1
|
Barya P, Xiong Y, Shepherd S, Gupta R, Akin LD, Tibbs J, Lee HK, Singamaneni S, Cunningham BT. Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207239. [PMID: 37104850 PMCID: PMC10603207 DOI: 10.1002/smll.202207239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Indexed: 06/05/2023]
Abstract
Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.
Collapse
Affiliation(s)
- Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Skye Shepherd
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rohit Gupta
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lucas D. Akin
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Joseph Tibbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Han Keun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
2
|
Kundalia PH, Pažitná L, Kianičková K, Jáné E, Lorencová L, Katrlík J. A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5362. [PMID: 37420529 DOI: 10.3390/s23125362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023]
Abstract
Protein-carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein-carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design-Dispense-Detect-Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology.
Collapse
Affiliation(s)
- Paras H Kundalia
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lucia Pažitná
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Kristína Kianičková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Eduard Jáné
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lenka Lorencová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| |
Collapse
|
3
|
Aggarwal R, Ferris B, Li H. Compartmentalized Linker Array: A Scalable and Transferrable Microarray Format for Multiplexed Immunoassays. Anal Chem 2023. [PMID: 37267452 DOI: 10.1021/acs.analchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microarrays have been widely used for multiplexed bioassays. Fabrication of a conventional microarray typically requires a complex microarray spotter, using which nanoliter bioreagent (e.g., antibody and cells) droplets are delivered onto a glass slide. However, arraying a delicate bioreagent in nanoliter volumes could cause the loss of bioactivity and needs a complex microarray spotter. Further, mixing of different bioreagents in a multiplexed assay leads to cross-reactions, producing false positive signals that impair assay reproducibility and scalability. In this work, we propose a new microarray format, named "compartmentalized linker array (CLA)", that consists of pre-prepared storable microarrays of chemical linkers in microliter compartments. CLA can be used for binding and patterning bioreagents into microarrays by simply pipetting and incubating bioreagent solutions in compartments. Using commonly used aminosilane linker-based antibody microarray, we developed CLA and demonstrated its application for a multiplexed sandwich immunoassay measuring three cancer-related proteins. A "two-phase" blocking system was established for de-activating background regions on glass where no linker molecules are present. Storage conditions of the CLA chip were explored and demonstrated for long-term storage. In a multiplexed immunoassay, low pg/mL sensitivity was achieved for all the three proteins, comparable to those of conventional assays. Moreover, CLA can be potentially used for other applications beyond protein assays, making microarray technology transferrable and widely available for the biological and biomedical research community.
Collapse
Affiliation(s)
- Roshan Aggarwal
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Bryn Ferris
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
4
|
Lin CL, Wang SG, Tien MT, Chiang CH, Lee YC, Baldeck PL, Shin CS. A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers. BIOSENSORS 2022; 12:656. [PMID: 36005053 PMCID: PMC9405593 DOI: 10.3390/bios12080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical "cell-tearing" and the especially proposed "dilution regulations" to detect variations in cell surface antigens. The cell attaches to the corresponding antibody-coated slide surface. Then, the cell-binding firmness between a single cell and the functionalized surface is assayed by optically tearing using gradually reduced laser powers incorporated with serial antibody dilutions. Groups B and B3 of red blood cells (RBCs) were selected as the experiment subject. The results indicate that a higher dilution called for lower power to tear off the cell binding. According to the proposed relative-quantitative analysis theory, antigenic variation can be intuitively estimated by comparing the maximum allowable dilution folds. The estimation result shows good consistency with the finding in the literature. This study suggests a novel methodology for examining the variation in cell surface antigens, expected to be widely capable with potential sensor applications not only in biochemistry and biophysics, but also in the micro-/nano- engineering field.
Collapse
Affiliation(s)
- Chih-Lang Lin
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung City 407802, Taiwan
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Meng-Tsung Tien
- General Education Center, Feng Chia University, Taichung City 407802, Taiwan
| | - Chung-Han Chiang
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Yi-Chieh Lee
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Patrice L. Baldeck
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Chow-Shing Shin
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
5
|
|
6
|
Normandeau F, Ng A, Beaugrand M, Juncker D. Spatial Bias in Antibody Microarrays May Be an Underappreciated Source of Variability. ACS Sens 2021; 6:1796-1806. [PMID: 33973474 DOI: 10.1021/acssensors.0c02613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody microarrays enable multiplexed protein detection with minimal reagent consumption, but they continue to be plagued by lack of reproducibility. Chemically functionalized glass slides are used as substrates, yet antibody binding spatial inhomogeneity across the slide has not been analyzed in antibody microarrays. Here, we characterize spatial bias across five commercial slides patterned with nine overlapping dense arrays (by combining three buffers and three different antibodies), and we measure signal variation for both antibody immobilization and the assay signal, generating 270 heatmaps. Spatial bias varied across models, and the coefficient of variation ranged from 4.6 to 50%, which was unexpectedly large. Next, we evaluated three layouts of spot replicates-local, random, and structured random-for their capacity to predict assay variation. Local replicates are widely used but systematically underestimate the whole-slide variation by up to seven times; structured random replicates gave the most accurate estimation. Our results highlight the risk and consequences of using local replicates: the underappreciation of spatial bias as a source of variability, poor assay reproducibility, and possible overconfidence in assay results. We recommend the detailed characterization of spatial bias for antibody microarrays and the description and use of distributed positive replicates for research and clinical applications.
Collapse
Affiliation(s)
- Frédéric Normandeau
- McGill Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andy Ng
- McGill Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Maiwenn Beaugrand
- McGill Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - David Juncker
- McGill Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
7
|
Abstract
Surface modification is recognized as one of the fundamental techniques to fabricate biosensing interfaces. This review focuses on the surface modification of carbon substrates (GC and HOPG) and silica with a close-packed monolayer, in particular. In the cases of carbon substrates, GC and HOPG, it was demonstrated that surface modification of carbon substrates with diazonium derivatives could create a close-packed monolayer similar to the self-assembled monolayer (SAM) formation with mercapto derivatives. Similarly, the potential of trialkoxysilanes to form a close-packed monolayer was evaluated, and modification with a close-packed monolayer tended to occur under milder conditions when the trialkoxysilanes had a longer alkyl chain. In these studies, we synthesized surface modification materials having ferrocene as a redox active moiety to explore features of the modified surfaces by an electrochemical method using cyclic voltammetry, where surface concentrations of immobilized molecules and blocking effect were studied to obtain insight for density leading to a close-packed layer. Based on those findings, fabrication of a biosensing interface on the silica sensing chip of the waveguide-mode sensor was carried out using triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties to immobilize antibodies and to suppress nonspecific adsorption of proteins, respectively. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has the potential to detect several tens ng/mL of biomarkers in human serum with unlabeled detection method.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Department of Life Science & Green Chemistry, Saitama Institute of Technology
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology
| |
Collapse
|
8
|
Chiodi E, Marn AM, Geib MT, Ünlü MS. The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview. Polymers (Basel) 2021; 13:1026. [PMID: 33810267 PMCID: PMC8036480 DOI: 10.3390/polym13071026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules' functionalities is critically analyzed.
