1
|
Le NHT, Park SA, Kim YM, Ahn DK, Jung W, Han SK. Fucoxanthin Inhibits the NMDA and AMPA Receptors Through Regulating the Calcium Response on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice. Neural Plast 2025; 2025:2553040. [PMID: 39949835 PMCID: PMC11824308 DOI: 10.1155/np/2553040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
Glutamate excitotoxicity is considered as the etiology of stroke and neurodegenerative diseases, namely, Parkinson's disease (PD), Alzheimer's disease (AD), and others. Meanwhile, substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc), a pivotal site in regulating orofacial nociceptive transmission via Aδ and C primary afferent fibers, majorly utilize glutamate as the principal excitatory neurotransmitter. Fucoxanthin (FCX), a carotenoid pigment extracted from brown seaweed, possesses various pharmaceutical properties including neuroprotective effect in multiple neuronal populations. To date, the direct activity of FCX on the SG of the Vc has not been extensively clarified. Consequently, we investigated the effect of FCX on excitatory signaling mediated by ionotropic glutamate receptors (iGluRs), using the patch-clamp technique recorded from SG neurons of the Vc. Here, FCX directly acted on glutamate receptors independent of voltage-gated sodium channel and γ-aminobutyric acid (GABA)A/glycine receptors in the voltage-clamp mode. Specifically, the N-methyl-D-aspartic acid (NMDA)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced responses but not the kainic acid receptor (KAR)-mediated response were suppressed by FCX in standard extracellular solution. Additionally, the inhibitory effect of FCX on NMDA currents was repeatable and concentration-dependent. The FCX blockade of NMDA-mediated excitotoxicity was associated with the modulation of Ca2+ response without affecting Na+ ions. The Ca2+-dependent fluorescence intensity of brain slice was reduced in the presence of FCX. Notably, FCX significantly attenuated the spontaneous firing activity of SG neurons. Altogether, these results reveal that FCX may protect SG neurons against glutamate excitotoxicity via primarily regulating Ca2+ response, thereby inhibiting the excitatory signaling induced by NMDA and AMPA receptors (AMPARs).
Collapse
Affiliation(s)
- Nhung Ha Thuy Le
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Ah Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yu Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University; Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Mias C, Stennevin A, Doat G, Catté A, Chlasta J, Bessou-Touya S, Duplan H. Effect of a low-mineralized thermal spring water on skin barrier mechanical properties using atomic force microscopy. Exp Dermatol 2024; 33:e15113. [PMID: 38855894 DOI: 10.1111/exd.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
The mineral content of thermal spring water (TSW) applied to the skin surface can directly influence the skin barrier. Indeed, our previous study showed that Avène TSW (ATSW), a low mineral content thermal spring water, protects the stratum corneum from dehydration compared to a mineral-rich TSW (MR-TSW) and maintains skin surface ultrastructure. While many TSWs have been recognized to have beneficial effects on skin, little is known about their localized and specific effects on skin barrier biomechanics at the nanometric scale. The aim of this study was to compare the effects of ATSW with a reference, MR-TSW, on the biomechanical barrier properties of the skin under homeostasis conditions using atomic force microscopy (AFM). AFM was used to obtain a precise nanomechanical mapping of the skin surface after three applications of both TSW. This provides specific information on the skin topographical profile and elasticity. The topographic profile of skin samples showed a specific compaction of the skin layers after application of MR-TSW, characterized by an increase of the total number of external skin layers, compared to non-treated samples. By contrast, ATSW did not modify the skin topographic profile. High-resolution force/volume acquisitions to capture the elastic modulus showed that it was directly correlated with skin rigidity. The elastic modulus strongly and significantly increased after MR-TSW application compared to non-treated skin. By contrast, applications of ATSW did not increase elastic modulus. These data demonstrate that applications of MR-TSW significantly modified skin barrier properties by increasing skin surface layer compaction and skin rigidity. By contrast, ATSW did not modify the topographical profile of skin explants nor induce mechanical stress at the level of the stratum corneum, indicating it does not disrupt the biophysical properties linked to skin surface integrity.
Collapse
Affiliation(s)
- C Mias
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | | | - G Doat
- Direction médicale AVENE, Lavaur, France
| | | | | | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| |
Collapse
|
3
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
4
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Avetisov SE, Shitikova AV, Avetisov KS, Borisenko TE, Pateyuk LS, Aslamazova AE, Timashev PS, Efremov YM. [Selective assessment of biomechanical properties of the lens capsule]. Vestn Oftalmol 2024; 140:15-23. [PMID: 39731232 DOI: 10.17116/oftalma202414006115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule. PURPOSE This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans. MATERIAL AND METHODS The study analyzed 73 pairs of central fragments of the AC and PC of the lens, obtained from donor (cadaver) eyes and through anterior and posterior capsulorhexis during microinvasive phaco surgery (38 and 35 paired samples, respectively). Planned biomechanical testing followed a previously developed protocol for examining the anterior capsule, including determination of the Young's modulus using atomic force microscopy. RESULTS Comparing the Young's modulus of lens capsule samples from donor eyes and microinvasive phaco surgery revealed no significant differences in mean values, indirectly indicating minimal postmortem impact on the biomechanical properties of the capsule. General biomechanical patterns observed in the human lens capsule show the Young's modulus (stiffness) is higher in the AC than the PC, and higher on the inner than the outer surface for both the AC and PC. Age-related changes are associated with an increase in stiffness on the outer surface and its decrease on the inner surface, more pronounced in the AC. CONCLUSION The obtained results indicate the need for further investigation into the role of capsule biomechanics in age-related accommodative disorders.
