1
|
Almena Rodriguez L, Kallert E, Husmann JÅ, Schaubruch K, Meisel KIS, Schwickert M, Hoba SN, Heermann R, Kersten C. Electrostatic Anchoring in RNA-Ligand Design─Dissecting the Effects of Positive Charges on Affinity, Selectivity, Binding Kinetics, and Thermodynamics. J Med Chem 2025; 68:8659-8678. [PMID: 40191889 PMCID: PMC12035807 DOI: 10.1021/acs.jmedchem.5c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Targeting RNA with small molecules is an emerging field in medicinal chemistry. However, highly potent ligands are often challenging to achieve. One intuitive strategy to enhance ligand's potency is the implementation of positively charged moieties to interact with the negatively charged RNA phosphate backbone. We investigated the effect of such "electrostatic anchors" on binding affinity, kinetics, thermodynamics, and selectivity by MST, SPR, and ITC experiments, respectively, with the Ba SAM-VI riboswitch and the Tte preQ1 riboswitch aptamer model systems. RNA-ligand interactions were dominated by enthalpy, and electrostatic anchors had moderate effects on binding affinity driven by faster association rates for higher charged ligands. Despite the observations of loose binding interactions in SPR experiments with multibasic ligands, selectivity over structurally unrelated RNA off-targets was maintained. Therefore, the addition of positively charged moieties is no universal RNA-ligand design principle, but a purposefully implemented ionic RNA-ligand interaction can enhance potency without impairing selectivity.
Collapse
Affiliation(s)
- Laura Almena Rodriguez
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Elisabeth Kallert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Jan-Åke Husmann
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Kirsten Schaubruch
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Katherina I. S. Meisel
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Sabrina N. Hoba
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Ralf Heermann
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Christian Kersten
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute
for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch
Weg 15, 55128 Mainz, Germany
| |
Collapse
|
2
|
Morey TM, Benatar T, Xu SX, Wang L, Ip P, Nitya-Nootan T, Thakor G, Bader AG, Helsen CW, Houry WA. Tuning TCR complex recruitment to the T cell antigen coupler (TAC) enhances TAC-T cell function. Sci Rep 2025; 15:6769. [PMID: 40000726 PMCID: PMC11861912 DOI: 10.1038/s41598-025-87944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The T cell antigen coupler (TAC) receptor is a novel synthetic receptor designed to maximize the therapeutic potential of T cells in the absence of tonic signaling or receptor-related toxicities. Prior studies indicated that TACs provide safe and long-lasting anti-tumor immunity in multiple preclinical models of solid tumors supported by mounting clinical evidence. TAC receptors function by targeting a cancer associated surface antigen while recapitulating natural T cell receptor (TCR) signaling, which involves both TCR/CD3 recruitment and intracellular CD4 co-receptor activity. While other receptor designs exist that redirect TCR signaling towards cancer associated antigens, the TAC technology is unique in that antigen binding is distinctly separated from TCR/CD3 complex recruitment. In the present study, we show that single amino-acid changes in the TAC domain responsible for TCR recruitment of a Claudin 18.2-directed TAC receptor led to enhanced in vivo functionality. Analyzing biophysical properties of the receptor suggests that TAC receptors with high TCR affinities are suboptimal compared to receptor constructs that show lower TCR affinities with notably fast off-rates. This work demonstrates that balancing TCR recruitment is critical when designing effective TAC T cell receptors, a concept that may apply more broadly to other therapeutic approaches relying on TCR signaling.
Collapse
Affiliation(s)
- Trevor M Morey
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada
| | - Tania Benatar
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Stacey X Xu
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Ling Wang
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Philbert Ip
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | | | - Gargi Thakor
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Andreas G Bader
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Christopher W Helsen
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada.
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
3
|
McCann B, Tipper B, Shahbeigi S, Soleimani M, Jabbari M, Nasr Esfahani M. A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities. ACS OMEGA 2025; 10:4197-4216. [PMID: 39959045 PMCID: PMC11822510 DOI: 10.1021/acsomega.4c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
There are challenges associated with design and development of affinity biosensors due to the complicated multiphysics nature of the system. Understanding the binding interaction between target molecules and immobilized receptors and its kinetics is a crucial step to develop robust and reliable biosensor technologies. Evaluation of binding kinetics in biosensors becomes more important and challenging for clinical samples with a complex matrix. Despite drastic advancements in biosensor technologies, having a practical perception of the binding kinetics has remained a critical bottleneck due to limited fundamental understanding. This Review aims to provide a comprehensive discussion on concepts and advances developed so far for the perception of binding kinetics in affinity biosensors. Here, modeling approaches and measurement techniques are presented to characterize the binding interactions in biosensor technologies, while the effect of fouling and secondary factors in the binding interactions will be discussed in the concept of kinetics. This Review will investigate the existing research gaps and potential opportunities in the perception of binding kinetics and challenges to develop robust and reliable biosensors.
Collapse
Affiliation(s)
- Benjamin McCann
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | - Brandon Tipper
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | | | | | - Masoud Jabbari
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
4
|
Lin C, Wang Y, Peng T, Liu P, Liang Y, Kang W, Yu X, Song Y, Shentu X. Absolute quantification of Neuron-specific enolase based on surface plasmon resonance. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 30:100205. [PMID: 39701270 DOI: 10.1016/j.slasd.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Neuron-specific enolase (NSE) is currently the most reliable biomarker for small cell lung cancer (SCLC), which is important for disease monitoring, clinical evaluation and diagnosis. However, traditional methods suffer from various disadvantages, including instability, complexity, time-consuming operations, and the necessity for standards. In this study, we developed a calibration-free concentration analysis (CFCA) method based on surface plasmon resonance (SPR) technology, to accurately quantify the active concentration of NSE without relying on any standards. Based on the principle of CFCA, the active concentration of NSE can be calculated by observing binding rate variations at two flow rates under partial mass transport limitation and combining it with the known diffusion coefficient of the NSE. Using the method of CFCA, the active concentration of NSE was determined was only 0.48 mg/mL with an intra-day repeatability of 4.75%. The method has the advantages of simplicity, rapidity, realistic analysis and ease of implementation of high-throughput automated detection. Therefore, the method is expected to become the main measurement method for protein active concentration, which will be beneficial for the development of active protein standards.
Collapse
Affiliation(s)
- Cui Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Yijie Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Tao Peng
- Center for Advanced Measurement Science, Technology Innovation Center of Mass Spectrometry for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Pengpeng Liu
- Zhejiang Fangyuan Test Group Co., Ltd, Hangzhou, 310018, China; Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Hangzhou, 310018, China
| | - Yuanyuan Liang
- Zhejiang Fangyuan Test Group Co., Ltd, Hangzhou, 310018, China; Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Hangzhou, 310018, China
| | - Wencheng Kang
- Inner Mongolia Autonomous Region Institute of Metrology and Testing, Inner Mongolia Autonomous Region, 010050, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Chen Y, Zhang H, Li R, Fan H, Huang J, Zhou R, Yin S, Liu GL, Huang L. Novel Multifunctional Meta-Surface Plasmon Resonance Chip Microplate for High-Throughput Molecular Screening. Adv Healthc Mater 2024; 13:e2401097. [PMID: 38800937 DOI: 10.1002/adhm.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The utilization of surface plasmon resonance (SPR) sensors for real-time label-free molecular interaction analysis is already being employed in the fields of in vitro diagnostics and biomedicine. However, the widespread application of SPR technology is hindered by its limited detection throughput and high cost. To address this issue, this study introduces a novel multifunctional MetaSPR high-throughput microplate biosensor featuring 3D nanocups array structure, aiming to achieve high-throughput screening with a reduced cost and enhanced speed. Different types of MetaSPR sensors and analytical detection methods have been developed for accurate antibody subtype identification, epitope binding, affinity determination, antibody collocation, and quantitative detection, greatly promoting the screening and analysis of early-stage antibody drugs. The MetaSPR platform combined with nano-enhanced particles amplifies the detection signal and improves the detection sensitivity, making it more convenient, sensitive, and efficient than traditional ELISA. The findings demonstrate that the MetaSPR biosensor is a new practical technology detection platform that can improve the efficiency of biomolecular interaction studies with unlimited potential for new drug development.
