1
|
Contreras AE, Peirone AR, Juaneda E, Defagó V, Cuestas E. [Determinants of elevation of high sensitivity cardiac troponin T after an atrial septal defect percutaneous closure]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2025; 95:207-214. [PMID: 40068675 PMCID: PMC12058103 DOI: 10.24875/acm.24000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/23/2024] [Indexed: 05/10/2025] Open
Abstract
Objectives The aim was to determine the relationship between the elevation of ultrasensitive troponin T (hs-cTnT) after percutaneous atrial septal defect (ASD) closure with deficient aortic rim and with standard and specific maneuvers of the intervention. Method Baseline hs-cTnT was measured and repeated 6 hours after the procedure. To determine the influence of independent variables with the dependent variable (change in hs-cTnT), a generalized linear mixed model was used. Results The total cohort consisted in 106 patients. The median age was 8 years, and 22 patients (21%) were older than 18 years. The hs-TnT before the procedure was 3.7 pg/ml and 6 hours after the intervention was finalized was 72.5 pg/ml. The hs-TnT at 6 hours was similar in patients with sufficient vs. deficient aortic rim. A generalized linear mixed model demonstrated a direct relationship between hs-cTnT change and ASD diameter (β: 2.8; CI: 0.8 to 4.9; p < 0.01) and fluoroscopy time (β: 2.7; CI: 0.6 to 4.7; p < 0.01) and an inverse relationship between hs-cTnT change and patient weight (β: -0.7; CI: -1.1 to -0.3; p < 0.01). Conclusions The increase in hs-cTnT after percutaneous ASD treatment was directly related to ASD diameter and the fluoroscopy time and inversely to the patient weight. Aortic rim deficit was not associated with elevation of hs-cTnT.
Collapse
Affiliation(s)
- Alejandro E. Contreras
- Servicio de Cardiología Pediátrica y Cardiopatías Congénitas del Niño y Adulto, Hospital Privado Universitario de Córdoba, Facultad de Medicina, Instituto Universitario de Ciencias Biomédicas de Córdoba
| | - Alejandro R. Peirone
- Servicio de Cardiología Pediátrica y Cardiopatías Congénitas del Niño y Adulto, Hospital Privado Universitario de Córdoba, Facultad de Medicina, Instituto Universitario de Ciencias Biomédicas de Córdoba
| | - Ernesto Juaneda
- Servicio de Cardiología Pediátrica y Cardiopatías Congénitas del Niño y Adulto, Hospital Privado Universitario de Córdoba, Facultad de Medicina, Instituto Universitario de Ciencias Biomédicas de Córdoba
| | - Víctor Defagó
- Servicio de Pediatría, Hospital Privado Universitario de Córdoba. Córdoba, Argentina
| | - Eduardo Cuestas
- Servicio de Pediatría, Hospital Privado Universitario de Córdoba. Córdoba, Argentina
| |
Collapse
|
2
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
3
|
Chen HY, Michele DE. Syntaxin 4-enhanced plasma membrane repair is independent of dysferlin in skeletal muscle. Am J Physiol Cell Physiol 2025; 328:C429-C439. [PMID: 39726261 DOI: 10.1152/ajpcell.00507.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca2+-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR uses membrane trafficking and membrane fusion, similar to neurotransmission. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion in neurotransmission with the help of synaptotagmin, a crucial Ca2+-binding protein. Interestingly, dysferlin shares structural similarity with synaptotagmin and was shown to promote SNARE-mediated membrane fusion in a liposome-based assay. However, whether dysferlin facilitates SNARE-mediated membrane fusion in PMR in muscle cells remains unclear. In this study, we aimed to test if SNARE-mediated PMR requires dysferlin in muscle cells with pharmacological and genetic approaches. TAT-NSF700, which disrupts the disassembly of SNARE complexes, was used to disrupt functions of SNAREs in muscle cells. We found that human-induced pluripotent stem cells-derived cardiomyocytes (hiPS-CMs) treated with TAT-NSF700 showed a higher loss of membrane integrity after repetitive mechanical strains. Moreover, laser-wounded mouse flexor digitorum brevis (FDB) fibers treated with TAT-NSF700 showed an increased Ca2+ influx, but a decreased FM1-43 uptake, which depends on dynamin-regulated endocytosis as we previously showed in FDB fibers. Importantly, overexpression of STX4-mCitrine or eGFP-SNAP23 decreased Ca2+ influx in laser-wounded FDB fibers. Furthermore, overexpression of STX4-mCitrine also decreased Ca2+ influx in laser-wounded dysferlin-deficient FDB fibers. Overall, these results suggest that disassembly of SNARE complexes is required for efficient PMR and STX4-enhanced PMR does not require dysferlin in skeletal muscle.NEW & NOTEWORTHY Dysferlin, a crucial Ca2+-binding protein in plasma membrane repair (PMR), shares homology with synaptotagmin, which binds Ca2+ and regulates SNARE-mediated vesicle fusion in neurons. Dysferlin was thus hypothesized to function as synaptotagmin in PMR. We demonstrate here that the activity of SNAREs is important for PMR, and overexpression of STX4 enhances PMR in both intact and dysferlin-deficient skeletal muscle. These data suggest that SNARE-mediated PMR may be independent of dysferlin in skeletal muscle.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel E Michele
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Tuladhar A, Shaver JC, McGee WA, Yu K, Dorn J, Horne JL, Alhamad DW, Hagan ML, Cooley MA, Zhong R, Bollag W, Johnson M, Hamrick MW, McGee-Lawrence ME. Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes. Bone 2024; 186:117147. [PMID: 38866124 PMCID: PMC11246118 DOI: 10.1016/j.bone.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCμ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.
