized anticancer drug, which also produces significant side effects, notably acute kidney injury (AKI). Fermented Eucommia ulmoides leaf (FEUL), a medicinal and edible Chinese herbal remedy, is known for its renoprotective properties. However, the effect and underlying mechanism of FEUL extract in AKI therapy have remained largely unexplored. This research aimed to elucidate the protective roles of FEUL extract in an AKI mouse model through biochemical assays, histopathological examinations, and investigating the underlying mechanisms based on metabolomics and network pharmacology. The findings demonstrated that pretreatment with orally administered FEUL extract significantly reduced blood urea nitrogen (BUN), and serum creatinine (SCr) levels, and ameliorated CP-induced kidney histopathological injuries. Moreover, FEUL extract attenuated CP-induced endoplasmic reticulum (ER) stress by reducing the protein expressions of PERK, IRE 1α, GRP78, ATF6, ATF4, and CHOP. The metabolomics results indicated that a total of 31 metabolites, involved in taurine and hypotaurine metabolism, lysine degradation, and steroid hormone biosynthesis, were altered after FEUL extract administration. Furthermore, metabolomics integrated with network pharmacology revealed that 8 targets, 4 metabolites, and 3 key pathways including steroid hormone biosynthesis, purine metabolism, and tryptophan metabolism were the main mechanisms of FEUL extract in treating CP-induced AKI. These findings suggested that FEUL extract could offer valuable insights for potential CP-induced AKI treatment strategies.
Collapse
Affiliation(s)
- Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jieqi Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
25
|
Chen Y, Jin Y, Wang W, Zhang Y, Sun H, Wu A, Zhu H, Gong Y, Wang X, Tian L, Pan J. Preparation and antitumor activity of selenium nanocomposite stabilized by AAGL from Agerocybe aegerita. Int J Biol Macromol 2024; 282:137002. [PMID: 39476918 DOI: 10.1016/j.ijbiomac.2024.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
Selenium nanoparticles (SeNPs) have limited bioavailability because of their poor stability in aqueous solutions. AAGL, a naturally active protein, extracted from Agrocybe aegerita has strong antitumor activity. However, whether AAGL can been used to stabilize SeNPs, and exerts anti-lung cancer effects remains unknown. In this study, a novel nanocomposite, AAGL-SeNPs, was prepared using AAGL-encapsulated SeNPs. The particle size of the AAGL-SeNPs was approximately 206.1 nm, which was uniform and well dispersed in aqueous solution and showed satisfactory stability. AAGL-SeNPs was non-toxic and reduced the hepatotoxicity of AAGL in mice. Importantly, AAGL-SeNPs inhibited the proliferation of lung cancer cells and suppressed tumor growth in tumor-bearing mice. AAGL-SeNPs enhanced the cytotoxic effects on lung cancer cells by stimulating immune cells. In addition, the combination of AAGL-SeNPs and osimertinib inhibited lung cancer, and AAGL-SeNPs reversed osimertinib resistance in H1975 cells. Mechanistically, Krüppel-like transcriptional factor 4 (KLF4) was identified by data-independent acquisition mass spectrometry (DIA-MS), and its expression levels in lung cancer increased after AAGL-SeNPs treatment. This study demonstrated that nanocomposite AAGL-SeNPs is stable, safe, and has excellent antitumor efficacy, which will be a potential therapeutic drug for lung cancer treatment.
Collapse
Affiliation(s)
- Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 435002, China
| | - Aobo Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Haibo Zhu
- Key Laboratory of Molecular Diagnosis and Individualized Treatment in Huangshi City, Huangshi Aikang Hospital affiliated of Hubei Polytechnic University, Huangshi 435001, China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xiaoyu Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Leyi Tian
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
26
|
Lash LH. Renal Glutathione: Dual roles as antioxidant protector and bioactivation promoter. Biochem Pharmacol 2024; 228:116181. [PMID: 38556029 PMCID: PMC11410546 DOI: 10.1016/j.bcp.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The tripeptide glutathione (GSH) possesses two key structural features, namely the nucleophilic sulfur and the γ-glutamyl isopeptide bond. The former allows GSH to serve as a critical antioxidant and anti-electrophile. The latter allows GSH to translocate throughout the systemic circulation without being degraded. The kidneys exhibit several unique processes for handling GSH. This includes the extraction of 80% of plasma GSH, in part by glomerular filtration but mostly by transport across the basolateral plasma membrane. Studies on the protective effect of exogenous GSH are summarized, showing the different inherent susceptibility of proximal tubular and distal tubular cells and the impact on pathological or disease states, including hypoxia, diabetic nephropathy, and compensatory renal growth associated with uninephrectomy. Studies on mitochondrial GSH transport show the coordination between the citric acid cycle and oxidative phosphorylation in generating driving forces for both plasma membrane and mitochondrial carriers. The strong protective effects of increasing expression and activity of these carriers against oxidants and mitochondrial toxicants are summarized. Although GSH plays a cytoprotective role in most situations, two distinct exceptions to this are presented. In contrast to expectations, overexpression of the mitochondrial 2-oxoglutarate carrier markedly increased cell death from exposure to the nephrotoxic chemotherapeutic drug cisplatin (CDDP). Another key example of GSH serving a bioactivation role in the kidneys, rather than a detoxification role, is the metabolism of halogenated alkenes such as trichloroethylene (TCE). Although considerable research has gone into this topic, unanswered questions and emerging topics remain and are discussed.
