1
|
Zhao W, Luo J, Wang F, Shi Y, Zhang J, Zhang Y, Li Y, Wang X, Chen Y, Zhang X, Wang X, Mu Y, Ji D, Xiao S, Wang Q, Zhang L, Zhang C, Zhou D. Engineering sialylated N-glycans on adeno-associated virus capsids for targeted gene delivery and therapeutic applications. J Control Release 2025; 380:563-578. [PMID: 39938722 DOI: 10.1016/j.jconrel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Glycans with diverse biological functions have been extensively identified on enveloped viruses, whereas glycosylation on adeno-associated virus (AAV) serotypes remains poorly understood. Identifying potential glycosylation sites on AAVs could provide critical docking sites for rational engineering of AAV capsids, enabling targeted delivery of therapeutic genes. This study presents a strategy that integrates azido-monosaccharide metabolic incorporation, 1,2-diamino-4,5-methylenedioxybenzene-labeled sialic acid analysis, and mass spectrometry to identify N-glycosylation sites and glycoforms on AAVs. We identified sialylated N- oligosaccharides, particularly the conserved NNNS motif, on AAV2, AAV6, AAV7, and AAV9 capsids. These glycans play critical roles in maintaining capsid stability and enhancing resistance to neutralizing antibodies. Furthermore, we engineered an AAV vector with an azido-labeled terminal sialic acid, which was conjugated via click chemistry to cyclic Arg-Gly-Asp (RGD), a high-affinity ligand for integrin αvβ3, to generate an integrin-targeted delivery vehicle. This approach enabled the efficient delivery of c-Met-targeting shRNA in a glioma mouse model and facilitated CRISPR/Cas9-mediated SMOC2 knockout in a mouse model of kidney fibrosis using single-guide RNA (sgRNA). Our findings establish a foundation for creating editable AAV vectors through sialylated termini, thereby expanding their potential applications in basic research and therapeutic development.
Collapse
Affiliation(s)
- Weixuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jinhuan Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fudi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jiawen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China.
| |
Collapse
|
2
|
Hsu YH, Chao CN, Huang HY, Zhao PW, Hsu PH, Shen CH, Chen SY, Fang CY. Histone deacetylase III interactions with BK polyomavirus large tumor antigen may affect protein stability. Virol J 2023; 20:155. [PMID: 37464367 DOI: 10.1186/s12985-023-02128-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Human polyomavirus BK (BKPyV) causes associated nephropathy and contributes to urinary tract cancer development in renal transplant recipients. Large tumor antigen (LT) is an early protein essential in the polyomavirus life cycle. Protein acetylation plays a critical role in regulating protein stability, so this study investigated the acetylation of the BKPyV LT protein. METHODS The BKPyV LT nucleotide was synthesized, and the protein was expressed by transfection into permissive cells. The BKPyV LT protein was immunoprecipitated and subjected to LC-MS/MS analysis to determine the acetylation residues. The relative lysine was then mutated to arginine in the LT nucleotide and BKPyV genome to analyze the role of LT lysine acetylation in the BKPyV life cycle. RESULTS BKPyV LT acetylation sites were identified at Lys3 and Lys230 by mass spectrometry. HDAC3 and HDAC8 and their deacetylation activity are required for BKPyV LT expression. In addition, mutations of Lys3 and Lys230 to arginine increased LT expression, and the interaction of HDAC3 and LT was confirmed by coimmunoprecipitation. CONCLUSIONS HDAC3 is a newly identified protein that interacts with BKPyV LT, and LT acetylation plays a vital role in the BKPyV life cycle.
Collapse
Affiliation(s)
- Yueh-Han Hsu
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsin-Yi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi, Taiwan
| | - San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
- Department of Sports Management, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
3
|
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
4
|
Abstract
Host cell membranes pose a particular challenge for non-enveloped viruses. Whereas enveloped viruses enter cells by fusing their lipid envelopes with the cellular membrane, non-enveloped viruses generally must (1) enter cells via endocytosis, then (2) penetrate the cellular endomembrane to reach the cytosol. Only then can the viruses begin to replicate (or transit to the nucleus to replicate). Although membrane penetration of non-enveloped viruses is a crucial entry step, many of the precise molecular details of this process remain unclear. Recent findings have begun to untangle the various mechanisms by which non-enveloped viral proteins disrupt and penetrate cellular endomembranes. Specifically, high-resolution microscopy studies have revealed precise conformational changes in viral proteins that enable penetration, while biochemical studies have identified key host proteins that promote viral penetration and transport. This brief article summarizes new discoveries in the membrane penetration process for three of the most intensely studied families of non-enveloped viruses: reoviruses, papillomaviruses, and polyomaviruses.
