1
|
Bai D, Nowak M, Lu D, Wang Q, Fitzgerald M, Zhang H, MacDonald R, Xu Z, Luo L. The outcast of medicine: metals in medicine--from traditional mineral medicine to metallodrugs. Front Pharmacol 2025; 16:1542560. [PMID: 40260378 PMCID: PMC12010122 DOI: 10.3389/fphar.2025.1542560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Metals have long held a significant role in the human body and have been utilized as mineral medicines for thousands of years. The modern advancement of metals in pharmacology, particularly as metallodrugs, has become crucial in disease treatment. As the machanism of metallodurgsare increasingly uncovered, some metallodrugs are already approved by FDA and widely used in treating antitumor, antidiabetes, and antibacterial. Therefore, a thorough understanding of metallodrug development is essential for advancing future study. This review offers an in-depth examination of the evolution of mineral medicines and the applications of metallodrugs within contemporary medicine. We specifically aim to summarize the historical trajectory of metals and mineral medicines in Traditional Chinese Mineral Medicine by analyzing key historical texts and representative mineral medicines. Additionally, we discuss recent advancements in understanding metallodrugs' mechanisms, such as protein interactions, enzyme inhibition, DNA interactions, reactive oxygen species (ROS) generation, and cellular structure targeting. Furthermore, we address the challenges in metallodrug development and propose potential solutions. Lastly, we outline future directions for metallodrugs to enhance their efficacy and effectiveness. The progression of metallodrugs has broadened their applications and contributed significantly to patient health, creating good healthcare solutions for the global population.
Collapse
Affiliation(s)
- Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Michal Nowak
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | | | - Hui Zhang
- Institute of Traditional Chinese Medicine, European University of Chinese Medicine, Horsens, Denmark
| | - Remy MacDonald
- Department of Statistics, George Mason University, Virginia, VA, United States
| | - Ziwen Xu
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia
| | - Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao HY, Zhan ZC, Ou HL, Wu TY, Zhu HH, Lin Q, Li YL, Wang JH, Zhou GX, Tang Q, Zhang YB, Wang GC. Dihydro-β-agarofuran sesquiterpenoids from the root bark of Tripterygium wilfordii and their anti-neuroinflammatory activities. Bioorg Chem 2025; 157:108236. [PMID: 39952061 DOI: 10.1016/j.bioorg.2025.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
A phytochemical study of Tripterygium wilfordii root bark was conducted 25 novel dihydro-β-agarofuran sesquiterpenoids (1-25) and 20 known analogues (26-45). Structural analysis elucidated by comprehensive spectroscopic analysis, including X-ray crystallography and electronic circular dichroism (ECD). Anti-neuroinflammatory assessments in BV-2 cells revealed certain compounds effectively suppressed tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). A preliminary structure-activity relationships analysis explored the relationship between compound structure and their inflammatory mediator inhibition. Notably, compound 7 modulated nuclear factor-κB (NF-κB) signaling by inhibiting IκBα and p65 phosphorylation. These findings offer novel perspectives on the bioactivity and anti-neuroinflammatory mechanisms of Tripterygium wilfordii derivatives.
Collapse
Affiliation(s)
- Hai-Yue Zhao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Zhao-Chun Zhan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Hui-Lin Ou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tian-Yuan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Hui-Hui Zhu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Jing-Hao Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, the First Affiliated Hospital, Jinan University, Guangzhou 510632 China
| | - Guang-Xiong Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Yu-Bo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632 China; The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, the First Affiliated Hospital, Jinan University, Guangzhou 510632 China.
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, the First Affiliated Hospital, Jinan University, Guangzhou 510632 China.
| |
Collapse
|
3
|
Fu Z, Wang S, Zhou X, Ouyang L, Chen Z, Deng G. Harnessing the Power of Traditional Chinese Medicine in Cancer Treatment: The Role of Nanocarriers. Int J Nanomedicine 2025; 20:3147-3174. [PMID: 40103746 PMCID: PMC11913986 DOI: 10.2147/ijn.s502104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
For centuries, traditional Chinese medicine (TCM) has had certain advantages in the treatment of tumors. However, due to their poor water solubility, low bioavailability and potential toxicity, their effective delivery to target sites can be a major challenge. Nanocarriers based on the active ingredients of TCM, such as liposomes, polymer nanoparticles, inorganic nanoparticles, and organic/inorganic nanohybrids, are a promising strategy to improve the delivery of TCM, resulting in higher therapeutic outcomes and fewer side effects. Therefore, this article intends to review the application of Chinese medicine nano preparation in tumor. Firstly, we introduce the classification and synthesis of nanometer preparations of Chinese medicine. The second part mainly introduces the different responses of TCM nano-preparations in the course of treatment to introduce how TCM nano-preparations play a role in anti-tumor therapy. The third part focuses on Different response modes of Chinese medicine nano preparations in tumor therapy. The fourth part elucidates the application of Chinese medicine nano preparations in the treatment of cancer. Finally, the research direction to be explored in related fields is put forward.
Collapse
Affiliation(s)
- Ziyu Fu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
- The second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410005, People's Republic of China
| |
Collapse
|
4
|
Yang H, Xiu J, Yan W, Liu K, Cui H, Wang Z, He Q, Gao Y, Han W. Large Language Models as Tools for Molecular Toxicity Prediction: AI Insights into Cardiotoxicity. J Chem Inf Model 2025; 65:2268-2282. [PMID: 39982968 DOI: 10.1021/acs.jcim.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
The importance of drug toxicity assessment lies in ensuring the safety and efficacy of the pharmaceutical compounds. Predicting toxicity is crucial in drug development and risk assessment. This study compares the performance of GPT-4 and GPT-4o with traditional deep-learning and machine-learning models, WeaveGNN, MorganFP-MLP, SVC, and KNN, in predicting molecular toxicity, focusing on bone, neuro, and reproductive toxicity. The results indicate that GPT-4 is comparable to deep-learning and machine-learning models in certain areas. We utilized GPT-4 combined with molecular docking techniques to study the cardiotoxicity of three specific targets, examining traditional Chinese medicinal materials listed as both food and medicine. This approach aimed to explore the potential cardiotoxicity and mechanisms of action. The study found that components in Black Sesame, Ginger, Perilla, Sichuan Pagoda Tree Fruit, Galangal, Turmeric, Licorice, Chinese Yam, Amla, and Nutmeg exhibit toxic effects on cardiac target Cav1.2. The docking results indicated significant binding affinities, supporting the hypothesis of potential cardiotoxic effects.This research highlights the potential of ChatGPT in predicting molecular properties and its significance in medicinal chemistry, demonstrating its facilitation of a new research paradigm: with a data set, high-accuracy learning models can be generated without requiring computational knowledge or coding skills, making it accessible and easy to use.