Collapse
|
27
|
Lu M, Xie L, Yin S, Zhou J, Yi L, Ye L. The Gut Microbial Lipid Metabolite 14(15)-EpETE Inhibits Substance P Release by Targeting GCG/PKA Signaling to Relieve Cisplatin-Induced Nausea and Vomiting in Rats. J Microbiol Biotechnol 2024; 34:1769-1777. [PMID: 39187454 PMCID: PMC11473588 DOI: 10.4014/jmb.2403.03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024]
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect related to activation of substance P (SP). SP activation can result from dysregulation of the gut-brain axis, and also from activation of protein kinase A signaling (PKA) signaling. In this study, we connected these factors in an attempt to unveil the mechanisms underlying CINV and develop new therapeutic strategies. Female rats were injected with cisplatin (Cis) to induce pica. Fecal samples were collected before/after injection, and subjected to lipid metabolomics analysis. In another portion of pica rats, the PKA inhibitor KT5720 was applied to investigate the involvement of PKA signaling in CINV, while fecal microbiota transplantation (FMT) was implemented to verify the therapeutic effect of the lipid metabolite 14(15)-EpETE. Pica symptoms were recorded, followed by ileal histological examination. The targeting relationship between 14(15)-EpETE and glucagon was determined by bioinformatics. SP and glucagon/PKA signaling in rat ileum, serum, and/or brain substantia nigra were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and/or western blot. The results showed a significantly lower level of 14(15)-EpETE in rat feces after Cis injection. KT5720 treatment alleviated Cis-induced pica symptoms, ileal injury, SP content increase in the ileum, serum, and brain substantia nigra, and ileal PKA activation in rats. The ileal level of glucagon was elevated by Cis in rats. FMT exerted an effect similar to that of KT5720 treatment, relieving the Cis-induced changes, including ileal glucagon/PKA activation in rats. Our findings demonstrate that FMT restores 14(15)-EpETE production, which inhibits SP release by targeting GCG/PKA signaling, ultimately mitigating CINV.
Collapse
Affiliation(s)
- Man Lu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No. 54 Youdian Rd., Shangcheng District, Hangzhou, Zhejiang 310006, P.R. China
| | - Liwei Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, Zhejiang 310006, P.R. China
| | - Sijie Yin
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No. 54 Youdian Rd., Shangcheng District, Hangzhou, Zhejiang 310006, P.R. China
| | - Jing Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No. 54 Youdian Rd., Shangcheng District, Hangzhou, Zhejiang 310006, P.R. China
| | - Lingmei Yi
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No. 54 Youdian Rd., Shangcheng District, Hangzhou, Zhejiang 310006, P.R. China
| | - Ling Ye
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No. 54 Youdian Rd., Shangcheng District, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
28
|
Favatella N, Dalton D, Byon W, Merali SJ, Klem C. Clinical Implications of Co-administering Apixaban with Key Interacting Medications. Clin Pharmacol Drug Dev 2024; 13:961-973. [PMID: 39046333 DOI: 10.1002/cpdd.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
With many available data sources, clinicians need to consider the benefit-risk profile of individual anticoagulants when balancing the need for anticoagulation, including evaluating the risks in patients with comorbidities and potential drug-drug interactions. This narrative review presents clinical data across multiple phases of drug development for the use of apixaban, a selective factor Xa inhibitor, when taken concomitantly with other agents, and evaluates the benefit-risk profile of apixaban with these interacting medications. Key subgroup analyses from the phase 3 ARISTOTLE trial (NCT00412984) are presented using data from patients who received either concomitant inhibitors or inducers of cytochrome P450 3A4 and/or P‑glycoprotein. We also review the available evidence for the use of apixaban in patients with cancer-associated thromboembolism, as well as the use of apixaban in patients with COVID-19.
Collapse
|
29
|
Wang L, Hao X, Li X, Li Q, Fang X. Effects of ginsenoside Rh2 on cisplatin-induced nephrotoxicity in renal tubular epithelial cells by inhibiting endoplasmic reticulum stress. J Biochem Mol Toxicol 2024; 38:e23768. [PMID: 39015062 DOI: 10.1002/jbt.23768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Nephrotoxicity remains a major adverse reaction of the anticancer drug cisplatin (CDDP) chemotherapy, which is an important risk factor for chronic renal disease. Ginsenoside Rh2 from Panax ginseng has been shown to protect against CDDP-induced nephrotoxicity in vivo, but its pharmacological effect on renal tubular epithelial cells is not clearly understood. This study examined the molecular mechanisms underlying the nephroprotective effects of Rh2 on CDDP-induced HK-2 cells and acute kidney injury (AKI) mice. As a result of Rh2 treatment, CDDP-induced HK-2 cells showed increased cell viability and reduced lactate dehydrogenase release. Moreover, Rh2 ameliorated CDDP-induced mitochondrial membrane potential, increased antioxidant enzyme activities, and reduced pro-inflammatory cytokine expression to reduce damage. Rh2 inhibited apoptosis and enhanced the antioxidant capacity of HK-2 cells by reducing proteins associated with endoplasmic reticulum (ER) stress, as well as by attenuating tunicamycin-induced ER stress. In addition, treatment of CDDP-induced AKI mice with Rh2 substantially reduced blood urea nitrogen and serum creatinine levels, attenuated histological damage of kidney. Further, Rh2 also improved kidney function by inhibiting ER stress to support in vitro findings. These results consistently demonstrated that Rh2 protects renal tubular epithelial cells from CDDP-induced nephrotoxicity and apoptosis by restoring ER homeostasis, which might suggest a therapeutic potential and providing new insights into AKI alternative therapies.
