1
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025; 20:1352-1388. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, Yang L. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat Biotechnol 2025; 43:329-344. [PMID: 38744947 PMCID: PMC11919731 DOI: 10.1038/s41587-024-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wenbin Guo
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aarushi Bajpai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Seet
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M Larson
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Rodriguez-Caturla MY, Margalho LP, Graça JS, Pia AKR, Xavier VL, Noronha MF, Cabral L, Lemos-Junior WJF, Castillo CJC, SantˈAna AS. Bacterial dynamics and volatile metabolome changes of vacuum-packaged beef with different pH during chilled storage. Int J Food Microbiol 2025; 427:110955. [PMID: 39520764 DOI: 10.1016/j.ijfoodmicro.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to assess the growth of spoilage bacteria in Brazilian vacuum-packed beef across different pH ranges (5.4-5.8, 5.8-6.1, ≥6.1) stored at temperatures of 0 °C, 4 °C, and 7 °C. Additionally, the research sought to identify predominant spoilage bacteria at the genus level using 16S rDNA gene sequencing and analyze the principal volatile organic compounds (VOCs) produced by this microbiota through HS-SPME/GC-MS. Lactic acid bacteria (LAB) consistently exhibited counts exceeding 6.0 Log CFU/g, regardless of temperature and pH conditions. The bacterial diversity in the meat samples reflected the influence of slaughterhouse environments, with Pseudomonas and Serratia remaining dominant across different cuts and pH levels. Post-storage, variations in pH and temperature modulated the initial bacterial diversity, leading to a reduction in diversity and an increase in LAB such as Lactobacillus, Lactococcus, Leuconostoc, and Carnobacterium. Notably, these changes were observed within pH ranges of 5.4-5.8 and 5.8-6.1, irrespective of beef cuts and storage temperatures. Based on high throughput sequencing and VOCS, correlation analysis revealed a relationship between the growth of specific spoilage microorganisms under vacuum conditions and the presence of VOCs such as alcohols (e.g., 1-propanol, 2-methyl-) and ketones (e.g., 2-nonanone, 2-octanone, 2-heptanone), identifying them as potential indicators of spoilage bacteria growth.
Collapse
Affiliation(s)
- Magdevis Y Rodriguez-Caturla
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Larissa P Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana S Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Viny L Xavier
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Melline F Noronha
- Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | | | - Carmen J C Castillo
- Department of Agroindustry, Food and Nutrition, Luis de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Anderson S SantˈAna
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Tamura T, Cheng C, Villaseñor-Altamirano A, Yamada K, Ikeda K, Hayashida K, Menon JA, Chen XD, Chung H, Varon J, Chen J, Choi J, Cullen AM, Guo J, Lin X, Olenchock BA, Pinilla-Vera MA, Manandhar R, Sheikh MDA, Hou PC, Lawler PR, Oldham WM, Seethala RR, Immunology of Cardiac Arrest Network (I-CAN), Baron RM, Bohula EA, Morrow DA, Blumberg RS, Chen F, Merriam LT, Weissman AJ, Brenner MB, Chen X, Ichinose F, Kim EY. Diverse NKT cells regulate early inflammation and neurological outcomes after cardiac arrest and resuscitation. Sci Transl Med 2024; 16:eadq5796. [PMID: 39630883 PMCID: PMC11792709 DOI: 10.1126/scitranslmed.adq5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024]
Abstract
Neurological injury drives most deaths and morbidity among patients hospitalized for out-of-hospital cardiac arrest (OHCA). Despite its clinical importance, there are no effective pharmacological therapies targeting post-cardiac arrest (CA) neurological injury. Here, we analyzed circulating immune cells from a large cohort of patients with OHCA, finding that lymphopenia independently associated with poor neurological outcomes. Single-cell RNA sequencing of immune cells showed that T cells with features of both innate T cells and natural killer (NK) cells were increased in patients with favorable neurological outcomes. We more specifically identified an early increase in circulating diverse NKT (dNKT) cells in a separate cohort of patients with OHCA who had good neurological outcomes. These cells harbored a diverse T cell receptor repertoire but were consistently specific for sulfatide antigen. In mice, we found that sulfatide-specific dNKT cells trafficked to the brain after CA and resuscitation. In the brains of mice lacking NKT cells (Cd1d-/-), we observed increased inflammatory chemokine and cytokine expression and accumulation of macrophages when compared with wild-type mice. Cd1d-/- mice also had increased neuronal injury, neurological dysfunction, and worse mortality after CA. To therapeutically enhance dNKT cell activity, we treated mice with sulfatide lipid after CA, showing that it improved neurological function. Together, these data show that sulfatide-specific dNKT cells are associated with good neurological outcomes after clinical OHCA and are neuroprotective in mice after CA. Strategies to enhance the number or function of dNKT cells may thus represent a treatment approach for CA.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Changde Cheng
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
- Department of Medicine, Division of Hematology and Oncology, Stem Cell Biology Program, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Ana Villaseñor-Altamirano
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Yamada
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Ikeda
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Kei Hayashida
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Jaivardhan A Menon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Xi Dawn Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Hattie Chung
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Jack Varon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Jiani Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Jiyoung Choi
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Aidan M. Cullen
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Jingyu Guo
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xi Lin
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Benjamin A. Olenchock
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Mayra A. Pinilla-Vera
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Reshmi Manandhar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Muhammad Dawood Amir Sheikh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Peter C. Hou
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | - Patrick R. Lawler
- McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
- University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - William M. Oldham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Raghu R. Seethala
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | | | - Rebecca M. Baron
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Erin A. Bohula
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - David A. Morrow
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Richard S. Blumberg
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Louis T. Merriam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Alexandra J. Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine; Pittsburgh 15261, PA
| | - Michael B. Brenner
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Fumito Ichinose
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Edy Y. Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| |
Collapse
|
5
|