Collapse
Affiliation(s)
- Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jian Xiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiqi Yan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Huizi Cui
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhibang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Wang F, Yuan C, Deng R, Liu Y. Multi-omics analysis reveals the pre-protective mechanism of Dendrobium flexicaule polysaccharide against alcohol-induced gastric mucosal injury. Int J Biol Macromol 2025; 291:139191. [PMID: 39730050 DOI: 10.1016/j.ijbiomac.2024.139191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Dendrobium flexicaule (DF) is an endemic plant primarily found in the mountains of central China with important medicinal and edible values. In traditional Chinese medicine, DF has the effects of nourishing stomach and "Yin", and clearing heat. At present, no studies have explored the mechanisms by which Dendrobium flexicaule polysaccharides (DFP) exert pre-protect effects against alcohol-induced gastric mucosal injury. In this study, DFP (367.478 kDa) was extracted through water extraction and ethanol precipitation, and composed of mannose (79.89 %), glucose (19.05 %), xylose (0.42 %), arabinose (0.33 %), and galactose (0.31 %). A rat model of alcohol-induced gastric mucosal injury was established to evaluate the pre-protective effects of DFP. Histological analysis, using hematoxylin-eosin staining, revealed that DFP alleviated gastric mucosal congestion and redness. Furthermore, DFP downregulated the expression of IL-6, IL-1β, MPO and MDA, while upregulating the expression of PGE2, GSH and SOD. Immunofluorescence analysis demonstrated that DFP upregulated the expression of ZO-1 and Occludin, thereby improving gastric barrier function. Multi-omics analysis revealed its regulation of the complement and coagulation cascade signaling pathway, as well as the propanoate metabolism pathway. Immunohistochemical analysis further confirmed that DFP significantly down-regulated the expression of C3, VTN, F2, Serpind1, CPB2, FGA and VWF. Overall, this study offers novel insights into the pre-protective effects and mechanisms of DFP against alcohol-induced gastric mucosal injury, laying the groundwork for the development of DF based therapeutic resources.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chong Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Rui Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
6
|
Bai YY, Tian R, Qian Y, Zhao CB, Yan YG, Zhang L, Yue SJ, Zhang Q, Wang YW, Tang YP. Integrated gut microbiota and serum pharmacochemistry reveal the mechanisms of wine steaming in alleviating rhubarb diarrhea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156105. [PMID: 39368337 DOI: 10.1016/j.phymed.2024.156105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Long-term use of rhubarb (RH) can cause adverse gastrointestinal reactions (such as diarrhea), whereas RH steaming with wine (PRH) can alleviate RH-induced diarrhea. However, the potential material basis and mechanisms by which wine steaming alleviates diarrhea caused by RH remain unclear. PURPOSE To reveal the potential material basis and underlying mechanisms of wine steaming in alleviating diarrhea caused by RH from the perspective of small intestinal flora and immune function. METHODS The major anthraquinone/anthrone components were detected using high-performance liquid chromatography (HPLC). Constipation model mice were replicated using loperamide hydrochloride and were administered RH and PRH for six consecutive weeks. Histopathological observation (duodenum, jejunum, and ileum) was performed using hematoxylin-eosin (HE) staining, and the serum levels of inflammatory cytokines, immunoglobulin G (IgG), and immunoglobulin A (IgA) were examined. CD4+, CD8+, and Treg cells counts in peripheral blood were determined using flow cytometry; The protein expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) was determined using immunohistochemistry (IHC) and western blot (WB). The small intestine contents and feces were analyzed by 16 S rRNA sequencing and the contents of short chain fatty acids (SCFAs) in feces were determined using gas chromatography-mass spectrometry (GC-MS). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the blood absorption compounds and endogenous metabolites. RESULTS The levels of the major anthraquinone/anthrone components were decreased in PRH. RH and PRH both increased the wet fecal weight at 12 h (WFW-12) and fecal water rate (FWR), alleviated the dry and black fecal morphology, and relieved small intestine injuries in the second week. In the fourth week, although RH and PRH alleviated the abnormal levels of indicators in the model mice (fecal water rate, immune cells percentage, and TLR4/NF-κB expression), minor small intestinal damage was observed. Compared to that at the fourth week, RH and PRH increased the levels of WFW-12, FWR, inflammatory cytokines, and TLR4/NF-κB expression, and decreased the levels of IgG/IgA and immune cells with extended administration (sixth week). Further, damage to the small intestine worsened (severe ileal damage) and different degrees of loose stools were observed in RH- and PRH-administered mice in the sixth week. Compared with those in the control group, the levels of WFW-12, FWR, inflammatory cytokines, TLR4/NF-κB expression, IgG/IgA, and immune cell percentage were significantly different in the RH-H and PRH-H mice at the sixth week (except for CD8+in PRH-H). Further, RH and PRH disturbed the gut microbiota (GM) (Lactobacillus and Dubosiella decreased, Aerococcus and Corynebacterium increased) and obviously reduced the content of SCFAs (acetic acid, butyric acid, and isobutyric acid). However, almost all the results indicated a lower impact of PRH than that of RH. Metabolic pathways mainly involved in glycerophospholipid metabolism were identified along with a total of 21 blood absorption components, including anthraquinones, anthrones, flavanols, and tannins. The correlation analysis showed a positive correlation of pathogenic bacteria (Aerococcus and Corynebacterium) with inflammatory cytokines, TLR4/NF-κB, LysoPC(20:0/0:0), and PE (16:0/20:4(8Z,11Z,14Z,17Z)) and a negative correlation with immune cells and SCFAs (acetic acid and isobutyric acid); however, the opposite results were observed for beneficial bacteria (Lactobacillus and Dubosiella). CONCLUSION Overall, PRH can alleviate RH-induced diarrhea by recovering the GM imbalance and abnormal levels of GM-mediated SCFAs, alleviating the decrease in cellular immune function and abnormal expression of TLR4/NF-κB, thereby suppressing the release of inflammatory factors, possibly, through its lower content of anthraquinones. This study explored for the first time the processing mechanism of wine steaming in alleviating RH-induced diarrhea from the aspects of small intestinal flora and small intestinal immune function.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou 215000, Jiangsu Province, China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
7
|
Dragos C, Joseph C, Elwell H, Dey M, Kouranloo K. Pulmonary manifestations, treatments and outcomes of IgG4-related disease-a systematic literature review. Rheumatol Int 2024; 44:1875-1886. [PMID: 38769126 PMCID: PMC11393110 DOI: 10.1007/s00296-024-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a multisystem fibroinflammatory condition. A consistent feature of many cases is pulmonary infiltrates, or respiratory failure. This systematic literature review aims to summarise the pulmonary manifestations of IgG4-RD, including clinical outcomes and treatment. This review was registered on PROSPERO (CRD42023416410). Medline, Embase and Cochrane databases were searched for articles discussing IgG4-RD syndrome. Information was extracted on demographics, type and prevalence of pulmonary manifestations, treatment and clinical outcomes. Initially, after deduplication, 3123 articles were retrieved with 18 ultimately included. A pooled total of 724 patients with IgG4-RD were included, 68.6% male, mean age 59.4 years (SD 5.8) at disease onset. The most frequently described pulmonary manifestation was mediastinal lymphadenopathy (n = 186, 48.8%), followed by pulmonary nodules (n = 151, 39.6%) and broncho-vascular thickening (n = 85, 22.3%). Where treatment was reported, the majority of patients received glucocorticoids (n = 211, 93.4%). Other immunosuppressive therapy included cyclophosphamide (n = 31), azathioprine (n = 18), with mycophenolate mofetil (n = 6), rituximab (n = 6), methotrexate (n = 5) and other unspecified immunomodulators (50). Clinical outcomes were reported in 263 patients, where 196 patients had remission of their disease, 20 had relapse, 35 had stable disease, four had progression and eight patients died from complications of IgG4-RD. This systematic review summarises pulmonary manifestations, treatments and outcomes in patients with IgG4-RD. Pulmonary involvement in IgG4-RD is relatively common, leading to high levels of morbidity and mortality. Glucocorticoids remain the mainstay of treatment, but further work is required to explore the management of patients with pulmonary manifestations in association with IgG4-RD.