Collapse
Affiliation(s)
- S E Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A V Shitikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - K S Avetisov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - T E Borisenko
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - L S Pateyuk
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A E Aslamazova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P S Timashev
- Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia
| | - Yu M Efremov
- Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Ki MR, Kim SH, Rho S, Kim JK, Min KH, Yeo KB, Lee J, Lee G, Jun SH, Pack SP. Use of biosilica to improve loading and delivery of bone morphogenic protein 2. Int J Biol Macromol 2024; 254:127876. [PMID: 37926322 DOI: 10.1016/j.ijbiomac.2023.127876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The clinical utility of bone morphogenetic protein 2 (BMP2) is limited because of the poor attraction between BMP2 and carriers, resulting in low loading efficiency and initial burst release. Here, the high binding affinity of BMP2 to the biosilica surface was utilized to overcome this limitation. Atomic force microscopy revealed that BMP2 bound nearly 8- and 2-fold more strongly to biosilica-coated hydroxyapatite than to uncoated and plain silica-coated hydroxyapatite, respectively. To achieve controlled release, collagen was introduced between the silica layers on hydroxyapatite, which was optimized by adjusting the collagen concentration and number of layers. The optimal biosilica/collagen formulation induced sustained BMP2 release without compromising loading efficiency. BMP2 combined with the mentioned formulation led to an increase in osteogenesis, as compared to the combination of BMP2 with either biosilica-coated or non-coated hydroxyapatite in vitro. In rat calvarial defect models, the biosilica/collagen-coated hydroxyapatite with 1 μg BMP2 showed 26 % more bone regeneration than the same dose of BMP2-loaded hydroxyapatite and 10.6 % more than hydroxyapatite with 2.5-fold dose of BMP2. Using BMP2 affinity carriers coated with biosilica/collagen allows for more efficacious in situ loading and delivery of BMP2, making them suitable for the clinical application of growth factors through a soaking method.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea; Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea
| | - Seokbeom Rho
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Sejong 30019, Republic of Korea
| | - Jong Ki Kim
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea
| | - Ki Baek Yeo
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Jaewook Lee
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Sejong 30019, Republic of Korea
| | - Sang-Ho Jun
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea.
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Sejong 30019, Republic of Korea.
| |
Collapse
|
7
|
Walter C, Balouchzadeh R, Garcia KE, Kroenke CD, Pathak A, Bayly PV. Multi-scale measurement of stiffness in the developing ferret brain. Sci Rep 2023; 13:20583. [PMID: 37996465 PMCID: PMC10667369 DOI: 10.1038/s41598-023-47900-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Cortical folding is an important process during brain development, and aberrant folding is linked to disorders such as autism and schizophrenia. Changes in cell numbers, size, and morphology have been proposed to exert forces that control the folding process, but these changes may also influence the mechanical properties of developing brain tissue. Currently, the changes in tissue stiffness during brain folding are unknown. Here, we report stiffness in the developing ferret brain across multiple length scales, emphasizing changes in folding cortical tissue. Using rheometry to measure the bulk properties of brain tissue, we found that overall brain stiffness increases with age over the period of cortical folding. Using atomic force microscopy to target the cortical plate, we found that the occipital cortex increases in stiffness as well as stiffness heterogeneity over the course of development and folding. These findings can help to elucidate the mechanics of the cortical folding process by clarifying the concurrent evolution of tissue properties.
Collapse
Affiliation(s)
- Christopher Walter
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA.
| | - Ramin Balouchzadeh
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA
| | - Kara E Garcia
- Radiology and Imaging Sciences, Indiana University School of Medicine, Evansville, IN, USA
| | - Christopher D Kroenke
- Advanced Imaging Research Center and Oregon National Primate Research Center Division of Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Amit Pathak
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA
| | - Philip V Bayly
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
8
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A Method for Analyzing AFM Force Mapping Data Obtained from Soft Tissue Cryosections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566263. [PMID: 38014311 PMCID: PMC10680563 DOI: 10.1101/2023.11.08.566263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Bertalan G, Becker J, Tzschätzsch H, Morr A, Herthum H, Shahryari M, Greenhalgh RD, Guo J, Schröder L, Alzheimer C, Budday S, Franze K, Braun J, Sack I. Mechanical behavior of the hippocampus and corpus callosum: An attempt to reconcile ex vivo with in vivo and micro with macro properties. J Mech Behav Biomed Mater 2023; 138:105613. [PMID: 36549250 DOI: 10.1016/j.jmbbm.2022.105613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mechanical properties of brain tissue are very complex and vary with the species, region, method, and dynamic range, and between in vivo and ex vivo measurements. To reconcile this variability, we investigated in vivo and ex vivo stiffness properties of two distinct regions in the human and mouse brain - the hippocampus (HP) and the corpus callosum (CC) - using different methods. Under quasi-static conditions, we examined ex vivo murine HP and CC by atomic force microscopy (AFM). Between 16 and 40Hz, we investigated the in vivo brains of healthy volunteers by magnetic resonance elastography (MRE) in a 3-T clinical scanner. At high-frequency stimulation between 1000 and 1400Hz, we investigated the murine HP and CC ex vivo and in vivo with MRE in a 7-T preclinical system. HP and CC showed pronounced stiffness dispersion, as reflected by a factor of 32-36 increase in shear modulus from AFM to low-frequency human MRE and a 25-fold higher shear wave velocity in murine MRE than in human MRE. At low frequencies, HP was softer than CC, in both ex vivo mouse specimens (p < 0.05) and in vivo human brains (p < 0.01) while, at high frequencies, CC was softer than HP under in vivo (p < 0.01) and ex vivo (p < 0.05) conditions. The standard linear solid model comprising three elements reproduced the observed HP and CC stiffness dispersions, while other two- and three-element models failed. Our results indicate a remarkable consistency of brain stiffness across species, ex vivo and in vivo states, and different measurement techniques when marked viscoelastic dispersion properties combining equilibrium and non-equilibrium mechanical elements are considered.
