1
|
Zhang Y, Mi F, Zhao Y, Geng P, Zhang S, Song H, Chen G, Yan B, Guan M. Multifunctional nanozymatic biosensors: Awareness, regulation and pathogenic bacteria detection. Talanta 2025; 292:127957. [PMID: 40154048 DOI: 10.1016/j.talanta.2025.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
It is estimated that approximately 700,000 fatalities occur annually due to infections attributed to various pathogens, which are capable of dissemination via multiple environmental vectors, including air, water, and soil. Consequently, there is an urgent need to enhance and refine rapid detection technologies for pathogens to prevent and control the spread of associated diseases. This review focuses on applying nanozymes in constructing biosensors, particularly their advancement in detecting pathogenic bacteria. Nanozymes, which are nanomaterials exhibiting enzyme-like activity, combine unique magnetic, optical, and electronic properties with structural diversity. This blend of characteristics makes them highly appealing for use in biocatalytic applications. Moreover, their nanoscale dimensions facilitate effective contact with pathogenic bacteria, leading to efficient detection and antibacterial effects. This article briefly summarizes the development, classification, and strategies for regulating the catalytic activity of nanozymes. It primarily focuses on recent advancements in constructing biosensors that utilize nanozymes as probes for sensitively detecting pathogenic bacteria. The discussion covers the development of various optical and electrochemical biosensors, including colorimetric, fluorescence, surface-enhanced Raman scattering (SERS), and electrochemical methods. These approaches provide a reliable solution for the sensitive detection of pathogenic bacteria. Finally, the challenges and future development directions of nanozymes in pathogen detection are discussed.
Collapse
Affiliation(s)
- Yiyao Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Yajun Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Shan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Han Song
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guotong Chen
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Bo Yan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
2
|
Kumar A, Mishra S, Gupta RK, Manjuladevi V. Synergistic detection of E. coli using ultrathin film of functionalized graphene with impedance spectroscopy and machine learning. Sci Rep 2025; 15:15177. [PMID: 40307277 PMCID: PMC12043823 DOI: 10.1038/s41598-025-00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Bacterial detection and classification are critical challenges in healthcare, environmental monitoring, and food safety, demanding selective and efficient methods. This study presents a novel, label-free approach for E. coli detection using ultrathin Langmuir-Blodgett films of octadecylamine functionalized (ODA)-functionalized graphene on gold electrodes, with a detection range spanning [Formula: see text] colony-forming units/mL (CFU/mL). Electrochemical impedance spectroscopy (EIS) was performed on six bacterial strains, representing Gram-negative and Gram-positive classes, to evaluate selectivity. The method achieved a remarkably low detection limit of 2.5 CFU/mL for E. coli, with its EIS spectra exhibiting distinct features compared to other bacterial strains. The pronounced differences enabled perfect classification using the Bagging Classifier, achieving no false positives. Machine learning (ML) algorithms applied to raw impedance data improved detection precision and reliability, enabling automated and accurate analysis. These findings establish a robust framework for rapid and selective E. coli detection, crucial for ensuring food and water safety. The integration of ML significantly improves detection accuracy, reduces analysis time, and minimizes human error, paving the way for scalable, cost-effective diagnostic tools for diverse biological and environmental applications.
Collapse
Affiliation(s)
- Amrit Kumar
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS PILANI), Rajasthan, 333031, India
| | - Shweta Mishra
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS PILANI), Rajasthan, 333031, India
| | - R K Gupta
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS PILANI), Rajasthan, 333031, India.