Collapse
Affiliation(s)
- Cristina Dragos
- Liverpool University NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Clerin Joseph
- Liverpool University NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Helen Elwell
- British Medical Association Library, BMA House, Tavistock Square, London, WC1H 9JP, UK
| | - Mrinalini Dey
- Centre for Rheumatic Diseases, Weston Education Centre, Cutcombe Road, London, SE5 9RJ, UK
| | - Koushan Kouranloo
- School of Medicine, Cedar House, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
- Department of Rheumatology, University Hospital Lewisham, High Street, Lewisham, London, SE13 6LH, UK.
| |
Collapse
|
8
|
Ren L, Peng H, Mu H, Li J, Zhou X, Zhang Y, Xuan Q, Zhang X, Dai X, Chen Y, Fan M, Mo F, Li B, Yan L, Zheng G. 28-day repeated-dose toxicity of orally administered Jinmao Jiedu granule in Sprague-Dawley rats. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124176. [PMID: 38870606 DOI: 10.1016/j.jchromb.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Jinmao Jiedu granule is a Chinese medicine preparation consisting of Actinidia valvata Dunn, Salvia chinensis Benth, Iphigenia indica Kunth, and chicken gizzard. For many years, it has been employed in adjuvant therapy for cancer, especially liver cancer. However, the potential toxicity of the granule has not been reported. The present study aimed to assess the repeated-dose toxicity of orally administered Jinmao Jiedu granules for Sprague-Dawley (SD) rats. SD rats were orally administered Jinmao Jiedu granules at doses of 2.85, 5.70, and 11.40 g/kg in a 28-day subchronic toxicity study. No adverse clinical signs associated with treatment were noted throughout the experiment. There were no treatment-related toxicity alterations in body weight, hematology, clinical biochemistry, urinalysis, necropsy, and histopathology in rats compared with the control group. The No Observed Adverse Effect Level (NOAEL) of the Jinmao Jiedu granule was higher than 11.40 g/kg/day in rats.
Collapse
Affiliation(s)
- Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Hao Peng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Hui Mu
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xibin Zhou
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Yanhong Zhang
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Qiwen Xuan
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiayan Zhang
- Department of Pharmacy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Minwei Fan
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Bai Li
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Guoyin Zheng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Kanungo J, Sorkin BC, Krzykwa J, Mitchell CA, Embry M, Spencer P, Harry GJ, Cannon J, Liu F, McPherson CA, Gafner S, Westerink RH. Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety. Expert Opin Drug Metab Toxicol 2024; 20:629-646. [PMID: 38984683 PMCID: PMC11542175 DOI: 10.1080/17425255.2024.2378895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
AREAS COVERED This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Barbara C. Sorkin
- Office of Dietary Supplements, Division of Program Coordination, Planning, and Strategic Initiatives, U.S. National Institutes of Health, Bethesda, MD
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jason Cannon
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Christopher A. McPherson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, Austin, Texas 78723, United States
| | - Remco H.S. Westerink
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
11
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
12
|
Luo R, He C, He J, Li Z, Wang Y, Hou M, Li P, Yu W, Cheng S, Song Z. Acute toxicology on Danio rerio embryo and adult from Chinese traditional medicine preparation Danggui Shaoyao san. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117528. [PMID: 38043754 DOI: 10.1016/j.jep.2023.117528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.
Collapse
Affiliation(s)
- Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
13
|
Shi W, Liu T, Yang H, Zhao J, Wei Z, Huang Y, Li Z, Li H, Liang L, Hou X, Chen Y, Gao Y, Bai Z, Xiao X. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117063. [PMID: 37598766 DOI: 10.1016/j.jep.2023.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dictamnus dasycarpus Turcz. (Dictamni Cortex, DC), a Chinese herbal medicine, is commonly used for treating chronic dermatosis and rheumatism, but can also cause herb-induced liver injury (HILI). Our study has demonstrated that DC can induce idiosyncratic HILI, but the mechanism remains unknown. The NLRP3 inflammasome has become a major target for addressing many diseases. The activation of NLRP3 inflammasome is responsible for many liver-related inflammatory diseases, including idiosyncratic HILI. AIM OF THE STUDY The objective of our study was to demonstrate the mechanism underlying the idiosyncratic HILI induced by DC and clarify the susceptible component in DC. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) and THP1 cells were selected to assess the effect of isomaculosidine (IMD) on NLRP3 inflammasome activation in vitro. Western blot, ELISA and Caspase-Glo® 1 Inflammasome Assay, flow cytometry and Immunofluorescence were employed to detect the mechanism of IMD on NLRP3 inflammasome activation. To assess the efficacy of IMD in vivo, mice were intravenously administrated with LPS and then IMD were injected intraperitoneally for 6 h. RESULTS The results of our in vitro studies demonstrate that IMD, the major constituent of DC, specifically promoted ATP- and nigericin-induced activation of NLRP3 inflammasome, but not NLRC4 and AIM2 inflammasomes. Additionally, IMD promoted nigericin-induced ASC oligomerization. Notably, synergistic induction of mtROS played a key role on the activation of NLRP3 inflammasome. IMD increased the mtROS production in the activation of NLRP3 inflammasome induced by nigericin. In addition, the results of our in vivo study showed that the combination of nonhepatotoxic doses of LPS and IMD can increase the levels of ALT, AST, and DBIL, leading to liver injury. CONCLUSIONS IMD specifically facilitated the activation of NLRP3 inflammasome induced by nigericin and ATP, which is responsible for DC-induced idiosyncratic HILI.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Longxin Liang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Mück F, Scotti F, Mauvisseau Q, Raclariu-Manolică AC, Schrøder-Nielsen A, Wangensteen H, de Boer HJ. Complementary authentication of Chinese herbal products to treat endometriosis using DNA metabarcoding and HPTLC shows a high level of variability. Front Pharmacol 2023; 14:1305410. [PMID: 38116075 PMCID: PMC10728824 DOI: 10.3389/fphar.2023.1305410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Traditional Chinese Medicine (TCM) is popular for the treatment of endometriosis, a complex gynecological disease that affects 10% of women globally. The growing market for TCMs has yielded a significant incentive for product adulteration, and although emerging technologies show promise to improve their quality control, many challenges remain. We tested the authenticity of two traditional Chinese herbal formulae used in women's healthcare for the treatment of endometriosis, known as Gui Zhi Fu Ling Wan (FL) and Ge Xia Zhu Yu Tang (GX). Dual-locus DNA metabarcoding analysis coupled with high-performance thin-layer chromatography (HPTLC) were used to authenticate 19 FL and six GX commercial herbal products, as well as three ad hoc prepared artificial mixtures. HPTLC was able to detect most of the expected ingredients via comparative component analysis. DNA metabarcoding was able to detect an unexpected species diversity in the products, including 38 unexpected taxa. Chromatography has a resolution for all species indirectly through the identification of marker compounds for the different species ingredients. Metabarcoding on the other hand yields an overview of species diversity in each sample, but interpretation of the results can be challenging. Detected species might not be present in quantities that matter, and without validated quantification, some detected species can be hard to interpret. Comparative analysis of the two analytical approaches also reveals that DNA for species might be absent or too fragmented to amplify as the relevant chemical marker compounds can be detected but no amplicons are assigned to the same species. Our study emphasizes that integrating DNA metabarcoding with phytochemical analysis brings valuable data for the comprehensive authentication of Traditional Chinese Medicines ensuring their quality and safe use.