Collapse
|
5
|
Zhao W, Wang L, Liu M, Zhang D, Andika IB, Zhu Y, Sun L. A Reduced Starch Level in Plants at Early Stages of Infection by Viruses Can Be Considered a Broad-Range Indicator of Virus Presence. Viruses 2022; 14:1176. [PMID: 35746648 PMCID: PMC9227243 DOI: 10.3390/v14061176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of virus infection can facilitate the effective control of plant viral diseases. To date, serological and molecular methods for the detection of virus infection have been widely used, but these methods have disadvantages if applied for broad-range and large-scale detection. Here, we investigated the effect of infection of several different plant RNA and DNA viruses such as cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), potato virus X (PVX), potato virus Y (PVY) and apple geminivirus on starch content in leaves of Nicotiana benthamiana. Analysis showed that virus infection at an early stage was generally associated with a reduction in starch accumulation. Notably, a reduction in starch accumulation was readily apparent even with a very low virus accumulation detected by RT-PCR. Furthermore, we also observed that the infection of three latent viruses in propagative apple materials was associated with a reduction in starch accumulation levels. Analysis of transcriptional expression showed that some genes encoding enzymes involved in starch biosynthesis were downregulated at the early stage of CMV, TMV, PVX and PVY infections, suggesting that virus infection interferes with starch biosynthesis in plants. Our findings suggest that assessing starch accumulation levels potentially serve as a broad-range indicator for the presence of virus infection.
Collapse
Affiliation(s)
- Wanying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
| | - Meizi Liu
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (M.L.); (D.Z.)
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (M.L.); (D.Z.)
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
| |
Collapse
|
6
|
Garg A, Dabburu GR, Singhal N, Kumar M. Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico. PLoS One 2022; 17:e0265657. [PMID: 35421114 PMCID: PMC9009644 DOI: 10.1371/journal.pone.0265657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mimicry of the host proteins/peptides can elicit host auto-reactive T- or B-cells resulting in autoimmune disease(s). Since intrinsically disordered protein regions (IDPRs) are involved in several host cell signaling and PPI networks, molecular mimicry of the IDPRs can help the pathogens in substituting their own proteins in the host cell-signaling and PPI networks and, ultimately hijacking the host cellular machinery. Thus, the present study was conducted to discern the structural disorder and intrinsically disordered protein regions (IDPRs) like, molecular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs) in the experimentally verified mimicry proteins and peptides (mimitopes) of bacteria, viruses and host. Also, functional characteristics of the mimicry proteins were studied in silico. Our results indicated that 78% of the bacterial host mimicry proteins and 45% of the bacterial host mimitopes were moderately/highly disordered while, 73% of the viral host mimicry proteins and 31% of the viral host mimitopes were moderately/highly disordered. Among the pathogens, 27% of the bacterial mimicry proteins and 13% of the bacterial mimitopes were moderately/highly disordered while, 53% of the viral mimicry proteins and 21% of the viral mimitopes were moderately/highly disordered. Though IDPR were frequent in host, bacterial and viral mimicry proteins, only a few mimitopes overlapped with the IDPRs like, MoRFs, SLiMs and LCRs. This suggests that most of the microbes cannot use molecular mimicry to modulate the host PPIs and hijack the host cell machinery. Functional analyses indicated that most of the pathogens exhibited mimicry with the host proteins involved in ion binding and signaling pathways. This is the first report on the disordered regions and functional aspects of experimentally proven host and microbial mimicry proteins.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| |
Collapse
|
7
|
Mo G, Hu B, Zhang Q, Ruan Z, Li W, Liang J, Shen Y, Mo Z, Zhang Z, Wu Z, Shi M, Zhang X. dPRLR causes differences in immune responses between early and late feathering chickens after ALV-J infection. Vet Res 2022; 53:1. [PMID: 34998433 PMCID: PMC8742939 DOI: 10.1186/s13567-021-01016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
To understand the differences in immune responses between early feathering (EF) and late feathering (LF) chickens after infection with avian leukosis virus, subgroup J (ALV-J), we monitored the levels of prolactin, growth hormone and the immunoglobulins IgG and IgM in the serum of LF and EF chickens for 8 weeks. Moreover, we analysed the expression of immune-related genes in the spleen and the expression of PRLR, SPEF2 and dPRLR in the immune organs and DF-1 cells by qRT–PCR. The results showed that ALV-J infection affected the expression of prolactin, growth hormone, IgG and IgM in the serum. Regardless of whether LF and EF chickens were infected with ALV-J, the serum levels of the two hormones and two immunoglobulins in EF chickens were higher than those in LF chickens (P < 0.05). However, the expression of immune-related genes in the spleen of positive LF chickens was higher than that in the spleen of positive EF chickens. In the four immune organs, PRLR and SPEF2 expression was also higher in LF chickens than in EF chickens. Furthermore, the dPRLR expression of positive LF chickens was higher than that of negative LF chickens. After infection with ALV-J, the expression of PRLR in DF-1 cells significantly increased. In addition, overexpression of PRLR or dPRLR in DF-1 cells promoted replication of ALV-J. These results suggested that the susceptibility of LF chickens to ALV-J might be induced by dPRLR.