Collapse
Affiliation(s)
- Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Joseph C Shaver
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Wesley A McGee
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - J Luke Horne
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Wendy Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States of America; Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
5
|
Muriel J, Lukyanenko V, Kwiatkowski TA, Li Y, Bhattacharya S, Banford KK, Garman D, Bulgart HR, Sutton RB, Weisleder N, Bloch RJ. Nanodysferlins support membrane repair and binding to TRIM72/MG53 but do not localize to t-tubules or stabilize Ca 2+ signaling. Mol Ther Methods Clin Dev 2024; 32:101257. [PMID: 38779337 PMCID: PMC11109471 DOI: 10.1016/j.omtm.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A. Kwiatkowski
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Li
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Roger B. Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Wang YF, An ZY, Li JW, Dong ZK, Jin WL. MG53/TRIM72: multi-organ repair protein and beyond. Front Physiol 2024; 15:1377025. [PMID: 38681139 PMCID: PMC11046001 DOI: 10.3389/fphys.2024.1377025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
MG53, a member of the tripartite motif protein family, possesses multiple functionalities due to its classic membrane repair function, anti-inflammatory ability, and E3 ubiquitin ligase properties. Initially recognized for its crucial role in membrane repair, the therapeutic potential of MG53 has been extensively explored in various diseases including muscle injury, myocardial damage, acute lung injury, and acute kidney injury. However, further research has revealed that the E3 ubiquitin ligase characteristics of MG53 also contribute to the pathogenesis of certain conditions such as diabetic cardiomyopathy, insulin resistance, and metabolic syndrome. Moreover, recent studies have highlighted the anti-tumor effects of MG53 in different types of cancer, such as small cell lung cancer, liver cancer, and colorectal cancer; these effects are closely associated with their E3 ubiquitin ligase activities. In summary, MG53 is a multifunctional protein that participates in important physiological and pathological processes of multiple organs and is a promising therapeutic target for various human diseases. MG53 plays a multi-organ protective role due to its membrane repair function and its exertion of anti-tumor effects due to its E3 ubiquitin ligase properties. In addition, the controversial aspect of MG53's E3 ubiquitin ligase properties potentially causing insulin resistance and metabolic syndrome necessitates further cross-validation for clarity.
Collapse
Affiliation(s)
- Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jian-Wen Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
8
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
9
|
Duranti E, Villa C. Influence of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Possible Treatments. Int J Mol Sci 2023; 24:ijms24119503. [PMID: 37298453 DOI: 10.3390/ijms24119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common form of muscular dystrophy and is characterized by muscle weakness and atrophy. FSHD is caused by the altered expression of the transcription factor double homeobox 4 (DUX4), which is involved in several significantly altered pathways required for myogenesis and muscle regeneration. While DUX4 is normally silenced in the majority of somatic tissues in healthy individuals, its epigenetic de-repression has been linked to FSHD, resulting in DUX4 aberrant expression and cytotoxicity in skeletal muscle cells. Understanding how DUX4 is regulated and functions could provide useful information not only to further understand FSHD pathogenesis, but also to develop therapeutic approaches for this disorder. Therefore, this review discusses the role of DUX4 in FSHD by examining the possible molecular mechanisms underlying the disease as well as novel pharmacological strategies targeting DUX4 aberrant expression.
Collapse
Affiliation(s)
- Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Cikes D, Elsayad K, Sezgin E, Koitai E, Torma F, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Miranda ND, Taylor A, Grapentine S, Al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov AV, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nat Metab 2023; 5:495-515. [PMID: 36941451 DOI: 10.1038/s42255-023-00766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.
Collapse
Affiliation(s)
- Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology and Medical Imaging Cluster (MIC), Vienna, Austria.
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erika Koitai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Labège, France
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Candice Kutchukian
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Colline Sanchez
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anoop Kavirayani
- VBCF, Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas Schuetz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Haas
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - John McDermot
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA, USA
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Lukyanenko V, Muriel J, Garman D, Breydo L, Bloch RJ. Elevated Ca 2+ at the triad junction underlies dysregulation of Ca 2+ signaling in dysferlin-null skeletal muscle. Front Physiol 2022; 13:1032447. [PMID: 36406982 PMCID: PMC9669649 DOI: 10.3389/fphys.2022.1032447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Leonid Breydo
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
13
|
Demonbreun AR, Bogdanovic E, Vaught LA, Reiser NL, Fallon KS, Long AM, Oosterbaan CC, Hadhazy M, Page PG, Joseph PRB, Cowen G, Telenson AM, Khatri A, Sadleir KR, Vassar R, McNally EM. A conserved annexin A6-mediated membrane repair mechanism in muscle, heart, and nerve. JCI Insight 2022; 7:158107. [PMID: 35866481 PMCID: PMC9431694 DOI: 10.1172/jci.insight.158107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Collapse
Affiliation(s)
| | - Elena Bogdanovic
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren A Vaught
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nina L Reiser
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine S Fallon
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ashlee M Long
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Gabrielle Cowen
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Roman W, Muñoz-Cánoves P. Muscle is a stage, and cells and factors are merely players. Trends Cell Biol 2022; 32:835-840. [DOI: 10.1016/j.tcb.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
|
15
|
Gruscheski L, Brand T. The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2021; 8:160. [PMID: 34940515 PMCID: PMC8706714 DOI: 10.3390/jcdd8120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.