| | - V Manjuladevi
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS PILANI), Rajasthan, 333031, India
| |
Collapse
|
3
|
Chen X, Peng R, Wang RQ, Du K. Sheath-enhanced concentration and on-chip detection of bacteria from an extremely low-concentration level. LAB ON A CHIP 2025; 25:2157-2167. [PMID: 39688032 DOI: 10.1039/d4lc00698d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Microfluidic-based sheath flow focusing methods have been widely used for efficiently isolating, concentrating, and detecting pathogenic bacteria for various biomedical applications due to their enhanced sensitivity and exceptional integration. However, such a microfluidic device usually needs complicated device fabrication and sample dilution, hampering the efficient and sensitive identification of target bacteria. In this study, we develop and fabricate a sheath-assisted and pneumatic-induced nano-sieve device for achieving the improved on-chip concentration and sensitive detection of Staphylococcus aureus (MRSA). The optimized nanochannel design with diverging configuration is beneficial to the regulation of the hydrodynamic flow while the sheath flow is focusing the sample to the confined region as expected. Per the experimental finding, a high flow ratio (sheath flow/sample flow) presents enhanced target concentration by comparing with a low flow ratio. With this setup, MRSA bacteria with an extremely low concentration of ∼100 CFU mL-1 are successfully and sensitively detected under a fluorescence microscope, less than 30 min, demonstrating a reliable sheath-enhanced concentration and on-chip detection for target bacteria. Additionally, the theoretical model introduced here further rationalizes the working principle of our nano-sieve device, potentially guiding the optimization of next generation devices for highly sensitive and accurate on-chip bacteria detection at a much lower concentration level below 100 CFU mL-1.
Collapse
Affiliation(s)
- Xinye Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507, USA.
| | - Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507, USA.
| | - Ruo-Qian Wang
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507, USA.
| |
Collapse
|
4
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025; 17:9619-9651. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
5
|
Suzuki H, Tong G, Nath P, Hiruta Y, Citterio D. Origami Paper-Based Immunoassay Device with CRISPR/Cas12a Signal Amplification. ACS Sens 2025; 10:1811-1821. [PMID: 40059372 DOI: 10.1021/acssensors.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In clinical diagnosis, the determination of target proteins at low concentration levels is generally performed by immunoassays, such as the enzyme-linked immunosorbent assay (ELISA), which is a time-consuming process. To date, paper-based ELISA platforms enabling faster and less expensive analysis have been developed, but their important issue for clinical applications is the limited sensitivity compared to conventional ELISA. To address this challenge, this paper introduces a simple, rapid, and highly sensitive detection method for non-nucleic acid targets achieved by integrating the CRISPR/Cas12a system into paper-based ELISA. An origami-type paper-based device enabling simple assay operation has been designed, and the detection of targets on the paper substrates is based on observing the fluorescence signal induced by the CRISPR/Cas12a enzyme cleaving a probe single-stranded DNA (ssDNA) labeled with fluorophore and quencher (FQ reporter). To enhance sensitivity, antibodies labeled with a network of multiple DNA activating the CRISPR/Cas12a enzyme have been utilized as detection antibodies. As a result, the developed device successfully boosted the detection sensitivity for both human IgG and the hepatitis B virus surface antigen (HBsAg). In particular, the limit of detection (LOD) for HBsAg was estimated to be 12 pg/mL, representing over 10-fold higher sensitivity compared with commercially available HBsAg ELISA kits (LOD: 200 pg/mL). In addition, the fluorescence response toward porcine whole blood samples containing different HBsAg concentrations was also confirmed by capturing images with a smartphone, followed by quantitative data analysis. These results demonstrate the potential applicability of the proposed platform for clinical tests at the point of care.