Collapse
Affiliation(s)
- Elisa Chiodi
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Allison M. Marn
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Matthew T. Geib
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - M. Selim Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Shakeri A, Jarad NA, Terryberry J, Khan S, Leung A, Chen S, Didar TF. Antibody Micropatterned Lubricant-Infused Biosensors Enable Sub-Picogram Immunofluorescence Detection of Interleukin 6 in Human Whole Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003844. [PMID: 33078567 DOI: 10.1002/smll.202003844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/23/2020] [Indexed: 05/05/2023]
Abstract
Recent studies have shown a correlation between elevated interleukin 6 (IL-6) concentrations and the risk of respiratory failure in COVID-19 patients. Therefore, detection of IL-6 at low concentrations permits early diagnosis of worst-case outcome in viral respiratory infections. Here, a versatile biointerface is presented that eliminates nonspecific adhesion and thus enables immunofluorescence detection of IL-6 in whole human plasma or whole human blood during coagulation, down to a limit of detection of 0.5 pg mL-1 . The sensitivity of the developed lubricant-infused biosensor for immunofluorescence assays in detecting low molecular weight proteins such as IL-6 is facilitated by i) producing a bioink in which the capture antibody is functionalized by an epoxy-based silane for covalent linkage to the fluorosilanized surface and ii) suppressing nonspecific adhesion by patterning the developed bioink into a lubricant-infused coating. The developed biosensor addresses one of the major challenges for biosensing in complex fluids, namely nonspecific adhesion, therefore paving the way for highly sensitive biosensing in complex fluids.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jeff Terryberry
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ashlyn Leung
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Simeng Chen
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Dos Santos JM, Joiakim A, Kaplan DJ, Putt DA, Perez Bakovic G, Servoss SL, Rybicki BA, Dombkowski AA, Kim H. Levels of plasma glycan-binding auto-IgG biomarkers improve the accuracy of prostate cancer diagnosis. Mol Cell Biochem 2020; 476:13-22. [PMID: 32816187 DOI: 10.1007/s11010-020-03876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Strategies to improve the early diagnosis of prostate cancer will provide opportunities for earlier intervention. The blood-based prostate-specific antigen (PSA) assay is widely used for prostate cancer diagnosis but specificity of the assay is not satisfactory. An algorithm based on serum levels of PSA combined with other serum biomarkers may significantly improve prostate cancer diagnosis. Plasma glycan-binding IgG/IgM studies suggested that glycan patterns differ between normal and tumor cells. We hypothesize that in prostate cancer glycoproteins or glycolipids are secreted from tumor tissues into the blood and induce auto-immunoglobulin (Ig) production. A 24-glycan microarray and a 5-glycan subarray were developed using plasma samples obtained from 35 prostate cancer patients and 54 healthy subjects to identify glycan-binding auto-IgGs. Neu5Acα2-8Neu5Acα2-8Neu5Acα (G81)-binding auto-IgG was higher in prostate cancer samples and, when levels of G81-binding auto-IgG and growth differentiation factor-15 (GDF-15 or NAG-1) were combined with levels of PSA, the prediction rate of prostate cancer increased from 78.2% to 86.2% than with PSA levels alone. The G81 glycan-binding auto-IgG fraction was isolated from plasma samples using G81 glycan-affinity chromatography and identified by N-terminal sequencing of the 50 kDa heavy chain variable region of the IgG. G81 glycan-binding 25 kDa fibroblast growth factor-1 (FGF1) fragment was also identified by N-terminal sequencing. Our results demonstrated that a multiplex diagnostic combining G81 glycan-binding auto-IgG, GDF-15/NAG-1 and PSA (≥ 2.1 ng PSA/ml for cancer) increased the specificity of prostate cancer diagnosis by 8%. The multiplex assessment could improve the early diagnosis of prostate cancer thereby allowing the prompt delivery of prostate cancer treatment.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.,Department of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David J Kaplan
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - German Perez Bakovic
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shannon L Servoss
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.
| |
Collapse
|
11
|
Jain B, Kulkarni S, Banerjee S, Rajan MGR. Microarray immunoassay for thyrotropin on track-etched membranes using radiotracers. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Etty MC, D'Auria S, Shankar S, Salmieri S, Fraschini C, Lacroix M. New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – Part B: Rapid and specific sandwich ELISA using antibodies immobilized on a chitosan/CNC film support. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Carvalho AM, Montes CV, Schneider RJ, Madder A. An Anticaffeine Antibody-Oligonucleotide Conjugate for DNA-Directed Immobilization in Environmental Immunoarrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14834-14841. [PMID: 30089211 DOI: 10.1021/acs.langmuir.8b01347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of fast and cheap high-throughput platforms for the detection of environmental contaminants is of particular importance to understand the human-related impact on the environment. The application of DNA-directed immobilization (DDI) of IgG molecules is currently limited to the clinical diagnostics scenario, possibly because of the high costs of production of such addressable platforms. We here describe the efficient and specific hybridization of an antibody-oligonucleotide conjugate to a short 12-mer capture probe. The specific antibody used is a monoclonal antibody against caffeine, a stimulant and important anthropogenic marker. With this work, we hope to contribute to broadening the application potential of DDI to environmental markers in order to develop cheaper and more stable high-throughput screening platforms for standard routine analysis of pollutants in a variety of complex matrices.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Cinthya Véliz Montes
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Annemieke Madder
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
| |
Collapse
|
14
|
Abstract
Lyme disease (LD) is the most common tick-borne disease in the Northern Hemisphere. As the most prevalent vector-borne disease in the USA, LD affects 300,000 human cases each year. LD is caused by inoculation of the bacterial spirochete, Borrelia burgdorferi sensu lato, from an infected tick. If not treated quickly and completely, the bacteria disseminate from the tick's biting site into multiple organs including the joints, heart, and brain. Thus, the best outcome from medical intervention can be expected with early detection and treatment with antibiotics, prior to multi-organ dissemination. In the absence of a characteristic rash, LD is diagnosed using serological testing involving enzyme-linked immunosorbent assay (ELISA) followed by western blotting, which is collectively known as the two-tier algorithm. These assays detect host antibodies against the bacteria, but are hampered by low sensitivity, which can miss early LD cases. This review discusses the application of some current assays for diagnosing LD clinically, thus providing a foundation for exploring newer techniques being developed in the laboratory for more sensitive detection of early LD.