Collapse
Affiliation(s)
- Youqian Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huazhi Zhang
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junjie Huang
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, 430400, China
| | - Rui Zhou
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Gang L Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan, 430070, China
| |
Collapse
|
6
|
Janezic EM, Doan A, Mai E, Bravo DD, Wang J, Kim HS, Spiess C, Bewley K, ElSohly A, Liang WC, Koerber JT, Richalet P, Vanhove M, Comps-Agrar L. A novel, label-free, pre-equilibrium assay to determine the association and dissociation rate constants of therapeutic antibodies on living cells. Br J Pharmacol 2024; 181:3836-3855. [PMID: 37783572 DOI: 10.1111/bph.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon, koff and KD) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon, koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff, but not KD, correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.
Collapse
Affiliation(s)
| | | | - Elaine Mai
- Genentech, Inc, South San Francisco, California, USA
| | | | - Jianyong Wang
- Genentech, Inc, South San Francisco, California, USA
| | - Hok Seon Kim
- Genentech, Inc, South San Francisco, California, USA
| | | | | | - Adel ElSohly
- Genentech, Inc, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chidambaram P, Sakeeba SS, Eswaramoorthy N, Bagherjeri FA, Monhemi H, Bhaskaran M, Perera GS, Sriram S. Versatile conductometric biosensors for rapid and selective detection of inflammatory and cardiac biomarkers in saliva. Biosens Bioelectron 2024; 261:116516. [PMID: 38909445 DOI: 10.1016/j.bios.2024.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Biosensors have become promising alternatives to the conventional methods in early identification of diseases. However, translation of biosensors from lab to commercial products have challenges such as complex sensor fabrications and complicated detection, and inadequate sensitivity and selectivity. Here, we introduce simple and low-cost fabricated conductometric sensors based on high resistivity silicon wafers (HR-Si) which can be adopted to functionalise with both natural and synthetic antibodies in detecting five biomarkers including interleukin-6, C reactive protein, cardiac troponin I, brain natriuretic peptide, and N terminal-probrain natriuretic peptide. All five biomarkers show selective and rapid (10 min sample incubation and <1 min of reading time) detection in both media of phosphate buffer saline and saliva with the detection limits lower than that of reported healthy levels in saliva. This work highlights the versatility of HR-Si sensors in functionalisation of both natural and synthetic antibodies in sensitive and selective biomarker detection. As these miniaturised conductometric biosensors can be easily modified with on-demand biomaterials to detect corresponding target biomarkers, they enable a new category of compact point-of-care medical devices.
Collapse
Affiliation(s)
- Preethi Chidambaram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Saleha Sarowat Sakeeba
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Nithya Eswaramoorthy
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Fateme Akhlaghi Bagherjeri
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Hassan Monhemi
- Department of Chemistry, Faculty of Science, University of Neyshabur, Iran
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath S Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
8
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
9
|
Durous L, Géraudie S, Andersen L, Schulte S, Hunnes I, Hildebrand DG, Traenkle J, Glück JM. Rapid identity testing of antibody-based hot targeted radionuclide therapies by bio-layer interferometry. J Pharm Biomed Anal 2024; 246:116227. [PMID: 38763107 DOI: 10.1016/j.jpba.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Targeted Radionuclide Therapies (TRT) involve the tailored combination of a therapeutic radionuclide and a targeting molecule, as for instance antibodies or fragments thereof. Despite their short shelf-life, these drug products must meet stringent regulatory standards before use. We introduce a novel, efficient method utilizing Bio-Layer Interferometry (BLI) for rapid identity testing of TRT drug products in less than five minutes. This approach not only reduces radioactive waste but also minimizes operator exposure to radiation. This label-free method has been successfully developed and validated for three different TRT products, ensuring compliance with Good Manufacturing Practices (GMP). Furthermore, we outline our strategic approach to the production and testing of custom biosensors for each product, firmly grounded in Quality-by-Design (QbD) principles.
Collapse
Affiliation(s)
| | | | | | - Saskia Schulte
- Analytical Development and clinical QC, Bayer AG, Wuppertal, Germany
| | | | | | | | | |
Collapse
|
10
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Chen M, Fan H, Li W, Ruan J, Yang Y, Mao C, Li R, Liu GL, Hu W. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright‐Field Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractConsidering the improved detection of biological analytes for affinity analysis is highly desirable, a metasurface plasmon resonance (Meta‐SPR)‐based imaging system, incorporating a localized SPR sensing platform with different microfluidic systems and employing simple bright‐field imaging, is established in this study. This system enables low‐level analyte concentration analysis, ranging from 100 pm to 100 nm, with the real‐time removal of nonspecific binding signals within the same device field of view. Combined with microfluidic systems and microdroplet spotting, it is possible to automatically measure the kinetic curves of a sample at ten concentration gradients or detect the specific responses of multiple samples in a single experiment simultaneously. This system can inexpensively and conveniently achieve complex detection functions, demonstrating an innovative breakthrough in sensor detection.
Collapse
Affiliation(s)
- Mingqian Chen
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Hongli Fan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wen Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Jingyan Ruan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Yihui Yang
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Cuixuan Mao
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Rui Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Gang L. Liu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wenjun Hu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| |
Collapse
|
12
|
Liang CT, Roscow O, Zhang W. Generation and Characterization of Engineered Ubiquitin Variants to Modulate the Ubiquitin Signaling Cascade. Cold Spring Harb Protoc 2024; 2024:107784. [PMID: 36997275 DOI: 10.1101/pdb.over107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The ubiquitin signaling cascade plays a crucial role in human cells. Consistent with this, malfunction of ubiquitination and deubiquitination is implicated in the initiation and progression of numerous human diseases, including cancer. Therefore, the development of potent and specific modulators of ubiquitin signal transduction has been at the forefront of drug development. In the past decade, a structure-based combinatorial protein-engineering approach has been used to generate ubiquitin variants (UbVs) as protein-based modulators of multiple components in the ubiquitin-proteasome system. Here, we review the design and generation of phage-displayed UbV libraries, including the processes of binder selection and library improvement. We also provide a comprehensive overview of the general in vitro and cellular methodologies involved in characterizing UbV binders. Finally, we describe two recent applications of UbVs for developing molecules with therapeutic potential.
Collapse
Affiliation(s)
- Chen T Liang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Olivia Roscow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Ontario M5G1M1, Canada
| |
Collapse
|
13
|
Buskermolen AD, Michielsen CMS, de Jong AM, Prins MWJ. Towards continuous monitoring of TNF-α at picomolar concentrations using biosensing by particle motion. Biosens Bioelectron 2024; 249:115934. [PMID: 38215637 DOI: 10.1016/j.bios.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
The ability to continuously monitor cytokines is desirable for fundamental research studies and healthcare applications. Cytokine release is characterized by picomolar circulating concentrations, short half-lives, and rapid peak times. Here, we describe the characteristics and feasibility of a particle-based biosensing technique for continuous monitoring of TNF-α at picomolar concentrations. The technique is based on the optical tracking of particle motion and uses an antibody sandwich configuration. Experimental results show how the analyte concentration influences the particle diffusivity and characteristic response time of the sensor, and how the sensitivity range depends on the antibody functionalization density. Furthermore, the data clarifies how antibodies supplemented in solution can shorten the characteristic response time. Finally, we demonstrate association rate-based sensing as a first step towards continuous monitoring of picomolar TNF-α concentrations, over a period of 2 h with delay times under 15 min. The insights from this research will enable the development of continuous monitoring sensors using high-affinity binders, providing the sensitivity and speed needed in applications like cytokine monitoring.