Collapse
Affiliation(s)
- Hikaru Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Guodong Tong
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pabitra Nath
- Department of Physics, Tezpur University, Napaam, Sonitpur, Tezpur, Assam 784028, India
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Niu X, Ma Y, Li H, Sun S, Shi L, Yan J, Luan D, Zhao Y, Bian X. A Dual-Recognition Electrochemical Sensor Using Bacteria-Imprinted Polymer and Concanavalin A for Sensitive and Selective Detection of Escherichia coli O157:H7. Foods 2025; 14:1099. [PMID: 40238203 PMCID: PMC11989128 DOI: 10.3390/foods14071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The accurate detection and quantification of pathogenic bacteria is crucial for ensuring public health. In this work, we propose a sensitive and selective sandwich electrochemical sensor for detecting Escherichia coli O157:H7 (E. coli O157:H7). The sensor employs a dual-recognition strategy that combines a bacteria-imprinted polymer (BIP) and concanavalin A (ConA). The BIP is formed in situ on the electrode surface as the capture probe, while gold nanoparticles co-functionalized with ConA and the electroactive molecule 6-(ferrocenyl)hexanethiol (Au@Fc-ConA) serve as the signaling probe. When E. coli O157:H7 is present, the bacteria are selectively captured by the BIP. The captured bacteria interact with Au@Fc-ConA through ConA's sugar-binding properties, triggering Fc oxidation and generating a current proportional to the bacterial concentration. The sensor exhibits a linear detection range of 101-105 CFU mL-1 and a low detection limit of 10 CFU mL-1. Additionally, it demonstrates high sensitivity in complex milk samples, detecting E. coli O157:H7 at concentrations as low as 10 CFU mL-1, with recoveries ranging from 94.16% to 110.6%. Even in the presence of a 100-fold higher concentration of E. coli O6, the sensor effectively distinguishes E. coli O157:H7 from it. Moreover, it exhibits high reproducibility with a relative standard deviation of 2%. This study proposes a unique dual recognition strategy that combines simplicity and high performance. This method enables the selective detection of E. coli O157:H7 in real samples, providing a promising tool for food safety monitoring.
Collapse
Affiliation(s)
- Xuejie Niu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Yuanbing Ma
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Hui Li
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Shuang Sun
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Luoyuan Shi
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Juan Yan
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Donglei Luan
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Yong Zhao
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
| | - Xiaojun Bian
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.N.); (Y.M.); (H.L.); (S.S.); (L.S.); (J.Y.); (D.L.); (Y.Z.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
7
|
Zhu J, Hoettges K, Wang Y, Ma H, Song P, Hu Y, Lim EG, Zhang Q. TimePAD─Unveiling Temporal Sequence ELISA Signal by Deep Learning for Rapid Readout and Improved Accuracy in a Microfluidic Paper-Based Analytical Platform. Anal Chem 2025; 97:4515-4523. [PMID: 39960863 DOI: 10.1021/acs.analchem.4c06001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The integration of paper-based microfluidics with deep learning represents a pivotal trend in enhancing diagnostic capabilities. This paper introduces a new approach to improve the performance of a paper-based microfluidic enzyme-linked immunosorbent assay (ELISA) by training the temporal sequence colorimetric data rather than static data conventionally, using deep learning. Traditional deep learning-assisted ELISA analysis methods usually rely on a single snapshot of the reaction at its end, which limits the further improvement of sensitivity and specificity (or accuracy for combined evaluation), as it misses dynamic changes in the reaction over time. In this work, we developed a temporal sequence-enhanced paper analytical device (TimePAD) that captures continuous video data of the ELISA reaction, which contains the dynamic colorimetric changes. With the YOLOv8 deep learning alogrithm and the Rabbit IgG as the model for ELISA assay, we can use the initial 20 min signal instead of waiting for 30 min for full reaction, achieving a 33% reduction in the turnaround time. Moreover, the overall accuracy at 20 min is 94.1%, which is slightly improvement to the 93.5% using a traditional single snapshot method at 30 min. This method not only accelerates result interpretation but also enhances the overall efficiency of diagnostics, making it particularly valuable for time-sensitive point-of-care testing applications. Lastly, to demonstrate its real-world use, we expanded to the disease biomarker cTnI detection and obtained accuracy of 98.1% within only 10 min, compared to 25 min with 97.8% accuracy in traditional methods.