Collapse
Affiliation(s)
- Gergerly Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ryan D Greenhalgh
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif Schröder
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Budday
- Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Institute of Medical Physics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Schaeffer J, Weber IP, Thompson AJ, Keynes RJ, Franze K. Axons in the Chick Embryo Follow Soft Pathways Through Developing Somite Segments. Front Cell Dev Biol 2022; 10:917589. [PMID: 35874821 PMCID: PMC9304555 DOI: 10.3389/fcell.2022.917589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
During patterning of the peripheral nervous system, motor axons grow sequentially out of the neural tube in a segmented fashion to ensure functional integration of the motor roots between the surrounding cartilage and bones of the developing vertebrae. This segmented outgrowth is regulated by the intrinsic properties of each segment (somite) adjacent to the neural tube, and in particular by chemical repulsive guidance cues expressed in the posterior half. Yet, knockout models for such repulsive cues still display initial segmentation of outgrowing motor axons, suggesting the existence of additional, yet unknown regulatory mechanisms of axon growth segmentation. As neuronal growth is not only regulated by chemical but also by mechanical signals, we here characterized the mechanical environment of outgrowing motor axons. Using atomic force microscopy-based indentation measurements on chick embryo somite strips, we identified stiffness gradients in each segment, which precedes motor axon growth. Axon growth was restricted to the anterior, softer tissue, which showed lower cell body densities than the repulsive stiffer posterior parts at later stages. As tissue stiffness is known to regulate axon growth during development, our results suggest that motor axons also respond to periodic stiffness gradients imposed by the intrinsic mechanical properties of somites.
Collapse
Affiliation(s)
- Julia Schaeffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, Grenoble, France
- *Correspondence: Julia Schaeffer, ; Kristian Franze,
| | - Isabell P. Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Amelia J. Thompson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Roger J. Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- *Correspondence: Julia Schaeffer, ; Kristian Franze,
| |
Collapse
|
11
|
Nützl M, Schrottenbaum M, Müller T, Müller R. Mechanical properties and chemical stability of alginate-based anisotropic capillary hydrogels. J Mech Behav Biomed Mater 2022; 134:105397. [DOI: 10.1016/j.jmbbm.2022.105397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
12
|
Zhang C, Zhao H. The effects of electric fields on the mechanical properties and microstructure of ex vivo porcine brain tissues. SOFT MATTER 2022; 18:1498-1509. [PMID: 35099495 DOI: 10.1039/d1sm01401c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a popular tool for regulating the physiological conditions of the brain and treating brain diseases, electrotherapy has become increasingly mature in clinical applications. However, the mechanical properties and microstructure of the brain that change with weak electric fields are often overlooked. Thus, the mechanical behaviors of the brain tissue, which play a critical role in modulating the brain form and brain function, need to be taken into account. Herein, the direct current electric fields were combined with a customized indentation device and simultaneously focused on the changes in the mechanical properties and microstructure of ex vivo porcine brain tissues under electric fields. The experimental results showed that the electric fields reduced the shear modulus and viscosity and increased the relaxation rate of ex vivo porcine brain tissues. Moreover, electric fields polarized the cell bodies and reduced proteoglycan content in the cortex. The TEM observation confirmed that the electric fields deepened the degree of endoplasmic reticulum expansion and decreased the structural integrity of the cell membrane and myelin sheath. This study confirmed the effect of electric fields on ex vivo brain tissues; concurrently, it created comparable space in microscopic structure/compositions and mechanical parameters for future deeper brain experiments under stress-electric field coupling.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P. R. China.
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, P. R. China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun, 130025, P. R. China.
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun, 130025, P. R. China
| |
Collapse
|
13
|
Schlüßler R, Kim K, Nötzel M, Taubenberger A, Abuhattum S, Beck T, Müller P, Maharana S, Cojoc G, Girardo S, Hermann A, Alberti S, Guck J. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 2022; 11:e68490. [PMID: 35001870 PMCID: PMC8816383 DOI: 10.7554/elife.68490] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.