Collapse
Affiliation(s)
- Felicitas Mück
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Francesca Scotti
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | | | - Ancuţa Cristina Raclariu-Manolică
- Natural History Museum, University of Oslo, Oslo, Norway
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamț, Romania
| | | | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
15
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Kakkar RA, Haneen MA, Parida AC, Sharma G. The known, unknown, and the intriguing about members of a critically endangered traditional medicinal plant genus Aconitum. FRONTIERS IN PLANT SCIENCE 2023; 14:1139215. [PMID: 37575934 PMCID: PMC10421671 DOI: 10.3389/fpls.2023.1139215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 08/15/2023]
Abstract
Humanity will always be indebted to plants. In the ongoing scientific era, the 'Herbal Revolution' has helped discover several valuable medicinal plants and associated novel secondary metabolites from the diverse unexplored ecosystems, treating several diseases via phytotherapy. The Aconitum genus comprises several economically-important poisonous mountainous medicinal plant species whose unique biodiversity is on the verge of extinction due to illegal human intervention triggered habitat loss, over-harvesting, and unrestricted trading. Owing to its vast diversity of diterpene alkaloids, most species are extensively used to treat several ailments in rural parts of the world. Irrespective of this, many unexplored and intriguing prospects exist to understand and utilize this critical plant for human benefit. This systematic review tries to fill this gap by compiling information from the sporadically available literature known for ~300 Aconitum spp. regarding its nomenclature and classification, endangerment, plant morphology, ploidy, secondary metabolites, drug pharmacokinetics, conservation, and omics-based computational studies. We also depicted the disparity in the studied model organisms for this diverse genus. The absence of genomic/metagenomic data is becoming a limiting factor in understanding its plant physiology, metabolic pathways, and plant-microbes interactions, and therefore must be promoted. Additionally, government support and public participation are crucial in establishing conservation protocols to save this plant from endangerment.
Collapse
Affiliation(s)
- Richa Ashok Kakkar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | | | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
17
|
Liu J, Liang M, Lin T, Zhao Q, Wang H, Yang S, Guo Q, Wang X, Guo H, Cui L, Yan Y, Hieno A, Kageyama K, Suga H, Li M. A LAMP-Based Toolbox Developed for Detecting the Major Pathogens Affecting the Production and Quality of the Chinese Medicinal Crop Aconitum carmichaelii. PLANT DISEASE 2023; 107:658-666. [PMID: 35852903 DOI: 10.1094/pdis-05-22-1092-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aconitum carmichaelii Debeaux is a traditional Chinese medicinal herb that has been utilized for approximately 2,000 years. However, as cultivation has increased, there have been more reports of A. carmichaelii infections caused by four major pathogenic fungal species, Fusarium oxysporum, F. solani, Mucor circinelloides, and Sclerotium rolfsii, resulting in increased disease incidences and limited production and quality. To detect these infections, we developed a LAMP-based toolbox in this study. The cytochrome c oxidase subunit 1 (cox1) gene, translation elongation factor-1α (EF-1α), internal transcribed spacer (ITS) regions of rDNA, and alcohol dehydrogenase 1 (ADH1) gene, respectively, were used to design species-specific LAMP primer sets for F. oxysporum, F. solani, S. rolfsii, and M. circinelloides. The results showed that the LAMP-based toolbox was effective at detecting pathogens in soil and plant materials. We also used this toolbox to investigate pathogen infection in the main planting regions of A. carmichaelii. Before harvesting, F. oxysporum, M. circinelloides, and S. rolfsii were commonly found in the planting fields and in infected A. carmichaelii plants. Therefore, the toolbox we developed will be useful for tracking these infections, as well as for disease control in A. carmichaelii.
Collapse
Affiliation(s)
- Jingzhe Liu
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Mengyi Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Tao Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qing Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Shunyuan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xinyi Wang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Hua Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Langjun Cui
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Yaping Yan
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Mingzhu Li
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| |
Collapse
|
18
|
Guo J, Zhang J, Liu Q, Yang N, Huang Y, Hu T, Rao C. Research progress on components and mechanisms of neurotoxicity induced by traditional Chinese medicine. J Appl Toxicol 2023; 43:338-349. [PMID: 36148542 DOI: 10.1002/jat.4396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/08/2022]
Abstract
Over the years, the safety of traditional Chinese medicine (TCM) has received widespread attention, especially the central nervous system-related adverse reactions. Indeed, the complexity of TCM has limited the widespread application of TCM. The article summarizes the main components associated with neurotoxicity, including alkaloids, terpenes, flavonoids, saponins, proteins, and heavy metals, by reviewing the literature on the neurotoxicity of TCM. It has been established that the neurotoxicity mechanisms mainly include mitochondrial damage, oxidative damage, inhibition of cell proliferation (including transcriptional and DNA damage), changes in cell membrane permeability, and apoptosis. By reviewing the latest literature, this paper provides the foothold for follow-up studies and can assist clinicians in preventing neurotoxicity via rational and safe TCM drug use.
Collapse
Affiliation(s)
- Jiafu Guo
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Zhang
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Yang
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Huang
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica With Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Zhang C, Fan S, Zhao JQ, Jiang Y, Sun JX, Li HJ. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen-induced metabolic activation and hepatotoxicity. Phytother Res 2023; 37:163-180. [PMID: 36056681 DOI: 10.1002/ptr.7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Psoralen and isopsoralen are the pharmacologically important but hepatotoxic components in Psoraleae Fructus. The purpose of this study was to reveal the underlying mechanism of psoralen/isopsoralen-induced hepatotoxicity. Initially, we applied integrated analyses of transcriptomic and metabolomic profiles in mice treated with psoralen and isopsoralen, highlighting the xenobiotic metabolism by cytochromes P450 as a potential pathway. Then, with verifications of expression levels by qRT-PCR and western blot, affinities by molecular docking, and metabolic contributions by recombinant human CYP450 and mouse liver microsomes, CYP1A2 was screened out as the key metabolic enzyme. Afterwards, CYP1A2 induction and inhibition models in HepG2 cells and mice were established to verify the role of CYP1A2, demonstrating that induction of CYP1A2 aggravated the hepatotoxicity, and conversely inhibition alleviated the hepatotoxic effects. Additionally, we detected glutathione adducts with reactive intermediates of psoralen and isopsoralen generated by CYP1A2 metabolism in biosystems of recombinant human CYP1A2 and mouse liver microsomes, CYP1A2-overexpressed HepG2 cells, mice livers and the chemical reaction system using UPLC-Q-TOF-MS/MS. Ultimately, the high-content screening presented the cellular oxidative stress and relevant hepatotoxicity due to glutathione depletion by reactive intermediates. In brief, our findings illustrated that CYP1A2-mediated metabolic activation is responsible for the psoralen/isopsoralen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Song Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Li J, Yuan M, Qiu T, Lu M, Zhan S, Bai Y, Yang M, Liu X, Zhang X. A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:650-673. [PMID: 36272104 DOI: 10.1080/09205063.2022.2139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.