Collapse
Affiliation(s)
- Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China.,Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Bowen Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Qihong Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Zhuohao Ruan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Jiaying Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Yizi Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Zhixin Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Zhuyue Wu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Gonçalves LR, Roberto MM, Braga APA, Barozzi GB, Canizela GS, de Souza Gigeck L, de Souza LR, Marin-Morales MA. Another casualty of the SARS-CoV-2 pandemic-the environmental impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1696-1711. [PMID: 34689297 PMCID: PMC8542190 DOI: 10.1007/s11356-021-17098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Cemetery leachate generated by the process of cadaveric decomposition is a significant contaminant of several matrices in the cemetery environment (soil, groundwater, and surface water). The biogenic amines cadaverine and putrescine stand out among the cemetery leachate contaminants, since they are potentially carcinogenic compounds. This review article presents a discussion of possible environmental impacts caused by the increase in deaths resulting from COVID-19 as its central theme. The study also aims to demonstrate the importance of considering, in this context, some climatic factors that can alter both the time of bodily decomposition and the longevity of the virus in the environment. Additionally, some evidence for the transmission of the virus to health professionals and family members after the patient's death and environmental contamination after the burial of the bodies will also be presented. Several sources were consulted, such as scientific electronic databases (NCBI), publications by government agencies (e.g., ARPEN, Brazil) and internationally recognized health and environmental agencies (e.g., WHO, OurWorldInData.org), as well as information published on reliable websites available for free (e.g., CNN) and scientific journals related to the topic. The data from this study sounds the alarm on the fact that an increase in the number of deaths from the complications of COVID-19 has generated serious environmental problems, resulting from Cemetery leachate.
Collapse
Affiliation(s)
- Letícia Rocha Gonçalves
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil.
| | - Matheus Mantuanelli Roberto
- Hermínio Ometto Foundation's University Center (FHO), Av. Dr. Maximiliano Baruto, 500 - Jardim Universitário, Araras, SP, CEP: 13607-339, Brazil
| | - Ana Paula Andrade Braga
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil
| | - Gabriel Bertoletti Barozzi
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil
| | - Giovanna Segati Canizela
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil
| | - Letícia de Souza Gigeck
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil
| | - Letícia Rosa de Souza
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Institute of Biosciences, Department of Biology, São Paulo State University (Unesp), Av. 24-A, 1515, Rio Claro, SP, CEP: 13506-900, Brazil.
| |
Collapse
|
9
|
Bernier C, Goetz C, Jubinville E, Jean J. The New Face of Berries: A Review of Their Antiviral Proprieties. Foods 2021; 11:102. [PMID: 35010229 PMCID: PMC8750760 DOI: 10.3390/foods11010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Due to rising consumer preference for natural remedies, the search for natural antiviral agents has accelerated considerably in recent years. Among the natural sources of compounds with potential antiviral proprieties, berries are interesting candidates, due to their association with health-promoting properties, including antioxidant, antimutagenic, anticancer, antimicrobial, anti-inflammatory, and neuroprotective properties. The past two decades have witnessed a flurry of new findings. Studies suggest promising antiviral proprieties against enveloped and non-enveloped viruses, particularly of cranberries, blueberries, blackcurrants, black raspberries, and pomegranates. The aim of this review is to assemble these findings, to list the implied mechanisms of action, and thereby point out promising subjects for research in this field, in the hope that compounds obtainable from natural sources such as berries may be used someday to treat, or even prevent, viral infections.