Lin L, Luo J, Cai Y, Wu X, Zhou L, Li T, Wang X, Xu H. Mass cytometry identifies imbalance of multiple immune-cell subsets associated with biologics treatment in ankylosing spondylitis. Int J Rheum Dis 2024; 27:e15378. [PMID: 39420773 DOI: 10.1111/1756-185x.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aims to comprehensively investigate immune-cell landscapes in ankylosing spondylitis (AS) patients and explore longitudinal immunophenotyping changes induced by biological agents. METHODS We employed mass cytometry with 35 cellular markers to analyze blood samples from 34 AS patients and 13 healthy controls (HC). Eleven AS patients were re-evaluated 1 month (4 patients) and 3 months (7 patients) after treatment with biological agents. Flow Self-Organizing Maps (FlowSOM) clustering was performed to identify specific cellular metaclusters. We compared cellular abundances across distinct subgroups and validated subset differences using gating strategies in flow cytometry scatter plots, visualized with FlowJo software. The proportions of differential subsets were then used for intercellular and clinical correlation analysis, as well as for constructing diagnostic models based on the random forest algorithm. RESULTS In AS patients, we identified and validated nine different immune-cell subsets compared to HC. Three subsets increased: helper T-cell 17 (Th17), mucosa-associated invariant T-cell (MAIT), and classical monocytes (CM). Six subsets decreased: effector memory T-cell (TEM), naïve B cells, transitional B cells, IL10+ memory B cells, non-classical monocytes (NCM), and neutrophils. Treatments with biological agents could rectify cellular abnormalities, particularly the imbalance of CM/NCM. Furthermore, these subsets may serve as biomarkers for assessing disease activity and constructing effective diagnostic models for AS. CONCLUSION These findings provide novel insights into the specific patterns of immune cell in AS, facilitating the further development of novel biomarkers and potential therapeutic targets for AS patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yue Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 PMCID: PMC11552652 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Yang J, Pan H, Wang M, Li A, Zhang G, Fan X, Li Z. Protective effects of Ganoderma lucidum spores on estradiol benzoate-induced TEC apoptosis and compromised double-positive thymocyte development. Front Pharmacol 2024; 15:1419881. [PMID: 39221140 PMCID: PMC11361955 DOI: 10.3389/fphar.2024.1419881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Backgroud: Thymic atrophy marks the onset of immune aging, precipitating developmental anomalies in T cells. Numerous clinical and preclinical investigations have underscored the regulatory role of Ganoderma lucidum spores (GLS) in T cell development. However, the precise mechanisms underlying this regulation remain elusive. Methods: In this study, a mice model of estradiol benzoate (EB)-induced thymic atrophy was constructed, and the improvement effect of GLS on thymic atrophy was evaluated. Then, we employs multi-omics techniques to elucidate how GLS modulates T cell development amidst EB-induced thymic atrophy in mice. Results: GLS effectively mitigates EB-induced thymic damage by attenuating apoptotic thymic epithelial cells (TECs) and enhancing the output of CD4+ T cells into peripheral blood. During thymic T cell development, sporoderm-removed GLS (RGLS) promotes T cell receptor (TCR) α rearrangement by augmenting V-J fragment rearrangement frequency and efficiency. Notably, biased Vα14-Jα18 rearrangement fosters double-positive (DP) to invariant natural killer T (iNKT) cell differentiation, partially contingent on RGLS-mediated restriction of peptide-major histocompatibility complex I (pMHCⅠ)-CD8 interaction and augmented CD1d expression in DP thymocytes, thereby promoting DP to CD4+ iNKT cell development. Furthermore, RGLS amplifies interaction between a DP subpopulation, termed DPsel-7, and plasmacytoid dendritic cells (pDCs), likely facilitating the subsequent development of double-negative iNKT1 cells. Lastly, RGLS suppresses EB-induced upregulation of Abpob and Apoa4, curbing the clearance of CD4+Abpob+ and CD4+Apoa4+ T cells by mTECs, resulting in enhanced CD4+ T cell output. Discussion: These findings indicate that the RGLS effectively mitigates EB-induced TEC apoptosis and compromised double-positive thymocyte development. These insights into RGLS's immunoregulatory role pave the way for its potential as a T-cell regeneration inducer.
Collapse
Affiliation(s)
- Jihong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Haitao Pan
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
| | - Mengyao Wang
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
| | - Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoliang Zhang
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, China
| | - Zhenhao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Chen TZ, Xu XL, Wang YP, Li YG. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci 2024; 81:88. [PMID: 38349408 PMCID: PMC10864461 DOI: 10.1007/s00018-024-05125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai-Zhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Lei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
10
|
Zhang H, Wang J, Qian M, Jin Y. Mefentrifluconazole exposure disrupted hepatic lipid metabolism disorder tightly associated with gut barrier function abnormal in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167317. [PMID: 37742980 DOI: 10.1016/j.scitotenv.2023.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Mefentrifluconazole (MFZ) is an azole fungicide that is placed in agriculture for the control of fungal hazards. However, due to their non-biodegradability, azole fungicides can accumulate in plants, animals, and the environment, thus becoming a major health concern worldwide. In this study, we exposed 7-week-old C57BL/6 mice to 10, 30, and 100 mg/kg of MFZ for 28 d to assess the toxic effects of MFZ on the liver and gut tissues of the mice. Histopathological, biochemical indexes, and transcriptomic analyses revealed that MFZ exposure disrupted the liver structure and hepatic lipid metabolism as well as damaged gut barrier function and promoted inflammation in mice. Moreover, 16S rRNA sequencing demonstrated that MFZ exposure significantly increased the abundance of patescibacteria at the generic level. Also, MFZ exposure increased the abundance of bacterial genera associated with inhibition of glycolipid metabolism. These results suggested that the disruption of liver lipid metabolism caused by MFZ exposure may be caused by changes in gut microbiota function. This study provided a new disease occurrence study for risk assessment of MFZ and strengthened the focus on some novel fungicides.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the Phenotypic States of Human innate-like T Cells: Comparative Insights with Conventional T Cells and Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570707. [PMID: 38105962 PMCID: PMC10723458 DOI: 10.1101/2023.12.07.570707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul J. Norman
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah V. Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
13
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
14
|
Chandra S, Ascui G, Riffelmacher T, Chawla A, Ramírez-Suástegui C, Castelan VC, Seumois G, Simon H, Murray MP, Seo GY, Premlal ALR, Schmiedel B, Verstichel G, Li Y, Lin CH, Greenbaum J, Lamberti J, Murthy R, Nigro J, Cheroutre H, Ottensmeier CH, Hedrick SM, Lu LF, Vijayanand P, Kronenberg M. Transcriptomes and metabolism define mouse and human MAIT cell populations. Sci Immunol 2023; 8:eabn8531. [PMID: 37948512 PMCID: PMC11160507 DOI: 10.1126/sciimmunol.abn8531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes that respond to microbial metabolites. We defined MAIT cell populations in different organs and characterized the developmental pathway of mouse and human MAIT cells in the thymus using single-cell RNA sequencing and phenotypic and metabolic analyses. We showed that the predominant mouse subset, which produced IL-17 (MAIT17), and the subset that produced IFN-γ (MAIT1) had not only greatly different transcriptomes but also different metabolic states. MAIT17 cells in different organs exhibited increased lipid uptake, lipid storage, and mitochondrial potential compared with MAIT1 cells. All these properties were similar in the thymus and likely acquired there. Human MAIT cells in lung and blood were more homogeneous but still differed between tissues. Human MAIT cells had increased fatty acid uptake and lipid storage in blood and lung, similar to human CD8 T resident memory cells, but unlike mouse MAIT17 cells, they lacked increased mitochondrial potential. Although mouse and human MAIT cell transcriptomes showed similarities for immature cells in the thymus, they diverged more strikingly in the periphery. Analysis of pet store mice demonstrated decreased lung MAIT17 cells in these so-called "dirty" mice, indicative of an environmental influence on MAIT cell subsets and function.