Collapse
Affiliation(s)
- Eunice Chou
- Vassar College in Poughkeepsie, NY SUNY Downstate Medical School and SUNY Polytechnic Institute
| | - Yi-Pin Lin
- University in Ithaca, NY and postdoctoral training from Tufts University in Boston, MA
| | | |
Collapse
|
15
|
Achuth J, Renuka RM, Jalarama Reddy K, Shivakiran MS, Venkataramana M, Kadirvelu K. Development and evaluation of an IgY based silica matrix immunoassay platform for rapid onsite SEB detection. RSC Adv 2018; 8:25500-25513. [PMID: 35702392 PMCID: PMC9097597 DOI: 10.1039/c8ra03574a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The present study involves immunoassay platform development based on a surface functionalized silica matrix for rapid onsite detection of Staphylococcal enterotoxin B (SEB). Silica matrix functionalization as well as the immunoassay parameters was experimentally designed and optimized through response surface methodology (RSM). Silica surface functionalization was carried out with hydrofluoric acid (HF), ammonia, 3-aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The RSM optimized matrix functionalization parameters for HF, ammonia, APTES and GA were determined to be 10%, 40%, 20% and 10% (V/V), respectively. Antibodies for the study were generated against recombinant SEB toxin in rabbit (anti-SEB IgG) and chicken (anti-SEB IgY). Subsequently, antibodies were immobilized on the functionalized silica matrix and were further characterized by SEM and contact angle measurements to elucidate the surface uniformity and degree of hydrophilicity. The immunoassay platform was developed with anti-SEB IgG (capturing agent) and anti-SEB IgY (revealing partner). The limit of detection (LOD) of the developed platform was determined to be 0.005 μg mL-1 and no cross-reactivity with similar toxins was observed. Upon co-evaluation with a standard ELISA kit (Chondrex, Inc) against various field isolates, the platform was found to be on par and reliable. In conclusion, the developed method may find better utility in onsite detection of SEB from resource-poor settings.
Collapse
Affiliation(s)
- J Achuth
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - R M Renuka
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Jalarama Reddy
- Freeze Drying and Animal Product Technology Division, Defence Food Research Laboratory Siddarthanagar Mysore Karnataka- 570011 India
| | - M S Shivakiran
- Department of Biotechnology, Vignan's University Guntur Andhra Pradesh-522213 India
| | - M Venkataramana
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Kadirvelu
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| |
Collapse
|
16
|
Renuka RM, Achuth J, Chandan HR, Venkataramana M, Kadirvelu K. A fluorescent dual aptasensor for the rapid and sensitive onsite detection ofE. coliO157:H7 and its validation in various food matrices. NEW J CHEM 2018. [DOI: 10.1039/c8nj00997j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The speedy analysis of food products remains a keen area of concern; thus, rapid, highly efficient and robust on-site detection platforms are essential.
Collapse
Affiliation(s)
- R. M. Renuka
- Molecular Immunology Laboratory
- DRDO-BU-CLS
- Coimbatore-641046
- India
| | - J. Achuth
- Molecular Immunology Laboratory
- DRDO-BU-CLS
- Coimbatore-641046
- India
| | - H. R. Chandan
- Center for Nano and Material Sciences
- Jain University
- Bangalore
- India
| | - M. Venkataramana
- Molecular Immunology Laboratory
- DRDO-BU-CLS
- Coimbatore-641046
- India
| | - K. Kadirvelu
- Molecular Immunology Laboratory
- DRDO-BU-CLS
- Coimbatore-641046
- India
| |
Collapse
|
17
|
Aygun U, Avci O, Seymour E, Urey H, Ünlü MS, Ozkumur AY. Label-Free and High-Throughput Detection of Biomolecular Interactions Using a Flatbed Scanner Biosensor. ACS Sens 2017; 2:1424-1429. [PMID: 28929734 DOI: 10.1021/acssensors.7b00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence based microarray detection systems provide sensitive measurements; however, variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of fluorescence microarrays. The sensor employs a commercial flatbed scanner, and we demonstrate transformation of this low cost (∼100 USD) system into an Interferometric Reflectance Imaging Sensor through hardware and software modifications. Using this sensor, we report detection of DNA hybridization and DNA directed antibody immobilization on label-free microarrays with a noise floor of ∼30 pg/mm2, and a scan speed of 5 s (50 s for 10 frames averaged) for a 2 mm × 2 mm area. This novel system may be used as a standalone label-free sensor especially in low-resource settings, as well as for quality control and calibration of microarrays in existing fluorescence-based DNA and protein detection platforms.