Collapse
Affiliation(s)
- Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Timon Beck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Paul Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Shovamaye Maharana
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBengaluruIndia
| | - Gheorghe Cojoc
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Salvatore Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", University Rostock, and German Center for Neurodegenerative Diseases (DZNE)Rostock/GreifswaldGermany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| |
Collapse
|
14
|
Guo X, Zhou W, Guan Y, Qin J, Zhang B, Zhang M, Tang J. The protective effect of biomineralized BSA-Mn 3O 4 nanoparticles on HUVECs investigated by atomic force microscopy. Analyst 2022; 147:2097-2105. [DOI: 10.1039/d2an00483f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BSA-Mn3O4 nanoparticles were successfully synthesized by one-step biomineralization method, the mechanism of antioxidant activity of BSA-Mn3O4 nanoparticles in HUVECs was investigated from the perspective of biomechanics.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Weiqi Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
15
|
Esteki MH, Malandrino A, Alemrajabi AA, Sheridan GK, Charras G, Moeendarbary E. Poroelastic osmoregulation of living cell volume. iScience 2021; 24:103482. [PMID: 34927026 PMCID: PMC8649806 DOI: 10.1016/j.isci.2021.103482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/19/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Cells maintain their volume through fine intracellular osmolarity regulation. Osmotic challenges drive fluid into or out of cells causing swelling or shrinkage, respectively. The dynamics of cell volume changes depending on the rheology of the cellular constituents and on how fast the fluid permeates through the membrane and cytoplasm. We investigated whether and how poroelasticity can describe volume dynamics in response to osmotic shocks. We exposed cells to osmotic perturbations and used defocusing epifluorescence microscopy on membrane-attached fluorescent nanospheres to track volume dynamics with high spatiotemporal resolution. We found that a poroelastic model that considers both geometrical and pressurization rates captures fluid-cytoskeleton interactions, which are rate-limiting factors in controlling volume changes at short timescales. Linking cellular responses to osmotic shocks and cell mechanics through poroelasticity can predict the cell state in health, disease, or in response to novel therapeutics. Cell height changes can be finely captured by defocusing microscopy Water permeation and cellular deformability regulate dynamics of cell volume changes Poroelasticity describes the dynamics of cell volume changes The response of cell to hypo or hyperosmotic shocks are modeled by poroelasticity
Collapse
Affiliation(s)
- Mohammad Hadi Esteki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.,Department of Mechanical Engineering, University College London, London, UK
| | - Andrea Malandrino
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Ali Akbar Alemrajabi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
17
|
Norman MDA, Ferreira SA, Jowett GM, Bozec L, Gentleman E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat Protoc 2021; 16:2418-2449. [PMID: 33854255 PMCID: PMC7615740 DOI: 10.1038/s41596-021-00495-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
Growing interest in exploring mechanically mediated biological phenomena has resulted in cell culture substrates and 3D matrices with variable stiffnesses becoming standard tools in biology labs. However, correlating stiffness with biological outcomes and comparing results between research groups is hampered by variability in the methods used to determine Young's (elastic) modulus, E, and by the inaccessibility of relevant mechanical engineering protocols to most biology labs. Here, we describe a protocol for measuring E of soft 2D surfaces and 3D hydrogels using atomic force microscopy (AFM) force spectroscopy. We provide instructions for preparing hydrogels with and without encapsulated live cells, and provide a method for mounting samples within the AFM. We also provide details on how to calibrate the instrument, and give step-by-step instructions for collecting force-displacement curves in both manual and automatic modes (stiffness mapping). We then provide details on how to apply either the Hertz or the Oliver-Pharr model to calculate E, and give additional instructions to aid the user in plotting data distributions and carrying out statistical analyses. We also provide instructions for inferring differential matrix remodeling activity in hydrogels containing encapsulated single cells or organoids. Our protocol is suitable for probing a range of synthetic and naturally derived polymeric hydrogels such as polyethylene glycol, polyacrylamide, hyaluronic acid, collagen, or Matrigel. Although sample preparation timings will vary, a user with introductory training to AFM will be able to use this protocol to characterize the mechanical properties of two to six soft surfaces or 3D hydrogels in a single day.
Collapse
Affiliation(s)
- Michael D. A. Norman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Silvia A. Ferreira
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Geraldine M. Jowett
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
- London Centre for Nanotechnology, London WC1H 0AH, UK
| |
Collapse
|
18
|
Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Amargant F, Manuel SL, Tu Q, Parkes WS, Rivas F, Zhou LT, Rowley JE, Villanueva CE, Hornick JE, Shekhawat GS, Wei J, Pavone ME, Hall AR, Pritchard MT, Duncan FE. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell 2020; 19:e13259. [PMID: 33079460 PMCID: PMC7681059 DOI: 10.1111/acel.13259] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Sharrón L. Manuel
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Qing Tu
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University Evanston IL USA
| | - Wendena S. Parkes
- Department of Pharmacology, Toxicology and Therapeutics University of Kansas Medical Cente Kansas City KS USA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences Wake Forest School of Medicine Winston‐Salem NC USA
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Jennifer E. Rowley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Cecilia E. Villanueva
- Department of Pharmacology, Toxicology and Therapeutics University of Kansas Medical Cente Kansas City KS USA
| | - Jessica E. Hornick
- Biological Imaging Facility (BIF) Northwestern University Evanston IL USA
| | - Gajendra S. Shekhawat
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University Evanston IL USA
| | - Jian‐Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University Chicago IL USA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences Wake Forest School of Medicine Winston‐Salem NC USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and Therapeutics University of Kansas Medical Cente Kansas City KS USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine Northwestern University Chicago IL USA
| |
Collapse
|
20
|
Rheinlaender J, Dimitracopoulos A, Wallmeyer B, Kronenberg NM, Chalut KJ, Gather MC, Betz T, Charras G, Franze K. Cortical cell stiffness is independent of substrate mechanics. NATURE MATERIALS 2020; 19:1019-1025. [PMID: 32451510 PMCID: PMC7610513 DOI: 10.1038/s41563-020-0684-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Timo Betz
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Tsitlakidis A, Aifantis EC, Kritis A, Tsingotjidou AS, Cheva A, Selviaridis P, Foroglou N. Mechanical properties of human glioma. Neurol Res 2020; 42:1018-1026. [PMID: 32705967 DOI: 10.1080/01616412.2020.1796381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brain gliomas represent some of the most aggressive tumors encountered by modern medicine and, despite major efforts to optimize early diagnosis and treatment, the prognosis remains poor. Due to the complex structure of the brain and the unique mechanical properties of the extracellular matrix, gliomas invade and expand into the brain parenchyma, along white matter tracts and within perivascular spaces, usually sparing normal vessels. Different methods have been developed to study the mechanical properties of gliomas in a wide range of scales, from cells and the microscale to tissues and the macroscale. In this review, the current view on glioma mechanics is presented and the methods used to determine glioma mechanical properties are outlined. Their principles and current state of affairs are discussed.