Collapse
Affiliation(s)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
16
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
17
|
Hagan ML, Balayan V, McGee-Lawrence ME. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues. Bone 2021; 149:115970. [PMID: 33892174 PMCID: PMC8217198 DOI: 10.1016/j.bone.2021.115970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023]
Abstract
Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling. PMD have been observed to influence the mechanical behavior of skin, alveolar, and gut epithelial cells, aortic endothelial cells, corneal keratocytes and epithelial cells, cardiac and skeletal muscle myocytes, neurons, and most recently, bone cells including osteoblasts, periodontal ligament cells, and osteocytes. PMD are therefore positioned to affect the physiological behavior of a wide range of vertebrate organ systems including skeletal and cardiac muscle, skin, eyes, the gastrointestinal tract, the vasculature, the respiratory system, and the skeleton. The purpose of this review is to describe the processes of PMD formation and repair across these mechanosensitive tissues, with a particular emphasis on comparing and contrasting repair mechanisms and downstream signaling to better understand the role of PMD in skeletal mechanobiology. The implications of PMD-related mechanisms for disease and potential therapeutic applications are also explored.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
Domingues C, Ferreira MJV, Ferreira JM, Marinho AV, Alves PM, Ferreira C, Fonseca I, Gonçalves L. Prognostic Value of Isolated Elevated Troponin I Levels in Patients without Acute Coronary Syndrome Admitted to the Emergency Department. Arq Bras Cardiol 2021; 116:928-937. [PMID: 34008817 PMCID: PMC8121477 DOI: 10.36660/abc.20190356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
Fundamento: Embora a elevação não isquêmica da troponina seja frequentemente observada em pacientes admitidos no pronto-socorro (PS), não há consenso quanto ao seu manejo. Objetivos: Este estudo teve como objetivo caracterizar os pacientes admitidos no PS com elevação da troponina não-isquêmica e identificar potenciais preditores de mortalidade nessa população. Métodos: Este estudo observacional retrospectivo incluiu pacientes do PS com resultado positivo no teste da troponina entre junho e julho de 2015. Pacientes com diagnóstico clínico de síndrome coronariana aguda (SCA) foram excluídos. Os dados demográficos dos pacientes e as variáveis clínicas e laboratoriais foram extraídos dos prontuários médicos. Os dados do seguimento foram obtidos por 16 meses ou até a ocorrência de morte. O nível de significância estatística foi de 5%. Resultados: A elevação da troponina sem SCA foi encontrada em 153 pacientes no PS. A mediana (IIQ) de idade dos pacientes foi de 78 (19) anos, 80 (52,3%) eram do sexo feminino e 59 (38,6%) morreram durante o seguimento. A mediana do período de seguimento (IIQ) foi de 477 (316) dias. Os sobreviventes eram significativamente mais jovens 76 (24) vs. 84 (13) anos; p=0,004) e apresentaram uma maior proporção de elevação da troponina isolada (sem elevação da creatina quinase ou mioglobina) em duas avaliações consecutivas: 48 (53,9%) vs. 8 (17,4%), p<0,001. Os sobreviventes também apresentaram menor taxa de tratamento antiplaquetário e internação no mesmo dia. Na regressão logística multivariada com ajuste para variáveis significativas na análise univariada, a elevação isolada da troponina em duas avaliações consecutivas mostrou hazard ratio = 0,43 (IC95% 0,17–0,96, p=0,039); hospitalização, tratamento antiplaquetário anterior e idade permaneceram independentemente associados à mortalidade. Conclusões: A elevação isolada da troponina em duas medidas consecutivas foi um forte preditor de sobrevida em pacientes no PS com elevação da troponina, mas sem SCA.
Collapse
Affiliation(s)
- Célia Domingues
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal
| | - Maria João Vidigal Ferreira
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal.,Universidade de Coimbra - Faculdade de Medicina, Coimbra - Portugal
| | | | - Ana Vera Marinho
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal
| | | | - Cátia Ferreira
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal
| | - Isabel Fonseca
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal
| | - Lino Gonçalves
- Centro Hospitalar e Universitário de Coimbra EPE, Coimbra - Portugal.,Universidade de Coimbra - Faculdade de Medicina, Coimbra - Portugal
| |
Collapse
|
19
|
Repairing plasma membrane damage in regulated necrotic cell death. Mol Biol Rep 2021; 48:2751-2759. [PMID: 33687702 DOI: 10.1007/s11033-021-06252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
The plasma membrane performs a central role in maintaining cellular homeostasis and viability by acting as a semi-permeable barrier separating the cell from its surroundings. Under physiological conditions, it is constantly exposed to different kinds of stress, such as from pore-forming proteins/toxins and mechanical activity, that compromises its integrity resulting in cells developing various ways to cope with these dangers to survive. These plasma membrane repair mechanisms are initiated by the rapid influx of extracellular Ca2+ ions and are thus hinged on the activity of various Ca2+-binding proteins. The cell's response to membrane damage also depends on the nature and extent of the stimuli as well as the cell type, and the mechanisms involved are believed to be not mutually exclusive. In regulated necrotic cell death, specifically necroptosis, pyroptosis, and ferroptosis, plasma membrane damage ultimately causes cell lysis and the release of immunomodulating damage-associated molecular patterns. Here, I will discuss how these three cell death pathways are counterbalanced by the action of ESCRT (Endosomal Sorting Complex Required for Transport)-III-dependent plasma membrane repair mechanism, that eventually affects the profile of released cytokines and cell-to-cell communication. These highlight a crucial role that plasma membrane repair play in regulated necrosis, and its potential as a viable target to modulate the immune responses associated with these pathways in the context of the various human pathologies where these cell death modalities are implicated.
Collapse
|
20
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
21
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
22
|
Hughes DC, Turner DC, Baehr LM, Seaborne RA, Viggars M, Jarvis JC, Gorski PP, Stewart CE, Owens DJ, Bodine SC, Sharples AP. Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. Am J Physiol Cell Physiol 2021; 320:C45-C56. [PMID: 33052072 DOI: 10.1152/ajpcell.00432.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UBR5 is an E3 ubiquitin ligase positively associated with anabolism, hypertrophy, and recovery from atrophy in skeletal muscle. The precise mechanisms underpinning UBR5's role in the regulation of skeletal muscle mass remain unknown. The present study aimed to elucidate these mechanisms by silencing the UBR5 gene in vivo. To achieve this aim, we electroporated a UBR5-RNAi plasmid into mouse tibialis anterior muscle to investigate the impact of reduced UBR5 on anabolic signaling MEK/ERK/p90RSK and Akt/GSK3β/p70S6K/4E-BP1/rpS6 pathways. Seven days after UBR5 RNAi electroporation, although reductions in overall muscle mass were not detected, the mean cross-sectional area (CSA) of green fluorescent protein (GFP)-positive fibers were reduced (-9.5%) and the number of large fibers were lower versus the control. Importantly, UBR5-RNAi significantly reduced total RNA, muscle protein synthesis, ERK1/2, Akt, and GSK3β activity. Although p90RSK phosphorylation significantly increased, total p90RSK protein levels demonstrated a 45% reduction with UBR5-RNAi. Finally, these early events after 7 days of UBR5 knockdown culminated in significant reductions in muscle mass (-4.6%) and larger reductions in fiber CSA (-18.5%) after 30 days. This was associated with increased levels of phosphatase PP2Ac and inappropriate chronic elevation of p70S6K and rpS6 between 7 and 30 days, as well as corresponding reductions in eIF4e. This study demonstrates that UBR5 plays an important role in anabolism/hypertrophy, whereby knockdown of UBR5 culminates in skeletal muscle atrophy.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Daniel C Turner
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Leslie M Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark Viggars
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Jonathan C Jarvis
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Piotr P Gorski
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Adam P Sharples
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
23
|
Prokic I, Cowling BS, Kutchukian C, Kretz C, Tasfaout H, Gache V, Hergueux J, Wendling O, Ferry A, Toussaint A, Gavriilidis C, Nattarayan V, Koch C, Lainé J, Combe R, Tiret L, Jacquemond V, Pilot-Storck F, Laporte J. Differential physiological roles for BIN1 isoforms in skeletal muscle development, function and regeneration. Dis Model Mech 2020; 13:dmm044354. [PMID: 32994313 PMCID: PMC7710016 DOI: 10.1242/dmm.044354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.