Collapse
Affiliation(s)
- Jia Zhu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- School of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Kai Hoettges
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology-Shenzhen 518000 Shenzhen, China
| | - Haibo Ma
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Yong Hu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130000, China
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Quan Zhang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
8
|
Teriosina A, Barsukov IL, Cartmell A, Powell AK, Stachulski AV, Yates EA. Detection of β-D-glucuronidase activity in environmental samples using 4-fluorophenyl β-D-glucuronide and 19F NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2015-2020. [PMID: 39945190 DOI: 10.1039/d4ay01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Common methods for establishing the presence of enteric bacteria polluting water supplies, or in other samples, rely on detecting the hydrolysis of model glucuronide substrates by glucuronidases to release a phenolic product quantifiable by absorbance or fluorescence. Substrates include the β-D-glucuronides of p-nitrophenol, and umbelliferyl or quercetin derivatives. One limitation is that it may be difficult or impossible to quantify the released phenolic moiety in samples that are strongly coloured or, that contain fluorescent compounds. Exploiting the sensitivity available from the 19F nucleus to changes in chemical environment which can be detected by 19F NMR spectroscopy, and the almost complete absence of 19F from naturally-occurring samples containing organic matter, which provides background-free signals, we propose a model substrate; 4-fluorophenyl β-D-glucuronide (4FP-glucuronide). The 19F NMR chemical shift position of 4FP-glucuronide changes from -121.0 ppm upon hydrolysis to release 4-fluorophenol, at -124.9 ppm (at pH 6.8), enabling detection of β-glucuronidase activity. We illustrate the use of this substrate with environmental samples from forest soil, standing water, and mud from cattle pasture. Each of these would challenge conventional methods, owing to their opacity or the presence of coloured organic material. The technique enables detection of glucuronidases, a widely-used proxy for enteric bacteria, extending the scope of testing beyond water to include environmental and other challenging samples.
Collapse
Affiliation(s)
- Aleksandra Teriosina
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Igor L Barsukov
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| | - Alan Cartmell
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | | | - Edwin A Yates
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Wang Y, Zhang Z, Sun Y, Wu H, Luo L, Song Y. Recent Advances in Surface-Enhanced Raman Scattering for Pathogenic Bacteria Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1370. [PMID: 40096117 PMCID: PMC11902806 DOI: 10.3390/s25051370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Bacterial infection is one of the common infectious diseases in clinical practice, and the research on efficient detection of bacteria has attracted much attention in recent years. Currently, the traditional detection methods of bacteria are mainly based on cell culturing, microscopic examination, and molecular biology techniques, all of which have the disadvantages of complex operation and time-consuming. Surface-enhanced Raman spectroscopy (SERS) technology has shown prominent advantages in bacterial detection and identification because of the merit of high-sensitivity, fast detection and unique molecular fingerprint spectrum. This paper mainly investigates and discusses the application of SERS in bacterial detection, and systematically reviews the progress of SERS applications, including nano-enhanced dielectric materials of SERS, signal amplification of SERS labeled molecules, and the integration of SERS with microfluidic technology. Finally, the paper analyzes the challenges associated with the application of SERS in bacterial detection and offers insights into future development trends.
Collapse
Affiliation(s)
- Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Zhiqiang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| |
Collapse
|
10
|
Zhang S, Zhu W, Zhang X, Mei L, Liu J, Wang F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr 3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136655. [PMID: 39603133 DOI: 10.1016/j.jhazmat.2024.136655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
With the growing global concern over food safety, the rapid detection and disinfection of foodborne pathogens have become critical in public health. This study presents a novel machine learning-driven fluorescent sensor array utilizing aqueous CsPbBr3 perovskite quantum dots (PQDs) for the rapid identification and eradication of foodborne pathogens. The relative signal intensity changes (ΔRGB) generated by the sensor array were analyzed using the machine learning algorithm-Support Vector Machine (SVM). The study achieved the identification and recognition of five pathogens and their mixtures within a concentration range of 1.0 × 103 to 1.0 × 107 CFU/mL with an accuracy rate of 100 %, and the limits of detection (LOD) for the pathogens were found to be low. Additionally, the array also showed excellent performance in the identification of pathogens in tap water, achieving an accuracy rate of 100 %. Furthermore, the fluorescent sensor array was capable of inactivating the pathogens with an efficiency of over 99 % within 30 min post-detection. This development provides an efficient and reliable tool for the field of food safety detection.