Collapse
Affiliation(s)
- Abraham Tsitlakidis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elias C Aifantis
- Laboratory of Mechanics and Materials, Polytechnic School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Aristeidis Kritis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Panagiotis Selviaridis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Nicolas Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| |
Collapse
|
22
|
Avetisov K, Bakhchieva N, Avetisov S, Novikov I, Frolova A, Akovantseva A, Efremov Y, Kotova S, Timashev P. Biomechanical properties of the lens capsule: A review. J Mech Behav Biomed Mater 2020; 103:103600. [DOI: 10.1016/j.jmbbm.2019.103600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
|
23
|
Esteki MH, Alemrajabi AA, Hall CM, Sheridan GK, Azadi M, Moeendarbary E. A new framework for characterization of poroelastic materials using indentation. Acta Biomater 2020; 102:138-148. [PMID: 31715334 PMCID: PMC6958526 DOI: 10.1016/j.actbio.2019.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023]
Abstract
To characterize a poroelastic material, typically an indenter is pressed onto the surface of the material with a ramp of a finite approach velocity followed by a hold where the indenter displacement is kept constant. This leads to deformation of the porous matrix, pressurization of the interstitial fluid and relaxation due to redistribution of fluid through the pores. In most studies the poroelastic properties, including elastic modulus, Poisson ratio and poroelastic diffusion coefficient, are extracted by assuming an instantaneous step indentation. However, exerting step like indentation is not experimentally possible and usually a ramp indentation with a finite approach velocity is applied. Moreover, the poroelastic relaxation time highly depends on the approach velocity in addition to the poroelastic diffusion coefficient and the contact area. Here, we extensively studied the effect of indentation velocity using finite element simulations which has enabled the formulation of a new framework based on a master curve that incorporates the finite rise time. To verify our novel framework, the poroelastic properties of two types of hydrogels were extracted experimentally using indentation tests at both macro and micro scales. Our new framework that is based on consideration of finite approach velocity is experimentally easy to implement and provides a more accurate estimation of poroelastic properties. STATEMENT OF SIGNIFICANCE: Hydrogels, tissues and living cells are constituted of a sponge-like porous elastic matrix bathed in an interstitial fluid. It has been shown that these materials behave according to the theory of 'poroelasticity' when mechanically stimulated in a way similar to that experienced in organs within the body. In this theory, the rate at which the fluid-filled sponge can be deformed is limited by how fast interstitial fluid can redistribute within the sponge in response to deformation. Here, we simulated indentation experiments at different rates and formulated a new framework that inherently captures the effects of stimulation speed on the mechanical response of poroelastic materials. We validated our framework by conducting experiments at different length-scales on agarose and polyacrylamide hydrogels.
Collapse
Affiliation(s)
- Mohammad Hadi Esteki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Ali Akbar Alemrajabi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Chloe M Hall
- Department of Mechanical Engineering, University College London, London, United Kingdom; School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Graham K Sheridan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA 94132, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, United Kingdom; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
24
|
Petridou NI, Heisenberg C. Tissue rheology in embryonic organization. EMBO J 2019; 38:e102497. [PMID: 31512749 PMCID: PMC6792012 DOI: 10.15252/embj.2019102497] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well-established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self-organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development.
Collapse
|
25
|
Suar ZM, Fabris G, Kurt M. Isolation and Immunofluorescent Staining of Fresh Rat Pia-Arachnoid Complex Tissue for Micromechanical Characterization. ACTA ACUST UNITED AC 2019; 89:e83. [PMID: 31532920 DOI: 10.1002/cpns.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this article, we describe a protocol for the isolation and staining of fresh tissue of the inner rat meningeal layers, or pia-arachnoid complex (PAC). The PAC is believed to act as a mechanical damper offering a fundamental layer of protection against brain injury; however, its overall mechanical properties are still rather unexplored. In order to perform micromechanical measurements on the PAC, the tissue must be extracted and characterized while maintaining its native mechanical properties (i.e., avoiding any chemical or physical modification that could alter it). In light of this need, we developed a protocol for the immunofluorescent staining of fresh PAC tissue that does not require any fixation or permeabilization step. This approach will allow researchers to investigate important properties of the anatomy of ex vivo PAC tissue while at the same time offering a platform for the mechanical analysis of this complex material. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Isolation of fresh rat pia-arachnoid complex tissue Basic Protocol 2: Fresh immunofluorescent staining of rat pia-arachnoid complex tissue Alternate Protocol: Adhesion of pia-arachnoid complex tissue to glass slides for micromechanical characterization.