Collapse
Affiliation(s)
- Alissa D Buskermolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Claire M S Michielsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Arthur M de Jong
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; Helia Biomonitoring, Eindhoven, the Netherlands.
| |
Collapse
|
14
|
Agu CV, Cook RL, Martelly W, Gushgari LR, Mohan M, Takulapalli B. Novel sensor-integrated proteome on chip (SPOC) platform with thousands of folded proteins on a 1.5 sq-cm biosensor chip to enable high-throughput real-time label-free screening for kinetic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.575909. [PMID: 38328216 PMCID: PMC10849568 DOI: 10.1101/2024.01.23.575909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
An automated proteomic platform for producing and screening an array of functional proteins on biosensor surfaces was developed to address the challenges of measuring proteomic interaction kinetics in high throughput (HTP). This technology is termed Sensor-Integrated Proteome On Chip (SPOC®) which involves in-situ cell-free protein expression in nano-liter volume wells (nanowells) directly from rapidly customizable arrays of plasmid DNA, facilitating simultaneous capture-purification of up to 2400 unique full-length folded proteins onto a 1.5 sq-cm surface of a single gold biosensor chip. Arrayed SPOC sensors can then be screened by real-time label-free analysis, including surface plasmon resonance (SPR) to generate kinetic affinity, avidity data. Fluorescent and SPR assays were used to demonstrate zero crosstalk between protein spots. The functionality of the SPOC protein array was validated by antibody binding assay, post-translational modification, mutation-mediated differential binding kinetics, and catalytic activity screening on model SPOC protein arrays containing p53, Src, Jun, Fos, HIST1H3A, and SARS-CoV-2 receptor binding domain (RBD) protein variants of interest, among others. Monoclonal antibodies were found to selectively bind their target proteins on the SPOC array. A commercial anti-RBD antibody was used to demonstrate discriminatory binding to numerous SARS-CoV-2 RBD variants of concern with comprehensive kinetic information. With advantages of HTP, flexibility, low-cost, quick turnaround time, and real-time kinetic affinity profiling, the SPOC proteomic platform addresses the challenges of interrogating protein interactions at scale and can be deployed in various research and clinical applications.
Collapse
Affiliation(s)
- Chidozie Victor Agu
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| | - Rebecca L Cook
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| | - William Martelly
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| | - Lydia R Gushgari
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| | - Mukilan Mohan
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| | - Bharath Takulapalli
- SPOC Proteomics, Inc. 7201 E Henkel Way Suite 285, Scottsdale AZ 85255, United States
| |
Collapse
|
15
|
Santos-López J, Gómez S, Fernández FJ, Vega MC. Protein-Protein Binding Kinetics by Biolayer Interferometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:73-88. [PMID: 38507201 DOI: 10.1007/978-3-031-52193-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The specific kinetics and thermodynamics of protein-protein interactions underlie the molecular mechanisms of cellular functions; hence the characterization of these interaction parameters is central to the quantitative understanding of physiological and pathological processes. Many methods have been developed to study protein-protein interactions, which differ in various features including the interaction detection principle, the sensitivity, whether the method operates in vivo, in vitro, or in silico, the temperature control, the use of labels, immobilization, the amount of sample required, the number of measurements that can be accomplished simultaneously, or the cost. Bio-Layer Interferometry (BLI) is a label-free biophysical method to measure the kinetics of protein-protein interactions. Label-free interaction assays are a broad family of methods that do not require protein modifications (other than immobilization) or labels such as fusions with fluorescent proteins or transactivating domains or chemical modifications like biotinylation or reaction with radionuclides. Besides BLI, other label-free techniques that are widely used for determining protein-protein interactions include surface plasmon resonance (SPR), thermophoresis, and isothermal titration calorimetry (ITC), among others.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Sara Gómez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | | | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
16
|
Li JM, Deng HS, Yao YD, Wang WT, Hu JQ, Dong Y, Wang PX, Liu L, Liu ZQ, Xie Y, Lu LL, Zhou H. Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways. Acta Pharmacol Sin 2023; 44:2504-2524. [PMID: 37482570 PMCID: PMC10692212 DOI: 10.1038/s41401-023-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1β, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1β and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.
Collapse
Affiliation(s)
- Juan-Min Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hai-Shan Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yun-da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wei-Ting Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pei-Xun Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hua Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
17
|
D’Ercole C, De March M, Veggiani G, Oloketuyi S, Svigelj R, de Marco A. Biological Applications of Synthetic Binders Isolated from a Conceptually New Adhiron Library. Biomolecules 2023; 13:1533. [PMID: 37892215 PMCID: PMC10605594 DOI: 10.3390/biom13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Adhirons are small (10 kDa) synthetic ligands that might represent an alternative to antibody fragments and to alternative scaffolds such as DARPins or affibodies. METHODS We prepared a conceptionally new adhiron phage display library that allows the presence of cysteines in the hypervariable loops and successfully panned it against antigens possessing different characteristics. RESULTS We recovered binders specific for membrane epitopes of plant cells by panning the library directly against pea protoplasts and against soluble C-Reactive Protein and SpyCatcher, a small protein domain for which we failed to isolate binders using pre-immune nanobody libraries. The best binders had a binding constant in the low nM range, were produced easily in bacteria (average yields of 15 mg/L of culture) in combination with different tags, were stable, and had minimal aggregation propensity, independent of the presence or absence of cysteine residues in their loops. DISCUSSION The isolated adhirons were significantly stronger than those isolated previously from other libraries and as good as nanobodies recovered from a naïve library of comparable theoretical diversity. Moreover, they proved to be suitable reagents for ELISA, flow cytometry, the western blot, and also as capture elements in electrochemical biosensors.
Collapse
Affiliation(s)
- Claudia D’Ercole
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia; (C.D.); (M.D.M.); (S.O.)
| | - Matteo De March
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia; (C.D.); (M.D.M.); (S.O.)
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Sandra Oloketuyi
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia; (C.D.); (M.D.M.); (S.O.)
| | - Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100 Udine, Italy;
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia; (C.D.); (M.D.M.); (S.O.)
| |
Collapse
|
18
|
Plikusiene I, Maciulis V, Vertelis V, Juciute S, Balevicius S, Ramanavicius A, Talbot J, Ramanaviciene A. Revealing the SARS-CoV-2 Spike Protein and Specific Antibody Immune Complex Formation Mechanism for Precise Evaluation of Antibody Affinity. Int J Mol Sci 2023; 24:13220. [PMID: 37686023 PMCID: PMC10487573 DOI: 10.3390/ijms241713220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The profound understanding and detailed evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (SCoV2-S) protein and specific antibody interaction mechanism is of high importance in the development of immunosensors for COVID-19. In the present work, we studied a model system of immobilized SCoV2-S protein and specific monoclonal antibodies by molecular dynamics of immune complex formation in real time. We simultaneously applied spectroscopic ellipsometry and quartz crystal microbalance with dissipation to reveal the features and steps of the immune complex formation. We showed direct experimental evidence based on acoustic and optical measurements that the immune complex between covalently immobilized SCoV2-S and specific monoclonal antibodies is formed in two stages. Based on these findings it was demonstrated that applying a two-step binding mathematical model for kinetics analysis leads to a more precise determination of interaction rate constants than that determined by the 1:1 Langmuir binding model. Our investigation showed that the equilibrium dissociation constants (KD) determined by a two-step binding model and the 1:1 Langmuir model could differ significantly. The reported findings can facilitate a deeper understanding of antigen-antibody immune complex formation steps and can open a new way for the evaluation of antibody affinity towards corresponding antigens.