Collapse
Affiliation(s)
| | - WeiWei Zhu
- Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- Hefei University of Technology, Hefei 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- Hefei University of Technology, Hefei 230009, China.
| | - Fangbin Wang
- Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Cui S, Wang K, Yang Y, Lv X, Li X. An integrated and paper-based microfluidic system employing LAMP-CRISPR and equipped with a portable device for simultaneous detection of pathogens. Anal Bioanal Chem 2025; 417:785-797. [PMID: 39710780 DOI: 10.1007/s00216-024-05693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Point-of-care testing methods are essential for the large-scale diagnosis and monitoring of bacterial infections. This study introduces an integrated platform designed for the simultaneous detection of pathogenic bacteria. Users can simply inject samples into the system, which then conducts the entire procedure in a fully automated manner, eliminating the need for external power sources, all within 60 min or less. The innovative paper-based microfluidic system is capable of lysing bacteria and integrating loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12a system, achieving this with minimal reagent usage on a single piece of paper. The reaction reagents are pre-fabricated as freeze-dried powder on the paper, allowing for long-term storage. A portable and cost-effective detection device has been designed to provide stable temperature control and analyze fluorescent signals, complementing the paper-based microfluidic system. This compact device measures 150 × 150 × 100 mm, weighs less than 1.8 kg, has an average power consumption of under 15 W, and supports external power supply. The device utilizes non-contact QR codes for information transmission, ensuring functionality even in areas without Internet connectivity. This platform is capable of simultaneously detecting five typical pathogenic microorganisms, with a detection limit of 1 copy/μL. It boasts several advantages, including miniaturization, lightweight design, low power consumption, portability, affordability, rapid detection, and ease of operation, making it highly suitable for on-site detection.
Collapse
Affiliation(s)
- Siqi Cui
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Kun Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuanzhan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
12
|
Xu Y, Zhu J, Liu R, Jiang F, Chen M, Kutsanedzie FYH, Jiao T, Wei J, Chen XM, Chen Q. Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of Staphylococcus aureus in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1589-1597. [PMID: 39748628 DOI: 10.1021/acs.jafc.4c09799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Staphylococcus aureus (S. aureus) is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk. The specific nuc gene (nuc T) from S. aureus was initially amplified through PCR and subsequently captured via the nanogap effect of I- and Mg2+-mediated bimetallic gold and silver nanoflowers (Au/Ag FL@I--Mg2+). These nanogaps generate hotspots for the direct signal amplification of enclosed nuc T. Subsequently, machine-learning tools were used to comparatively analyze the collected SERS signals. The bootstrapping soft shrinkage-partial least-squares method exhibited superior performance (root mean-square error of prediction: 0.437, prediction set correlation coefficient: 0.967). This study demonstrated a novel label-free strategy for specifically detecting S. aureus. The strategy could be advanced to serve as a platform for application to other types of foodborne pathogenic bacteria by engineering a suitable specific primer.
Collapse
Affiliation(s)
- Yi Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jiaji Zhu
- School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Rui Liu
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Fangling Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Felix Y H Kutsanedzie
- Research and Innovation Centre/Mechanical Engineering Department, Accra Technical University, Accra 00233, Ghana
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
13
|
Lian Z, Li C, Wang Y, Tan L, Yu M, Xiao L, He L, Gao W, Liu Y, Ma Y, Hu J, Luo X, Li A. Tetraphenylethene-Based Covalent Organic Polymers with Aggregation-Induced Electrochemiluminescence for Highly Sensitive Bacterial Biosensors. Anal Chem 2024; 96:18690-18698. [PMID: 39530416 DOI: 10.1021/acs.analchem.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tetraphenylethene (TPE), which usually serves as aggregation-induced emission and aggregation-induced electrochemiluminescence fluorophores, has been widely applied in fabricating fluorescent nanomaterials and biosensors. However, it is still a tremendous challenge to prepare well-controlled TPE aggregates with strong fluorescence (FL) and electrochemiluminescence (ECL). In this study, we constructed a bacterial ECL biosensing platform with high sensitivity based on TPE-based covalent organic polymer (COP) nanoparticles synthesized by a simple Menschutkin reaction strategy to employ bromide group-carrying molecules and 1,1,2,2-tetrakis(4-(pyridine-4-yl)phenyl)ethene as the cross-linking agent and the emissive moiety, respectively. The ECL Escherichia coli biosensor had high sensitivity, a low limit of detection (0.19 CFU mL-1), a wide linear range (1 × 102-5 × 106 CFU mL-1), and good selectivity. The excellent properties of the bacterial biosensor could be attributed to the uniform spherical COP nanoparticles with enhanced FL and ECL signals, the maximal ECL efficiency of which was 8.4-fold higher than that of the typical tris(bipyridine) ruthenium(II) emitter. The FL and ECL intensities of the TPE-based COP nanoparticles could be adjusted by varying bromide group-carrying molecules and thus regulating their energy gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbitals. The TPE-based COP nanoparticles with strong FL and ECL intensities pave a promising avenue to construct highly sensitive bacterial ECL biosensors for the large-scale screening of disease-causing bacteria.