Collapse
Affiliation(s)
- Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Yuan
- Wuhan Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
21
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
22
|
Chen H, Zheng M, Zhang W, Long Y, Xu Y, Yuan M. Research Status of Mouse Models for Non-Small-Cell Lung Cancer (NSCLC) and Antitumor Therapy of Traditional Chinese Medicine (TCM) in Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6404853. [PMID: 36185084 PMCID: PMC9519343 DOI: 10.1155/2022/6404853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is known as one of the most lethal cancers, causing more than 1 million deaths annually worldwide. Therefore, the development of novel therapeutic drugs for NSCLC has become an urgent need. Herein, various mouse models provide great convenience not only for researchers but also for the development of antitumor drug. Meanwhile, TCM, as a valuable and largely untapped resource pool for modern medicine, provides research resources for the treatment of various diseases. Until now, cell-derived xenograft (CDX) model, patient-derived xenograft (PDX) model, syngeneic model, orthotopic model, humanized mouse model (HIS), and genetically engineered mouse models (GEMMs) have been reported in TCM evaluation. This review shows the role and current status of kinds of mouse models in antitumor research and summarizes the application progress of TCM including extracts, formulas, and isolated single molecules for NSCLC therapy in various mouse models; more importantly, it provides a theoretical exploration of what kind of mouse models is ideal for TCM efficacy evaluation in future. However, there are still huge challenges and limitations in the development of mouse models specifically for the TCM research, and none of the available models are perfectly matching the characteristics of TCM, which suppress the tumor growth through various mechanisms, especially by regulating immune function. Nevertheless, with fully functional immune system existing in syngeneic model and humanized mouse model (HIS), it is still suggested that these two models are more suitable for development of TCM especially for TCM extracts or formulas. Moreover, continued efforts are needed to generate more reliable mouse models to test TCM formulas in future research.
Collapse
Affiliation(s)
- Hongkui Chen
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yuan Long
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
23
|
Zhong Y, Zhang J, Bao Z. The complete chloroplast genome of Tripterygium wilfordii Hook. f. (Celastraceae). Mitochondrial DNA B Resour 2022; 7:1696-1698. [PMID: 36188665 PMCID: PMC9518234 DOI: 10.1080/23802359.2022.2119103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tripterygium wilfordii is a perennial vine plant with medicinal value and belongs to the family of Celastraceae. In this study, we sequenced and analyzed the complete chloroplast genome of T. wilfordii. The chloroplast genome was 156,700 bp in length with a GC content of 37.47%. It contained two inverted repeat (IR) regions of 26,461 bp; each region was separated by large single-copy and small single-copy regions of 85,409 bp and 18,369 bp, respectively. In total, we annotated 134 unique genes, consisting of 89 protein-encoding genes, 8 rRNAs and 37 tRNAs. Phylogenetic analysis revealed that T. wilfordii was sister to T. regelii in a clade of Tripterygiumii species that was sister to a clade of Euonymus species.
Collapse
Affiliation(s)
- Yuan Zhong
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| | - Jingzheng Zhang
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Bao
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
24
|
Ni YH, Deng HF, Zhou L, Huang CS, Wang NN, Yue LX, Li GF, Yu HJ, Zhou W, Gao Y. Ginsenoside Rb1 Ameliorated Bavachin-Induced Renal Fibrosis via Suppressing Bip/eIF2α/CHOP Signaling-Mediated EMT. Front Pharmacol 2022; 13:872474. [PMID: 35873571 PMCID: PMC9304982 DOI: 10.3389/fphar.2022.872474] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The nephrotoxicity of Fructus Psoraleae, an effective traditional Chinese medicine for vitiligo treatment, has been reported. As one of the main toxic components in Fructus Psoraleae, bavachin (BV) was considered to be related to Fructus Psoraleae-caused adverse outcomes, but the direct evidence and molecular mechanism underlying BV-induced nephrotoxicity are not well elucidated. Therefore, this study was designed to confirm whether BV would cause toxic effects on the kidney and explore the possible mode of action. Our results demonstrated that days’ treatment with 0.5 μM BV indeed caused obvious renal fibrosis in the zebrafish kidney. The obvious E- to N-cadherin switch and the expressions of proteins promoting epithelial–mesenchymal transition (EMT) were observed in BV-treated human renal tubular epithelial and zebrafish kidneys. In addition, elevated reactive oxygen species (ROS) levels and Bip/eIF2α/CHOP-mediated endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were caused by BV, both of which could be reversed by ROS scavenger N-acetyl-L-cysteine (NAC). Also, blocking ER stress-caused cytoplasmic Ca2+ overload with 4-PBA notably alleviated BV-induced alterations in key molecular events related to EMT and renal fibrosis. Furthermore, of the natural compounds subjected to screening, ginsenoside Rb1 significantly downregulated BV-induced ER stress by inhibiting ROS generation and following the activation of Bip/eIF2α/CHOP signaling in HK2 cells. Subsequently, BV-triggered EMT and renal fibrosis were both ameliorated by ginsenoside Rb1. In summary, our findings suggested that BV-induced ROS promoted the appearance of EMT and renal fibrosis mainly via Bip/eIF2α/CHOP-mediated ER stress. This ER stress-related toxic pathway might be a potential intervention target for BV-caused renal fibrosis, and ginsenoside Rb1 would be a promising drug against BV- or Fructus Psoraleae-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gao-Fu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Jing Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| |
Collapse
|
25
|
Yu W, Yang Y, Zhou Q, Huang X, Huang Z, Li T, Wu Q, Zhou C, Ma Z, Lin H. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer. Int J Biol Macromol 2022; 207:850-858. [PMID: 35364191 DOI: 10.1016/j.ijbiomac.2022.03.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023]
Abstract
It is generally accepted that Astragalus polysaccharides (APS) supplementation can makes beneficial effects to fish. However, the adverse effects of APS to fish remains poorly understood. In the present study, Asian seabass Lates calcarifer were studied to assess the influence of different doses of APS on growth, health and resistance to Vibrio harveyi. Results showed that supplemental APS with 0.10 to 0.20% significantly boosted the growth performance, the protease and lipase activities of L. calcarifer. Compared with control diet, the villus length of L. calcarifer fed with APS supplemented diets was significantly higher. L. calcarifer fed with APS supplementation diets also significantly facilitated the antioxidant capacity and immune function. Meanwhile, supplemental APS with 0.10 to 0.15% significantly promoted liver health by up-regulating the expression of anti-inflammatory cytokines and down-regulating the expression of pro-inflammatory cytokines. Furthermore, survival rate of L. calcarifer challenged with V. harveyi was higher in diets supplemented with APS compared to the control. However, 0.20% APS significantly hindered the growth performance and caused immunostimulatory fatigue in L. calcarifer compared to 0.10% APS. Taken together, the present study demonstrates that supplementation APS with 0.10% is the optimal level for promoting the growth performance, health and resistance to V. harveyi of L. calcarifer, while 0.20% APS exerts adverse effects on L. calcarifer. Our findings provide novel recommendations for the application of APS supplementation in farmed fish.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xiaolin Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Tao Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qiaer Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China.