Collapse
Affiliation(s)
- Shilpi Chandra
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gabriel Ascui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Thomas Riffelmacher
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY UK
| | - Ashu Chawla
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Ciro Ramírez-Suástegui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Viankail C. Castelan
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Hayley Simon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mallory P. Murray
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Goo-Young Seo
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | | | - Benjamin Schmiedel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Greet Verstichel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Yingcong Li
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Chia-Hao Lin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Jason Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - John Lamberti
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Falk Cardiovascular Research Center, Stanford, CA 94305-5407 USA
| | - Raghav Murthy
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Children’s Heart Center Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John Nigro
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Hilde Cheroutre
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Christian H. Ottensmeier
- Liverpool Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Stephen M. Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Li-Fan Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093 USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mitchell Kronenberg
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
15
|
Ye X, Li Y, Fang B, Yuan Y, Feng D, Chen H, Li J, Meng Q, Xiong S, Ye D, Jiao L, Chen D, Chen R, Lei W, Gao Y, Li C. Type 17 mucosal-associated invariant T cells contribute to neutrophilic inflammation in patients with nasal polyps. J Allergy Clin Immunol 2023; 152:1153-1166.e12. [PMID: 37437744 DOI: 10.1016/j.jaci.2023.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Immune regulation in chronic rhinosinusitis with nasal polyps (CRSwNP) with a neutrophilic endotype remains unclear. Mucosal-associated invariant T (MAIT) cells are tissue-resident innate T lymphocytes that respond quickly to pathogens and promote chronic mucosal inflammation. OBJECTIVE We aimed to investigate the roles of MAIT cells in neutrophilic CRSwNP. METHODS Nasal tissues were obtained from 113 patients with CRSwNP and 29 control subjects. Peripheral and tissue MAIT cells and their subsets were analyzed by flow cytometry. Polyp-derived MAIT cells were analyzed by RNA sequencing to study their effects on neutrophils. RESULTS Endotypes of CRSwNP were classified as paucigranulocytic (n = 21), eosinophilic (n = 29), neutrophilic (n = 39), and mixed granulocytic (n = 24). Frequencies of MAIT cells were significantly higher in neutrophilic (3.62%) and mixed granulocytic (3.60%) polyps than in control mucosa (1.78%). MAIT cell percentages positively correlated with local neutrophil counts. MAIT cells were more enriched in tissues than in matched PBMCs. The frequencies of MAIT1 subset or IFN-γ+ MAIT cells were comparable among control tissues and CRSwNP subtypes. The proportions of MAIT17 subset or IL-17A+ MAIT cells were significantly increased in neutrophilic or mixed granulocytic polyps compared with controls. RNA sequencing revealed type 17 and pro-neutrophil profiles in neutrophilic polyp-derived MAIT cells. In patients with neutrophilic CRSwNP, the proportions of MAIT and MAIT17 cells were positively correlated with local proinflammatory cytokines and symptom severity. In vitro experiments demonstrated that neutrophilic polyp-derived MAIT cells promoted neutrophil migration, survival, and activation. CONCLUSIONS MAIT cells from neutrophilic CRSwNP demonstrate type 17 functional properties and promote neutrophil infiltration in nasal mucosa.
Collapse
Affiliation(s)
- Xiaoyan Ye
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yachun Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bixing Fang
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhang Yuan
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Feng
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qingxiang Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Shaobing Xiong
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongmei Ye
- Organ Transplantation Centre, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linyi Jiao
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dehua Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wenbin Lei
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Centre, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunwei Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Iwanami N, Richter AS, Sikora K, Boehm T. Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells. Nat Commun 2023; 14:3645. [PMID: 37339974 DOI: 10.1038/s41467-023-39422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Unconventional T cells, such as innate natural killer T cells (iNKT) cells, are an important part of vertebrate immune defences. iNKT recognise glycolipids through a T cell receptor (TCR) that is composed of a semi-invariant TCR α chain, paired with a restricted set of TCR β chains. Here, we show that splicing of the cognate Trav11-Traj18-Trac pre-mRNA encoding the characteristic Vα14Jα18 variable region of this semi-invariant TCR depends on the presence of Tnpo3. The Tnpo3 gene encodes a nuclear transporter of the β-karyopherin family whose cargo includes various splice regulators. The block of iNKT cell development in the absence of Tnpo3 can be overcome by transgenic provision of a rearranged Trav11-Traj18-Trac cDNA, indicating that Tnpo3 deficiency does not interfere with the development of iNKT cells per se. Our study thus identifies a role for Tnpo3 in regulating the splicing of the pre-mRNA encoding the cognate TCRα chain of iNKT cells.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Andreas S Richter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.
| |
Collapse
|
17
|
Fragoulis GE, Vetsika EK, Kyriakidi M, Verrou KM, Kollias G, Tektonidou MG, Mcinnes IB, Sfikakis PP. Distinct innate and adaptive immunity phenotypic profile at the circulating single-cell level in Psoriatic Arthritis. Clin Immunol 2023:109679. [PMID: 37336253 DOI: 10.1016/j.clim.2023.109679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Mass cytometry was employed to investigate 47 circulating leukocyte subsets in patients with active psoriatic arthritis (PsA, n = 16) compared to healthy controls (n = 13), seropositive (RF and/or anti-CCP, n = 12) and seronegative (n = 9) RA patients. Comparing PsA to controls, different cell frequencies were found in both innate and adaptive immunity cell subsets, as well as in cells bridging innate and adaptive immunity. In some T-cell subsets increased costimulatory molecules' expression in PsA, was also noted..No changes were observed in patients who remained disease-active after 3 months of treatment, in contrast to those who achieved remission/low-disease activity. Comparing PsA to seropositive RA, elevated frequencies of naïve and activated CD8+ T-cells, B-cells, MAIT/iNKT and ILCs were found, while the opposite was the case for terminal effector, senescent, and Th2-like-cells. Strikingly, the composition of the leukocyte pool in PsA was comparable to seronegative RA, providing evidence for the pathogenetic similarities between these two entities.