Collapse
Affiliation(s)
- Ugur Aygun
- Electrical
and Electronics Engineering Department, Koç University, 34450, Sariyer, Istanbul, Turkey
| | | | - Elif Seymour
- Biotechnology
Research Program Department, ASELSAN Research Center, Ankara, 06370, Turkey
| | - Hakan Urey
- Electrical
and Electronics Engineering Department, Koç University, 34450, Sariyer, Istanbul, Turkey
| | | | - Ayca Yalcin Ozkumur
- Department
of Electrical and Electronics Engineering, Bahcesehir University, Istanbul, 34349, Turkey
| |
Collapse
|
18
|
Tanaka M, Sawaguchi T, Hirata Y, Niwa O, Tawa K, Sasakawa C, Kuraoka K. Properties of modified surface for biosensing interface. J Colloid Interface Sci 2017; 497:309-316. [PMID: 28288377 DOI: 10.1016/j.jcis.2017.02.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/24/2022]
Abstract
Properties of modified surface, behavior against salting-out effect, suppressive effect for protein nonspecific adsorption, and wettability were examined using various mercapto compounds bearing methyloligoethylene glycol, oligoethylene glycol, alkyl oligoethylene glycol, alkyl phosphoryl choline, alkyl inverse phosphoryl choline, and alkyl sulfobetaine moieties. The behavior against salting-out effect was examined using gold nanoparticle with PBS and NaCl aqueous solution. The suppressive effect for protein nonspecific adsorption was evaluated by SPR, and the wettability was measured on the SPR chip. The gold nanoparticle modified with 8C3EG, 12C4EG, 12CPC, 6CCP, and 12CCP showed excellent behavior against salting-out effect. The suppression of protein nonspecific adsorption was effective with 6EG, 12C4EG, 12CPC, and 12CS. On the other hand, the modified surface possessed high wettability except for the surface modified with M6EG. The results indicate that incorporation of alkyl group into surface modification materials is effective for the enhancement of behavior against salting-out effect and suppressive effect for protein nonspecific adsorption regardless of wettability. Among the zwitter ionic derivatives, inverse phosphoryl choline derivatives showed intriguing properties, high behavior against salting-out effect with high wettability but low suppressive effect for protein nonspecific adsorption.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Health Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Takahiro Sawaguchi
- Health Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshiki Hirata
- Health Research Institute, Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Keiko Tawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chisato Sasakawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Koji Kuraoka
- Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe, Hyogo 658-0022, Japan
| |
Collapse
|
19
|
Belov L, Hallal S, Matic K, Zhou J, Wissmueller S, Ahmed N, Tanjil S, Mulligan SP, Best OG, Simpson RJ, Christopherson RI. Surface Profiling of Extracellular Vesicles from Plasma or Ascites Fluid Using DotScan Antibody Microarrays. Methods Mol Biol 2017; 1619:263-301. [PMID: 28674892 DOI: 10.1007/978-1-4939-7057-5_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DotScan antibody microarrays were initially developed for the extensive surface profiling of live leukemia and lymphoma cells. DotScan's diagnostic capability was validated with an extensive clinical trial using mononuclear cells from the blood or bone marrow of leukemia or lymphoma patients. DotScan has also been used for the profiling of surface proteins on peripheral blood mononuclear cells (PBMC) from patients with HIV, liver disease, and stable and progressive B-cell chronic lymphocytic leukemia (CLL). Fluorescence multiplexing allowed the simultaneous profiling of cancer cells and leukocytes from disaggregated colorectal and melanoma tumor biopsies after capture on DotScan. In this chapter, we have used DotScan for the surface profiling of extracellular vesicles (EV) recovered from conditioned growth medium of cancer cell lines and the blood of patients with CLL. The detection of captured EV was performed by enhanced chemiluminescence (ECL) using biotinylated antibodies that recognized antigens expressed on the surface of the EV subset of interest. DotScan was also used to profile EV from the blood of healthy individuals and the ascites fluid of ovarian cancer patients. DotScan binding patterns of EV from human plasma and other body fluids may yield diagnostic or prognostic signatures for monitoring the incidence, treatment, and progression of cancers.
Collapse
Affiliation(s)
- Larissa Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Susannah Hallal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kieran Matic
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jerry Zhou
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sandra Wissmueller
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, 3350, Australia
- Federation University, Ballarat, VIC, 3355, Australia
| | - Sumaiya Tanjil
- Department of Obstetrics & Gynaecology, Women's Cancer Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Stephen P Mulligan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - O Giles Best
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | |
Collapse
|
20
|
Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays. MICROARRAYS 2016; 5:microarrays5020016. [PMID: 27600082 PMCID: PMC5003492 DOI: 10.3390/microarrays5020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/17/2022]
Abstract
Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts.
Collapse
|
21
|
Belov L, Matic KJ, Hallal S, Best OG, Mulligan SP, Christopherson RI. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles 2016; 5:25355. [PMID: 27086589 PMCID: PMC4834364 DOI: 10.3402/jev.v5.25355] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) are membranous particles (30–1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer) and MEC1 (B-cell chronic lymphocytic leukaemia; CLL), were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326) and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19+ EV from the plasma of CLL patients. These EV expressed a subset (~40%) of the proteins detected on CLL cells from the same patients: moderate or high levels of CD5, CD19, CD31, CD44, CD55, CD62L, CD82, HLA-A,B,C, HLA-DR; low levels of CD21, CD49c, CD63. None of these proteins was detected on EV from the plasma of age- and gender-matched healthy individuals.
Collapse
Affiliation(s)
- Larissa Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia;
| | - Kieran J Matic
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Susannah Hallal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - O Giles Best
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stephen P Mulligan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | |
Collapse
|
22
|
Laopajon W, Takheaw N, Kasinrerk W, Pata S. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis. J Immunoassay Immunochem 2016; 37:527-39. [PMID: 27019400 DOI: 10.1080/15321819.2016.1171780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.
Collapse
Affiliation(s)
- Witida Laopajon
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Nuchjira Takheaw
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Watchara Kasinrerk
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| | - Supansa Pata
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
23
|
Chang CW, Huang CS. Photonic crystal micropost as a microarray platform. OPTICS EXPRESS 2016; 24:2954-2964. [PMID: 26906862 DOI: 10.1364/oe.24.002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study demonstrates a photonic crystal micropost (PCMP) substrate for microarray applications. The substrate comprises an array of circular MPs with a PC on top of these MPs. This substrate enables biomolecule-containing droplets to form a composite contact upon deposition, thus allowing biomolecules to be attached on only the MPs, forming spots. When the device (PC) is excited on resonance, the electric field intensity is enhanced on only the top surface of the MPs. This enables the fluorescence intensities to be enhanced up to 5.50x; principally, this enhancement does not engender an increase in the background (intensity outside MP or spots) and noise intensities. The PCMP substrate enhances the spot intensity and minimizes the background intensity, enabling the detection of lower concentration analytes.
Collapse
|
24
|
Shi L, Gehin T, Chevolot Y, Souteyrand E, Mangé A, Solassol J, Laurenceau E. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray. Anal Bioanal Chem 2015; 408:1497-506. [DOI: 10.1007/s00216-015-9257-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
25
|
Jeong Y, Lee KH, Park H, Choi J. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate. Int J Nanomedicine 2015; 10:7197-205. [PMID: 26648723 PMCID: PMC4664541 DOI: 10.2147/ijn.s92596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG) targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ) captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Kwan Hong Lee
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Jonghoon Choi
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| |
Collapse
|
26
|
Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, Stewart J, Staerkel G. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol 2015; 124:254-60. [PMID: 26630358 DOI: 10.1002/cncy.21664] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cytology smears and cytospin preparations are increasingly being used for molecular testing. With these limited samples, optimizing tissue extraction to maximize the DNA yield is, therefore, critical. This study examined 2 common methods of tissue extraction and compared DNA yields from different types of glass slides. METHODS The H226 lung cancer cell line and 5 clinical samples of cellular effusions were used to prepare Diff-Quik-stained cytospins on 4 types of glass slides: fully frosted (FF), nonfrosted (NF), positively charged (PC), and silane-coated (SC). Tissue extraction was performed by either scalpel-blade scraping or cell lifting with the Pinpoint Slide DNA Isolation System (Zymo Research). DNA was extracted with the QIAamp DNA Mini Kit (Qiagen) and was quantified with the Quant-iT PicoGreen Kit (Life Technologies). RESULTS The DNA yield in cell-line cytospins was significantly lower from FF slides versus NF, PC, and SC slides with both scraping and cell-lifting methods. In addition, scraping yielded significantly more DNA than cell lifting (P = .005). DNA yields from 5 clinical effusion cases with FF and NF slides showed results similar to the results for cell-line samples, with scraping consistently yielding more DNA than cell lifting and with NF slides outperforming FF slides. CONCLUSIONS Optimizing the DNA yield extracted from cytology specimens maximizes the chances of successful molecular testing and is critical in cases of low or marginal cellularity. This study demonstrates the following: 1) scraping yields more DNA than cell lifting, and 2) NF slides yield more DNA than FF slides.