Collapse
Affiliation(s)
- Ieva Plikusiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Vincentas Maciulis
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Vilius Vertelis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
| | - Saulius Balevicius
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Julian Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, UMR 7600, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania (S.J.)
| |
Collapse
|
19
|
Plikusiene I, Maciulis V, Juciute S, Ramanavicius A, Ramanaviciene A. Study of SARS-CoV-2 Spike Protein Wild-Type and the Variants of Concern Real-Time Interactions with Monoclonal Antibodies and Convalescent Human Serum. BIOSENSORS 2023; 13:784. [PMID: 37622870 PMCID: PMC10452135 DOI: 10.3390/bios13080784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The spike (S) protein and its receptor-binding domain (RBD) of the coronavirus SARS-CoV-2 have been continually evolving, yielding the majority of significant missense mutations and new variants of concern. In this study, we examined how monoclonal antibodies against RBD (mAbs-SCoV2-RBD) and polyclonal antibodies present in convalescent human serum specifically interact with the S protein of wild-type and SARS-CoV-2 variants of concern (VOCs) in real time and how this can be reflected through surface mass density. Moreover, we combined two distinct, label-free measurement techniques: one based on changes in surface electromagnetic waves after reflection from the surface, and the other on changes in acoustic waves. The results demonstrated that dry surface mass density (ΓSE) of mAbs-SCoV2-RBD attached to the RBD of the S protein decreases three-fold, from 148 ng/cm2 to 46 ng/cm2, due to the B.1.351 or so-called beta mutation of coronavirus and its S protein (SCoV2-β). Consequently, the obtained wet mass ΓQCM-D resulted in values two times lower, from 319 ng/cm2 to 158 ng/cm2, and the hydration of mAbs-SCoV2-RBD/SCoV2-β immune complex was 70.88%. Conversely, when polyclonal antibodies present in convalescent human serum form immune complexes with the S protein of SARS-CoV-2 variants of concern, the ΓSE decreased from 279 ng/cm2 to 249 ng/cm2, and ΓQCM-D from 1545 ng/cm2 to 1366 ng/cm2. These results can give insights into the differences between the interaction of monoclonal and polyclonal antibodies with SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Vincentas Maciulis
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
20
|
Narayan K, Paduraru C, Blake T, Arunachalam AB. Rapid determination of influenza vaccine potency by an SPR-based method using subtype or lineage-specific monoclonal antibodies. Front Immunol 2023; 14:1128683. [PMID: 37457687 PMCID: PMC10344355 DOI: 10.3389/fimmu.2023.1128683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Potency testing and release of annual influenza vaccines require preparation, calibration, and distribution of reference antigens (RAs) and antisera every year, which takes an average of 8 to 12 weeks, and can be a major limiting factor in pandemic situations. Here we describe for the first time a robust Surface Plasmon Resonance (SPR)-based method that employs influenza subtype or lineage hemagglutinin (HA) specific monoclonal antibodies (mAbs) to measure the HA concentration in influenza multivalent vaccines. Implementing such an advanced test method will at the very least eliminate the rate-limiting and laborious efforts of making antisera reagents annually, and thus expedite the influenza vaccine delivery to the public by at least 6 weeks. Results demonstrate that the SPR-based method, developed using Biacore, is robust and not influenced by the type of RAs (inactivated whole virus, split, or subunit vaccine-derived materials), whether they are used as monovalent or multivalent preparations. HA concentrations obtained for monovalent drug substances (DS) or quadrivalent drug products (DP) of inactivated influenza split vaccine showed a tight correlation (the best fit value for the slope is 1.001 with R2 of 0.9815 and P-value <0.0001) with the corresponding values obtained by the current potency assay, Single Radial Immunodiffusion (SRID). Supplementary analysis of the results by the Bland-Altman plot demonstrated good agreement between the SPR and SRID methods, with no consistent bias of the SPR versus SRID method. We further demonstrate that the SPR-based method can be used to estimate HA concentrations in intermediates of the influenza vaccine manufacturing process containing varying matrices and impurity levels. Further, the results demonstrate that the method is sensitive to detecting degradation of HA caused by elevated temperature, low pH, and freezing. It is evident from this report and other published work that the advancement of analytical techniques and the early findings are encouraging for the implementation of alternate potency assays with far-reaching benefits covering both seasonal and pandemic influenza.
Collapse
|
21
|
England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE, Houslay KF, Erngren T, Penney M, Majithiya JB, Rapley L, Sims DA, Hollins C, Hinchy EC, Strain MD, Kemp BP, Corkill DJ, May RD, Vousden KA, Butler RJ, Mustelin T, Vaughan TJ, Lowe DC, Colley C, Cohen ES. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci Rep 2023; 13:9825. [PMID: 37330528 PMCID: PMC10276851 DOI: 10.1038/s41598-023-36642-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.
Collapse
Affiliation(s)
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Ian Christopher Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sara Carmen
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Teodor Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jayesh B Majithiya
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Laura Rapley
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorothy A Sims
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Claire Hollins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth C Hinchy
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Dominic J Corkill
- Bioscience In Vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard D May
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - David C Lowe
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
22
|
Hammerschmidt SJ, Maus H, Weldert AC, Gütschow M, Kersten C. Improving binding entropy by higher ligand symmetry? - A case study with human matriptase. RSC Med Chem 2023; 14:969-982. [PMID: 37252099 PMCID: PMC10211324 DOI: 10.1039/d3md00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
23
|
Dong T, Han C, Liu X, Wang Z, Wang Y, Kang Q, Wang P, Zhou F. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy. Mol Pharm 2023; 20:2094-2104. [PMID: 36939457 DOI: 10.1021/acs.molpharmaceut.2c01047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Cell-based kinetic studies of ligand or candidate drug binding to membrane proteins have produced affinity and kinetic values that are different from measurements using purified proteins. However, ligand binding to fixated cells whose membrane constituents (e.g., proteins and their glycosylated forms) are partially connected by a cross-linking reagent has not been compared to that to live cells. Under the same experimental conditions for the LigandTracer method, we measured the interactions of fluorophore-labeled lectins and antibody molecules with glycans at HFF cells and the human epithelial growth receptor 2 at SKBR3 cells, respectively. In conjunction with surface plasmon resonance microscopy, the effects of labels and cell/sub-cell heterogeneity on binding kinetics were investigated. Our results revealed that, for cell constituents whose structures and functions are not closely dependent on cell viability, the ligand binding kinetics at fixated cells is only slightly different from that at live cells. The altered kinetics is explained on the basis of a less mobile receptor confined in a local environment created by partially interconnected protein molecules. We show that cell/sub-cell heterogeneity and labels on the ligands can alter the binding reaction more significantly. Thus, fixating cells not only simplifies experimental procedures for drug screening and renders assays more robust but also provides reliable kinetic information about drug binding to cell constituents whose structures are not changed by chemical fixation.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhichao Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanhui Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
24
|
Crowley AR, Mehlenbacher MR, Sajadi MM, DeVico AL, Lewis GK, Ackerman ME. Evidence of variable human Fcγ receptor-Fc affinities across differentially-complexed IgG. MAbs 2023; 15:2231128. [PMID: 37405954 PMCID: PMC10324447 DOI: 10.1080/19420862.2023.2231128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners. Antibody allostery, specifically conformational allostery, is a competing model in which antigen-bound antibody molecules undergo a physical rearrangement that causes them to stand out from the background of free IgG by virtue of greater FcγR affinity. Various evidence exists in support of this model of antibody allostery, but it remains controversial. We report observations from multiplexed, label-free kinetic experiments in which the affinity values of FcγR were characterized for covalently immobilized, captured, and antigen-bound IgG. Across the strategies tested, receptors had greater affinity for the antigen-bound mode of IgG presentation. This phenomenon was observed across multiple FcγRs and generalized to multiple antigens, antibody specificities, and subclasses. Furthermore, the thermodynamic signatures of FcγR binding to free or immune-complexed IgG in solution differed when measured by an orthogonal label-free method, but the failure to recapitulate the trend in overall affinity leaves open questions as to what additional factors may be at play.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | | | - Mohammad M. Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, USA
| | - Anthony L. DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - George K. Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
25
|