Collapse
Affiliation(s)
- George E Fragoulis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece; School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Eleni-Kyriaki Vetsika
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Kyriakidi
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Kleio-Maria Verrou
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kollias
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iain B Mcinnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
18
|
Fang Y, Zhu Y, Kramer A, Chen Y, Li YR, Yang L. Graft-versus-Host Disease Modulation by Innate T Cells. Int J Mol Sci 2023; 24:ijms24044084. [PMID: 36835495 PMCID: PMC9962599 DOI: 10.3390/ijms24044084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Allogeneic cell therapies, defined by genetically mismatched transplantation, have the potential to become a cost-effective solution for cell-based cancer immunotherapy. However, this type of therapy is often accompanied by the development of graft-versus-host disease (GvHD), induced by the mismatched major histocompatibility complex (MHC) between healthy donors and recipients, leading to severe complications and death. To address this issue and increase the potential for allogeneic cell therapies in clinical practice, minimizing GvHD is a crucial challenge. Innate T cells, encompassing subsets of T lymphocytes including mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells, and gamma delta T (γδ T) cells, offer a promising solution. These cells express MHC-independent T-cell receptors (TCRs), allowing them to avoid MHC recognition and thus GvHD. This review examines the biology of these three innate T-cell populations, evaluates research on their roles in GvHD modulation and allogeneic stem cell transplantation (allo HSCT), and explores the potential futures for these therapies.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Correspondence: (L.Y.); (Y.-R.L.); Tel.: +1-310-825-8609 (L.Y.); +1-310-254-6086 (Y.-R.L.)
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence: (L.Y.); (Y.-R.L.); Tel.: +1-310-825-8609 (L.Y.); +1-310-254-6086 (Y.-R.L.)
| |
Collapse
|
19
|
Bosselut R. A Beginner's Guide to T Cell Development. Methods Mol Biol 2023; 2580:3-24. [PMID: 36374448 DOI: 10.1007/978-1-0716-2740-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system; they serve multiple functions in responses to pathogens and to ensure immune homeostasis. Written for readers first entering this field of study, this chapter is a brief overview of the development of T cells in the thymus, from the entry of thymus-settling bone marrow-derived precursors to the egress of mature T cells. Surveyed topics include the differentiation and expansion of early precursors, the generation of the T cell antigen receptor repertoire, the selection of αβ T cell precursors, and their acquisition of functional competency.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
21
|
MAIT cells and their implication in human oral diseases. Inflamm Res 2022; 71:1041-1054. [PMID: 35781343 DOI: 10.1007/s00011-022-01600-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that are abundant in humans, accounting for 1-10% of circulating T cells and about 2% of total T cells in human oral cavity. MAIT cells can mount a strong immune response quickly without exogenous antigens and undergo a phenotypic transformation in the development of diseases. They produce cytokines involved in the Th1 and Th17 immune response and cytotoxic proteins, promote the dysfunction of autoreactive B cell and inhibit the function of NK cells. MAIT cells have been widely explored in autoimmune diseases, inflammatory diseases and tumors, and these mechanisms may also be involved in the pathogenesis of some oral diseases, while MAIT cells have not been systematically discussed in oral diseases. METHODS We searched PubMed/MEDLINE, EMBASE and Microsoft Bing databases to review and analyze relevant literatures on the impact of MAIT cells in the pathogenesis of human oral diseases. CONCLUSION Collected evidence elucidated the characteristics of MAIT cells and emphasized the potential roles of MAIT cells in oral lichen planus (OLP), chronic graft-versus-host disease (cGVHD), oral squamous cell carcinoma (OSCC), apical periodontitis (AP) and primary Sjogren's syndrome (pSS).
Collapse
|
22
|
Wu M, Jiang Q, Nazmi A, Yin J, Yang G. Swine unconventional T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104330. [PMID: 34863955 DOI: 10.1016/j.dci.2021.104330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pigs are important domestic livestock and a comprehensive understanding of their immune system is critical to improve swine vaccine efficacy. Pig models represent an excellent animal model for immunological studies because of their anatomical and physiological similarities to humans. A significant portion of pig immunological studies focused on characterizing the conventional T cell (Tconv) immune responses. These cells recognize peptides presented by major histocompatibility complex (MHC) proteins. In contrast, unconventional T cells are non-MHC-restricted and profoundly regulate conventional T cells. Key subsets of unconventional T cells reviewed here include natural killer T (NKT) cells, γδ T cells, mucosal-associated invariant T (MAIT) cells, intraepithelial lymphocytes (IELs), and two potential unconventional T cell subsets expressing NKp46 or CD11b. Unlike Tconvs, most of these cells recognize lipids, small molecule metabolites, or modified peptides, and they generally show simplified patterns of T cell receptor (TCR) expression and rapid effector responses. Here, we review that unconventional T cells are an abundant and critical component of the porcine immune system, summarize the current understanding of these cells, and highlight some of the key differences among mouse, human, and porcine unconventional T cells.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ali Nazmi
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
23
|
Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2021; 10:biomedicines10010055. [PMID: 35052736 PMCID: PMC8772872 DOI: 10.3390/biomedicines10010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) and idiosyncratic drug-induced liver injury (DILI) could share molecular mechanisms involving the immune system. We aimed to identify activation immunological biomarkers in invariant natural killer T (iNKT) and CD4/CD8+ T cells in NAFLD and DILI. Methods: We analyzed the activation profile (CD69, CD25, and HLA-DR) and natural killer group 2 member D (NKG2D) on iNKT cells, and CD4/CD8 T cells in peripheral blood mononuclear cells from NAFLD, with or without significant liver fibrosis, and DILI patients. Results: There was an increase in iNKT cells in NAFLD patients compared to DILI or control subjects. Regarding the cellular activation profile, NAFLD with significant liver fibrosis (F ≥ 2) displayed higher levels of CD69+iNKT cells compared to NAFLD with none or mild liver fibrosis (F ≤ 1) and control patients. CD69+iNKT positively correlated with insulin resistance, aspartate aminotransferase (AST) level, liver fibrosis-4 index (FIB4) and AST to Platelet Ratio Index (APRI). DILI patients showed an increase in CD69+ and HLA-DR+ in both CD4+ and CD8+ T cells, detecting the most relevant difference in the case of CD69+CD8+ T cells. Conclusions: CD69+iNKT may be a biomarker to assess liver fibrosis progression in NAFLD. CD69+CD8+ T cells were identified as a potential distinctive biomarker for distinguishing DILI from NAFLD.
Collapse
|
24
|
La Maestra S, D'Agostini F, Geretto M, Micale RT. Microbial-based cleaning products as a potential risk to human health: A review. Toxicol Lett 2021; 353:60-70. [PMID: 34626814 DOI: 10.1016/j.toxlet.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022]
Abstract
Microbial-based cleaning products (MBCPs) have been introduced, on the market, as an alternative to traditional chemical cleaning. In addition to traditional detergents, MBCPs can perform their cleaning function, digesting the smallest particles of dirt and mitigating odours generated by environmental bacterium metabolic processes. Nevertheless, several aspects remain to be clarified and assessed, requiring further studies and new regulations to ensure safety. The particular composition of MBCPs makes it difficult to include these products in a specific class, making the European legal context incomplete and unclear. Moreover, MBCPs effects on human health are poorly documented. Exposure risks can be obtained indirectly by studies conducted in both microorganisms exposure and their metabolic products, such as enzymes, especially in workers. A further limiting factor for the accurate human health risk assessment due to MBCPs use is an incomplete indication about the MBCPs compositions. Moreover, additional factors such as host microorganisms, frequency and space of use, subject health condition, and age can determine different illness scenarios. The findings from the broad range of studies we have reviewed in this paper confirm the necessity of integrative investigation and regulation to address the use of MBCPs.