Collapse
Affiliation(s)
| | | | | | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; (C.B.); (C.G.); (E.J.)
| |
Collapse
|
10
|
Brown RB. Sodium Toxicity in the Nutritional Epidemiology and Nutritional Immunology of COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:739. [PMID: 34440945 PMCID: PMC8399536 DOI: 10.3390/medicina57080739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Dietary factors in the etiology of COVID-19 are understudied. High dietary sodium intake leading to sodium toxicity is associated with comorbid conditions of COVID-19 such as hypertension, kidney disease, stroke, pneumonia, obesity, diabetes, hepatic disease, cardiac arrhythmias, thrombosis, migraine, tinnitus, Bell's palsy, multiple sclerosis, systemic sclerosis, and polycystic ovary syndrome. This article synthesizes evidence from epidemiology, pathophysiology, immunology, and virology literature linking sodium toxicological mechanisms to COVID-19 and SARS-CoV-2 infection. Sodium toxicity is a modifiable disease determinant that impairs the mucociliary clearance of virion aggregates in nasal sinuses of the mucosal immune system, which may lead to SARS-CoV-2 infection and viral sepsis. In addition, sodium toxicity causes pulmonary edema associated with severe acute respiratory syndrome, as well as inflammatory immune responses and other symptoms of COVID-19 such as fever and nasal sinus congestion. Consequently, sodium toxicity potentially mediates the association of COVID-19 pathophysiology with SARS-CoV-2 infection. Sodium dietary intake also increases in the winter, when sodium losses through sweating are reduced, correlating with influenza-like illness outbreaks. Increased SARS-CoV-2 infections in lower socioeconomic classes and among people in government institutions are linked to the consumption of foods highly processed with sodium. Interventions to reduce COVID-19 morbidity and mortality through reduced-sodium diets should be explored further.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
De Niz M, Caldelari R, Kaiser G, Zuber B, Heo WD, Heussler VT, Agop-Nersesian C. Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J Cell Sci 2021; 134:jcs252213. [PMID: 34013963 PMCID: PMC8186485 DOI: 10.1242/jcs.252213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Benoit Zuber
- Institute for Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Won Do Heo
- Dept. of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
12
|
Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, Decuzzi P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng Transl Med 2021; 6:e10213. [PMID: 33786376 PMCID: PMC7995196 DOI: 10.1002/btm2.10213] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.
Collapse
Affiliation(s)
- Michele Schlich
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
| | - Roberto Palomba
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Gabriella Costabile
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Shoshy Mizrahy
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael
- Cancer Biology Research CenterTel Aviv UniversityTel AvivIsrael
| | - Martina Pannuzzo
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael
- Cancer Biology Research CenterTel Aviv UniversityTel AvivIsrael
| | - Paolo Decuzzi
- Fondazione Istituto Italiano di TecnologiaLaboratory of Nanotechnology for Precision MedicineGenoaItaly
| |
Collapse
|
13
|
Hantak MP, Einstein J, Kearns RB, Shepherd JD. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci 2021; 44:248-259. [PMID: 33485691 PMCID: PMC8041237 DOI: 10.1016/j.tins.2020.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Viruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway. Phylogenetic analyses showed that mammalian Arc is derived from an ancient retrotransposon of the Ty3/gypsy family and contains homology to the retroviral Gag polyproteins. The Drosophila Arc homologs, which are independently derived from the same family of retrotransposons, also mediate cell-to-cell signaling of RNA at the neuromuscular junction; a striking example of convergent evolution. Here we propose an Arc 'life cycle', based on what is known about retroviral Gag, and discuss how elucidating these biological processes may lead to novel insights into brain plasticity and memory.