Hammerschmidt SJ, Huber S, Braun NJ, Lander M, Steinmetzer T, Kersten C. Thermodynamic characterization of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its acyclic analogs. Arch Pharm (Weinheim) 2022; 356:e2200518. [PMID: 36480352 DOI: 10.1002/ardp.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
26
|
Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022; 217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A polymeric multimode waveguide, characterized by a pioneering spoon-shaped geometry, was herein proposed for the first time to devise Surface Plasmon Resonance (SPR) biochemical sensors. The plasmon excitation was enabled by layering a gold nanofilm of ∼60 nm onto the spoon-waveguide. As a consequence of the waveguide's extra-ordinary geometry, two distinct sensing regions were identified: a planar one, located on the spoon's neck, and a concave one on the bowl, with angled surfaces. The bulk sensitivity (Sn) is correlated both to the way the light was launched in/collected from the sensor (parallel or orthogonal to the main axis of the waveguide) and to the sensing area interrogated (planar-neck or angled-bowl), indicating that the sensor's performance can be conveniently tuned, depending on the chosen measuring configuration. The SPR sensor's characterization showed Sn equal to 750 nm/RIU for the neck and to 950 nm/RIU for the bowl. To further inspect the peculiar sensing-features and assess the application niches, the spoon-shaped waveguide was functionalized with two kinds of receptors, both specific for human serum albumin (HSA): an antibody on the bowl region (high Sn); molecularly imprinted nanoparticles (nanoMIPs) on the neck region (low Sn). The experimental results showed a limit of detection (LOD) for the immune-sensor of 280 pM and an LOD for the nanoMIP-sensor of 4.16 fM. The overall response of the HSA multi-sensor encompassed eight orders of magnitude, suggesting that the spoon-shaped waveguide's provides multi-scale detection and holds potential to devise multi-analyte sensing platforms.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
27
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Shah M, Ung Moon S, Hyun Kim J, Thanh Thao T, Goo Woo H. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Comput Struct Biotechnol J 2022; 20:2042-2056. [PMID: 35495107 PMCID: PMC9040525 DOI: 10.1016/j.csbj.2022.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Approved neutralizing antibodies that target the prototype Spike are losing their potency against the emerging variants of concern (VOCs) of SARS-CoV-2, particularly Omicron. Although SARS-CoV-2 is continuously adapting the host environment, emerging variants recognize the same ACE2 receptor for cell entry. Protein and peptide decoys derived from ACE2 or Spike proteins may hold the pan-variant inhibitory potential. Here, we deployed interactive structure- and pharmacophore-based approaches to design short and stable peptides -Coronavirus Spike Neutralizing Peptides (CSNPs)- capable of neutralizing all SARS-CoV-2 VOCs. After in silico structural stability investigation and free energies perturbation of the isolated and target-bound peptides, nine candidate peptides were evaluated for the biophysical interaction through SPR assay. CSNP1, CSNP2, and Pep1 dose-dependently bind the S1 domain of the prototype Spike, whereas CSNP4 binds both S1 and ACE2. After safety and immunocytochemistry evaluation, peptides were probed for their pan-variant inhibitory effects. CSNP1, CSNP2, and CSNP4 inhibited all VOCs dose-dependently, whereas Pep1 had a moderate effect. CSNP2 and CSNP4 could neutralize the wild-type pseudovirus up to 80 % when treated at 0.5 µM. Furthermore, CSNP4 synergize the neutralization effect of monoclonal antibody and CSNP1 in Delta variant pseudovirus assay as they target different regions on the RBD. Thus, we suggest that CSNPs are SARS-CoV-2 pan-variant inhibitory candidates for COVID-19 therapy, which may pave the way for combating the emerging immune-escaping variants. We also propose that CSNP1/2-CSNP4 peptide cocktail or CSNP1/4 mAbs cocktail with no overlapping epitopes could be effective therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Ung Moon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Trinh Thanh Thao
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
29
|
Applications of Surface Plasmon Resonance and Biolayer Interferometry for Virus–Ligand Binding. Viruses 2022; 14:v14040717. [PMID: 35458446 PMCID: PMC9027846 DOI: 10.3390/v14040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Surface plasmon resonance and biolayer interferometry are two common real-time and label-free assays that quantify binding events by providing kinetic parameters. There is increased interest in using these techniques to characterize whole virus-ligand interactions, as the methods allow for more accurate characterization than that of a viral subunit-ligand interaction. This review aims to summarize and evaluate the uses of these technologies specifically in virus–ligand and virus-like particle–ligand binding cases to guide the field towards studies that apply these robust methods for whole virus-based studies.
Collapse
|
30
|
Marklund E, Mao G, Yuan J, Zikrin S, Abdurakhmanov E, Deindl S, Elf J. Sequence specificity in DNA binding is mainly governed by association. Science 2022; 375:442-445. [PMID: 35084952 DOI: 10.1126/science.abg7427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sequence-specific binding of proteins to DNA is essential for accessing genetic information. We derive a model that predicts an anticorrelation between the macroscopic association and dissociation rates of DNA binding proteins. We tested the model for thousands of different lac operator sequences with a protein binding microarray and by observing kinetics for individual lac repressor molecules in single-molecule experiments. We found that sequence specificity is mainly governed by the efficiency with which the protein recognizes different targets. The variation in probability of recognizing different targets is at least 1.7 times as large as the variation in microscopic dissociation rates. Modulating the rate of binding instead of the rate of dissociation effectively reduces the risk of the protein being retained on nontarget sequences while searching.
Collapse
Affiliation(s)
- Emil Marklund
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Jinwen Yuan
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Spartak Zikrin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Eldar Abdurakhmanov
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| |
Collapse
|
31
|
Le HT, D’Ambrosio EA, Mashayekh S, Grimes CL. Customized peptidoglycan surfaces to investigate innate immune recognition via surface plasmon resonance. Methods Enzymol 2022; 665:73-103. [PMID: 35379444 PMCID: PMC9042648 DOI: 10.1016/bs.mie.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glycan-protein interactions facilitate some of the most important biomolecular processes in and between cells. They are involved in different cellular pathways, cell-cell interactions and associated with many diseases, making these interactions of great interest. However, their structural and functional diversity poses great challenges in studying them at the molecular level. Surface plasmon resonance (SPR) technology presents great advantages to study glycan-protein interactions due to its superior sensitivity, ability to monitor real-time interactions, relatively simple data interpretation, and most importantly, direct measurement of binding without a need for fluorescent labeling. Here, another dimensionality of SPR in studying glycan-protein interactions is demonstrated via examples of binding between human innate immune receptors and their bacterial peptidoglycan ligands. In order to best resemble interactions in solution, a novel strategy of tethering the carbohydrate at different positions to the biosensor surface is applied to represent the potential displays of the carbohydrate ligand to the receptor. Subsequent kinetic analysis provides insights into the optimized configuration of peptidoglycan fragments for binding with its receptors. The manuscript contains a "how-to guide" to help with the implementation of these methods in other glycan-protein binding systems.
Collapse
Affiliation(s)
- Ha T. Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth A. D’Ambrosio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Siavash Mashayekh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States,Correspondence to Catherine L. Grimes, The University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19716,
| |
Collapse
|
32
|
Multiplexed, High-Sensitivity Measurements of Antibody Affinity Using Interferometric Reflectance Imaging Sensor. BIOSENSORS 2021; 11:bios11120483. [PMID: 34940240 PMCID: PMC8699213 DOI: 10.3390/bios11120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Anthrax lethal factor (LF) is one of the enzymatic components of the anthrax toxin responsible for the pathogenic responses of the anthrax disease. The ability to screen multiplexed ligands against LF and subsequently estimate the effective kinetic rates (kon and koff) and complementary binding behavior provides critical information useful in diagnostic and therapeutic development for anthrax. Tools such as biolayer interferometry (BLI) and surface plasmon resonance imaging (SPRi) have been developed for this purpose; however, these tools suffer from limitations such as signal jumps when the solution in the chamber is switched or low sensitivity. Here, we present multiplexed antibody affinity measurements obtained by the interferometric reflectance imaging sensor (IRIS), a highly sensitive, label-free optical biosensor, whose stability, simplicity, and imaging modality overcomes many of the limitations of other multiplexed methods. We compare the multiplexed binding results obtained with the IRIS system using two ligands targeting the anthrax lethal factor (LF) against previously published results obtained with more traditional surface plasmon resonance (SPR), which showed consistent results, as well as kinetic information previously unattainable with SPR. Additional exemplary data demonstrating multiplexed binding and the corresponding complementary binding to sequentially injected ligands provides an additional layer of information immediately useful to the researcher.