Collapse
Affiliation(s)
- Zeynep M Suar
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Gloria Fabris
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.,Translational and Molecular Imaging Institute (TMII), Mount Sinai Hospital, New York, New York
| |
Collapse
|
26
|
Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H 2019; 233:535-543. [DOI: 10.1177/0954411919837563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Examining the effects of ionizing radiation on the living cell is significant due to its usage in recent centuries. Investigations into the long- and short-term effects of ionizing radiation began simultaneously with its discovery. Previous studies were done on the effects of radiation on cell DNA or the biochemical cycle based on the electromagnetic radiation wavelength, intensity, and exposure time. Considering some dependent parameters like cell communication, the differentiation and the mechanical interactions of intercellular environment, and cell mechanical properties, the effects of ionizing radiation on the viscoelastic properties of cells seem to be important. The current research investigated the short-term biomechanical effects of ionizing radiation and examined the mechanical properties of cells using magnetic tweezer cytometry with nanomagnetic particles. To evaluate these effects, cells were incubated with nanomagnetic particles and then separated into controlled and irradiated groups. A 3 mGy cm2 X-ray was radiated to the irradiated group for 0.02 s. The dishes of both groups were inserted into magnetic tweezer cytometry for applying a magnetic force pulse, and the cell membrane displacement was detected by an image processing system. The creep response of the membrane was determined for viscoelastic model curve fitting. The frequency responses of the model for both groups were calculated. The results showed that radiation could decrease cell extensibility from 0.084 ± 0.001 to 0.019 ± 0.001 µm and change the storage and loss modulus as the indicator of the viscoelastic property of the material. This research explains that radiation could affect cellular mechanical properties.
Collapse
Affiliation(s)
- Ashkan Heydarian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Khorramymehr
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
27
|
Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze K. Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. eLife 2019; 8:e39356. [PMID: 30642430 PMCID: PMC6333438 DOI: 10.7554/elife.39356] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Tissue mechanics is important for development; however, the spatio-temporal dynamics of in vivo tissue stiffness is still poorly understood. We here developed tiv-AFM, combining time-lapse in vivo atomic force microscopy with upright fluorescence imaging of embryonic tissue, to show that during development local tissue stiffness changes significantly within tens of minutes. Within this time frame, a stiffness gradient arose in the developing Xenopus brain, and retinal ganglion cell axons turned to follow this gradient. Changes in local tissue stiffness were largely governed by cell proliferation, as perturbation of mitosis diminished both the stiffness gradient and the caudal turn of axons found in control brains. Hence, we identified a close relationship between the dynamics of tissue mechanics and developmental processes, underpinning the importance of time-resolved stiffness measurements.
Collapse
Affiliation(s)
- Amelia J Thompson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Eva K Pillai
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Ivan B Dimov
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sarah K Foster
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Kristian Franze
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
28
|
Qian L, Zhao H. Nanoindentation of Soft Biological Materials. MICROMACHINES 2018; 9:E654. [PMID: 30544918 PMCID: PMC6316095 DOI: 10.3390/mi9120654] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
29
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
30
|
Rezvani-Sharif A, Tafazzoli-Shadpour M, Avolio A. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries. Med Biol Eng Comput 2018; 57:731-740. [PMID: 30374700 DOI: 10.1007/s11517-018-1910-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Stiffness of the arterial wall and atherosclerotic plaque components is a determinant of the stress field within plaques, which has been suggested to be an indicator of plaque vulnerability. The diversity and inhomogeneous structure of atherosclerotic lesions complicate the characterization of plaque components. In the present study, stiffness of the arterial wall and atherosclerotic plaque components in human coronary arteries was examined in early and developed atherosclerotic lesions. The force-spectroscopy mode of the atomic force microscope and histological examination were used for determination of elastic moduli at specified locations within samples. Fibrous cap (E = 14.1 ± 3.8 kPa) showed lower stiffness than the fibrous tissue beneath the lipid pool (E = 17.6 ± 3.2 kPa). Calcification zones (E = 96.1 ± 18.8 kPa) and lipid pools (E = 2.7 ± 1.8 kPa) were the stiffest and softest components of atherosclerotic lesions, respectively. The increase of media stiffness (%44.8) and reduction of the elastic modulus of the internal elastic lamina (%28.9) was observed in coronary arteries. Moreover, significant differences were observed between the stiffness of medial layer in diseased parts and free-plaque segments in incomplete plaques of coronary arteries. Our results can be used for better understanding of remodeling mechanisms of the arterial wall with plaque development. Graphical abstract Stiffness alteration of the arterial wall and atherosclerotic plaque components with plaque development in coronary arteries.