Collapse
Affiliation(s)
- Sinchita Roy-Chowdhuri
- Cytopathology Section, Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary K Kane
- Cytopathology Section, Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yao
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Savitri Krishnamurthy
- Cytopathology Section, Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Stewart
- Cytopathology Section, Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregg Staerkel
- Cytopathology Section, Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Seymour E, Daaboul GG, Zhang X, Scherr SM, Ünlü NL, Connor JH, Ünlü MS. DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens. Anal Chem 2015; 87:10505-12. [DOI: 10.1021/acs.analchem.5b02702] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elif Seymour
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - George G. Daaboul
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Xirui Zhang
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Steven M. Scherr
- Department
of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Nese Lortlar Ünlü
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- School
of Medicine, Bahcesehir University, Istanbul 34730, Turkey
| | - John H. Connor
- Department
of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02218, United States
| | - M. Selim Ünlü
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Tan Y, Halsey JF, Tang T, Wetering SV, Taine E, Cleve MV, Cunningham BT. Application of photonic crystal enhanced fluorescence to detection of low serum concentrations of human IgE antibodies specific for a purified cat allergen (Fel D1). Biosens Bioelectron 2015; 77:194-201. [PMID: 26406461 DOI: 10.1016/j.bios.2015.08.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 08/31/2015] [Indexed: 01/21/2023]
Abstract
We demonstrate the detection of low concentrations of allergen-specific Immunoglobulin E (IgE) in human sera using a Photonic Crystal Enhanced Fluorescence (PCEF) microarray platform. The Photonic Crystal (PC) surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cy5, was used to amplify the fluorescence signal intensity measured from a multiplexed allergen microarray. Surface-based sandwich immunoassays were used to detect and quantify specific IgE antibodies against a highly purified cat allergen (Fel d1). A comparison of the lowest detectable concentration of IgE measured by the PC microarray system and a commercially available clinical analyzer demonstrated that the PCEF microarray system provides higher sensitivity. The PCEF system was able to detect low concentrations of specific IgE (~0.02 kU/L), which is 5-17-fold more sensitive than the commercially available FDA-approved analyzers. In preliminary experiments using multi-allergen arrays, we demonstrate selective simultaneous detection of IgE antibodies to multiple allergens.
Collapse
Affiliation(s)
- Yafang Tan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, United states
| | - John F Halsey
- Exalt Diagnostics, Urbana-Champaign, IL, United States
| | - Tiantian Tang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, United states
| | | | - Elaine Taine
- Hycor Biomedical, Indianapolis, IN, United States
| | | | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, United states; Department of Bioengineering, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
29
|
Pata S, Khummuang S, Pornprasert S, Tatu T, Kasinrerk W. A simple and highly sensitive ELISA for screening of the α-thalassemia-1 Southeast Asian-type deletion. J Immunoassay Immunochem 2014; 35:194-206. [PMID: 24295182 DOI: 10.1080/15321819.2013.838963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Couples in which both partners carry the α-thalassemia-1 trait have a 25% risk of hemoglobin Bart's hydrops fetalis in each pregnancy. Identification of α-thalassemia-1 trait is, therefore, necessary in order to control this severe form of α-thalassemia. We have generated monoclonal antibodies specific to the ζ-globin chain without cross reaction with other globin chains. A simple and sensitive ELISA was developed by using poly-l-lysine to increase the protein binding to the ELISA plate. The developed poly-l-lysine pre-coated ELISA has a very high sensitivity (100%) and specificity (97%) for detection of carriers of α-thalassemia-1 with Southeast Asian-type deletion.
Collapse
Affiliation(s)
- Supansa Pata
- a Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University , Chiang Mai , Thailand
| | | | | | | | | |
Collapse
|
30
|
Hospach I, Joseph Y, Mai MK, Krasteva N, Nelles G. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection. MICROARRAYS 2014; 3:282-301. [PMID: 27600349 PMCID: PMC4979058 DOI: 10.3390/microarrays3040282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/15/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established.
Collapse
Affiliation(s)
- Ingeborg Hospach
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Strasse 3, 09599 Freiberg, Germany.
| | - Michaela Kathrin Mai
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Nadejda Krasteva
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Deutschland GmbH, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.
| |
Collapse
|
31
|
Akbani R, Becker KF, Carragher N, Goldstein T, de Koning L, Korf U, Liotta L, Mills GB, Nishizuka SS, Pawlak M, Petricoin EF, Pollard HB, Serrels B, Zhu J. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society. Mol Cell Proteomics 2014; 13:1625-43. [PMID: 24777629 DOI: 10.1074/mcp.o113.034918] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology.
Collapse
Affiliation(s)
- Rehan Akbani
- From the *University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Neil Carragher
- §Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ted Goldstein
- ¶Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California
| | | | - Ulrike Korf
- **German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Gordon B Mills
- From the *University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Michael Pawlak
- §§§The Natural and Medical Sciences Institute, Reutlingen, Germany
| | | | - Harvey B Pollard
- ¶¶Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Bryan Serrels
- §Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jingchun Zhu
- ¶Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California
| |
Collapse
|
32
|
González-González M, Bartolome R, Jara-Acevedo R, Casado-Vela J, Dasilva N, Matarraz S, García J, Alcazar JA, Sayagues JM, Orfao A, Fuentes M. Evaluation of homo- and hetero-functionally activated glass surfaces for optimized antibody arrays. Anal Biochem 2014; 450:37-45. [PMID: 24440232 DOI: 10.1016/j.ab.2014.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/07/2014] [Indexed: 11/17/2022]
Abstract
Antibody arrays hold great promise for biomedical applications, but they are typically manufactured using chemically functionalized surfaces that still require optimization. Here, we describe novel hetero-functionally activated glass surfaces favoring oriented antibody binding for improved performance in protein microarray applications. Antibody arrays manufactured in our facility using the functionalization chemistries described here proved to be reproducible and stable and also showed good signal intensities. As a proof-of-principle of the glass surface functionalization protocols described in this article, we built antibody-based arrays functionalized with different chemistries that enabled the simultaneous detection of 71 human leukocyte membrane differentiation antigens commonly found in peripheral blood mononuclear cells. Such detection is specific and semi-quantitative and can be performed in a single assay under native conditions. In summary, the protocol described here, based on the use of antibody array technology, enabled the concurrent detection of a set of membrane proteins under native conditions in a specific, selective, and semi-quantitative manner and in a single assay.