| |
Collapse
|
26
|
Watanabe K, Sato M, Osada H. Recent advances in the chemo-biological characterization of decalin natural products and unraveling of the workings of Diels-Alderases. Fungal Biol Biotechnol 2022; 9:9. [PMID: 35488322 PMCID: PMC9055775 DOI: 10.1186/s40694-022-00139-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
The Diels-Alder (DA) reaction refers to a [4 + 2] cycloaddition reaction that falls under the category of pericyclic reactions. It is a reaction that allows regio- and stereo-selective construction of two carbon-carbon bonds simultaneously in a concerted manner to generate a six-membered ring structure through a six-electron cyclic transition state. The DA reaction is one of the most widely applied reactions in organic synthesis, yet its role in biological systems has been debated intensely over the last four decades. A survey of secondary metabolites produced by microorganisms suggests strongly that many of the compounds possess features that are likely formed through DA reactions, and most of them are considered to be catalyzed by enzymes that are commonly referred to as Diels-Alderases (DAases). In recent years, especially over the past 10 years or so, we have seen an accumulation of a substantial body of work that substantiates the argument that DAases indeed exist and play a critical role in the biosynthesis of complex metabolites. This review will cover the DAases involved in the biosynthesis of decalin moieties, which are found in many of the medicinally important natural products, especially those produced by fungi. In particular, we will focus on a subset of secondary metabolites referred to as pyrrolidine-2-one-bearing decalin compounds and discuss the decalin ring stereochemistry and the biological activities of those compounds. We will also look into the genes and enzymes that drive the biosynthetic construction of those complex natural products, and highlight the recent progress made on the structural and mechanistic understanding of DAases, especially regarding how those enzymes exert stereochemical control over the [4 + 2] cycloaddition reactions they catalyze.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroyuki Osada
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, 351-0198, Japan.
| |
Collapse
|
27
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M, Li G, Xiao Y, Wei L, Bi H, Gao T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:282. [PMID: 35434037 PMCID: PMC9011256 DOI: 10.21037/atm-22-762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Background Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. Methods The active ingredients of Cordycepssinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. Results Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. Conclusions The active ingredients of Cordycepssinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordycepssinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | | | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tingting Gao
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
29
|
Feng H, Hu Y, Zhou S, Lu Y. Farnesoid X receptor contributes to oleanolic acid‐induced cholestatic liver injury in mice. J Appl Toxicol 2022; 42:1323-1336. [PMID: 35128688 PMCID: PMC9546401 DOI: 10.1002/jat.4298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor involved in the metabolism of bile acid. However, the molecular signaling of FXR in bile acid homeostasis in cholestatic drug‐induced liver injury remains unclear. Oleanolic acid (OA), a natural triterpenoid, has been reported to produce evident cholestatic liver injury in mice after a long‐term use. The present study aimed to investigate the role of FXR in OA‐induced cholestatic liver injury in mice using C57BL/6J (WT) mice and FXR knockout (FXR−/−) mice. The results showed that a significant alleviation in OA‐induced cholestatic liver injury was observed in FXR−/− mice as evidenced by decreases in serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase as well as reduced hepatocyte necrosis. UPLC‐MS analysis of bile acids revealed that the contents of bile acids decreased significantly in liver and serum, while increased in the bile in FXR−/− mice compared with in WT mice. In addition, the mRNA expressions of hepatic transporter Bsep, bile acid synthesis enzymes Bacs and Baat, and bile acids detoxifying enzymes Cyp3a11, Cyp2b10, Ephx1, Ugt1a1, and Ugt2b5 were increased in liver tissues of FXR−/− mice treated with OA. Furthermore, the expression of membrane protein BSEP was significantly higher in livers of FXR−/− mice compared with WT mice treated with OA. These results demonstrate that knockout of FXR may alleviate OA‐induced cholestatic liver injury in mice by decreasing accumulation of bile acids both in the liver and serum, increasing the export of bile acids via the bile, and by upregulation of bile acids detoxification enzymes. Oleanolic acid (OA) induces cholestatic liver injury in mice after a long‐term use. Here we demonstrated a significant alleviation in OA‐induced cholestatic liver injury in Farnesoid X receptor (FXR) knockout (FXR‐/‐) mice as compared to the wildtype mice. Downregulation of FXR decreased contents of bile acids in liver and serum, while increased the contents in the bile. In addition, the expression of membrane protein BSEP was significantly higher in livers of FXR‐/‐ mice compared to WT mice treated with OA.
Collapse
Affiliation(s)
- Hong Feng
- People’s Hospital of Zunyi City Bo Zhou District Zunyi Guizhou China
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
30
|
Xia KY, Zhao Z, Shah T, Wang JY, Baloch Z. Composition, Clinical Efficiency, and Mechanism of NHC-Approved "Three Chinese Medicines and Three Chinese Recipes" for COVID-19 Treatment. Front Pharmacol 2022; 12:781090. [PMID: 35185537 PMCID: PMC8855106 DOI: 10.3389/fphar.2021.781090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been regularly prescribed to treat and prevent diseases for thousands of years in the eastern part of the Asian continent. Thus, when the coronavirus disease 2019 (COVID-19) epidemic started, TCM was officially incorporated as a strategy by the National Health Commission (NHC) for the treatment of COVID-19 infection. TCMs were used to treat COVID-19 and had a significant effect on alleviating symptoms, delaying disease progression, improving the cure rate, and reducing the mortality rate in China. Therefore, China's National Health Commission officially approved Qingfei Paidu decoction, Xuanfei Baidu decoction, Huashi Baidu decoction, Lianhua Qingwen capsules, Jinhua Qinggan granules, and Xuebijing for COVID-19 treatment. This review evaluates and summarizes the use of TCMs against infectious diseases and the composition, clinical efficacy, and mechanisms of the NHC-approved "three Chinese medicines and three Chinese recipes" for COVID-19 treatment. The three Chinese medicines and three Chinese recipes have been demonstrated to be highly effective against COVID-19, but there is a lack of in vivo or in vitro evidence. Most of the available data related to the potential mechanism of the three Chinese medicines and three Chinese recipes is based on virtual simulation or prediction, which is acquired via molecular docking and network pharmacology analysis. These predictions have not yet been proven. Therefore, there is a need for high-quality in vivo and in vitro and clinical studies by employing new strategies and technologies such as genomics, metabolomics, and proteomics to verify the predicted mechanisms of these drug's effects on COVID-19.