Collapse
Affiliation(s)
- Alireza Rezvani-Sharif
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Hafez Street, Tehran, Iran.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Alberto Avolio
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Hafez Street, Tehran, Iran
| |
Collapse
|
31
|
Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging. Biophys J 2018; 115:911-923. [PMID: 30122291 PMCID: PMC6127462 DOI: 10.1016/j.bpj.2018.07.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
The mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time to our knowledge a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and nondestructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord remained comparable during development and transiently decreased during the repair processes after spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step toward an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties, and allows us to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.
Collapse
|
32
|
Yoo H, Lee DJ, Kim D, Park J, Chen X, Hong S. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity. NANOTECHNOLOGY 2018; 29:265501. [PMID: 29624503 DOI: 10.1088/1361-6528/aabc4d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul national University, Seoul 08826, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Kolodziejczyk A, Jakubowska A, Kucinska M, Wasiak T, Komorowski P, Makowski K, Walkowiak B. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy. J Mol Recognit 2018; 31:e2723. [DOI: 10.1002/jmr.2723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Magdalena Kucinska
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd; Łódź Poland
| | - Tomasz Wasiak
- Department of Molecular Biology; Faculty of Biomedical Sciences and Postgraduated Training, Medical University of Lodz; Łódź Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd; Łódź Poland
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
| | - Krzysztof Makowski
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
- Industrial Biotechnology Laboratory, Bionanopark Ldt.; Łódź Poland
| | - Bogdan Walkowiak
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd; Łódź Poland
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
| |
Collapse
|
34
|
Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. EXTREME MECHANICS LETTERS 2018; 21:25-34. [PMID: 30135864 PMCID: PMC6097546 DOI: 10.1016/j.eml.2018.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 05/14/2023]
Abstract
The extracellular matrix (ECM) performs many critical functions, one of which is to provide structural and mechanical integrity, and many of the constituent proteins have clear mechanical roles. The composition and structural characteristics of the ECM are widely variable among different tissues, suiting diverse functional needs. In diseased tissues, particularly solid tumors, the ECM is complex and influences disease progression. Cancer and stromal cells can significantly influence the matrix composition and structure and thus the mechanical properties of the tumor microenvironment (TME). In this review, we describe the interactions that give rise to the structural heterogeneity of the ECM and present the techniques that are widely employed to measure ECM properties and remodeling dynamics. Furthermore, we review the tools for measuring the distinct nature of cell-ECM interactions within the TME.
Collapse
Affiliation(s)
- Andrea Malandrino
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- European Molecular Biology Laboratory, Barcelona, Spain
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Roger D. Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Moeendarbary
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
35
|
AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 2018; 73:177-187. [DOI: 10.1016/j.semcdb.2017.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
|
36
|
Weber IP, Yun SH, Scarcelli G, Franze K. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Phys Biol 2017; 14:065006. [PMID: 28406094 DOI: 10.1088/1478-3975/aa6d18] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cells in the central nervous system (CNS) respond to the stiffness of their environment. CNS tissue is mechanically highly heterogeneous, thus providing motile cells with region-specific mechanical signals. While CNS mechanics has been measured with a variety of techniques, reported values of tissue stiffness vary greatly, and the morphological structures underlying spatial changes in tissue stiffness remain poorly understood. We here exploited two complementary techniques, contact-based atomic force microscopy and contact-free Brillouin microscopy, to determine the mechanical properties of ruminant retinae, which are built up by different tissue layers. As in all vertebrate retinae, layers of high cell body densities ('nuclear layers') alternate with layers of low cell body densities ('plexiform layers'). Different tissue layers varied significantly in their mechanical properties, with the photoreceptor layer being the stiffest region of the retina, and the inner plexiform layer belonging to the softest regions. As both techniques yielded similar results, our measurements allowed us to calibrate the Brillouin microscopy measurements and convert the Brillouin shift into a quantitative assessment of elastic tissue stiffness with optical resolution. Similar as in the mouse spinal cord and the developing Xenopus brain, we found a strong correlation between nuclear densities and tissue stiffness. Hence, the cellular composition of retinae appears to strongly contribute to local tissue stiffness, and Brillouin microscopy shows a great potential for the application in vivo to measure the mechanical properties of transparent tissues.
Collapse
Affiliation(s)
- Isabell P Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
37
|
Pegoraro AF, Janmey P, Weitz DA. Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harb Perspect Biol 2017; 9:9/11/a022038. [PMID: 29092896 DOI: 10.1101/cshperspect.a022038] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYThe cytoskeleton is the major mechanical structure of the cell; it is a complex, dynamic biopolymer network comprising microtubules, actin, and intermediate filaments. Both the individual filaments and the entire network are not simple elastic solids but are instead highly nonlinear structures. Appreciating the mechanics of biopolymer networks is key to understanding the mechanics of cells. Here, we review the mechanical properties of cytoskeletal polymers and discuss the implications for the behavior of cells.
Collapse
Affiliation(s)
- Adrian F Pegoraro
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Paul Janmey
- Institute for Medicine and Engineering and Department of Physiology, Perelman School of Medicine, and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
38
|
Braet F, Taatjes DJ. Foreword to the special issue on applications of atomic force microscopy in cell biology. Semin Cell Dev Biol 2017; 73:1-3. [PMID: 28673678 DOI: 10.1016/j.semcdb.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
39
|
Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J, Franze K. The soft mechanical signature of glial scars in the central nervous system. Nat Commun 2017; 8:14787. [PMID: 28317912 PMCID: PMC5364386 DOI: 10.1038/ncomms14787] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/31/2017] [Indexed: 02/02/2023] Open
Abstract
Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.