Collapse
Affiliation(s)
- María González-González
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain
| | - Raquel Bartolome
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain
| | | | - Juan Casado-Vela
- Spanish National Research Council (CSIC)-Spanish National Biotechnology Centre (CNB), 28049 Madrid, Spain
| | - Noelia Dasilva
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Matarraz
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain
| | - Jacinto García
- Servicio de Cirugía, Hospital Clínico Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain
| | - J A Alcazar
- Servicio de Cirugía, Hospital Clínico Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain
| | - J M Sayagues
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC)-IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
33
|
Pai A, Khachaturian A, Chapman S, Hu A, Wang H, Hajimiri A. A handheld magnetic sensing platform for antigen and nucleic acid detection. Analyst 2014; 139:1403-11. [DOI: 10.1039/c3an01947k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portable magnetic-based biosensing platform is introduced for antigen and nucleic acid detection utilizing the “magnetic freezing” technique.
Collapse
Affiliation(s)
- Alex Pai
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
| | - Aroutin Khachaturian
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
| | - Stephen Chapman
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
| | - Alexander Hu
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
| | - Hua Wang
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
- Department of Electrical and Computer Engineering
- Georgia Institute of Technology
| | - Ali Hajimiri
- Department of Electrical Engineering
- California Institute of Technology
- Pasadena, USA
| |
Collapse
|
34
|
Ho MY, Goodchild SA, Estrela P, Chu D, Migliorato P. Switching of electrochemical characteristics of redox protein upon specific biomolecular interactions. Analyst 2014; 139:6118-21. [DOI: 10.1039/c4an01591f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Label-free protein sensing platform based on a simplified and standardized immobilization process with Azurin redox self-assembled monolayer is fabricated. A significant change in the electrochemical characteristics of the assay upon specific interaction with target molecules is observed.
Collapse
Affiliation(s)
- Man Yi Ho
- Electrical Engineering Division
- Engineering Department
- University of Cambridge
- Cambridge CB3 0FA, UK
| | | | - Pedro Estrela
- Electrical Engineering Division
- Engineering Department
- University of Cambridge
- Cambridge CB3 0FA, UK
- Department of Electronic & Electrical Engineering
| | - Daping Chu
- Electrical Engineering Division
- Engineering Department
- University of Cambridge
- Cambridge CB3 0FA, UK
| | - Piero Migliorato
- Electrical Engineering Division
- Engineering Department
- University of Cambridge
- Cambridge CB3 0FA, UK
- Advanced Display Research Center and Department of Information Display
| |
Collapse
|
35
|
Tanaka M, Yoshioka K, Hirata Y, Fujimaki M, Kuwahara M, Niwa O. Design and fabrication of biosensing interface for waveguide-mode sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13111-13120. [PMID: 24063697 DOI: 10.1021/la402802u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to develop a biosensing system with waveguide-mode sensor, fabrication of a biosensing interface on the silica surface of the sensing chip was carried out using triethoxysilane derivatives with anti-leptin antibody. Triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties were synthesized to immobilize the antibody and to suppress nonspecific adsorption of proteins, respectively. The chip modified with triethoxysilane derivatives bearing oligoethylene glycol moiety suppressed nonspecific adsorption of proteins derived from human serum effectively by rinse with PBS containing surfactant (0.05% Tween 20). On the other hand, it was confirmed that antibody was immobilized on the chip by immersion into antibody solution to show response of antigen-antibody reaction, where the chip was modified with triethoxysilane derivatives bearing succinimide ester moiety. When the interface was fabricated with antibody and a mixture of triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties, the response of antigen-antibody reaction depended on composition of the mixture and enhanced with the increase of ratio for triethoxysilane derivatives bearing succinimide ester moiety reflecting the antibody concentration immobilized on the chip. While introduction of excess triethoxysilane derivatives bearing succinimide ester moiety induced nonspecific adsorption of proteins derived from human serum, the immobilized antibody on the chip kept its activity after 1-month storage in a refrigerator. Taking into consideration those factors, the biosensing interface was fabricated using triethoxysilane derivatives with anti-leptin antibody to examine performance of the waveguide-mode sensor. It was found that the detection limits for human leptin were 50 ng/mL in PBS and 100 ng/mL in human serum. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has potential to detect several tens of nanograms per milliliter of biomarkers in human serum with an unlabeled detection method.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Biomedical Research Institute , Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, Rösch P, Weber K, Popp J. Isolation and enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. Chemphyschem 2013; 14:3600-5. [PMID: 23943577 DOI: 10.1002/cphc.201300543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/07/2013] [Indexed: 11/09/2022]
Abstract
We developed a Raman-compatible chip for isolating microorganisms from complex media. The isolation of bacteria is achieved by using antibodies as capture molecules. Due to the very specific interaction with the targets, this approach is promising for isolation of bacteria even from complex matrices such as body fluids. Our choice of capture molecules also enabled the investigation of samples containing yet unidentified bacteria, as the antibodies can capture a large variety of bacteria based on their analogue cell wall surface structures. The capability of our system is demonstrated for a broad range of different Gram-positive and Gram-negative germs. Subsequent identification is done by recording Raman spectra of the bacteria. Further, it is shown that classification with chemometric methods is possible.