Collapse
Affiliation(s)
- Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Candice Kutchukian
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Gache
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Josiane Hergueux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Olivia Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Unité Mixte de Recherche (UMRS) 794, 75013 Paris, France
| | - Anne Toussaint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Christos Gavriilidis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Department of Physiology, UMRS 974, 75013 Paris, France
- Sorbonne Université, Department of Physiology, Université Paris 06, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Roy Combe
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CELPHEDIA-PHENOMIN, Institut Clinique de la Souris (ICS), 67404 Illkirch, France
| | - Laurent Tiret
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Fanny Pilot-Storck
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
24
|
Benissan-Messan DZ, Zhu H, Zhong W, Tan T, Ma J, Lee PHU. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front Physiol 2020; 11:583393. [PMID: 33240103 PMCID: PMC7677405 DOI: 10.3389/fphys.2020.583393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Since its identification in 2009, multiple studies have indicated the importance of MG53 in muscle physiology. The protein is produced in striated muscles but has physiologic implications reaching beyond the confines of striated muscles. Roles in muscle regeneration, calcium homeostasis, excitation-contraction coupling, myogenesis, and the mitochondria highlight the protein's wide-reaching impact. Numerous therapeutic applications could potentially emerge from these physiologic roles. This review summarizes the current literature regarding the role of MG53 in the skeletal muscle. Therapeutic applications are discussed.
Collapse
Affiliation(s)
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peter H. U. Lee
- Department of Surgery, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
| |
Collapse
|
25
|
McDade JR, Naylor MT, Michele DE. Sarcolemma wounding activates dynamin-dependent endocytosis in striated muscle. FEBS J 2020; 288:160-174. [PMID: 32893434 DOI: 10.1111/febs.15556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/08/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023]
Abstract
Plasma membrane repair is an evolutionarily conserved mechanism by which cells can seal breaches in the plasma membrane. Mutations in several proteins with putative roles in sarcolemma integrity, membrane repair, and membrane transport result in several forms of muscle disease; however, the mechanisms that are activated and responsible for sarcolemma resealing are not well understood. Using the standard assays for membrane repair, which track the uptake of FM 1-43 dye into adult skeletal muscle fibers following laser-induced sarcolemma disruption, we show that labeling of resting fibers by FM1-43 prior to membrane wounding and the induced FM1-43 dye uptake after sarcolemma wounding occurs via dynamin-dependent endocytosis. Dysferlin-deficient muscle fibers show elevated dye uptake following wounding, which is the basis for the assertion that membrane repair is defective in this model. Our data show that dynamin inhibition mitigates the differences in FM1-43 dye uptake between dysferlin-null and wild-type muscle fibers, suggesting that elevated wound-induced FM1-43 uptake in dysferlin-deficient muscle may actually be due to enhanced dynamin-dependent endocytosis following wounding, though dynamin inhibition had no effect on dysferlin trafficking after wounding. By monitoring calcium flux after membrane wounding, we show that reversal of calcium precedes the sustained, slower increase of dynamin-dependent FM1-43 uptake in WT fibers, and that dysferlin-deficient muscle fibers have persistently increased calcium after wounding, consistent with its proposed role in resealing. These data highlight a previously unappreciated role for dynamin-dependent endocytosis in wounded skeletal muscle fibers and identify overactive dynamin-dependent endocytosis following sarcolemma wounding as a potential mechanism or consequence of dysferlin deficiency.
Collapse
Affiliation(s)
- Joel R McDade
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Molly T Naylor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Cardinale DM, Zaninotto M, Cipolla CM, Passino C, Plebani M, Clerico A. Cardiotoxic effects and myocardial injury: the search for a more precise definition of drug cardiotoxicity. Clin Chem Lab Med 2020; 59:51-57. [PMID: 32845860 DOI: 10.1515/cclm-2020-0566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Drug-induced cardiotoxicity is a major clinical problem; cardiotoxic drugs may induce both cardiac dysfunction and myocardial injury. Several recent studies reported that cardiac troponins measured with high-sensitivity methods (hs-cTn) can enable the early detection of myocardial injury related to chemotherapy or abuse of drugs that are potentially cardiotoxic. Several authors have some concerns about the standard definition of cardiotoxicity, in particular, regarding the early evaluation of chemotherapy cardiotoxicity in cancer patients. Several recent studies using the hs-cTn assay indicate that myocardial injury may precede by some months or years the diagnosis of heart failure (HF) based on the evaluation of left ventricular ejection fraction (LVEF). Accordingly, hs-cTn assay should considered to be a reliable laboratory test for the early detection of asymptomatic or subclinical cardiotoxic damage in patients undergoing cancer chemotherapy. In accordance with the Fourth Universal Definition of Myocardial Infarction and also taking into account the recent experimental and clinical evidences, the definition of drug-cardiotoxicity should be updated considering the early evaluation of myocardial injury by means of hs-cTn assay. It is conceivable that the combined use of hs-cTn assay and cardiac imaging techniques for the evaluation of cardiotoxicity will significantly increase both diagnostic sensitivity and specificity, and also better prevent chemotherapy-related left ventricular (LV) dysfunction and other adverse cardiac events. However, large randomized clinical trials are needed to evaluate the cost/benefit ratio of standardized protocols for the early detection of cardiotoxicity using hs-cTn assay in patients receiving chemotherapy for malignant diseases.