Collapse
Affiliation(s)
- Lianping Wang
- School of Life Sciences, Jilin University, Changchun, China
- School of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Changchun, China
| | - Xiaogang Hao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangxin Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qingjie Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
30
|
Oliveira CA, Mercês ÉAB, Portela FS, Malheiro LFL, Silva HBL, De Benedictis LM, De Benedictis JM, Silva CCDE, Santos ACL, Rosa DP, Velozo HS, de Jesus Soares T, de Brito Amaral LS. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol 2024; 28:711-727. [PMID: 38678166 DOI: 10.1007/s10157-024-02490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | | | | | | | | | | | | | - Helloisa Souza Velozo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
| |
Collapse
|
31
|
Sung CYW, Hayase N, Yuen PST, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage depletion protects against cisplatin-induced ototoxicity and nephrotoxicity. SCIENCE ADVANCES 2024; 10:eadk9878. [PMID: 39047106 PMCID: PMC11268410 DOI: 10.1126/sciadv.adk9878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Cisplatin is a widely used anticancer drug with notable side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced toxicities, we used PLX3397, a U.S. Food and Drug Administration-approved inhibitor of the colony-stimulating factor 1 receptor, to eliminate tissue-resident macrophages. Mice treated with cisplatin alone had considerable hearing loss (ototoxicity) and kidney injury (nephrotoxicity). Macrophage ablation resulted in significantly reduced hearing loss and had greater outer hair cell survival. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together, our data indicate that ablation of tissue-resident macrophages represents an important strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Mark E. Warchol
- Department of Otolaryngology, School of Medicine, Washington University, Saint Louis, MO, USA
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
33
|
Khan S, Araji G, Yetiskul E, Keesari PR, Haddadin F, Khamis Z, Chowdhry V, Niazi M, Afif S, Dhar M, El-Sayegh S. Systemic oncological therapy in breast cancer patients on dialysis. World J Clin Oncol 2024; 15:730-744. [PMID: 38946836 PMCID: PMC11212603 DOI: 10.5306/wjco.v15.i6.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The advancement of renal replacement therapy has significantly enhanced the survival rates of patients with end-stage renal disease (ESRD) over time. However, this prolonged survival has also been associated with a higher likelihood of cancer diagnoses among these patients including breast cancer. Breast cancer treatment typically involves surgery, radiation, and systemic therapies, with approaches tailored to cancer type, stage, and patient preferences. However, renal replacement therapy complicates systemic therapy due to altered drug clearance and the necessity for dialysis sessions. This review emphasizes the need for optimized dosing and administration strategies for systemic breast cancer treatments in dialysis patients, aiming to ensure both efficacy and safety. Additionally, challenges in breast cancer screening and diagnosis in this population, including soft-tissue calcifications, are highlighted.
Collapse
Affiliation(s)
- Salman Khan
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Ghada Araji
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Ekrem Yetiskul
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Praneeth Reddy Keesari
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Fadi Haddadin
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Zaid Khamis
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Varun Chowdhry
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Muhammad Niazi
- Department of Hematology and Oncology, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Sarah Afif
- Department of Internal Medicine, CUNY School of Medicine, New York, NY 10031, United States
| | - Meekoo Dhar
- Department of Hematology and Oncology, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| | - Suzanne El-Sayegh
- Department of Internal Medicine, Northwell Health - Staten Island University Hospital, Staten Island, NY 10305, United States
| |
Collapse
|
34
|
Lee JE, Kim JY, Leem J. Efficacy of Trametinib in Alleviating Cisplatin-Induced Acute Kidney Injury: Inhibition of Inflammation, Oxidative Stress, and Tubular Cell Death in a Mouse Model. Molecules 2024; 29:2881. [PMID: 38930946 PMCID: PMC11206428 DOI: 10.3390/molecules29122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.