Collapse
Affiliation(s)
- Ke-Yao Xia
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zeyuan Zhao
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Taif Shah
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jing-Yi Wang
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
31
|
Liu C, Zeng Y, Wen Y, Huang X, Liu Y. Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:806148. [PMID: 35173617 PMCID: PMC8841338 DOI: 10.3389/fphar.2022.806148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinggui Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
32
|
Fu K, Song Y, Zhang D, Xu M, Wu R, Xiong X, Liu X, Wu L, Guo Y, Zhou Y, Li X, Wang Z. Determination of 18 Trace Elements in 10 Batches of the Tibetan Medicine Qishiwei Zhenzhu Pills by Direct Inductively Coupled Plasma-Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8548378. [PMID: 35069770 PMCID: PMC8776486 DOI: 10.1155/2022/8548378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023]
Abstract
Qishiwei Zhenzhu pills (QSW) was first recorded in the Tibetan medicine classic Si Bu Yi Dian and has been used to treat "Baimai" disease, stroke, paralysis, hemiplegia, cerebral hemorrhage, and other diseases till today. This prescription contains more than 70 medicines including myrobalan, pearl, agate, opal, bezoar, coral, musk, gold, silver, and a mineral mixture Zuotai. As a result, QSW contains a large amount of mercury, copper, lead, and other trace elements. The aim of this study was to determine the 18 trace elements (lithium, beryllium, scandium, vanadium, chromium, manganese, cobalt, nickel, copper, arsenic, strontium, argentum, cadmium, cesium, barium, lead, aurum, and mercury) in 10 batches of QSW produced by 5 pharmaceutical companies (Ganlu Tibetan Medicine Co., Ltd. has 6 different batches) by direct inductively coupled plasma-mass spectrometry (ICP-MS). ICP-MS is a rapid, sensitive, accurate methodology allowing the determination of 18 elements simultaneously. The results showed that each element had an excellent linear relationship in the corresponding mass concentration range. The results showed that the rank order of the elements in QSW was copper > mercury > lead from high to low, with the mass fraction higher than 6000 μg/kg; the mass fractions of argentum, arsenic, manganese, aurum, strontium, barium, chromium, and nickel were in the range of 33-1034 μg/kg; and the mass fractions of vanadium, cobalt, lithium, beryllium, cadmium, scandium, and cesium were lower than 10 μg/kg. The reproducibility from the same manufacturer (Tibet Ganlu Tibetan Medicine Co., Ltd.) was relatively high; however, the element amounts among 5 manufacturers were different, which could affect the efficacy and toxicity of QSW. All in all, ICP-MS can be used as an effective tool for the analysis of trace elements in QSW and standard quality control needs to be enforced across different manufactures.
Collapse
Affiliation(s)
- Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dewei Zhang
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueqing Xiong
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - Xianwu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Guo
- Wanzhou Institute for Drug and Food Control, Chongqing 404000, China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
33
|
Anti-diabetic effects of Inonotus obliquus extract in high fat diet combined streptozotocin-induced type 2 diabetic mice. NUTR HOSP 2022; 39:1256-1263. [DOI: 10.20960/nh.03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
34
|
Hu W, Yang F, Liu W, Guo L, Ai L, Zhang X, Sheng Z, Gao C. Potential Toxicity Evaluation of Protopine in Macleaya cordata (Willd.) R. Br.-A Bioactivity Guided Approach. Front Vet Sci 2021; 8:752767. [PMID: 34901245 PMCID: PMC8655876 DOI: 10.3389/fvets.2021.752767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
Macleaya cordata (Willd.) R. Br. (M. cordata) is a perennial herb known for its chemotherapeutic properties, strong feeding additive, and potential antidiarrheal drug. Despite its therapeutic potentials, its clinical applications are hindered by an apparent lack of toxicity data. In this study, the toxic ingredients of this plant were investigated using a bioactivity-guided approach. Two compounds, protopine and allocryptopine, were purified and elucidated by LC-MS, 1H-NMR, and 13C-NMR. Protopine, a primary component in M. cordata, had an LD50 of 313.10 mg/kg i.e., which was considered toxic. An autopsy was performed on protopine-administered mice, and the histopathology of the kidney, liver, brain, heart, lung, and spleen was determined. Autopsy findings included hemorrhage in the respiratory system, lung congestion, and hemorrhage and edema in the parenchymatous organs (heart, liver, kidney, and brain). Histopathology confirmed the pathological changes in the brain, liver, and kidney. Protopine is one of the principal bioactive constituents of many phytopreparations used in veterinary and human medicine, such as Sangrovit and Iberogast. Our findings indicated that phytopreparations containing protopine might pose a serious health threat to humans and animals.
Collapse
Affiliation(s)
- Wanjun Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Fan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Weixue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Liyang Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Liwen Ai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Xiaomeng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Zunlai Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Chunbo Gao
- English Department, Heilongjiang College of Foreign Languages, Harbin, China
| |
Collapse
|
35
|
Zhao A, Yang Y, Pan X, Chung M, Cai S, Pan Y. Long-term toxicological studies on the Chinese medicine 2036 Specialty-Qiangxin recipe in rats. PHARMACEUTICAL BIOLOGY 2021; 59:1181-1190. [PMID: 34465263 PMCID: PMC8436967 DOI: 10.1080/13880209.2021.1967410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT The traditional medicine 2036 Specialty-Qiangxin recipe (2036S-QXR) has been widely used in China to improve cardiac function, prevent stroke, and strengthen the immune system. However, its long-term toxicity remains unknown. OBJECTIVE The present study evaluates the long-term toxicity of 2036S-QXR in rats. MATERIALS AND METHODS 2036S-QXR (0.6, 1.2, and 2.4 g/kg body weight per day) was orally administered for 26 weeks to Wistar rats, while the rats in the control group received distilled water. The effects on urinary, hematological, biochemical, and histopathological parameters were investigated during the study period. RESULTS No significant changes in all tested parameters were observed in the 0.6 and 1.2 g/kg groups, compared with the control group (p < 0.05). Higher levels of alanine aminotransferase (46.00 ± 12.85 vs. 25.40 ± 3.36) and aspartate aminotransferase (152.40 ± 32.52 vs. 111.40 ± 18.78) were observed after 13 weeks in the female rats in the 2.4 g/kg group compared with the control group (p < 0.05), but these returned to the control levels after the recovery period (p > 0.05). Several cases displayed the presence of urine protein (3/7 males and 3/7 females) and mild lesions in the kidney (10/20) and thymus (5/20) in the 2.4 g/kg group, without significant changes compared with the control group (p > 0.05). DISCUSSION AND CONCLUSIONS The present study shows that 2036S-QXR does not cause long-term toxicity, supporting its therapeutic use. To further determine the optimal doses, future studies should test more doses and include more animals in each group.