Collapse
Affiliation(s)
- Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jenifer Einstein
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Rachel B Kearns
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Spriggs CC, Badieyan S, Verhey KJ, Cianfrocco MA, Tsai B. Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. J Cell Biol 2021; 219:151622. [PMID: 32259203 PMCID: PMC7199864 DOI: 10.1083/jcb.201908099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called “focus” to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
15
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
16
|
Lathwal A, Kumar R, Raghava GPS. In-silico identification of subunit vaccine candidates against lung cancer-associated oncogenic viruses. Comput Biol Med 2021; 130:104215. [PMID: 33465550 DOI: 10.1016/j.compbiomed.2021.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Globally, ~20% of cancer malignancies are associated with virus infections. Lung cancer is the most prevalent cancer and has a 10% 5-year survival rate when diagnosed at stage IV. Cancer vaccines and oncolytic immunotherapy are promising treatment strategies for better clinical outcomes in advanced-stage cancer patients. Here, we used a reverse vaccinology approach to devise subunit vaccine candidates against lung cancer-causing oncogenic viruses. Protein components (945) from nine oncogenic virus species were systematically analyzed to identify epitope-based subunit vaccine candidates. Best vaccine candidates were identified based on their predicted ability to stimulate humoral and cell-mediated immunity and avoid self-tolerance. Using a rigorous integrative approach, we identified 125 best antigenic epitopes with predicted B-cell, T-cell, and/or MHC-binding capability and vaccine adjuvant potential. Thirty-two of these antigenic epitopes were predicted to have IL-4/IFN-gamma inducing potential and IL-10 non-inducing potential and were predicted to bind 15 MHC-type I and 49 MHC-type II alleles. All 32 epitopes were non-allergenic and 31 were non-toxic. The identified epitopes showed good conservancy and likely bind a broad class of human HLA alleles, indicating promiscuous potential. The majority of best antigenic epitopes were derived from Human papillomavirus and Epstein-Barr virus proteins. Of the 32 epitopes, 25 promiscuous epitopes were related to E1 and E6 envelope genes and were present in multiple viral strains/species, potentially providing heterologous immunity. Further validating our results, 38 antigenic epitopes were also present in the largest experimentally-validated epitope resource, Immune Epitope Database and Analysis Resource. We further narrowed the selection to 29 antigenic epitopes with the highest immunogenic/immune-boosting potential. These epitopes possess tremendous therapeutic potential as vaccines against lung cancer-causing viruses and should be validated in future experiments. All findings are available at https://webs.iiitd.edu.in/raghava/vlcvirus/.
Collapse
Affiliation(s)
- Anjali Lathwal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| | - Rajesh Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
17
|
Lacombe A, Quintela I, Liao YT, Wu VCH. Food safety lessons learned from the COVID-19 pandemic. J Food Saf 2020; 41:e12878. [PMID: 33612893 PMCID: PMC7883256 DOI: 10.1111/jfs.12878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022]
Abstract
The COVID‐19 pandemic has ushered in a new era of food safety. To date, there is no evidence to suggest that consuming food is associated with COVID‐19. Nevertheless, COVID‐19's impact on food safety and security has been grave. The world is currently experiencing several supply chain issues as a direct result of extensive lockdowns and impacts on essential workers' safety. However, disruption in the food supply, while catastrophic in nature, has created opportunities for the advancement of medical science, data processing, security monitoring, foodborne pathogen detection, and food safety technology. This article will discuss the key components for food safety during the COVID‐19 pandemic. The discussion will draw from lessons learned early in the outbreak and will analyze the etiology of the disease through a food safety perspective. From there, we will discuss personal protective equipment, detection of SARS‐CoV‐2, useful surrogates to study SARS‐CoV‐2, and the expanding field of data science, from the food safety point of view. In the future, scientists can apply the knowledge to the containment of COVID‐19 and eventually to future pandemics.
Collapse
Affiliation(s)
- Alison Lacombe
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Irwin Quintela
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, United States Department Agricultural Agricultural Research Service Albany California USA
| |
Collapse
|
18
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
Affiliation(s)
- Brittany L. Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Robert Jackson
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Shauna M. Bratton
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
19
|
Labadie T, Roy P. A non-enveloped arbovirus released in lysosome-derived extracellular vesicles induces super-infection exclusion. PLoS Pathog 2020; 16:e1009015. [PMID: 33075107 PMCID: PMC7595637 DOI: 10.1371/journal.ppat.1009015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and discovered that the majority of viruses are released in EVs. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.