Collapse
Affiliation(s)
- Joung Eun Lee
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
35
|
Salimi A, Haddadi S, Khezri S, Asgari B, Pourgholi M. Vanillic acid protects mortality and toxicity induced by N-ethyl-N-nitrosourea in mice; in vivo model of chronic lymphocytic leukemia. Toxicol Rep 2024; 12:389-396. [PMID: 38590344 PMCID: PMC10999465 DOI: 10.1016/j.toxrep.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Alkylating agents such as N-Ethyl-N-Nitrosourea (ENU) are ubiquitous within living cells and in the environment. This study designed to evaluate the chemopreventive activity of vanillic acid on ENU-induced toxicity and carcinogenesis in mice as an animal model of chronic lymphocytic leukemia (CLL). The female, Swiss albino mice were divided into three groups each with 7 mice, group I received normal saline, group II, mice received ENU at a dose of 80 mg/kg body weight i.p. to induce CLL on the 31th day of the study, and group III, the mice pretreated with vanillic acid at a dose of 20 mg/kg body weight/day, i.p. up to 30 days and received ENU. The animals were monitored for weight changes and mortality during 120 days, and then were sacrificed for isolation of lymphocytes, as target cells in CLL. Cellular parameters like reactive oxygen species (ROS) formation, malondialdehyde (MDA) production, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) and lysosomal membrane integrity were studied. We found that pretreatment with vanillic acid significantly increased the survival of mice up to 57%, delay in death time (30%) and prevented weight changes after exposure to ENU. In addition, it was found that vanillic acid protected ROS formation, lipid peroxidation mitochondrial dysfunction, and lysosomal membrane destabilization in isolated lymphocytes. These data suggest that vanillic acid exhibited significant protection against ENU-induced toxicity and carcinogenicity, which might be related to the protection of the mitochondria and lysosomes and the reduction of ROS formation and oxidative stress.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
| | - Shadi Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahare Asgari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahshad Pourgholi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
36
|
Tang J, Li L, Chen Z, Liao C, Hu K, Yang Y, Huang J, Tang L, Zhang L, Li L. Agrimol B alleviates cisplatin-induced acute kidney injury by activating the Sirt1/Nrf2 signaling pathway in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:551-563. [PMID: 38404180 DOI: 10.3724/abbs.2023285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Cisplatin (CDDP) is a widely used chemotherapeutic agent that has remarkable antineoplastic effects. However, CDDP can cause severe acute kidney injury (AKI), which limits its clinical application. Agrimol B is the main active ingredient found in Agrimonia pilosa Ledeb and has a variety of pharmacological activities. The effect of agrimol B on CDDP-induced renal toxicity has not been determined. To investigate whether agrimol B has a protective effect against CDDP-induced AKI, we first identify Sirtuin 1 (Sirt1) as a critical target protein of agrimol B in regulating AKI through network pharmacology analysis. Subsequently, the AKI mouse model is induced by administering a single dose of CDDP via intraperitoneal injection. By detecting the serum urea nitrogen and creatinine levels, as well as the histopathological changes, we confirm that agrimol B effectively reduces CDDP-induced AKI. In addition, treatment with agrimol B counteracts the increase in renal malondialdehyde level and the decrease in superoxide dismutase (SOD), catalase and glutathione levels induced by CDDP. Moreover, western blot results reveal that agrimol B upregulates the expressions of Sirt1, SOD2, nuclear factor erythroid2-related factor 2, and downstream molecules, including heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1. However, administration of the Sirt1 inhibitor EX527 abolishes the effects of agrimol B. Finally, we establish a tumor-bearing mouse model and find that agrimol B has a synergistic antitumor effect with CDDP. Overall, agrimol B attenuates CDDP-induced AKI by activating the Sirt1/Nrf2 signaling pathway to counteract oxidative stress, suggesting that this compound is a potential therapeutic agent for the treatment of CDDP-induced AKI.
Collapse
Affiliation(s)
- Jiarui Tang
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longhui Li
- Department of Health Management Centre, Chongqing General Hospital, Chongqing 401147, China
| | - Zhijian Chen
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi 832000, China
| | - Cuiting Liao
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Tang
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longjiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
37
|
Qin H, Yuan Y, Yuan M, Yi S, Yang Y, Zhang Y. Tanshinone IIA ameliorates cisplatin-induced toxicology and cisplatin resistance via regulating SLC7A11 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:1429-1441. [PMID: 37987512 DOI: 10.1002/tox.24049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Cisplatin, a potent chemotherapy agent, is highly effective against various cancers but is hindered by resistance and toxicities. This study aims to investigate the roles of SLC7A11, a cystine/glutamate transporter, in cisplatin resistance, and explored Tanshinone IIA as a therapeutic option. Cisplatin reduced SLC7A11 in renal cells, worsening toxicity. Cisplatin-resistant gastric cancer cells show increased SLC7A11, driving resistance, while SLC7A11 knockdown curbed resistance. Tanshinone IIA showed promise in alleviating cisplatin toxicity by enhancing SLC7A11 expression and reducing associated adverse effects, while it effectively reversed cisplatin resistance in gastric cancer cells by suppressing SLC7A11. Additionally, Tanshinone IIA counteracted cisplatin resistance by inhibiting PIAS4-mediated SUMOylation of SLC7A11. Simultaneously, overexpressing miR-375, which has been shown to target SLC7A11, exacerbated cisplatin toxicity via SLC7A11 downregulation, which Tanshinone IIA attenuates. In summary, our study unveils complex SLC7A11 regulation in cisplatin resistance and toxicity. Tanshinone IIA emerges as a promising modulator of SLC7A11 through individual pathways, offering novel insights into overcoming cisplatin resistance and reducing toxicities in cancer therapy.