Collapse
Affiliation(s)
- Andong Zhao
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yi Yang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaohua Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Cai
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
36
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Liang H, Deng P, Ma YF, Wu Y, Ma ZH, Zhang W, Wu JD, Qi YZ, Pan XY, Huang FS, Lv SY, Han JL, Dai WD, Chen Z. Advances in Experimental and Clinical Research of the Gouty Arthritis Treatment with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8698232. [PMID: 34721646 PMCID: PMC8550850 DOI: 10.1155/2021/8698232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Gouty arthritis (GA) is a multifactorial disease whose pathogenesis is utterly complex, and the current clinical treatment methods cannot wholly prevent GA development. Western medicine is the primary treatment strategy for gouty arthritis, but it owns an unfavorable prognosis. Therefore, the prevention and treatment of GA are essential. In China, traditional Chinese medicine (TCM) has been adopted for GA prevention and treatment for thousands of years. Gout patients are usually treated with TCM according to their different conditions, and long-term results can be achieved by improving their physical condition. And TCM has been proved to be an effective method to treat gout in modern China. Nevertheless, the pharmacological mechanism of TCM for gout is still unclear, which limits its spread. The theory of prevention and treatment of gout with TCM is more well acknowledged in China than in abroad. In this article, Chinese herbs and ancient formula for gout were summarized first. A total of more than 570 studies published from 2004 to June 2021 in PubMed, Medline, CNKI, VIP, Web of Science databases and Chinese Pharmacopoeia and traditional Chinese books were searched; the current status of TCM in the treatment of GA was summarized from the following aspects: articular chondrocyte apoptosis inhibition, antioxidative stress response, inflammatory cytokine levels regulation, uric acid excretion promotion, immune function regulation, uric acid reduction, and intestinal flora improvement in subjects with gout. The literature review concluded that TCM has a specific curative effect on the prevention and treatment of GA, particularly when combined with modern medical approaches. However, lacking a uniform definition of GA syndrome differentiation and the support of evidence-based medicine in clinical practice have provoked considerable concern in previous studies, which needs to be addressed in future research.
Collapse
Affiliation(s)
- Huan Liang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Feng Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yan Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhan-Hua Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Wei Zhang
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jun-De Wu
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yin-Ze Qi
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Xu-Yue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Fa-Sen Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Yuan Lv
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Lu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Da Dai
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| |
Collapse
|
38
|
Tu C, Xu Z, Tian L, Yu Z, Wang T, Guo Z, Zhang J, Wang T. Multi-Omics Integration to Reveal the Mechanism of Hepatotoxicity Induced by Dictamnine. Front Cell Dev Biol 2021; 9:700120. [PMID: 34595163 PMCID: PMC8476863 DOI: 10.3389/fcell.2021.700120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023] Open
Abstract
Herb-induced liver injury (HILI) has become a great concern worldwide due to the widespread usage of herbal products. Among these products is Dictamni Cortex (DC), a well-known Traditional Chinese Medicine (TCM), widely used to treat chronic dermatosis. Dictamni Cortex has drawn increasing attention because of its hepatotoxicity caused by the hepatotoxic component, dictamnine. However, the potential hepatotoxicity mechanism of dictamnine remains unclear. Therefore, this study aimed to use the multi-omics approach (transcriptomic, metabolomic, and proteomic analyses) to identify genes, metabolites, and proteins expressions associated with dictamnine-induced hepatotoxicity. A study on mice revealed that a high dose of dictamnine significantly increases serum aspartate aminotransferase (AST) activity, total bilirubin (TBIL), and direct bilirubin (DBIL) levels, the relative liver weight and liver/brain weight ratio in female mice (P < 0.05 and P < 0.01), compared to the normal control group. Liver histologic analysis further revealed a high dose of dictamnine on female mice caused hepatocyte vesicular steatosis characterized by hepatocyte microvesicles around the liver lobules. The expressed genes, proteins, and metabolites exhibited strong associations with lipid metabolism disorder and oxidative stress. Dictamnine caused increased oxidative stress and early hepatic apoptosis via up-regulation of glutathione S transferase a1 (GSTA1) and Bax/Bcl-2 ratio and down-regulation of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase 1 (GPx-1). Besides, the up-regulation of Acyl-CoA synthetase long-chain family member 4 (ACSL4) and down-regulation of acetyl-coa acetyltransferase 1 (ACAT1) and fatty acid binding protein 1 (FABP-1) proteins were linked to lipid metabolism disorder. In summary, dictamnine induces dose-dependent hepatotoxicity in mice, which impairs lipid metabolism and aggravates oxidative stress.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Yu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tieshang Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaojuan Guo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Woon TH, Chia S, Kwan YH, Phang JK, Fong W. Evaluation of the quality of YouTube videos on traditional Chinese medicine and inflammatory arthritis. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Cao B, Xu Z, Liu C, Hu J, Zhu Z, Li J, Zhu G, Li F. Protective effects of notoginsenoside R1 on acute lung injury in rats with sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:996. [PMID: 34277796 PMCID: PMC8267269 DOI: 10.21037/atm-21-2496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Background To clarify the mechanism of notoginsenoside R1 in the treatment of septic acute lung injury (ALI) based on network pharmacological analysis, and to verify it in the model of septic ALI in rats. Methods Based on database searching, the related targets of notoginsenoside R1 and ALI were identified, and the component-disease-target network was constructed. The core targets were screened by protein-protein interaction (PPI), and the functional enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was analyzed. The rat model of septic ALI was further established to investigate the pharmacological effects of notoginsenoside R1. Results Notoginsenoside R1 possibly affected ALI through 150 targets, of which 36 were core targets. GO semantic similarity analysis showed that notoginsenoside R1 might play a role in regulating interleukin 17 (IL-17) signal pathway, tumor necrosis factor (TNF) signal pathway and other key links by regulating MAPK1, MAPK3, IL-1β and other targets. The results of pharmacological experiments showed that notoginsenoside R1 could significantly reduce the wet:dry ratio of the lung in an animal model of ALI, improve the pathological injury of the lung, and reduce the content of IL-1β in serum and in bronchoalveolar lavage fluid (BALF) of experimental animals. Conclusions Notoginsenoside R1 can inhibit pulmonary edema, reduce inflammation, and improve lung lesions through multiple targets and pathways to achieve the pharmacological effects in the treatment of septic ALI.
Collapse
Affiliation(s)
- Bo Cao
- Southwest Medical University, Luzhou, China.,Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Zhaoxia Xu
- Department of Emergency Department, Western Theater General Hospital, Chengdu, China
| | - Chang Liu
- Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Jian Hu
- Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Zhongli Zhu
- Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Junya Li
- Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Guoyun Zhu
- Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| | - Fuxiang Li
- Southwest Medical University, Luzhou, China.,Department of Intensive Care Medicine, Western Theater General Hospital, Chengdu, China
| |
Collapse
|
41
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
42
|
Liu Y, Zhou L, Tan J, Xu W, Huang G, Ding J. Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid loaded onto fluorescent mesoporous silica nanoparticles for the location and therapy of nasopharyngeal carcinoma. Analyst 2021; 146:1596-1603. [PMID: 33475624 DOI: 10.1039/d0an02388d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (5F) is a diterpenoid that is isolated and purified from the Chinese herbal medicine Pteris semipinnata L., and is known to exert antitumour activity in several kinds of malignant cancer cells by leading cancer cells to apoptosis. However, the antitumour effect of 5F in vivo is rarely reported due to the complexity of the physiological environment and limitations of 5F as a small anticancer drug. In the present study, we utilized FITC-doped nanoparticles for the accumulation and delivery of 5F in nasopharyngeal carcinoma CNE2 tumours transplanted in nude mice by the enhanced permeation and retention (EPR) effect. In vivo studies demonstrated that nanoparticles could efficiently deliver 5F in CNE2 transplanted tumours, and the tumour growth was effectively inhibited by the drug-loaded nanoparticles with minimal side effects. The study indicated the benefits of combining well-studied nanoparticles with traditional herbal medicine treatment and establishes a delivery platform for 5F chemotherapy.
Collapse
Affiliation(s)
- Yuke Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China.
| | - Le Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jing Tan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Weiqiang Xu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
43
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|