Collapse
|
33
|
Wu HH, Ralph KL, Sepuldeva E, Hansen G, Li H, Huang ZF, Liu D, Dziegelewski M, Ahlberg J, Frego L, Fogal S, van Tongeren S, Grimaldi C, Litzenberger T, Presky D, Singh S, Brodeur S, Kroe-Barrett R. An optimally designed anti-human CD40 antibody with potent B cell suppression for the treatment of autoimmune diseases. Int J Pharm 2021; 609:121162. [PMID: 34624444 DOI: 10.1016/j.ijpharm.2021.121162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022]
Abstract
Antibodies targeting the CD40-CD40L pathway have great potential for treating autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus (SLE), lupus nephritis (LN), and inflammatory bowel diseases (IBD). However, in addition to the known difficulty in generating a purely antagonistic CD40 antibody, the presence of CD40 and CD40L on platelets creates additional unique challenges for the safety, target coverage, and clearance of antibodies targeting this pathway. Previously described therapeutic antibodies targeting this pathway have various shortcomings, and the full therapeutic potential of this axis has yet to be realized. Herein, we describe the generation and characterization of BI 655064, a novel, purely antagonistic anti-CD40 antibody that potently neutralizes CD40-CD40L-dependent B-cell stimulation without evidence of impacting platelet functions. This uniquely optimized antibody targeting a highly challenging pathway was obtained by applying stringent functional and biophysical criteria during the lead selection process. BI 655064 has favorable target-mediated drug disposition (TMDD)-saturation pharmacokinetics, consistent with that of a high-quality therapeutic monoclonal antibody.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA.
| | - Kerry-Leigh Ralph
- Boehringer Ingelheim Pharmaceuticals, Inc. Cancer Immunology & Immune Modulation, Ridgefield, CT, USA
| | - Eliud Sepuldeva
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Gale Hansen
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Hua Li
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Zhong-Fu Huang
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Dongmei Liu
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Michael Dziegelewski
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Jennifer Ahlberg
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| | - Steve Fogal
- Boehringer Ingelheim Pharmaceuticals, Inc. Immunology & Respiratory, Ridgefield, CT, USA
| | - Susan van Tongeren
- Boehringer Ingelheim Pharmaceuticals, Inc. Nonclinical Drug Safety, Ridgefield, CT, USA
| | - Christine Grimaldi
- Boehringer Ingelheim Pharmaceuticals, Inc. Drug Metabolism and Pharmacokinetics, Ridgefield, CT, USA
| | - Tobias Litzenberger
- Boehringer Ingelheim Pharmaceuticals, Inc. Translational Medicine & Clinical Pharmacology, Biberach, B-W, Germany
| | | | - Sanjaya Singh
- Janssen Biotherapeutics at Johnson & Johnson. Spring House, PA, USA
| | - Scott Brodeur
- Janssen Pharmaceutical Companies at Johnson & Johnson. New Jersey, PA, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals, Inc. Biotherapeutics Molecule Discovery, Ridgefield, CT, USA
| |
Collapse
|
34
|
Robitaille MC, Christodoulides JA, Calhoun PJ, Byers JM, Raphael MP. Interfacing Live Cells with Surfaces: A Concurrent Control Technique for Quantifying Surface Ligand Activity. ACS APPLIED BIO MATERIALS 2021; 4:7856-7864. [PMID: 35006767 DOI: 10.1021/acsabm.1c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface ligand activity is a key design parameter for successfully interfacing surfaces with cells─whether in the context of in vitro investigations for understanding cellular signaling pathways or more applied applications in drug delivery and medical implants. Unlike other crucial surface parameters, such as stiffness and roughness, surface ligand activity is typically based on a set of assumptions rather than directly measured, giving rise to interpretations of cell adhesion that can vary with the assumptions made. To fill this void, we have developed a concurrent control technique for directly characterizing in vitro ligand surface activity. Pairs of gold-coated glass chips were biofunctionalized with RGD ligand in a parallel workflow: one chip for in vitro applications and the other for surface plasmon resonance (SPR)-based RGD activity characterization. Recombinant αVβ3 integrins were injected over the SPR chip surface as mimics of the cellular-membrane-bound receptors and the resulting binding kinetics parameterized to quantify surface ligand activity. These activity measurements were correlated with cell morphological features, measured by interfacing MDA-MB-231 cells with the in vitro chip surfaces on the live cell microscope. We demonstrate how the interpretation of a cell phenotype based on direct activity measurements can vary markedly from interpretations based on assumed activity. The SPR concurrent control approach has multiple advantages due to the fact that SPR is a standardized technique and has the sensitivity to measure ligand activity across the most relevant range of extracellular surface densities, while the in vitro chip design can be used with all commonly used light microscopy modalities (e.g., phase contrast, DIC, and fluorescence) so that a wide range of phenotypic and molecular markers can be correlated to the ligand surface activity.
Collapse
Affiliation(s)
- Michael C Robitaille
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | | | | | - Jeff M Byers
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | - Marc P Raphael
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| |
Collapse
|
35
|
Pollard C, Hudson M, McDonnell JM, Royall PG, Wolff K. Development of a point-of-care test for the detection of MDMA in latent fingerprints using surface plasmon resonance and lateral flow technology. Drug Test Anal 2021; 14:613-621. [PMID: 34766468 DOI: 10.1002/dta.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022]
Abstract
To date, a specific point-of-care test (POCT) for 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, 'E') in latent fingerprints (LFPs) has not been explored. Other POCTs identify MDMA in sweat by detecting the drug as a cross-reactant rather than target analyte, thus decreasing the test's sensitivity. The study's aim was to design a sensitive POCT for the detection of MDMA in LFPs using surface plasmon resonance (SPR) and lateral flow immunoassay (LFA) technology. A high-affinity antibody binding pair was identified using the former technique, deeming the pair suitable for a LFA. Titrations of fluorescently labelled antibody and antigen concentrations were tested to identify a sharp drop-in signal upon the addition of MDMA to allow a clear distinction between negative and positive outcomes. We trialled the LFA by producing dose response curves with MDMA and a group of drugs that share a similar chemical structure to MDMA. These were generated through spiking the LFA with increasing levels of drug (0-400 pg/10 μl of MDMA; 0-10,000 pg/10 μl of cross-reactant). Fluorescent test signals were measured using a cartridge reader. The cut-off (threshold) 60 pg/10 μl calculated better cartridge performance (1.00 sensitivity, 0.95 specificity and 0.98 accuracy), when compared with 40 pg/10 μl. The biggest cross-reactant was PMMA (250%), followed by MDEA (183%), MBDB (167%), MDA (16%) and methamphetamine (16%). A sensitive LFP screening tool requiring no sample preparation was successfully designed.
Collapse
Affiliation(s)
- Caroline Pollard
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| | | | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Paul G Royall
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London, London, UK
| | - Kim Wolff
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| |
Collapse
|
36
|
Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents. NANOMATERIALS 2021; 11:nano11112996. [PMID: 34835760 PMCID: PMC8625475 DOI: 10.3390/nano11112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Research has increasingly focused on the delivery of high, often excessive amounts of drugs, neglecting negative aspects of the carrier's physical preconditions and biocompatibility. Among them, little attention has been paid to "small but beautiful" design of vehicle and multiple cargo to achieve effortless targeted delivery into deep tissue. The design of small biopolymers for deep tissue targeted delivery of multiple imaging agents and therapeutics (mini-nano carriers) emphasizes linear flexible polymer platforms with a hydrodynamic diameter of 4 nm to 10 nm, geometrically favoring dynamic juxtaposition of ligands to host receptors, and economic drug content. Platforms of biodegradable, non-toxic poly(β-l-malic acid) of this size carrying multiple chemically bound, optionally nature-derived or synthetic affinity peptides and drugs for a variety of purposes are described in this review with specific examples. The size, shape, and multiple attachments to membrane sites accelerate vascular escape and fast blood clearance, as well as the increase in medical treatment and contrasts for tissue imaging. High affinity antibodies routinely considered for targeting, such as the brain through the blood-brain barrier (BBB), are replaced by moderate affinity binding peptides (vectors), which penetrate at high influxes not achievable by antibodies.