Collapse
Affiliation(s)
| | | | - Marta Geretto
- Department of Experimental Medicine, University of Genova, Italy
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Crothers JW, Chu ND, Nguyen LTT, Phillips M, Collins C, Fortner K, Del Rio-Guerra R, Lavoie B, Callas P, Velez M, Cohn A, Elliott RJ, Wong WF, Vo E, Wilcox R, Smith M, Kassam Z, Budd R, Alm EJ, Mawe GM, Moses PL. Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: results of a single-center, prospective, randomized pilot study. BMC Gastroenterol 2021; 21:281. [PMID: 34238227 PMCID: PMC8268596 DOI: 10.1186/s12876-021-01856-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/23/2021] [Indexed: 02/22/2023] Open
Abstract
Background Fecal microbiota transplantation (FMT) is a promising new strategy in the treatment of Inflammatory Bowel Disease, but long-term delivery systems are lacking. This randomized study was designed as a safety and feasibility study of long-term FMT in subjects with mild to moderate UC using frozen, encapsulated oral FMT (cFMT). Methods Subjects were randomized 1:1 to receive FMT induction by colonoscopy, followed by 12 weeks of daily oral administration of frozen encapsulated cFMT or sham therpay. Subjects were followed for 36 weeks and longitudenal clinical assessments included multiple subjective and objective markers of disease severity. Ribosomal 16S bacterial sequencing was used to assess donor-induced changes in the gut microbiota. Changes in T regulatory (Treg) and mucosal associated invariant T (MAIT) cell populations were evaluated by flow cytometry as an exploratory endpoint. Results Twelve subjects with active UC were randomized: 6 subjects completed the full 12-week course of FMT plus cFMT, and 6 subjects received sham treatment by colonic installation and longitudinal oral placebo capules. Chronic administration of cFMT was found to be safe and well-tolerated but home storage concerns exist. Protocol adherence was high, and none of the study subjects experienced FMT-associated treatment emergent adverse events. Two subjects that received cFMT achieved clinical remission versus none in the placebo group (95% CI = 0.38-infinity, p = 0.45). cFMT was associated with sustained donor-induced shifts in fecal microbial composition. Changes in MAIT cell cytokine production were observed in cFMT recipients and correlated with treatment response. Conclusion These pilot data suggest that daily encapsulated cFMT may extend the durability of index FMT-induced changes in gut bacterial community structure and that an association between MAIT cell cytokine production and clinical response to FMT may exist in UC populations. Oral frozen encapsulated cFMT is a promising FMT delivery system and may be preferred for longterm treatment strategies in UC and other chronic diseases but further evaluations will have to address home storage concerns. Larger trials should be done to explore the benefits of cFMT and to determine its long-term impacts on the colonic microbiome. Trial registration: ClinicalTrials.gov (NCT02390726). Registered 17 March 2015, https://clinicaltrials.gov/ct2/show/NCT02390726?term=NCT02390726&draw=2&rank=1. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01856-9.
Collapse
Affiliation(s)
- Jessica W Crothers
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA. .,Larner College of Medicine, The University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA.
| | - Nathaniel D Chu
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Le Thanh Tu Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Magen Phillips
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA
| | - Cheryl Collins
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA
| | - Karen Fortner
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA
| | - Roxana Del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Peter Callas
- Department of Medical Biostatistics, University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Mario Velez
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA
| | - Aaron Cohn
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA
| | - Ryan J Elliott
- OpenBiome, 2067 Massachusetts Ave, Cambridge, MA, 02140, USA
| | - Wing Fei Wong
- OpenBiome, 2067 Massachusetts Ave, Cambridge, MA, 02140, USA
| | - Elaine Vo
- Finch Therapeutics, 200 Inner Belt Rd, Somerville, MA, 02143, USA
| | - Rebecca Wilcox
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA.,Larner College of Medicine, The University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Mark Smith
- Finch Therapeutics, 200 Inner Belt Rd, Somerville, MA, 02143, USA
| | - Zain Kassam
- Finch Therapeutics, 200 Inner Belt Rd, Somerville, MA, 02143, USA
| | - Ralph Budd
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT, 05401, USA.,Larner College of Medicine, The University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA
| | - Peter L Moses
- Larner College of Medicine, The University of Vermont, 89 Beaumont Ave, Burlington, VT, 05401, USA.,Finch Therapeutics, 200 Inner Belt Rd, Somerville, MA, 02143, USA
| |
Collapse
|
27
|
Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing 2021; 18:28. [PMID: 34130717 PMCID: PMC8203492 DOI: 10.1186/s12979-021-00240-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regulatory noncoding RNAs important for many aspects of cellular processes including cell differentiation and proliferation. Functions of numerous miRNAs have been identified in T cells, with miR-181a regulating T cell activation thresholds during thymic T cell development and during activation of peripheral T cells. Intriguingly, miR-181a is implicated in defective antiviral and vaccine responses in older individuals, as its expression declines in naïve T cells with increasing age. Here, we review the pathways that are regulated by miR-181a and that explain the unique role of miR-181a in T cell development, T cell activation and antiviral T cell responses. These studies provide a framework for understanding how a decline in miR-181a expression in T cells could contribute to age-related defects in adaptive immunity. We furthermore review the mechanisms that cause the age-related decline in miR-181a expression and discuss the potential of restoring miR-181a expression or targeting miR-181a-regulated pathways to improve impaired T cell responses in older individuals.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
28
|
Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021; 13:2275. [PMID: 34068598 PMCID: PMC8126045 DOI: 10.3390/cancers13092275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is the prototypic human tumor virus whose continuous lifelong immune control is required to prevent lymphomagenesis in the more than 90% of the human adult population that are healthy carriers of the virus. Here, we review recent evidence that this immune control has not only to target latent oncogenes, but also lytic replication of EBV. Furthermore, genetic variations identify the molecular machinery of cytotoxic lymphocytes as essential for this immune control and recent studies in mice with reconstituted human immune system components (humanized mice) have begun to provide insights into the mechanistic role of these molecules during EBV infection. Finally, EBV often does not act in isolation to cause disease. Some of EBV infection-modulating co-infections, including human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been modeled in humanized mice. These preclinical in vivo models for EBV infection, lymphomagenesis, and cell-mediated immune control do not only promise a better understanding of the biology of this human tumor virus, but also the possibility to explore vaccine candidates against it.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
29
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
30
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
31
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
32
|
Rudak PT, Yao T, Richardson CD, Haeryfar SMM. Measles Virus Infects and Programs MAIT Cells for Apoptosis. J Infect Dis 2020; 223:667-672. [PMID: 32623457 DOI: 10.1093/infdis/jiaa407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