Collapse
Affiliation(s)
- Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave 56, Cambridge, Massachusetts 02139, USA,Department of Mechanical Engineering, University College London, London WC1E 7JE, UK,
| | - Isabell P. Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Graham K. Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - David E. Koser
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sara Soleman
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Elizabeth J. Bradbury
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - James Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK,
| |
Collapse
|
40
|
Anura A, Das D, Pal M, Paul RR, Das S, Chatterjee J. Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue. J Mech Behav Biomed Mater 2017; 65:705-715. [DOI: 10.1016/j.jmbbm.2016.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022]
|
41
|
Nagasaka A, Shinoda T, Kawaue T, Suzuki M, Nagayama K, Matsumoto T, Ueno N, Kawaguchi A, Miyata T. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Front Cell Dev Biol 2016; 4:139. [PMID: 27933293 PMCID: PMC5122735 DOI: 10.3389/fcell.2016.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called "pseudostratified." The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions toward more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young's modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse<ferret relationship in the apical-surface stiffness was maintained even in the presence of inhibitors. We also found that the stiffness of single, dissociated neuroepithelial cells is actually greater in mice (720 Pa) than in ferrets (450 Pa). Adherens junction was ultrastructurally comparable between mice and ferrets. These results show that the horizontally denser packing of neuroepithelial cell processes is a major contributor to the increased tissue-level apical stiffness in ferrets, and suggest that tissue-level mechanical properties may be achieved by balancing cellular densification and the physical properties of single cells.
Collapse
Affiliation(s)
- Arata Nagasaka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Tomoyasu Shinoda
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Makoto Suzuki
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University Hitachi, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology Nagoya, Japan
| | - Naoto Ueno
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
42
|
Hayashi K, Higaki M. Stiffness of Intact Endothelial Cells From Fresh Aortic Bifurcations of Atherosclerotic Rabbits-Atomic Force Microscopic Study. J Cell Physiol 2016; 232:7-13. [PMID: 26991605 DOI: 10.1002/jcp.25379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Stiffness of intact endothelial cells (ECs) in the abdominal aorta (AA) and in the medial and lateral wall of the common iliac artery (CIA(Medial) and CIA(Lateral), respectively), which were freshly obtained from cholesterol-fed rabbits, were measured with an atomic force microscopic indentation method. In the areas away from atherosclerotic plaques (Off-plaque), ECs were significantly stiffer in CIA(Medial) than in the other two locations; this result was similar to that from normal diet-fed animals. On the other hand, there were no significant differences in the stiffness of ECs located on atherosclerotic plaques (On-plaque) among the three sites; the stiffness was equal to those in "Off-plaque" wall of CIA(Lateral) and AA. Moreover, the stiffness of ECs covering plaques decreased with the progression of atherosclerosis. The precise quantification of the stiffness of vascular ECs would provide a better understanding of cellular remodeling and adaptation in atherosclerosis. J. Cell. Physiol. 232: 7-13, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Michitaka Higaki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
43
|
Campàs O. A toolbox to explore the mechanics of living embryonic tissues. Semin Cell Dev Biol 2016; 55:119-30. [PMID: 27061360 PMCID: PMC4903887 DOI: 10.1016/j.semcdb.2016.03.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable.
Collapse
Affiliation(s)
- Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; California Nanosystems Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
44
|
Munder MC, Midtvedt D, Franzmann T, Nüske E, Otto O, Herbig M, Ulbricht E, Müller P, Taubenberger A, Maharana S, Malinovska L, Richter D, Guck J, Zaburdaev V, Alberti S. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 2016; 5. [PMID: 27003292 PMCID: PMC4850707 DOI: 10.7554/elife.09347] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/13/2016] [Indexed: 01/19/2023] Open
Abstract
Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.
Collapse
Affiliation(s)
| | - Daniel Midtvedt
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Titus Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elke Ulbricht
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Paul Müller
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anna Taubenberger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
45
|
Prein C, Warmbold N, Farkas Z, Schieker M, Aszodi A, Clausen-Schaumann H. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol 2016; 50:1-15. [DOI: 10.1016/j.matbio.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
|
46
|
Beekmans SV, Iannuzzi D. Characterizing tissue stiffness at the tip of a rigid needle using an opto-mechanical force sensor. Biomed Microdevices 2016; 18:15. [PMID: 26838036 PMCID: PMC4737792 DOI: 10.1007/s10544-016-0039-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a novel device that allows the user to measure the Young Modulus of a material at the opening of a 5 mm diameter needle. The device relies on a miniaturized cantilever spring mounted at the end of the needle and interrogated via Fabry-Pérot optical fiber interferometry. The probe is repetitively brought in and out of contact with the sample at the end of the needle by means of a steel cable that is controlled via a piezoelectric actuator located at the proximal end. We demonstrate the ability of our device to detect and quantify layers of varying stiffness during needle insertion in a gelatin phantom and to successfully locate tissue boundaries in bovine liver tissue embedded in gelatin.
Collapse
Affiliation(s)
- S V Beekmans
- Deparment of Physics and Astronomy and LaserLab Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - D Iannuzzi
- Deparment of Physics and Astronomy and LaserLab Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|