Collapse
Affiliation(s)
| | - Martina Zaninotto
- Dipartimento di Medicina di Laboratorio, Azienda Ospedale- Università di Padova, Padova, Italy
| | - Carlo Maria Cipolla
- Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna e Fondazione CNR - Regione Toscana G. Monasterio, Pisa, Italy
| | - Mario Plebani
- Dipartimento di Medicina di Laboratorio, Azienda Ospedale- Università di Padova, Padova, Italy
| | - Aldo Clerico
- Scuola Superiore Sant'Anna e Fondazione CNR - Regione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
27
|
Evans S, Weinheimer CJ, Kovacs A, Williams JW, Randolph GJ, Jiang W, Barger PM, Mann DL. Ischemia reperfusion injury provokes adverse left ventricular remodeling in dysferlin-deficient hearts through a pathway that involves TIRAP dependent signaling. Sci Rep 2020; 10:14129. [PMID: 32839504 PMCID: PMC7445276 DOI: 10.1038/s41598-020-71079-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac myocytes have multiple cell autonomous mechanisms that facilitate stabilization and repair of damaged sarcolemmal membranes following myocardial injury. Dysferlin is a protein which facilitates membrane repair by promoting membrane resealing. Although prior studies have shown that dysferlin-deficient (Dysf-/-) mouse hearts have an impaired recovery from acute ischemia/reperfusion (I/R) injury ex vivo, the role of dysferlin in mediating the recovery from myocardial injury in vivo is unknown. Here we show that Dysf-/- mice develop adverse LV remodeling following I/R injury secondary to the collateral damage from sustained myocardial inflammation within the infarct zone. Backcrossing Dysf-/- mice with mice lacking signaling through the Toll-Interleukin 1 Receptor Domain-Containing Adaptor Protein (Tirap-/-), attenuated inflammation and abrogated adverse LV remodeling following I/R injury. Subsequent studies using Poloxamer 188 (P188), a membrane resealing reagent, demonstrated that P188 did not attenuate inflammation nor prevent adverse LV remodeling in Dysf-/- mice following I/R injury. Viewed together these studies reveal a previously unappreciated role for the importance of membrane sealing and the resolution of inflammation following myocardial injury.
Collapse
Affiliation(s)
- Sarah Evans
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wenlong Jiang
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Philip M Barger
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division, Division of Cardiology, Washington University School of Medicine, 660 S. Euclid Ave,, Campus Box 8086, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Bittel DC, Chandra G, Tirunagri LMS, Deora AB, Medikayala S, Scheffer L, Defour A, Jaiswal JK. Annexin A2 Mediates Dysferlin Accumulation and Muscle Cell Membrane Repair. Cells 2020; 9:cells9091919. [PMID: 32824910 PMCID: PMC7565960 DOI: 10.3390/cells9091919] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Muscle cell plasma membrane is frequently damaged by mechanical activity, and its repair requires the membrane protein dysferlin. We previously identified that, similar to dysferlin deficit, lack of annexin A2 (AnxA2) also impairs repair of skeletal myofibers. Here, we have studied the mechanism of AnxA2-mediated muscle cell membrane repair in cultured muscle cells. We find that injury-triggered increase in cytosolic calcium causes AnxA2 to bind dysferlin and accumulate on dysferlin-containing vesicles as well as with dysferlin at the site of membrane injury. AnxA2 accumulates on the injured plasma membrane in cholesterol-rich lipid microdomains and requires Src kinase activity and the presence of cholesterol. Lack of AnxA2 and its failure to translocate to the plasma membrane, both prevent calcium-triggered dysferlin translocation to the plasma membrane and compromise repair of the injured plasma membrane. Our studies identify that Anx2 senses calcium increase and injury-triggered change in plasma membrane cholesterol to facilitate dysferlin delivery and repair of the injured plasma membrane.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Goutam Chandra
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Laxmi M. S. Tirunagri
- Department of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA;
| | - Arun B. Deora
- Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Sushma Medikayala
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Luana Scheffer
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Aurelia Defour
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
- Department of Genomics and Precision medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-(202)476-6456; Fax: +1-(202)476-6014
| |
Collapse
|
29
|
Perrone MA, Passino C, Vassalle C, Masotti S, Romeo F, Guccione P, Bernardini S, Clerico A. Early evaluation of myocardial injury by means of high-sensitivity methods for cardiac troponins after strenuous and prolonged exercise. J Sports Med Phys Fitness 2020; 60:1297-1305. [PMID: 32720778 DOI: 10.23736/s0022-4707.20.11016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All the latest international guidelines recommend that cardiac troponin (cTn) I and T should be considered the preferred biomarkers for diagnosis of acute myocardial infarction. However, only in the last 5 years, a progressive improvement in analytical performance of immunometric assays has allowed the measurement of circulating levels of cTnI and cTnT in the large part of apparently healthy adult subjects. The routine use of these high-sensitivity methods for cardiac troponin (hs-cTn) assay has in a short time demonstrated that cardiac troponin concentrations frequently increase after strenuous prolonged exercise in healthy athletes. This acute response of hs-cTn assay following exercise was at first considered to be physiological and without long-term adverse consequences. More recent studies have suggested that exercise-induced increases in hs-cTn values may not be always a physiological response to exercise, but, conversely, it should sometimes be considered as an early cardiovascular risk marker. The aim of this review is to provide an overview of acute and chronic effects of strenuous physical exercise on hs-cTn circulating levels and also to discuss the potential pathophysiological and clinical implications of biomarker responses.