Collapse
|
37
|
Opdensteinen P, Meyer S, Buyel JF. Nicotiana spp. for the Expression and Purification of Functional IgG3 Antibodies Directed Against the Staphylococcus aureus Alpha Toxin. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin subclass IgG1 is bound and neutralized effectively by Staphylococcus aureus protein A, allowing the bacterium to evade the host’s adaptive immune response. In contrast, the IgG3 subclass is not bound by protein A and can be used to treat S. aureus infections, including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). However, the yields of recombinant IgG3 are generally low because this subclass is prone to degradation, and recovery is hindered by the inability to use protein A as an affinity ligand for antibody purification. Here, we investigated plants (Nicotiana spp.) as an alternative to microbes and mammalian cell cultures for the production of an IgG3 antibody specific for the S. aureus alpha toxin. We targeted recombinant IgG3 to different subcellular compartments and tested different chromatography conditions to improve recovery and purification. Finally, we tested the antigen-binding capacity of the purified antibodies. The highest IgG3 levels in planta (>130 mg kg−1 wet biomass) were achieved by targeting the endoplasmic reticulum or apoplast. Although the purity of IgG3 exceeded 95% following protein G chromatography, product recovery requires further improvement. Importantly, the binding affinity of the purified antibodies was in the nanomolar range and thus comparable to previous studies using murine hybridoma cells as the production system.
Collapse
|
38
|
Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein-protein interactions. Phys Chem Chem Phys 2021; 23:16488-16500. [PMID: 34342317 PMCID: PMC8359934 DOI: 10.1039/d1cp01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Weston B. Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| |
Collapse
|
39
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
40
|
Pardridge WM, Chou T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel) 2021; 14:535. [PMID: 34205013 PMCID: PMC8226686 DOI: 10.3390/ph14060535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
We develop and analyze mathematical models for receptor-mediated transcytosis of monoclonal antibodies (MAb) targeting the transferrin receptor (TfR) or the insulin receptor (IR), which are expressed at the blood-brain barrier (BBB). The mass-action kinetic model for both the TfR and IR antibodies were solved numerically to generate predictions for the concentrations of all species in all compartments considered. Using these models, we estimated the rates of MAb endocytosis into brain capillary endothelium, which forms the BBB in vivo, the rates of MAb exocytosis from the intra-endothelial compartment into brain extracellular space, and the rates of receptor recycling from the endothelial space back to the luminal endothelial plasma membrane. Our analysis highlights the optimal rates of MAb association with the targeted receptor. An important role of the endogenous ligand, transferrin (Tf) or insulin, in receptor-mediated-transport (RMT) of the associated MAb was found and was attributed to the five order magnitude difference between plasma concentrations of Tf (25,000 nM) and insulin (0.3 nM). Our modeling shows that the very high plasma concentration of Tf leads to only 5% of the endothelial TfR expressed on the luminal endothelial membrane.
Collapse
Affiliation(s)
| | - Tom Chou
- Departments of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
41
|
Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders. Proc Natl Acad Sci U S A 2021; 118:1921252118. [PMID: 34006633 PMCID: PMC8166142 DOI: 10.1073/pnas.1921252118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neovascularization is a key feature of ischemic retinal diseases and the wet form of age-related macular degeneration (AMD), all leading causes of severe vision loss. Vascular endothelial growth factor (VEGF) inhibitors have transformed the treatment of these disorders. Millions of patients have been treated with these drugs worldwide. However, in real-life clinical settings, many patients do not experience the same degree of benefit observed in clinical trials, in part because they receive fewer anti-VEGF injections. Therefore, there is an urgent need to discover and identify novel long-acting VEGF inhibitors. We hypothesized that binding to heparan-sulfate proteoglycans (HSPG) in the vitreous, and possibly other ocular structures, may be a strategy to promote intraocular retention, ultimately leading to a reduced burden of intravitreal injections. We designed a series of VEGF receptor 1 variants and identified some with strong heparin-binding characteristics and ability to bind to vitreous matrix. Our data indicate that some of our variants have longer duration and greater efficacy in animal models of intraocular neovascularization than current standard of care. Our study represents a systematic attempt to exploit the functional diversity associated with heparin affinity of a VEGF receptor.
Collapse
|
42
|
Fercher C, Jones ML, Mahler SM, Corrie SR. Recombinant Antibody Engineering Enables Reversible Binding for Continuous Protein Biosensing. ACS Sens 2021; 6:764-776. [PMID: 33481587 DOI: 10.1021/acssensors.0c01510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineering antibodies to improve target specificity, reduce detection limits, or introduce novel functionality is an important research area for biosensor development. While various affinity biosensors have been developed to generate an output signal upon varying analyte concentrations, reversible and continuous protein monitoring in complex biological samples remains challenging. Herein, we explore the concept of directed evolution to modulate dissociation kinetics of a high affinity anti-epidermal growth factor receptor (EGFR) single-chain variable antibody fragment (scFv) to enable continuous protein sensing in a label-free binding assay. A mutant scFv library was generated from the wild type (WT) fragment via targeted permutation of four residues in the antibody-antigen-binding interface. A single round of phage display biopanning complemented with high-throughput screening methods then permitted isolation of a specific binder with fast reaction kinetics. We were able to obtain ∼30 times faster dissociation rates when compared to the WT without appreciably affecting overall affinity and specificity by targeting a single paratope that is known to contribute to the binding interaction. Suitability of a resulting mutant fragment to sense varying antigen concentrations in continuous mode was demonstrated in a modified label-free binding assay, achieving low nanomolar detection limits (KD = 8.39 nM). We also confirmed these results using an independent detection mechanism developed previously by our group, incorporating a polarity-dependent fluorescent dye into the scFv and reading out EGFR binding based on fluorescence wavelength shifts. In future, this generic approach could be employed to generate improved or novel binders for proteins of interest, ready for deployment in a broad range of assay platforms.