Collapse
Affiliation(s)
- Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou Province, China
| | - Yaqin Yuan
- Microbiological Laboratory, Guizhou Center For Medical Device Testing, Guiyang City, Guizhou Province, China
| | - Manqin Yuan
- Department of Clinical Laboratory Medicine, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Siyi Yi
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou Province, China
| | - Yonghong Yang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou Province, China
| | - Yujie Zhang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou Province, China
| |
Collapse
|
38
|
Jin Z, Zhao-Xia L, Fan-Ke P, Wen-Juan Z, Min-Li W, Han-Yi Z. Progress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of prevention. Front Pharmacol 2024; 15:1327502. [PMID: 38414732 PMCID: PMC10896984 DOI: 10.3389/fphar.2024.1327502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Platinum-based antitumor drugs are broad-spectrum agents with unique mechanisms of action. Combination chemotherapy regimens based on platinum drugs are commonly used in cancer treatment. However, these drugs can cause various adverse reactions in the human body through different routes of administration, including reproductive toxicity, genetic toxicity, and embryonic developmental toxicity. Preventing adverse effects is crucial to enhance patients' quality of life and reduce healthcare costs. This article discusses the types and developmental history of antitumor active platinum compounds, their mechanisms of action, routes of administration, and their potential reproductive, genetic, and embryonic developmental toxicity. This text explores preventive measures based on animal experimental results. Its aim is to provide references for personalized treatment and occupational protection when using platinum drugs. The continuous progress of science and technology, along with the deepening of medical research, suggests that the application of platinum drugs will broaden. Therefore, the development of new platinum drugs will be an important direction for future research.
Collapse
Affiliation(s)
- Zhan Jin
- Gannan Medical University, Ganzhou, China
| | - Liu Zhao-Xia
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | | | - Wei Min-Li
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zeng Han-Yi
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Genetics at the School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
39
|
Cecchi D, Jackson N, Beckham W, Chithrani DB. Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment. Pharmaceutics 2024; 16:175. [PMID: 38399237 PMCID: PMC10891984 DOI: 10.3390/pharmaceutics16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for patients. Radiation therapy is involved in around 50% of cancer treatment workflows; however, it presents significant recurrence rates and normal tissue toxicity, given the inevitable deposition of the dose to the surrounding healthy tissue. Chemotherapy is another treatment modality with excessive normal tissue toxicity that significantly affects patients' quality of life. To improve the therapeutic efficacy of radiotherapy and chemotherapy, multiple conjunctive modalities have been proposed, which include the targeting of components of the tumour microenvironment inhibiting tumour spread and anti-therapeutic pathways, increasing the oxygen content within the tumour to revert the hypoxic nature of the malignancy, improving the local dose deposition with metal nanoparticles, and the restriction of the cell cycle within radiosensitive phases. The tumour microenvironment is largely responsible for inhibiting nanoparticle capture within the tumour itself and improving resistance to various forms of cancer therapy. In this review, we discuss the current literature surrounding the administration of molecular and nanoparticle therapeutics, their pharmacokinetics, and contrasting mechanisms of action. The review aims to demonstrate the advancements in the field of conjugated nanomaterials and radiotherapeutics targeting, inhibiting, or bypassing the tumour microenvironment to promote further research that can improve treatment outcomes and toxicity rates.
Collapse
Affiliation(s)
- Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
40
|
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-Acetylcysteine on Cisplatin Toxicity: A Review of the Literature. Biologics 2024; 18:7-19. [PMID: 38250216 PMCID: PMC10799624 DOI: 10.2147/btt.s438150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
N-acetylcysteine (NAC) is a membrane-permeable cysteine precursor capable of enhancing the intracellular cysteine pool, enhancing cellular glutathione (GSH) synthesis, and thus potentiating the endogenous antioxidant mechanism. Late administration of NAC after cisplatin has been shown in different in vivo studies to reduce the side effects caused by various toxicities at different levels without affecting the antitumor efficacy of platinum, improving total and enzymatic antioxidant capacity and decreasing oxidative stress markers. These characteristics provide NAC with a rationale as a potentially effective chemo protectant in cisplatin-based therapeutic cycles. NAC represents a potential candidate as a chemoprotective agent to decrease toxicities secondary to cisplatin treatment. It suggests that it could be used in clinical trials, whereby the effective dose, timing, and route should be adjusted to optimize chemoprotection. This review provides an overview of the effect of NAC on cisplatin toxicity, a drug widely used in the clinic in adults and children.