Collapse
Affiliation(s)
- Marco A Perrone
- Department of Cardiology, Tor Vergata University, Rome, Italy - .,Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy - .,University Sports Center, Tor Vergata University, Rome, Italy -
| | - Claudio Passino
- Fondazione Toscana G. Monasterio, Council of National Research, Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cristina Vassalle
- Fondazione Toscana G. Monasterio, Council of National Research, Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvia Masotti
- Fondazione Toscana G. Monasterio, Council of National Research, Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesco Romeo
- Department of Cardiology, Tor Vergata University, Rome, Italy
| | - Paolo Guccione
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sergio Bernardini
- University Sports Center, Tor Vergata University, Rome, Italy.,Department of Clinical Biochemistry and Clinical Molecular Biology, Tor Vergata University, Rome, Italy
| | - Aldo Clerico
- Fondazione Toscana G. Monasterio, Council of National Research, Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
30
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
31
|
Perrone MA, Macrini M, Maregnani A, Ammirabile M, Clerico A, Bernardini S, Romeo F. The effects of a 50 km ultramarathon race on high sensitivity cardiac troponin I and NT-proBNP in highly trained athletes. Minerva Cardioangiol 2020; 68:305-312. [PMID: 32657560 DOI: 10.23736/s0026-4725.20.05281-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High sensitivity cardiac troponins I (hs-cTnI) and T (hs-cTnT) and natriuretic peptides (BNP and NT-proBNP) are universally recognized as cardiac reference biomarkers in patients with acute coronary syndromes and heart failure respectively. However, while on one hand the high sensitivity methods of cardiac biomarkers have provided answers to fundamental pathophysiological and clinical questions in patients with heart disease, less information is available on their assessment in paraphysiological conditions, such as high intensity exercise in healthy athletes. The aim of this study was to evaluate hs-cTnI and NT-proBNP in highly trained runners after a 50 km ultramarathon. METHODS We have enrolled 20 highly trained male athletes who have run a 50 km ultramarathon. Blood samples were collected 2 hours before the start of the race (T0) and 20 minutes after the end of the race (T1). The blood concentrations of hs-cTnI and NT-proBNP measured before the race were within reference intervals in all runners. RESULTS Hs-cTnI significantly increased after the end of the race (median: 19 ng/L [IQR: 12.5-25.75] versus 6 ng/L [IQR: 4.25-8.0]; P<0.001), in three cases over the upper reference limit (URL) of 34 ng/L. NT-proBNP also significantly increased (median: 78 ng/L [IQR: 68.25-87.75] versus 22 ng/L [IQR: 18.25-26.75]; P<0.001). Three other athletes reached concentration over the URL (125 ng/L). CONCLUSIONS Our study showed a significant increase in hs-cTnI and NT-proBNP in highly trained athletes after a 50 km ultramarathon race, and 30% of runners had the values of cardiac biomarkers above URL. More studies with a larger number of athletes will be needed to better understand the effects of intense exercise on the heart of trained athletes.
Collapse
Affiliation(s)
- Marco A Perrone
- Division of Cardiology, Tor Vergata University, Rome, Italy - .,University Sports Center, Tor Vergata University, Rome, Italy -
| | | | - Alessio Maregnani
- Division of Clinical Chemistry, Maggiore Polyclinic Hospital, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Massimiliano Ammirabile
- Division of Clinical Chemistry, Maggiore Polyclinic Hospital, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Aldo Clerico
- Laboratory of Cardiovascular Endocrinology and Cell Biology, Department of Laboratory Medicine, Gabriele Monasterio Tuscany Foundation, Sant'Anna School, Pisa, Italy
| | - Sergio Bernardini
- University Sports Center, Tor Vergata University, Rome, Italy.,Division of Clinical Biochemistry and Clinical Molecular Biology, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
32
|
POPDC proteins and cardiac function. Biochem Soc Trans 2020; 47:1393-1404. [PMID: 31551355 DOI: 10.1042/bst20190249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein-protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.
Collapse
|
33
|
Demonbreun AR, Fallon KS, Oosterbaan CC, Bogdanovic E, Warner JL, Sell JJ, Page PG, Quattrocelli M, Barefield DY, McNally EM. Recombinant annexin A6 promotes membrane repair and protects against muscle injury. J Clin Invest 2019; 129:4657-4670. [PMID: 31545299 PMCID: PMC6819108 DOI: 10.1172/jci128840] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane repair is essential to cell survival. In skeletal muscle, injury often associates with plasma membrane disruption. Additionally, muscular dystrophy is linked to mutations in genes that produce fragile membranes or reduce membrane repair. Methods to enhance repair and reduce susceptibility to injury could benefit muscle in both acute and chronic injury settings. Annexins are a family of membrane-associated Ca2+-binding proteins implicated in repair, and annexin A6 was previously identified as a genetic modifier of muscle injury and disease. Annexin A6 forms the repair cap over the site of membrane disruption. To elucidate how annexins facilitate repair, we visualized annexin cap formation during injury. We found that annexin cap size positively correlated with increasing Ca2+ concentrations. We also found that annexin overexpression promoted external blebs enriched in Ca2+ and correlated with a reduction of intracellular Ca2+ at the injury site. Annexin A6 overexpression reduced membrane injury, consistent with enhanced repair. Treatment with recombinant annexin A6 protected against acute muscle injury in vitro and in vivo. Moreover, administration of recombinant annexin A6 in a model of muscular dystrophy reduced serum creatinine kinase, a biomarker of disease. These data identify annexins as mediators of membrane-associated Ca2+ release during membrane repair and annexin A6 as a therapeutic target to enhance membrane repair capacity.
Collapse
Affiliation(s)
- Alexis R. Demonbreun
- Center for Genetic Medicine, and
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kitmitto A, Baudoin F, Cartwright EJ. Cardiomyocyte damage control in heart failure and the role of the sarcolemma. J Muscle Res Cell Motil 2019; 40:319-333. [PMID: 31520263 PMCID: PMC6831538 DOI: 10.1007/s10974-019-09539-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.
Collapse
Affiliation(s)
- Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK.
| | - Florence Baudoin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|
35
|
Phosphoinositides in the control of lysosome function and homeostasis. Biochem Soc Trans 2019; 47:1173-1185. [PMID: 31383818 DOI: 10.1042/bst20190158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Lysosomes are the main degradative compartments of mammalian cells and serve as platforms for cellular nutrient signaling and sterol transport. The diverse functions of lysosomes and their adaptation to extracellular and intracellular cues are tightly linked to the spatiotemporally controlled synthesis, turnover and interconversion of lysosomal phosphoinositides, minor phospholipids that define membrane identity and couple membrane dynamics to cell signaling. How precisely lysosomal phosphoinositides act and which effector proteins within the lysosome membrane or at the lysosomal surface recognize them is only now beginning to emerge. Importantly, mutations in phosphoinositide metabolizing enzyme cause lysosomal dysfunction and are associated with numerous diseases ranging from neurodegeneration to cancer. Here, we discuss the phosphoinositides and phosphoinositide metabolizing enzymes implicated in lysosome function and homeostasis and outline perspectives for future research.