Collapse
Affiliation(s)
- Susanne Pahlow
- Spectroscopy and Imaging, Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany), Fax: (+49) (0)3641 206 399; Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
DeAngelis PL, Liu J, Linhardt RJ. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 2013; 23:764-77. [PMID: 23481097 PMCID: PMC3671772 DOI: 10.1093/glycob/cwt016] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g. uridine 5'-diphosphosphate-sugar donors, sulfate donors, acceptors and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology, Oklahoma City, OK 73126, USA.
| | | | | |
Collapse
|
38
|
Yang Z, Chevolot Y, Géhin T, Dugas V, Xanthopoulos N, Laporte V, Delair T, Ataman-Önal Y, Choquet-Kastylevsky G, Souteyrand E, Laurenceau E. Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1498-1509. [PMID: 23305497 DOI: 10.1021/la3041055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Antibody microarrays are powerful and high-throughput tools for screening and identifying tumor markers from small sample volumes of only a few microliters. Optimization of surface chemistry and spotting conditions are crucial parameters to enhance antibodies' immobilization efficiency and to maintain their biological activity. Here, we report the implementation of an antibody microarray for the detection of tumor markers involved in colorectal cancer. Three-dimensional microstructured glass slides were functionalized with three different aminated molecules ((3-aminopropyl)dimethylethoxysilane (APDMES), Jeffamine, and chitosan) varying in their chain length, their amine density, and their hydrophilic/hydrophobic balance. The physicochemical properties of the resulting surfaces were characterized. Antibody immobilization efficiency through physical interaction was studied as a function of surface properties as well as a function of the immobilization conditions. The results show that surface energy, steric hindrance, and pH of spotting buffer have great effects on protein immobilization. Under optimal conditions, biological activities of four immobilized antitumor marker antibodies were evaluated in multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated that the chitosan functionalized surface displayed the highest binding capacity and allowed to retain maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully demonstrated the application of amino-based surface modification for antibody microarrays to efficiently detect tumor markers.
Collapse
Affiliation(s)
- Zhugen Yang
- Université de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brault ND, White AD, Taylor AD, Yu Q, Jiang S. Directly functionalizable surface platform for protein arrays in undiluted human blood plasma. Anal Chem 2013; 85:1447-53. [PMID: 23298516 DOI: 10.1021/ac303462u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein arrays are a high-throughput approach for proteomic profiling, vital for achieving a greater understanding of biological systems, in addition to disease diagnostics and monitoring therapeutic treatments. In this work, zwitterionic carboxybetaine polymer (pCB) coated substrates were investigated as an array surface platform to enable convenient amino-coupling chemistry on a single directly functionalizable and unblocked film for the sensitive detection of target analytes from undiluted human blood plasma. Using a surface plasmon resonance (SPR) imaging sensor, the antibody immobilization conditions which provided excellent spot morphology and the largest antigen response were determined. It was found that pCB functionalization and the corresponding antigen detection both increased with pH and antibody concentration. Additionally, immobilization only required an aqueous buffer without the need for additives to improve spot quality. The nonspecific protein adsorption to undiluted human plasma on both the antibody immobilized pCB spots and the background were found to be about 9 and 6 ng/cm(2), respectively. A subsequent array consisting of three antibodies spotted onto pCB revealed little cross-reactivity for antigens spiked into the undiluted plasma. The low postfunctionalized nonfouling properties combined with antibody amplification showed similar sensitivities achievable with conventional spectroscopic SPR sensors and the same pCB films, but now with high-throughput capabilities. This represents the first demonstration of low fouling properties following antibody functionalization on protein arrays from undiluted human plasma and indicates the great potential of the pCB platform for high-throughput protein analysis.
Collapse
Affiliation(s)
- Norman D Brault
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | |
Collapse
|
40
|
Price AD, Huber DL. Controlled polymer monolayer synthesis by radical transfer to surface immobilized transfer agents. Polym Chem 2013. [DOI: 10.1039/c2py20955a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Guo SL, Chen PC, Chen MS, Cheng YC, Lin JM, Lee HC, Chen CS. A fast universal immobilization of immunoglobulin G at 4 °C for the development of array-based immunoassays. PLoS One 2012; 7:e51370. [PMID: 23236488 PMCID: PMC3517563 DOI: 10.1371/journal.pone.0051370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/07/2012] [Indexed: 11/19/2022] Open
Abstract
To maintain the antibody activity and enhance performance of array-based immunoassays, protein G was used to allow a shorter duration of immunoglobulin G immobilization at 4 °C, with the antibody placed in the appropriate orientation. The multiplexed detection of six pain-related message molecules (PRMMs) was used as examples for the development of array-based immunoassays: substance P, calcitonin gene-related peptide, nerve growth factor, brain-derived neurotrophic factor, tumor necrosis factor-α, and β-endorphin. Protein G- and non-protein G-coated slides were tested. Compared to non-protein G immunoassays, protein G shortened the antibody immobilization time at 4 °C from overnight to 2 hours. Only protein G-facilitated immunoassays succeeded in simultaneously detecting all six PRMMs with high specificity. Dose-response curves showed that the limits of detection of the protein G-multiplexed immunoassays for the PRMMs was approximately 164, 167, 120, 60, 80, and 92 pg/ml, respectively. Thus, protein G effectively shortens the duration of antibody immobilization at 4 °C, allowing the use of sensitive array-based immunoassays for the simultaneous detection of PRMMs.
Collapse
Affiliation(s)
- Shu-Lin Guo
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Po-Chung Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Ming-Shuo Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Yu-Che Cheng
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
- Institute of Biomedical Engineering, National Central University, Jhongli, Taiwan
| | - Jun-Mu Lin
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Hoong-Chien Lee
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- * E-mail: (HL); (CC)
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- * E-mail: (HL); (CC)
| |
Collapse
|
42
|
Harmsen MM, Fijten HPD. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides. J Immunoassay Immunochem 2012; 33:234-51. [PMID: 22738648 DOI: 10.1080/15321819.2011.634473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to polystyrene, which, however, resulted in inefficient antigen binding. Functional VHH immobilization was improved by VHH fusion to a consecutive myc-His6-tag and was even more improved by fusion to the llama antibody long hinge region containing an additional His6-tag (LHc-His6). The partial dimerization of VHH-LHc-His6 fusion proteins through LHc-mediated disulfide-bond formation was not essential for their improved functional immobilization. VHH fusions to specific polystyrene binding peptides, hydrophobins, or other, unrelated VHH domains were less suitable for increasing functional VHH immobilization because of reduced microbial expression levels. Thus, VHH-LHc-His6 fusion proteins are most suited for functional passive adsorption in ELISA.
Collapse
Affiliation(s)
- Michiel M Harmsen
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | |
Collapse
|
43
|
Yanagisawa N, Dutta D. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration. Anal Chem 2012; 84:7029-36. [PMID: 22861072 DOI: 10.1021/ac3011632] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 μL versus 100 μL).
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
44
|
Jin H, Zangar RC. High-throughput, multiplexed analysis of 3-nitrotyrosine in individual proteins. ACTA ACUST UNITED AC 2012; Chapter 17:Unit 17.15. [PMID: 22511115 DOI: 10.1002/0471140856.tx1715s51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are derived as a result of inflammation and oxidative stress and can result in protein modifications. As such, these protein modifications are used as biomarkers for inflammation and oxidative stress. In addition, modifications in single-tissue-associated proteins released into blood can provide insight into the tissue localization of the inflammation or oxidative stress. We have developed an enzyme-linked immunosorbent assay antibody microarray platform to analyze the levels of 3-nitrotyrosine in specific proteins in a variety of biological samples, including human plasma and sputum. Selective-capture antibodies are used to immunoprecipitate individual proteins from samples onto isolated spots on the microarray chips. Then, a monoclonal antibody for 3-nitrotyrosine is used to detect the amount of 3-nitrotyrosine on each spot. Our studies suggest that this approach can be used to detect trace amounts of 3-nitrotyrosine in human plasma and sputum. In this paper, we describe our antibody microarray protocol for detecting 3-nitrotyrosine in specific proteins.