Collapse
Affiliation(s)
- Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
43
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
44
|
Ma P, Ren P, Zhang C, Tang J, Yu Z, Zhu X, Fan K, Li G, Zhu W, Sang W, Min C, Chen W, Huang X, Yang G, Lerner RA. Avidity-Based Selection of Tissue-Specific CAR-T Cells from a Combinatorial Cellular Library of CARs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003091. [PMID: 33747727 PMCID: PMC7967050 DOI: 10.1002/advs.202003091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/21/2020] [Indexed: 05/08/2023]
Abstract
Using T-cell chimeric antigen receptors (CAR-T) to activate and redirect T cells to tumors expressing the cognate antigen represents a powerful approach in cancer therapy. However, normal tissues with low expression of tumor-associated antigens (TAAs) can be mistargeted, resulting in severe side effects. An approach using a collection of T cells expressing a diverse, 106-member combinatorial cellular library of CARs, in which members can be specifically enriched based on avidity for cell membrane antigens, is reported. Using CD38 as the target antigen, an efficient and effective selection of CARs specifically recognizing CD38+ tumor cells is demonstrated. These selected CAR-T's produce cytokines known to be associated with T cell activation in a CD38 expression-dependent manner. This avidity-based selection endows the engineered T cells with minimal off-tumor effects, while retaining robust antitumor efficacy both in vitro and in vivo. The described method may facilitate the application of CAR-T therapy to TAAs previously considered undruggable.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Ping Ren
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Chuyue Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Yu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Kun Fan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guanglei Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Wei Sang
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical UniversityInstitute of HematologyXuzhou Medical UniversityXuzhou221000China
| | - Chenyu Min
- Velox PharmaceuticalsChangzhou213000China
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Xingxu Huang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
45
|
Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, Wolfrum J, Springs SL, Sinskey AJ, Manalis SR, Barone PW, Braatz RD. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:740-754. [PMID: 33738328 PMCID: PMC7940698 DOI: 10.1016/j.omtm.2021.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The optimization of upstream and downstream processes for production of recombinant adeno-associated virus (rAAV) with consistent quality depends on the ability to rapidly characterize critical quality attributes (CQAs). In the context of rAAV production, the virus titer, capsid content, and aggregation are identified as potential CQAs, affecting the potency, purity, and safety of rAAV-mediated gene therapy products. Analytical methods to measure these attributes commonly suffer from long turnaround times or low throughput for process development, although rapid, high-throughput methods are beginning to be developed and commercialized. These methods are not yet well established in academic or industrial practice, and supportive data are scarce. Here, we review both established and upcoming analytical methods for the quantification of rAAV quality attributes. In assessing each method, we highlight the progress toward rapid, at-line characterization of rAAV. Furthermore, we identify that a key challenge for transitioning from traditional to newer methods is the scarcity of academic and industrial experience with the latter. This literature review serves as a guide for the selection of analytical methods targeting quality attributes for rapid, high-throughput process characterization during process development of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andreas L Gimpel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew John Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
46
|
Estimating drug potency in the competitive target mediated drug disposition (TMDD) system when the endogenous ligand is included. J Pharmacokinet Pharmacodyn 2021; 48:447-464. [PMID: 33558979 DOI: 10.1007/s10928-020-09734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Predictions for target engagement are often used to guide drug development. In particular, when selecting the recommended phase 2 dose of a drug that is very safe, and where good biomarkers for response may not exist (e.g. in immuno-oncology), a receptor occupancy prediction could even be the main determinant in justifying the approved dose, as was the case for atezolizumab. The underlying assumption in these models is that when the drug binds its target, it disrupts the interaction between the target and its endogenous ligand, thereby disrupting downstream signaling. However, the interaction between the target and its endogenous binding partner is almost never included in the model. In this work, we take a deeper look at the in vivo system where a drug binds to its target and disrupts the target's interaction with an endogenous ligand. We derive two simple steady state inhibition metrics (SSIMs) for the system, which provides intuition for when the competition between drug and endogenous ligand should be taken into account for guiding drug development.
Collapse
|
47
|
Sevy AM, Gilchuk IM, Brown BP, Bozhanova NG, Nargi R, Jensen M, Meiler J, Crowe JE. Computationally Designed Cyclic Peptides Derived from an Antibody Loop Increase Breadth of Binding for Influenza Variants. Structure 2020; 28:1114-1123.e4. [PMID: 32610044 PMCID: PMC7544621 DOI: 10.1016/j.str.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
The influenza hemagglutinin (HA) glycoprotein is the target of many broadly neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by mutation of hypervariable regions of HA that overlap with the binding epitope. We hypothesized that by designing peptides to mimic antibody loops, we could enhance breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on HA that mediate escape. We designed cyclic peptides that mimic the heavy-chain complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing antibody C05 and show that these peptides bound to HA molecules with <100 nM affinity, comparable with that of the full-length parental C05 IgG. In addition, these peptides exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes between the hypervariable antigenic regions and the antibody CDRH1 loop. This approach can be used to generate antibody-derived peptides against a wide variety of targets.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Dogs
- Drug Design
- Epitopes/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/chemistry
- Madin Darby Canine Kidney Cells
- Molecular Dynamics Simulation
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/immunology
- Peptides, Cyclic/metabolism
- Proof of Concept Study
- Protein Conformation
- Protein Engineering/methods
- Workload
Collapse
Affiliation(s)
- Alexander M Sevy
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Iuliia M Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benjamin P Brown
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Nina G Bozhanova
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattie Jensen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jens Meiler
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - James E Crowe
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
48
|
Bansal R, Dash R, Rathore AS. Impact of mAb Aggregation on Its Biological Activity: Rituximab as a Case Study. J Pharm Sci 2020; 109:2684-2698. [DOI: 10.1016/j.xphs.2020.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
|
49
|
Bontempo A, Garcia MM, Rivera N, Cayabyab MJ. A Systematic Approach to HIV-1 Vaccine Immunogen Selection. AIDS Res Hum Retroviruses 2020; 36:762-770. [PMID: 32056466 DOI: 10.1089/aid.2019.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A tremendous loss of financial and human resources from seven large-scale HIV vaccine efficacy trials suggest a need for a systematic approach to vaccine selection. We conducted a systematic analysis of three important envelope glycoprotein (Env) vaccine candidates: BG505 SOSIP.664, 1086.C gp140, and 1086.C gp120 to determine the most promising by comparing their structure and antigenicity. We found that the BG505 SOSIP trimer and 1086.C gp140 clearly outperformed the 1086.C gp120 monomer. BG505 SOSIP.664 bound the strongest to the most potent and broadest broadly neutralizing antibodies (bnAbs) PG9, PGT145, VRC01, and PGT121. Of interest, although BG505 SOSIP.664 did not bind to the CH58 mAb, 1086.C gp140 bound strongly to this mAb, which belongs to a class of non-neutralizing antibodies that may be protective based on correlates of protection studies of the RV144 HIV vaccine trial. The 1086.C gp120 monomer was the least antigenic of the three vaccine immunogens, binding the weakest to bnAbs and CH58 mAb. Taken together, the evidence provided here combined with previous preclinical immunogenicity and efficacy data strongly argue that the BG505 SOSIP.664 trimer and 1086.C gp140 are likely to be better vaccine immunogens than the monomeric 1086.C gp120, which was just recently tested and shown to be nonefficacious in a phase IIb/III trial. Thus, to best utilize our financial and valuable human resources, we propose a systematic approach by not only comparing structure and antigenicity, but also immunogenicity and efficacy of Env vaccine candidates in the preclinical phase to the selection of only the most promising vaccine candidates for clinical testing.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Maria M. Garcia
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Naylene Rivera
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Mark J. Cayabyab
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
An C, Hu W, Gao J, Ju BF, Obeidy P, Zhao YC, Tu X, Fang W, Ju LA, Chen W. Ultra-stable Biomembrane Force Probe for Accurately Determining Slow Dissociation Kinetics of PD-1 Blockade Antibodies on Single Living Cells. NANO LETTERS 2020; 20:5133-5140. [PMID: 32530632 DOI: 10.1021/acs.nanolett.0c01360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immune checkpoint blockade with monoclonal antibodies (mAbs) that target programmed cell death protein-1 (PD-1) has remarkably revolutionized cancer therapy. Their binding kinetics measured by surface plasmon resonance does not always correlate well with their immunotherapeutic efficacies, mainly due to the lack of two-dimensional cell plasma membrane and the capability of force sensing and manipulation. In this regard, based on a more suitable and ultra-sensitive biomechanical nanotool, biomembrane force probe (BFP), we developed a Double-edge Smart Feedback control system as an ultra-stable platform to characterize ultra-long bond lifetimes of receptor-ligand binding on living cells. We further benchmarked the dissociation kinetics for three clinically approved PD-1 blockade mAbs (Nivolumab, Pembrolizumab, and Camrelizumab), intriguingly correlating well with the objective response rates in the hepatocellular carcinoma second-line treatment. This ultra-stable BFP potentially provides a compelling kinetic platform to direct the screening, optimization, and clinical selection of therapeutic antibodies in the future.
Collapse
Affiliation(s)
- Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Jie Gao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Bing-Feng Ju
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
| | - Peyman Obeidy
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
| | - Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310000
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales Australia, 2006
- Heart Research Institute, Newtown, New South Wales Australia, 2042
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory for Biomedical Engineering of Ministry of Education, and School of Mechanical Engineering, Zhejiang University, Hangzhou, China, 310058
- State Key Laboratory for Modern Optical Instrumentation and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|