Measles virus (MeV) binds, infects, and kills CD150+ memory T cells, leading to immune amnesia. Whether MeV targets innate, memory-like T cells is unknown. We demonstrate that human peripheral blood and hepatic mucosa-associated invariant T (MAIT) cells and invariant natural killer T cells express surprisingly high levels of CD150, more than other lymphocyte subsets. Furthermore, exposing MAIT cells to MeV results in their efficient infection and rapid apoptosis. This constitutes the first report of direct MAIT cell infection by a viral pathogen. Given MAIT cells' antimicrobial properties, their elimination by MeV may contribute to measles-induced immunosuppression and heightened vulnerability to unrelated infections.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Tony Yao
- Department of Microbiology and Immunology, Western University, London, Canada
| | | | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Department of Medicine, Western University, London, Canada.,Department of Surgery, Western University, London, Canada
| |
Collapse
|
33
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|
34
|
Berzins SP, Wallace ME, Kannourakis G, Kelly J. A Role for MAIT Cells in Colorectal Cancer. Front Immunol 2020; 11:949. [PMID: 32508830 PMCID: PMC7251153 DOI: 10.3389/fimmu.2020.00949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
MAIT cells are MR1-restricted T cells that are well-known for their anti-microbial properties, but they have recently been associated with different forms of cancer. Several studies have reported activated MAIT cells within the microenvironment of colorectal tumors, but there is conjecture about the nature of their response and whether they are contributing to anti-tumor immunity, or to the progression of the disease. We have reviewed the current state of knowledge about the role of MAIT cells in colorectal cancer, including their likely influence when activated and potential sources of stimulation in the tumor microenvironment. The prospects for MAIT cells being used in clinical settings as biomarkers or as targets of new immunotherapies designed to harness their function are discussed.
Collapse
Affiliation(s)
- Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Mount Helen, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Morgan E Wallace
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Mount Helen, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Mount Helen, VIC, Australia
| | - Jason Kelly
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Mount Helen, VIC, Australia
| |
Collapse
|
35
|
Dhanushkodi NR, Srivastava R, Prakash S, Roy S, Coulon PGA, Vahed H, Nguyen AM, Salazar S, Nguyen L, Amezquita C, Ye C, Nguyen V, BenMohamed L. High Frequency of Gamma Interferon-Producing PLZF loRORγt lo Invariant Natural Killer 1 Cells Infiltrating Herpes Simplex Virus 1-Infected Corneas Is Associated with Asymptomatic Ocular Herpesvirus Infection. J Virol 2020; 94:e00140-20. [PMID: 32102882 PMCID: PMC7163123 DOI: 10.1128/jvi.00140-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer (iNKT) cells are among the first innate immune cells to elicit early protective immunity that controls invading viral pathogens. The role of the iNKT cell subsets iNKT1, iNKT2, and iNKT17 in herpesvirus immunity remains to be fully elucidated. In this study, we examined the protective role of cornea-resident iNKT cell subsets using the mouse model of ocular herpesvirus infection and disease. Wild-type (WT) C57BL/6 (B6) mice and CD1d knockout (KO) mice were infected ocularly with herpes simplex virus 1 (HSV-1) (strain McKrae). Cornea, spleen, and liver were harvested at 0, 2, 5, 8, and 14 days postinfection (p.i.), and the frequency and function of the three major iNKT cell subsets were analyzed and correlated with symptomatic and asymptomatic corneal herpesvirus infections. The profiles of 16 major pro- and anti-inflammatory cytokines were analyzed in corneal lysates using Western blot and Luminex assays. Early during ocular herpesvirus infection (i.e., day 2), the gamma interferon (IFN-γ)-producing PLZFloRORγtlo (promyelocytic leukemia zinc finger, retinoic acid-related orphan receptor gT) iNKT1 cell subset was the predominant iNKT cell subset in infected asymptomatic corneas. Moreover, compared to the asymptomatic corneas of HSV-1-infected WT mice, the symptomatic corneas CD1d KO mice, with iNKT cell deficiency, had increased levels of the inflammatory cytokine interleukin-6 (IL-6) and decreased levels of IL-12, IFN-γ, and the JAK1, STAT1, NF-κB, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways. Our findings suggest that IFN-γ-producing PLZFloRORγtlo iNKT1 cells play a role in the protective innate immune response against symptomatic ocular herpes.IMPORTANCE We investigated the protective role of iNKT cell subsets in asymptomatic ocular herpesvirus infection. We found that early during ocular herpesvirus infection (i.e., on day 2 postinfection), IFN-γ-producing PLZFloRORγtlo iNKT1 cells were the predominant iNKT cell subset in infected corneas of asymptomatic B6 mice (with little to no corneal herpetic disease), compared to corneas of symptomatic mice (with severe corneal herpetic disease). Moreover, compared to asymptomatic corneas of wild-type (WT) B6 mice, the symptomatic corneas of CD1d KO mice, which lack iNKT cells, showed (i) decreases in the levels of IFN-γ and IL-12, (ii) an increase in the level of the inflammatory cytokine IL-6; and (iii) downregulation of the JAK1, STAT1, NF-κB, and ERK1/2 pathways. The findings suggest that early during ocular herpesvirus infection, cornea-resident IFN-γ-producing PLZFloRORγtlo iNKT1 cells provide protection from symptomatic ocular herpes.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Vivianna Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
36
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
37
|
Blockade of CD40L inhibits immunogenic maturation of lung dendritic cells: Implications for the role of lung iNKT cells in mouse models of asthma. Mol Immunol 2020; 121:167-185. [PMID: 32229377 DOI: 10.1016/j.molimm.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022]
Abstract
Some studies have shown that maturation of dendritic cells (DCs) is modulated directly by pathogen components via pattern recognition receptors such as Toll-like receptors, but also by signal like CD40 ligand (CD40 L or CD154) mediated by activated T cells. Several reports indicate that invariant natural killer T (iNKT) cells up-regulate CD40 L upon stimulation and thereby induce activation and maturation of DCs through crosslink with CD40. Our previous findings indicated that iNKT cells promote Th2 cell responses through the induction of immunogenic maturation of lung DCs (LDCs) in the asthmatic murine, but its mechanism remains unclear. Therefore, we investigated the immunomodulatory effects of blockade of CD40 L using anti-CD40 L treatment on Th2 cell responses and immunogenic maturation of LDCs, and further analyzed whether these influences of blockade of CD40 L were related to lung iNKT cells using iNKT cell-deficient mice and the combination treatment of specific iNKT cell activation with anti-CD40 L treatment in murine models of asthma. Our findings showed that blockade of CD40 L using anti-CD40 L treatment attenuated Th2 cell responses in wild-type (WT) mice, but not in CD1d-deficient mice sensitized and challenged with ovalbumin (OVA) or house dust mite (HDM). Meanwhile, blockade of CD40 L down-regulated immunogenic maturation of LDCs in WT mice, but not in CD1d-deficient mice sensitized and challenged with OVA. Additionally, agonistic anti-CD40 treatment reversed the inhibitory effects of anti-CD40 L treatment on Th2 cell responses and LDC activation in an OVA-induced mouse model of asthma. Furthermore, LDCs from asthmatic mice treated with anti-CD40 L could significantly reduce the influence on Th2 cell responses in vivo and in vitro. Finally, α-Galactosylceramide plus anti-CD40 L treatment stimulated lung iNKT cells, but suppressed Th2 cell responses in the asthmatic mice. Taken together, our data raise an evidence that blockade of CD40 L attenuates Th2 cell responses through the inhibition of immunogenic maturation of LDCs, which may be at least partially related to lung iNKT cells in murine models of asthma.