Collapse
Affiliation(s)
- Angeles Citlali Zavala-Valencia
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, Mexico
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
| | | | | | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
41
|
Liu C, Yuan ZY, Zhang XX, Chang JJ, Yang Y, Sun SJ, Du Y, Zhan HQ. Novel molecular classification and prognosis of papillary renal cell carcinoma based on a large-scale CRISPR-Cas9 screening and machine learning. Heliyon 2024; 10:e23184. [PMID: 38163209 PMCID: PMC10754875 DOI: 10.1016/j.heliyon.2023.e23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Papillary renal cell carcinoma (PRCC) is a highly heterogeneous cancer, and PRCC patients with advanced/metastatic subgroup showed obviously shorter survival compared to other kinds of renal cell carcinomas. However, the molecular mechanism and prognostic predictors of PRCC remain unclear and are worth deep studying. The aim of this study is to identify novel molecular classification and construct a reliable prognostic model for PRCC. The expression data were retrieved from TCGA, GEO, GTEx and TARGET databases. CRISPR data was obtained from Depmap database. The key genes were selected by the intersection of CRISPR-Cas9 screening genes, differentially expressed genes, and genes with prognostic capacity in PRCC. The molecular classification was identified based on the key genes. Drug sensitivity, tumor microenvironment, somatic mutation, and survival were compared among the novel classification. A prognostic model utilizing multiple machine learning algorithms based on the key genes was developed and tested by independent external validation set. Our study identified three clusters (C1, C2 and C3) in PRCC based on 41 key genes. C2 had obviously higher expression of the key genes and lower survival than C1 and C3. Significant differences in drug sensitivity, tumor microenvironment, and mutation landscape have been observed among the three clusters. By utilizing 21 combinations of 9 machine learning algorithms, 9 out of 41 genes were chosen to construct a robust prognostic signature, which exhibited good prognostic ability. SERPINH1 was identified as a critical gene for its strong prognostic ability in PRCC by univariate and multiple Cox regression analyses. Quantitative real-time PCR and Western blot demonstrated that SERPINH1 mRNA and protein were highly expressed in PRCC cells compared with normal human renal cells. This study exhibited a new molecular classification and prognostic signature for PRCC, which may provide a potential biomarker and therapy target for PRCC patients.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Zhan-Yuan Yuan
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Xiao-Xun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Jia-Jun Chang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Yang Yang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Sheng-Jia Sun
- School of Clinical Medicine, Anhui Medical University, Hefei, 230031, PR China
| | - Yinan Du
- Department of Pathogenic microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| |
Collapse
|
42
|
Senguttuvan RN, Santiago NL, Han ES, Lee B, Lee S, Lin WC, Kebria M, Hakim A, Lin JF, Wakabayashi MT, Ruel N, Tinsley R, Eng M, Stewart DB, Wang EW, Paz BI, Wu X, Cho H, Liang WS, Rodriguez-Rodriguez L, Cristea MC, Raoof M, Dellinger TH. Impact of Sodium Thiosulfate on Prevention of Nephrotoxicities in HIPEC: An Ancillary Evaluation of Cisplatin-Induced Toxicities in Ovarian Cancer. Ann Surg Oncol 2023; 30:8144-8155. [PMID: 37710139 PMCID: PMC10625947 DOI: 10.1245/s10434-023-14216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin confers a survival benefit in epithelial ovarian cancer (EOC) but is associated with renal toxicity. Sodium thiosulfate (ST) is used for nephroprotection for HIPEC with cisplatin, but standard HIPEC practices vary. METHODS A prospective, nonrandomized, clinical trial evaluated safety outcomes of HIPEC with cisplatin 75 mg/m2 during cytoreductive surgery (CRS) in patients with EOC (n = 34) and endometrial cancer (n = 6). Twenty-one patients received no ST (nST), and 19 received ST. Adverse events (AEs) were reported according to CTCAE v.5.0. Serum creatinine (Cr) was collected preoperatively and postoperatively (Days 5-8). Progression-free survival (PFS) was followed. Normal peritoneum was biopsied before and after HIPEC for whole transcriptomic sequencing to identify RNAseq signatures correlating with AEs. RESULTS Forty patients had HIPEC at the time of interval or secondary CRS. Renal toxicities in the nST group were 33% any grade AE and 9% grade 3 AEs. The ST group demonstrated no renal AEs. Median postoperative Cr in the nST group was 1.1 mg/dL and 0.5 mg/dL in the ST group (p = 0.0001). Median change in Cr from preoperative to postoperative levels were + 53% (nST) compared with - 9.6% (ST) (p = 0.003). PFS did not differ between the ST and nST groups in primary or recurrent EOC patients. Renal AEs were associated with downregulation of metabolic pathways and upregulation of immune pathways. CONCLUSIONS ST significantly reduces acute renal toxicity associated with HIPEC with cisplatin in ovarian cancer patients. As nephrotoxicity is high in HIPEC with cisplatin, nephroprotective agents should be considered.
Collapse
Affiliation(s)
- Rosemary N Senguttuvan
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Nicole Lugo Santiago
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Byrne Lee
- Department of Surgery, Stanford, Stanford, CA, USA
| | - Stephen Lee
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Wei-Chien Lin
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Mehdi Kebria
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Amy Hakim
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | - Jeff F Lin
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | | | - Nora Ruel
- Biostatistics Core, City of Hope BRI, Duarte, CA, USA
| | | | - Melissa Eng
- Clinical Trials Office, COH, Duarte, CA, USA
| | | | - Edward W Wang
- Department of Medical Oncology, COH, Duarte, CA, USA
| | - Benjamin I Paz
- Division of Surgical Oncology, Department of Surgery, COH, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope Beckman Research Institute (BRI), Duarte, CA, USA
| | - Hyejin Cho
- Integrative Genomics Core, City of Hope Beckman Research Institute (BRI), Duarte, CA, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lorna Rodriguez-Rodriguez
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA
| | | | | | - Thanh H Dellinger
- Division of Gynecologic Oncology, Department of Surgery, City of Hope Comprehensive Cancer Center (COH), Duarte, CA, USA.