Collapse
|
36
|
Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:67-98. [PMID: 31610866 PMCID: PMC7182362 DOI: 10.1016/bs.ctm.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
37
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
38
|
Lam JGT, Song C, Seveau S. High-throughput Measurement of Plasma Membrane Resealing Efficiency in Mammalian Cells. J Vis Exp 2019. [PMID: 30663635 DOI: 10.3791/58351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In their physiological environment, mammalian cells are often subjected to mechanical and biochemical stresses that result in plasma membrane damage. In response to these damages, complex molecular machineries rapidly reseal the plasma membrane to restore its barrier function and maintain cell survival. Despite 60 years of research in this field, we still lack a thorough understanding of the cell resealing machinery. With the goal of identifying cellular components that control plasma membrane resealing or drugs that can improve resealing, we have developed a fluorescence-based high-throughput assay that measures the plasma membrane resealing efficiency in mammalian cells cultured in microplates. As a model system for plasma membrane damage, cells are exposed to the bacterial pore-forming toxin listeriolysin O (LLO), which forms large 30-50 nm diameter proteinaceous pores in cholesterol-containing membranes. The use of a temperature-controlled multi-mode microplate reader allows for rapid and sensitive spectrofluorometric measurements in combination with brightfield and fluorescence microscopy imaging of living cells. Kinetic analysis of the fluorescence intensity emitted by a membrane impermeant nucleic acid-binding fluorochrome reflects the extent of membrane wounding and resealing at the cell population level, allowing for the calculation of the cell resealing efficiency. Fluorescence microscopy imaging allows for the enumeration of cells, which constitutively express a fluorescent chimera of the nuclear protein histone 2B, in each well of the microplate to account for potential variations in their number and allows for eventual identification of distinct cell populations. This high-throughput assay is a powerful tool expected to expand our understanding of membrane repair mechanisms via screening for host genes or exogenously added compounds that control plasma membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University;
| |
Collapse
|
39
|
|
40
|
Hammarsten O, Mair J, Möckel M, Lindahl B, Jaffe AS. Possible mechanisms behind cardiac troponin elevations. Biomarkers 2018; 23:725-734. [DOI: 10.1080/1354750x.2018.1490969] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ola Hammarsten
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Mair
- Department of Internal Medicine III – Cardiology and Angiology, Heart Center, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Möckel
- Division of Emergency Medicine and Department of Cardiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bertil Lindahl
- Department of Medical Sciences, Uppsala University and Uppsala Clinical Research Center, Uppsala, Sweden
| | - Allan S. Jaffe
- Department of Cardiovascular Medicine, Mayo Clinic and Medical School, Rochester, MN, USA
| |
Collapse
|
41
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
42
|
Etxaniz A, González-Bullón D, Martín C, Ostolaza H. Membrane Repair Mechanisms against Permeabilization by Pore-Forming Toxins. Toxins (Basel) 2018; 10:E234. [PMID: 29890730 PMCID: PMC6024578 DOI: 10.3390/toxins10060234] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023] Open
Abstract
Permeabilization of the plasma membrane represents an important threat for any cell, since it compromises its viability by disrupting cell homeostasis. Numerous pathogenic bacteria produce pore-forming toxins that break plasma membrane integrity and cause cell death by colloid-osmotic lysis. Eukaryotic cells, in turn, have developed different ways to cope with the effects of such membrane piercing. Here, we provide a short overview of the general mechanisms currently proposed for plasma membrane repair, focusing more specifically on the cellular responses to membrane permeabilization by pore-forming toxins and presenting new data on the effects and cellular responses to the permeabilization by an RTX (repeats in toxin) toxin, the adenylate cyclase toxin-hemolysin secreted by the whooping cough bacterium Bordetella pertussis, which we have studied in the laboratory.
Collapse
Affiliation(s)
- Asier Etxaniz
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - David González-Bullón
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - Helena Ostolaza
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| |
Collapse
|
43
|
Barnhouse VR, Weist JL, Shukla VC, Ghadiali SN, Kniss DA, Leight JL. Myoferlin regulates epithelial cancer cell plasticity and migration through autocrine TGF-β1 signaling. Oncotarget 2018; 9:19209-19222. [PMID: 29721195 PMCID: PMC5922389 DOI: 10.18632/oncotarget.24971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
Epithelial cancer cells can undergo an epithelial-mesenchymal transition (EMT), a complex genetic program that enables cells to break free from the primary tumor, breach the basement membrane, invade through the stroma and metastasize to distant organs. Myoferlin (MYOF), a protein involved in plasma membrane function and repair, is overexpressed in several invasive cancer cell lines. Depletion of myoferlin in the human breast cancer cell line MDA-MB-231 (MDA-231MYOFKD) reduced migration and invasion and caused the cells to revert to an epithelial phenotype. To test if this mesenchymal-epithelial transition was durable, MDA-231MYOFKD cells were treated with TGF-β1, a potent stimulus of EMT. After 48 hr with TGF-β1, MDA-231MYOFKD cells underwent an EMT. TGF-β1 treatment also decreased directional cell motility toward more random migration, similar to the highly invasive control cells. To probe the potential mechanism of MYOF function, we examined TGF-β1 receptor signaling. MDA-MB-231 growth and survival has been previously shown to be regulated by autocrine TGF-β1. We hypothesized that MYOF depletion may result in the dysregulation of TGF-β1 signaling, thwarting EMT. To investigate this hypothesis, we examined production of endogenous TGF-β1 and observed a decrease in TGF-β1 protein secretion and mRNA transcription. To determine if TGF-β1 was required to maintain the mesenchymal phenotype, TGF-β receptor signaling was inhibited with a small molecule inhibitor, resulting in decreased expression of several mesenchymal markers. These results identify a novel pathway in the regulation of autocrine TGF-β signaling and a mechanism by which MYOF regulates cellular phenotype and invasive capacity of human breast cancer cells.