Collapse
|
38
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
39
|
Tao H, Li L, Gao Y, Wang Z, Zhong XP. Differential Control of iNKT Cell Effector Lineage Differentiation by the Forkhead Box Protein O1 (Foxo1) Transcription Factor. Front Immunol 2019; 10:2710. [PMID: 31824499 PMCID: PMC6881238 DOI: 10.3389/fimmu.2019.02710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
The invariant NKT (iNKT) cells recognize glycolipid antigens presented by the non-classical MHC like molecule CD1d. They represent an innate T-cell lineage with the ability to rapidly produce a variety of cytokines in response to agonist stimulation to bridge innate and adaptive immunity. In thymus, most iNKT cells complete their maturation and differentiate to multiple effector lineages such as iNKT-1, iNKT-2, and iNKT-17 cells that possess the capability to produce IFNγ, IL-4, and IL-17A, respectively, and play distinct roles in immune responses and diseases. Mechanisms that control iNKT lineage fate decisions are still not well understood. Evidence has revealed critical roles of Foxo1 of the forkhead box O1 subfamily of transcription factors in the immune system. However, its role in iNKT cells has been unknown. In this report, we demonstrate that deletion of Foxo1 causes severe decreases of iNKT cell total numbers due to impairment of late but not early iNKT cell development. Deficiency of Foxo1 results in decreases of iNKT-1 but increases of iNKT-17 cells. Our data reveal that Foxo1 controls iNKT effector lineage fate decision by promoting iNKT-1 but suppressing iNKT-17 lineages.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,The Hematologic Malignancies and Cellular Therapy Research Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
40
|
Xiao X, Li K, Ma X, Liu B, He X, Yang S, Wang W, Jiang B, Cai J. Mucosal-Associated Invariant T Cells Expressing the TRAV1-TRAJ33 Chain Are Present in Pigs. Front Immunol 2019; 10:2070. [PMID: 31552029 PMCID: PMC6735250 DOI: 10.3389/fimmu.2019.02070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of evolutionarily conserved innate-like T lymphocytes bearing invariant or semi-invariant TCRα chains paired with a biased usage of TCRβ chains and restricted by highly conserved monomorphic MHC class I-like molecule, MR1. Consistent with their phylogenetically conserved characteristics, MAIT cells have been implicated in host immune responses to microbial infections and non-infectious diseases, such as tuberculosis, typhoid fever, and multiple sclerosis. To date, MAIT cells have been identified in humans, mice, cows, sheep, and several non-human primates, but not in pigs. Here, we cloned porcine MAIT (pMAIT) TCRα sequences from PBMC cDNA, and then analyzed the TCRβ usage of pMAIT cells expressing the TRAV1-TRAJ33 chain, finding that pMAIT cells use a limited array of TCRβ chains (predominantly TRBV20S and TRBV29S). We estimated the frequency of TRAV1-TRAJ33 transcripts in peripheral blood and tissues, demonstrating that TRAV1-TRAJ33 transcripts are expressed in all tested tissues. Analysis of the expression of TRAV1-TRAJ33 transcripts in three T-cell subpopulations from peripheral blood and tissues showed that TRAV1-TRAJ33 transcripts can be expressed by CD4+CD8−, CD8+CD4−, and CD4−CD8− T cells. Using a single-cell PCR assay, we demonstrated that pMAIT cells with the TRAV1-TRAJ33 chain express cell surface markers IL-18Rα, IL-7Rα, CCR9, CCR5, and/or CXCR6, and transcription factors PLZF, and T-bet and/or RORγt. In conclusion, pMAIT cells expressing the TRAV1-TRAJ33 chain have characteristics similar to human and mouse MAIT cells, further supporting the idea that the pig is an animal model for investigating MAIT cell functions in human disease.
Collapse
Affiliation(s)
- Xingxing Xiao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xueyang He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenqing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Baoyu Jiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
41
|
IL-7 is a Key Driver Cytokine in Spondyloarthritis? J Immunol Res 2019; 2019:7453236. [PMID: 31276000 PMCID: PMC6560328 DOI: 10.1155/2019/7453236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
The rationale for a type 17 signature in the pathogenesis of spondyloarthritis (SpA) has been increasing and being ratified in studies recently. IL-7 is a cytokine whose ability to stimulate IL-17 production in both innate and adaptive immunity cells has made it a promising target not only for a better understanding of the disease as well as an important potential therapeutic target in patients with SpA.
Collapse
|
42
|
Allali S, Dietrich C, Machavoine F, Rignault-Bricard R, Brousse V, de Montalembert M, Hermine O, Maciel TT, Leite-de-Moraes M. Innate-like T cells in children with sickle cell disease. PLoS One 2019; 14:e0219047. [PMID: 31251783 PMCID: PMC6599217 DOI: 10.1371/journal.pone.0219047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background The implication of lymphocytes in sickle cell disease pathogenesis is supported by a number of recent reports. These studies provided evidence for the activation of invariant natural killer T (iNKT) cells in adult patients, but did not investigate the involvement of other innate-like T cell subsets so far. Methods Here we present a monocentric prospective observational study evaluating the number and functional properties of both circulating conventional and innate-like T cells, namely iNKT, Mucosal-Associated Invariant T (MAIT) and gammadelta (γδ) T cells in a cohort of 39 children with sickle cell disease. Results Relative to age-matched healthy controls, we found that patients had a higher frequency of IL-13- and IL-17-producing CD4+ T cells, as well as higher MAIT cell counts with an increased frequency of IL-17-producing MAIT cells. Patients also presented increased Vδ2 γδ T cell counts, especially during vaso-occlusive crisis, and a lower frequency of IFNγ-producing Vδ2 γδ T cells, except during crisis. iNKT cell counts and the frequency of IFNγ-producing iNKT cells were unchanged compared to controls. Our study revealed positive correlations between 1) the frequency of IFNγ-producing CD4+, CD8+ and Vδ2 γδ T cells and the number of hospitalizations for vaso-occlusive crisis in the previous year; 2) the frequency of IFNγ-producing iNKT cells and patients’ age and 3) the frequency of IL-17-producing Vδ2 γδ T cells and hemoglobin S level. Conclusion These results strongly suggest a role of innate-like T cells in sickle cell disease pathophysiology, especially that of IL-17-producing MAIT and γδ T cells.