Collapse
Affiliation(s)
- Hongjun Jin
- Fundamental & Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | |
Collapse
|
45
|
Cunningham BT, Zangar RC. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection. JOURNAL OF BIOPHOTONICS 2012; 5:617-28. [PMID: 22736539 PMCID: PMC3844005 DOI: 10.1002/jbio.201200037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 05/05/2023]
Abstract
Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features.
Collapse
Affiliation(s)
- Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering University of Illinois at Urbana-Champaign, USA.
| | | |
Collapse
|
46
|
Nguyen AT, Baggerman J, Paulusse JMJ, Zuilhof H, van Rijn CJM. Bioconjugation of protein-repellent zwitterionic polymer brushes grafted from silicon nitride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:604-610. [PMID: 22059984 DOI: 10.1021/la2031363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from α-bromo isobutyryl initiator-functionalized silicon nitride (Si(x)N(4), x ≥ 3) surfaces via controlled atom-transfer radical polymerization (ATRP). A trifunctional tris(2-aminoethyl)amine linker was reacted with the terminal alkylbromide of polySBMA chains. N-Hydroxysuccinimide (NHS) functionalization was achieved by reacting the resultant amine-terminated polySBMA brush with bifunctional suberic acid bis(N-hydroxysuccinimide ester). Anti-Salmonella antibodies were subsequently immobilized onto polySBMA-grafted Si(x)N(4) surfaces through these NHS linkers. The protein-repellent properties of the polySBMA-grafted surface after antibody attachment were evaluated by exposing the surfaces to Alexa Fluor 488-labeled fibrinogen (FIB) solution (0.1 g·L(-1)) for 1 h at room temperature. Confocal laser scanning microscopy (CLSM) images revealed the minimal adsorption of FIB onto the antibody-coated polySBMA in comparison with that of antibody-coated epoxide monolayers and also bare Si(x)N(4) surfaces. Subsequently, the interaction of antibodies immobilized onto polySBMA with SYTO9-stained Salmonella solution without using blocking solution was examined by CLSM. The fluorescent images showed that antibody-coated polySBMA efficiently captured Salmonella with only low background noise as compared to antibody-coated monolayers lacking the polymer brush. Finally, the antibody-coated polySBMA surfaces were exposed to a mixture of Alexa Fluor 647-labeled FIB and Salmonella without the prior use of a blocking solution to evaluate the ability of the surfaces to capture bacteria while simultaneously repelling proteins. The fluorescent images showed the capture of Salmonella with no adsorption of FIB as compared to antibody-coated epoxide surfaces, demonstrating the potential of the zwitterionic layer in preventing the nonspecific adsorption of the proteins during the detection of bacteria in complex matrices.
Collapse
Affiliation(s)
- Ai T Nguyen
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Kim ES, Shim CK, Lee JW, Park JW, Choi KY. Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay. Analyst 2012; 137:2421-30. [DOI: 10.1039/c2an16137k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Gold L, Walker JJ, Wilcox SK, Williams S. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol 2011; 29:543-9. [PMID: 22155539 DOI: 10.1016/j.nbt.2011.11.016] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
In 1997, while still working at NeXstar Pharmaceuticals, several of us made a proteomic bet. We thought then, and continue to think, that proteomics offers a chance to identify disease-specific biomarkers and improve healthcare. However, interrogating proteins turned out to be a much harder problem than interrogating nucleic acids. Consequently, the 'omics' revolution has been fueled largely by genomics. High-scale proteomics promises to transform medicine with personalized diagnostics, prevention, and treatment. We have now reached into the human proteome to quantify more than 1000 proteins in any human matrix - serum, plasma, CSF, BAL, and also tissue extracts - with our new SOMAmer-based proteomics platform. The surprising and pleasant news is that we have made unbiased protein biomarker discovery a routine and fast exercise. The downstream implications of the platform are substantial.
Collapse
Affiliation(s)
- Larry Gold
- SomaLogic, 2945 Wilderness Place, Boulder, CO 80301, USA
| | | | | | | |
Collapse
|
49
|
Luo W, Pla-Roca M, Juncker D. Taguchi Design-Based Optimization of Sandwich Immunoassay Microarrays for Detecting Breast Cancer Biomarkers. Anal Chem 2011; 83:5767-74. [DOI: 10.1021/ac103239f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Luo
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Drive, Montreal, Quebec, Canada H3A 1A4
| | - Mateu Pla-Roca
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Drive, Montreal, Quebec, Canada H3A 1A4
| | - David Juncker
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Drive, Montreal, Quebec, Canada H3A 1A4
| |
Collapse
|
50
|
Irvine EJ, Hernandez-Santana A, Faulds K, Graham D. Fabricating protein immunoassay arrays on nitrocellulose using dip-pen lithography techniques. Analyst 2011; 136:2925-30. [PMID: 21647488 DOI: 10.1039/c1an15178a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advancements in lithography methods for printing biomolecules on surfaces are proving to be potentially beneficial for disease screening and biological research. Dip-pen nanolithography (DPN) is a versatile micro and nanofabrication technique that has the ability to produce functional biomolecule arrays. The greatest advantage, with respect to the printing mechanism, is that DPN adheres to the sensitive mild conditions required for biomolecules such as proteins. We have developed an optimised, high-throughput printing technique for fabricating protein arrays using DPN. This study highlights the fabrication of a prostate specific antigen (PSA) immunoassay detectable by fluorescence. Spot sizes are typically no larger than 8 μm in diameter and limits of detection for PSA are comparable with a commercially available ELISA kit. Furthermore, atomic force microscopy (AFM) analysis of the array surface gives great insight into how the nitrocellulose substrate functions to retain protein integrity. This is the first report of protein arrays being printed on nitrocellulose using the DPN technique and the smallest feature size yet to be achieved on this type of surface. This method offers a significant advance in the ability to produce dense protein arrays on nitrocellulose which are suitable for disease screening using standard fluorescence detection.
Collapse
Affiliation(s)
- Eleanore Jane Irvine
- Centre for Nanometrology, Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, UK
| | | | | | | |
Collapse
|