| |
Collapse
|
43
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Liu X, Gao L, Huang X, Deng R, Wu S, Peng Y, Lu J. Huangqi-Danshen decoction protects against cisplatin-induced acute kidney injury in mice. Front Pharmacol 2023; 14:1236820. [PMID: 38034992 PMCID: PMC10687478 DOI: 10.3389/fphar.2023.1236820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Acute kidney injury (AKI) induced by cisplatin remains a major impediment to the clinical application of cisplatin, necessitating urgent exploration for promising solutions. Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, has been shown by our group to have a reno-protective effect in adenine-induced chronic kidney disease mice and diabetic db/db mice. However, the effect of HDD on cisplatin-induced AKI and its underlying mechanisms are unknown. Methods: The AKI model was established by intraperitoneal injection of cisplatin (20 mg/kg) in C57BL/6 mice. The mice in the treatment group were administrated with HDD (6.8 g/kg/d) for 5 consecutive days before cisplatin challenge. After 72 h cisplatin injection, blood and kidney tissue were subsequently collected for biochemical detection, histopathological evaluation, Western blot analysis, immunohistochemical staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to detect changes in renal metabolites. Results: The results showed that HDD significantly reduced serum creatinine and blood urea nitrogen levels and alleviated renal histopathological injury in cisplatin-induced AKI mice. And HDD treatment demonstrated a significant inhibition in apoptosis, inflammation, and oxidative stress in AKI mice. Moreover, non-target metabolomics revealed that HDD significantly restored 165 altered metabolites in AKI mice. Subsequent enrichment analysis and pathway analysis of these metabolites indicated that nicotinate and nicotinamide metabolism was the primary pathway affected by HDD intervention. Further investigation showed that HDD could upregulate nicotinamide adenine dinucleotide (NAD+) biosynthesis-related enzymes quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide phosphoribosyltransferase to replenish NAD+ content in the kidney of AKI mice. Conclusion: In summary, HDD exerted a protective effect against cisplatin-induced AKI and suppressed apoptosis, inflammation, and oxidative stress in the kidney of AKI mice, which may be attributed to the modulation of NAD+ biosynthesis.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Liwen Gao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xi Huang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruyu Deng
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shanshan Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Peng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Lin Y, Li J, Li S, Chen Y, Luo Y, Wang Y, Yang Z. Long noncoding RNA LINC00482 silencing sensitizes non-small cell lung cancer cells to cisplatin by downregulating CLASRP via E2F1. Funct Integr Genomics 2023; 23:335. [PMID: 37966662 DOI: 10.1007/s10142-023-01260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Long noncoding RNA LINC00482 (LINC00482) is dysregulated in non-small cell lung cancer cells (NSCLC). Herein, this research examined the actions and specific mechanisms of LINC00482 in cisplatin (DDP) resistance in NSCLC. LINC00482 expression was assessed using RT-qPCR in clinical NSCLC tissues and cell lines. Knockdown and ectopic expression assays were conducted in A549 and HCC44 cells, followed by determination of cell proliferation with CCK-8 and clone formation assays, apoptosis with flow cytometry, and DDP sensitivity. The association between LINC00482, E2F1, and CLASRP was evaluated with dual-luciferase reporter, ChIP, and RIP assays. The role of LINC00482 in NSCLC was confirmed in nude mice. NSCLC tissues and cells had upregulated LINC00482 expression. LINC00482 was mainly localized in the cell nucleus, and LINC00482 recruited E2F1 to enhance CLASRP expression in NSCLC cells. LINC00482 knockdown enhanced the DDP sensitivity and apoptosis of NSCLC cells while reducing cell proliferation, which was negated by overexpressing CLASRP. LINC00482 knockdown restricted tumor growth and enhanced DDP sensitivity in NSCLC in vivo. LINC00482 silencing downregulated CLASRP through E2F1 to facilitate the sensitivity to DDP in NSCLC.
Collapse
Affiliation(s)
- Yanming Lin
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Jinmei Li
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Shujun Li
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yuting Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yiping Luo
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Yongcun Wang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China.
| | - Zhixiong Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China.
| |
Collapse
|
46
|
Guo Y, Li X, Yuan R, Ren J, Huang Y, Tian H. Compound 5 alleviated acute kidney injury without affecting the antitumor effect after cisplatin treatment. Biochem Biophys Res Commun 2023; 680:177-183. [PMID: 37742346 DOI: 10.1016/j.bbrc.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism. The results founded that compound 5 can alleviate serum urea nitrogen and serum creatinine induced by cisplatin administration in vivo. In addition, histopathological analysis of the kidneys showed that compound 5 significantly reduced cisplatin-induced (Cis-induced) renal toxicity compared with the cisplatin group. A mechanism study showed that compound 5 significantly reduces NOX4 levels, improves the activity of antioxidant enzymes (SOD and GSH-Px), reduces Malondialdehyde (MDA) levels, increases the total antioxidant level, reduces oxidative stress, and thus reduces kidney tissue damage. At the same time, compound 5 activated the Nrf2 signaling pathway. In addition, it can increase the expression of Bax, reduce the expression of Bcl-2 and caspase-3, a marker of apoptosis, which is beneficial to the survival of kidney cells. Additionally, compound 5 did not interfere with the antitumor effects of cisplatin in in vivo xenotransplantation models.