Collapse
Affiliation(s)
- Slimane Allali
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants malades, Paris Descartes – Sorbonne Paris Cité University, Assistance Publique-Hôpitaux de Paris, Paris, France
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Inserm U1163, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- * E-mail: (SA); (MLM)
| | - Céline Dietrich
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants malades, Centre National de la Recherche Scientifique (CNRS) UMR 8253, Inserm UMR 1151, Paris Descartes – Sorbonne Paris Cité University, Paris, France
| | - François Machavoine
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants malades, Centre National de la Recherche Scientifique (CNRS) UMR 8253, Inserm UMR 1151, Paris Descartes – Sorbonne Paris Cité University, Paris, France
| | - Rachel Rignault-Bricard
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Inserm U1163, Paris, France
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants malades, Centre National de la Recherche Scientifique (CNRS) UMR 8253, Inserm UMR 1151, Paris Descartes – Sorbonne Paris Cité University, Paris, France
| | - Valentine Brousse
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants malades, Paris Descartes – Sorbonne Paris Cité University, Assistance Publique-Hôpitaux de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mariane de Montalembert
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants malades, Paris Descartes – Sorbonne Paris Cité University, Assistance Publique-Hôpitaux de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Inserm U1163, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Department of Hematology, Hôpital Necker-Enfants malades, Paris Descartes – Sorbonne Paris Cité University, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thiago Trovati Maciel
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Inserm U1163, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants malades, Centre National de la Recherche Scientifique (CNRS) UMR 8253, Inserm UMR 1151, Paris Descartes – Sorbonne Paris Cité University, Paris, France
- * E-mail: (SA); (MLM)
| |
Collapse
|
43
|
Xie J, Pan Y, Tao H, Wang P, Chen Y, Gao J, Zhong XP. Deficiency of Mucosal-Associated Invariant T Cells in TCRJα18 Germline Knockout Mice. Immunohorizons 2019; 3:203-207. [PMID: 31356166 DOI: 10.4049/immunohorizons.1900035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant NK T (iNKT) cells account for the major lymphocyte populations that express invariant TCRα-chains. MAIT cells mostly express the TCRVα19-Jα33 TCR in mice and the TCRVα7.2-Jα33 TCR in humans, whereas iNKT cells express the TCRVα14-Jα18 TCR in mice and the TCRVα24-Jα18 TCR in humans. Both MAIT and iNKT cells have the capacity to quickly produce a variety of cytokines in response to agonist stimuli and to regulate both innate and adaptive immunity. The germline TCRJα18 knockout (Traj18-/- ) mice have been used extensively for studying iNKT cells. Although it has been reported that the TCRα repertoire was narrowed and the level of Trav19-ja33 transcript was decreased in this strain of mice, direct assessment of MAIT cells in these mice has not been reported. We demonstrate in this study that this strain of mice is also defective of MAIT T cells, cautioning data interpretation when using this strain of mice.
Collapse
Affiliation(s)
- Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Pan
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huishan Tao
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Peng Wang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710; and.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
44
|
Tibbs TN, Lopez LR, Arthur JC. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:324-334. [PMID: 31403049 PMCID: PMC6685047 DOI: 10.15698/mic2019.08.685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
From birth, the microbiota plays an essential role in human development by educating host immune responses. Proper maturation of the immune system perturbs chronic inflammation and the pathogenesis of disease by preventing inappropriate immune responses. While many have detailed the roles of specific microbial groups in immune development and human disease, it remains to be elucidated how the microbiota influences the immune system during aging. Furthermore, it is not yet understood how age-related changes to the microbiota and immune system influence the development of age-related diseases. In this review, we outline the role of the microbiota in immune system development as well as functional changes that occur to immune cell populations during immunosenescence. In addition, we highlight how commensal microbes influence the pathogenesis of cancer, a prominent disease of aging. The information provided herein suggests that age-related changes to the microbiota and immune system should be considered in disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
45
|
Lories RJ. Advances in understanding the pathophysiology of spondyloarthritis. Best Pract Res Clin Rheumatol 2019; 32:331-341. [PMID: 31171306 DOI: 10.1016/j.berh.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/10/2018] [Indexed: 01/02/2023]
Abstract
Progressive understanding of the underlying pathophysiology of axial spondyloarthritis has successfully translated into innovative therapeutic strategies and successful management of patients in the clinic. This review summarizes the key roles of the pro-inflammatory cytokines tumor necrosis factor and interleukin-17 in the onset and progression of disease and how these cytokines are instrumental in shaping the concept that enthesitis is a key feature of axial spondyloarthritis. Advances in immunological technologies have led to the important insight that different cell populations, part of both the innate and adaptive immune system, play a key role in axial spondyloarthritis. In addition to inflammation, structural damage to the axial skeleton, in particular progressive ankylosis of the sacroiliac joints and the spine, is key to the outcome of patients. Novel data integrate the role of pro-inflammatory cytokines and enthesitis in this context.
Collapse
Affiliation(s)
- Rik J Lories
- KU Leuven, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, Leuven, Belgium; University Hospitals Leuven, Division of Rheumatology, Leuven, Belgium.
| |
Collapse
|
46
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
47
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|
49
|
Abstract
The differentiation of T helper cell subsets and their acquisition of effector functions are accompanied by changes in gene expression programmes, which in part are regulated and maintained by epigenetic processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key epigenetic regulators that function by mediating dynamic changes in the acetylation of histones at lysine residues. In addition, many non-histone proteins are also acetylated, and reversible acetylation affects their functional properties, demonstrating that HDACs mediate effects beyond the epigenetic regulation of gene expression. In this Review, we discuss studies revealing that HDACs are key regulators of CD4+ T cell-mediated immunity in mice and humans and that HDACs are promising targets in T cell-mediated immune diseases. Finally, we discuss unanswered questions and future research directions to promote the concept that isoform-selective HDAC inhibitors might broaden the clinical application of HDAC inhibitors beyond their current use in certain types of cancer.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|