Collapse
Affiliation(s)
- Victoria R Barnhouse
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA
| | - Jessica L Weist
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, 43210 Ohio, USA
| | - Vasudha C Shukla
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, 43210 Ohio, USA.,Department of Internal Medicine (Division of Pulmonary, Critical Care and Sleep Medicine), College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, 43210 Ohio, USA
| | - Douglas A Kniss
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA.,Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), College of Medicine and Wexner Medical Center, The Ohio State University, Columbus, 43210 Ohio, USA
| | - Jennifer L Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, 43210 Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, 43210 Ohio, USA
| |
Collapse
|
44
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
45
|
Lee JJA, Maruyama R, Sakurai H, Yokota T. Cell Membrane Repair Assay Using a Two-photon Laser Microscope. J Vis Exp 2018. [PMID: 29364240 DOI: 10.3791/56999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Numerous pathophysiological insults can cause damage to cell membranes and, when coupled with innate defects in cell membrane repair or integrity, can result in disease. Understanding the underlying molecular mechanisms surrounding cell membrane repair is, therefore, an important objective to the development of novel therapeutic strategies for diseases associated with dysfunctional cell membrane dynamics. Many in vitro and in vivo studies aimed at understanding cell membrane resealing in various disease contexts utilize two-photon laser ablation as a standard for determining functional outcomes following experimental treatments. In this assay, cell membranes are subjected to wounding with a two-photon laser, which causes the cell membrane to rupture and fluorescent dye to infiltrate the cell. The intensity of fluorescence within the cell can then be monitored to quantify the cell's ability to reseal itself. There are several alternative methods for assessing cell membrane response to injury, as well as great variation in the two-photon laser wounding approach itself, therefore, a single, unified model of cell wounding would beneficially serve to decrease the variation between these methodologies. In this article, we outline a simple two-photon laser wounding protocol for assessing cell membrane repair in vitro in both healthy and dysferlinopathy patient fibroblast cells transfected with or without a full-length dysferlin plasmid.
Collapse
Affiliation(s)
- Joshua J A Lee
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | | | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry;
| |
Collapse
|
46
|
Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, Möckel M, Plebani M, Thygesen K, Jaffe AS. How is cardiac troponin released from injured myocardium? EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 7:553-560. [PMID: 29278915 DOI: 10.1177/2048872617748553] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiac troponin I and cardiac troponin T are nowadays the criterion biomarkers for the laboratory diagnosis of acute myocardial infarction due to their very high sensitivities and specificities for myocardial injury. However, still many aspects of their degradation, tissue release and elimination from the human circulation are incompletely understood. Myocardial injury may be caused by a variety of different mechanisms, for example, myocardial ischaemia, inflammatory and immunological processes, trauma, drugs and toxins, and myocardial necrosis is preceded by a substantial reversible prelethal phase. Recent experimental data in a pig model of myocardial ischaemia demonstrated cardiac troponin release into the circulation from apoptotic cardiomyocytes as an alternative explanation for clinical situations with increased cardiac troponin without any other evidence for myocardial necrosis. However, the comparably lower sensitivities of all currently available imaging modalities, including cardiac magnetic resonance imaging for the detection of particularly non-focal myocardial necrosis in patients, has to be considered for cardiac troponin test result interpretation in clinical settings without any other evidence for myocardial necrosis apart from increased cardiac troponin concentrations as well.
Collapse
Affiliation(s)
- Johannes Mair
- 1 Department of Internal Medicine III - Cardiology and Angiology, Heart Centre, Medical University of Innsbruck, Austria
| | - Bertil Lindahl
- 2 Department of Medical Sciences, Uppsala University and Uppsala Clinical Research Centre, Uppsala University, Sweden
| | - Ola Hammarsten
- 3 Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Sweden
| | - Christian Müller
- 4 Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland
| | - Evangelos Giannitsis
- 5 Medizinische Klinik III, Department of Cardiology, University of Heidelberg, Germany
| | - Kurt Huber
- 6 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, Vienna, Austria.,7 Sigmund Freud University Medical School, Vienna, Austria
| | - Martin Möckel
- 8 Division of Emergency Medicine and Department of Cardiology, Charité-Universitätsmedizin Berlin, Germany
| | - Mario Plebani
- 9 Department of Laboratory Medicine, University Hospital Padova, Italy
| | | | | |
Collapse
|
47
|
Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017; 10:E16. [PMID: 29295546 PMCID: PMC5793244 DOI: 10.3390/nu10010016] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient) which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Matthew Sermersheim
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Peter H U Lee
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Steven M Steinberg
- Department of Surgery, Division of Trauma, Critical Care and Burn, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK. Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 2017; 26:1979-1991. [PMID: 28334824 DOI: 10.1093/hmg/ddx065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.
Collapse
Affiliation(s)
- Aurelia Defour
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Sushma Medikayala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Nicholas Holdreith
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Apostolos Malatras
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
| | - William Duddy
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, Northern Ireland, BT52 1SJ UK
| | - Jessica Boehler
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| |
Collapse
|
49
|
Horn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC, Reed A, Scheffer L, Chandel NS, Jaiswal JK. Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal 2017; 10:eaaj1978. [PMID: 28874604 PMCID: PMC5949579 DOI: 10.1126/scisignal.aaj1978] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2970, USA
| | - Jack H Van der Meulen
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Aurelia Defour
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Marshall Hogarth
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Sen Chandra Sreetama
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Aaron Reed
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Luana Scheffer
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, 111 Michigan Avenue Northwest, Washington, DC 20010-2970, USA.
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2970, USA
| |
Collapse
|
50
|
Fernandez MP, Garcia M, Martin-Almedina S, Morgan RO. Novel domain architectures and functional determinants in atypical annexins revealed by phylogenomic analysis. Biol Chem 2017; 398:751-763. [PMID: 28002020 DOI: 10.1515/hsz-2016-0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/11/2016] [Indexed: 01/27/2023]
Abstract
The fundamental cellular role and molecular interactions of annexins in vesicle trafficking and membrane remodeling remain to be further clarified in order to better understand and exploit their contributions to health and disease. We focused on distinctive features of atypical annexins from all domains of life using phylogenomic, molecular systematic and experimental approaches, to extend the current paradigm and better account for annexin diversity of structure, function and mechanistic role in membrane homeostasis. The analysis of gene duplications, organization of domain architectures and profile hidden Markov models of subfamily orthologs defined conserved structural features relevant to molecular interactions and functional divergence of seven family clades ANXA-G. Single domain annexins of bacteria, including cyanobacteria, were frequently coupled to enzymatic units conceivably related to membrane metabolism and remodeling. Multiple ANX domains (up to 20) and various distinct functional domains were observed in unique annexins. Canonical type 2 calcium binding ligands were well-preserved in roughly half of all ANX domains, but alternative structural motifs comprised of 'KGD', cysteine or tryptophan residues were prominently conserved in the same strategic interhelical loops. Selective evolutionary constraint, site-specific location and co-occurrence in all kingdoms identify alternative modes of fundamental binding interactions for annexins.
Collapse
|