Collapse
Affiliation(s)
- Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Jingming Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
47
|
Wu T, Ma W, Lu W, Huangshen Z, Chen S, Yang Q, Li C, Li Z, Li N, Feng X, Li L, Miao Y, Wang J, Liu X, Cai Y, He Y, He X, Li J, Zhao R, Wen J. Vaccarin alleviates cisplatin-induced acute kidney injury via decreasing NOX4-derived ROS. Heliyon 2023; 9:e21231. [PMID: 38027630 PMCID: PMC10660019 DOI: 10.1016/j.heliyon.2023.e21231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cisplatin is a chemotherapeutant widely used in treating solid tumors, with the common side effect of acute kidney injury (AKI). Developing effective useful agent for preventing or treating cisplatin-induced AKI is of great importance. In this study, we investigate the protective effect of vaccarin, a chemical entity of flavonoid glycoside, against cisplatin-induced AKI. Cisplatin-treated C57BL/6J mice and human kidney-2 (HK-2) cells were used as the model of cisplatin-induced AKI. The levels of blood urea nitrogen (BUN) and creatine (Cr) levels and periodic acid-Schiff staining (PAS) scores decreased when vaccarin was administrated. Vaccarin had no impact on renal platinum accumulation, which was detected by the ICP-MS 6 h after cisplatin injection. Moreover, vaccarin can significantly alleviate the product of reactive oxygen species and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) in cisplatin-induced AKI, both in vivo and in vitro. In addition, vaccarin decreased the receptor-interacting protein kinase 1 (RIPK1) related programmed necrosis (necroptosis), cell apoptosis (shown by the protein levels of cleaved-caspase3 and flow cytometry) and inflammation (shown by the decreased levels of NLRP3, p-P65 and the mRNA of several inflammatory factors). NOX4 inhibitor GLX351322 (GLX) and NOX4 kowndown by siRNA have equivalent protective effect of vaccarin in vitro. When vaccarin was administered together with GLX or NOX4 siRNA, this protective effect of vaccarin did not further increase, as indicating by the index of oxidative stress, cell viability, necroptosis and apoptosis. In conclusion, vaccarin can alleviate cisplatin-induced AKI via inhibiting NOX4.
Collapse
Affiliation(s)
- Tingni Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenxian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Weili Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zhuofan Huangshen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shiqing Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yu Miao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xueqi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuting Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoyan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
48
|
Luo X, Li Y, Wang B, Zhu S, Liu X, Liu X, Qi X, Wu Y. Carnosine alleviates cisplatin-induced acute kidney injury by targeting Caspase-1 regulated pyroptosis. Biomed Pharmacother 2023; 167:115563. [PMID: 37742605 DOI: 10.1016/j.biopha.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Sai Zhu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
49
|
Gao Y, Peng K, Wang Y, Guo Y, Zeng C, Hua R, Liu Q, Li X, Qiu Y, Wang Z. Ellagic acid ameliorates cisplatin-induced acute kidney injury by regulating inflammation and SIRT6/TNF-α signaling. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
50
|
Kurniawan B, Bankeeree W, Yanatatsaneejit P, Prasongsuk S. Antiproliferative activity and apoptosis‑inducing effects of Trametes polyzona polysaccharides against human breast cancer cells. Biomed Rep 2023; 19:83. [PMID: 37881601 PMCID: PMC10594067 DOI: 10.3892/br.2023.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023] Open
Abstract
Fungal polysaccharides have garnered interest due to their biological activities in terms of anticancer properties and antioxidant activity. The present study aimed to evaluate the anticancer properties and antioxidant activity of a newly isolated white-rot fungus, Trametes polyzona CU07 from Thailand. Crude T. polyzona polysaccharides (CTPPs) were extracted from mycelia using hot water. The chemical properties, including total carbohydrates, molecular weight and protein content, and Fourier-transform infrared spectroscopy analysis, were then investigated. The antioxidant activity was determined against the radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The anticancer properties were evaluated in MCF-7 breast cancer (BC) cells, whereas the 293 cell line was used as a control. The inhibitory effects of CTPPs on viability were determined by MTT assay, followed by BrdU incorporation assay to assess cell proliferation. The induction of apoptosis was determined by flow cytometry. CTPPs were considered polysaccharide-protein conjugates, which had molecular weights in the range of 0.3-22,528 kDa. They contained ~50 and 37% carbohydrate and protein, respectively, with glucose as the main monosaccharide component. Notably, CTPPs had high antioxidant activity against ABTS, and had a significant inhibitory effect on the MCF-7 cell line with a half-maximal inhibitory concentration value of 0.58 mg/ml. However, they exhibited little effect on the 293 cell line. The BrdU incorporation assay demonstrated that CTPPs inhibited proliferation by ~20% compared with that in untreated cells. CTPPs also induced early- and late-stage apoptosis of MCF-7 cells. These results indicated that the CTPPs may exhibit potential antiproliferative and antioxidant activity, and apoptosis-inducing effects against human BC cells.
Collapse
Affiliation(s)
- Budi Kurniawan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Human Genetics Research Group and Plant Breeding Laboratory, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichanee Bankeeree
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattamawadee Yanatatsaneejit
- Human Genetics Research Group and Plant Breeding Laboratory, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|