Collapse
Affiliation(s)
- Thomas Labadie
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
20
|
Das A, Barrientos R, Shiota T, Madigan V, Misumi I, McKnight KL, Sun L, Li Z, Meganck RM, Li Y, Kaluzna E, Asokan A, Whitmire JK, Kapustina M, Zhang Q, Lemon SM. Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nat Microbiol 2020; 5:1069-1078. [PMID: 32451473 PMCID: PMC7483933 DOI: 10.1038/s41564-020-0727-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The Picornaviridae are a diverse family of positive-strand RNA viruses that includes numerous human and veterinary pathogens1. Among these, hepatitis A virus (HAV), a common cause of acute hepatitis in humans, is unique in that it is hepatotropic and is released from hepatocytes without lysis in small vesicles that resemble exosomes2,3. These quasi-enveloped virions are infectious and are the only form of virus that can be detected in the blood during acute infection2. By contrast, non-enveloped naked virions are shed in faeces and stripped of membranes by bile salts during passage through the bile ducts to the gut4. How these two distinct types of infectious hepatoviruses enter cells to initiate infection is unclear. Here, we describe a genome-wide forward screen that shows that glucosylceramide synthase and other components of the ganglioside synthetic pathway are crucial host factors that are required for cellular entry by hepatoviruses. We show that gangliosides-preferentially disialogangliosides-function as essential endolysosome receptors that are required for infection by both naked and quasi-enveloped virions. In the absence of gangliosides, both virion types are efficiently internalized through endocytosis, but capsids fail to uncoat and accumulate within LAMP1+ endolysosomes. Gangliosides relieve this block, binding to the capsid at low pH and facilitating a late step in entry involving uncoating and delivery of the RNA genome to the cytoplasm. These results reveal an atypical cellular entry pathway for hepatoviruses that is unique among picornaviruses.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Rodell Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Madigan
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin L McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhucui Li
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
| | - Rita M Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ewelina Kaluzna
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Aravind Asokan
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason K Whitmire
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus Interplay With Lipid Rafts and Autophagy Unveils Promising Therapeutic Targets. Front Microbiol 2020; 11:1821. [PMID: 32849425 PMCID: PMC7431668 DOI: 10.3389/fmicb.2020.01821] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can infect animal and human hosts. The infection induces mild or sometimes severe acute respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents a global problem for human health. Unfortunately, only limited approaches are available to treat coronavirus infections and a vaccine against this new coronavirus variant is not yet available. The plasma membrane microdomain lipid rafts have been found by researchers to be involved in the replication cycle of numerous viruses, including coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact between virus and host cells occurs into these specialized regions, representing a port of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role played by autophagy in the host immune responses to viral infections. Coronaviruses, like other viruses, were reported to be able to exploit the autophagic machinery to increase their replication or to inhibit the degradation of viral products. Agents known to disrupt lipid rafts, such as metil-β-cyclodextrins or statins, as well as autophagy inhibitor agents, were shown to have an anti-viral role. In this review, we briefly describe the involvement of lipid rafts and autophagy in coronavirus infection and replication. We also hint how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.
Collapse
Affiliation(s)
- Katia Fecchi
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Anticoli
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Peruzzu
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Iessi
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Matarrese
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ruggieri
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Ubqln4 Facilitates Endoplasmic Reticulum-to-Cytosol Escape of a Nonenveloped Virus during Infection. J Virol 2020; 94:JVI.00103-20. [PMID: 32161173 DOI: 10.1128/jvi.00103-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
The nonenveloped polyomavirus simian virus 40 (SV40) must penetrate the host endoplasmic reticulum (ER) membrane to enter the cytosol in order to promote infection. How this is accomplished is not entirely clear. Here, we demonstrate that the cytosolic chaperone Ubiquilin4 (Ubqln4) binds directly to the ER membrane J proteins B12 and B14. Strategically localized at the ER-cytosol interface, Ubqln4 captures SV40 emerging from the ER, thereby facilitating escape of the virus from the ER into the cytosol, which leads to infection. Strikingly, Ubqln4 engages the J proteins in a J-domain-independent manner, in contrast to the previously reported Hsc70-Hsp105-SGTA-Bag2 cytosolic complex that also mediates SV40 ER-to-cytosol transport. Our results also reveal that the H domain and STI1 motif (1-2) of Ubqln4 support J protein binding, essential for SV40 infection. Together, these data further clarify the molecular basis by which a nonenveloped virus escapes a host membrane during infectious entry.IMPORTANCE How a nonenveloped virus escapes from a host membrane to promote infection remains enigmatic. In the case of the nonenveloped polyomavirus SV40, penetration of the ER membrane to reach the cytosol is a decisive virus infection step. In this study, we found a new host factor called Ubqln4 that facilitates escape of SV40 from the ER into the cytosol, thereby providing a path for the virus to enter the nucleus to cause infection.
Collapse
|
23
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|