Collapse
Affiliation(s)
- Ziqi Lian
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Changmao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Li Tan
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Meng Yu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ling Xiao
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Linli He
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Wenjing Gao
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Yuchan Liu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jianqiang Hu
- School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Xiang Luo
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, Ganzhou 342400, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Zangenehzadeh S, Agocs E, Schröder F, Amroun N, Biedendieck R, Jahn D, Günther A, Zheng L, Roth B, Johannes HH, Kowalsky W. Polarization modulated spectroscopic ellipsometry-based surface plasmon resonance biosensor for E. coli K12 detection. Sci Rep 2024; 14:27046. [PMID: 39511384 PMCID: PMC11544225 DOI: 10.1038/s41598-024-78535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
In this work, we report on the application of the polarization modulated spectroscopic ellipsometry-based surface plasmon resonance method for sensitive detection of microorganisms in Kretschmann configuration. So far, rotating analyzer and single wavelength polarization modulation methods have widely been investigated for phase sensitive surface plasmon resonance measurement. In this study, a much simpler optical setup relying on fast electro-optic phase modulator crystals is introduced for bacteria detection. A beta barium borate crystal connected to a function generator is adapted for generating phase shifts in the millisecond regime to extract the ellipsometric angles ( Ψ and Δ ) under the surface plasmon resonance condition. For detection, the gold surface was functionalized with anti-Escherichia coli antibodies, and E. coli K12 was attached to them. We show that polarization modulated spectroscopic ellipsometry achieves a refractive index resolution in the order of 10 - 5 RIU, and a limit of detection of 10 2 CFU/mL for E. coli K12 which is compatible with other surface plasmon resonance based phase sensitive methods with more complex detection concepts. As a follow-up step, an optical model can be developed to enhance this biosensor's performance, and applications for sorting and detecting other biological targets will be investigated.
Collapse
Affiliation(s)
- Soraya Zangenehzadeh
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
| | - Emil Agocs
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
| | - Fenja Schröder
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
| | - Nassima Amroun
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Brunswick, 38106, Germany
| | - Dieter Jahn
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Brunswick, 38106, Germany
| | - Axel Günther
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
| | - Lei Zheng
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hannover, 30167, Germany
| | - Bernhard Roth
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hannover, 30167, Germany
| | - Hans-Hermann Johannes
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany.
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany.
| | - Wolfgang Kowalsky
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Brunswick, 38106, Germany
- Cluster of Excellence PhoenixD, Hannover, 30167, Germany
| |
Collapse
|
15
|
Zhang W, Liu S, Jiang S, Zhang J, Ma H, Xu L, Yang M, Ma D, Jiao Q, Tan X. Three-dimensional composite substrate based on pyramidal pitted silicon array adhered Au@Ag nanospheres for high-performance surface-enhanced Raman scattering. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4303-4316. [PMID: 39678116 PMCID: PMC11636458 DOI: 10.1515/nanoph-2024-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 12/17/2024]
Abstract
As a noninvasive and label-free optical technique, Raman spectroscopy offers significant advantages in studying the structure and properties of biomacromolecules, as well as real-time changes in cellular molecular structure. However, its practical applications are hindered by weak scattering responses, low signal intensity, and poor spectral uniformity, which affect the subsequent accuracy of spectral analysis. To address these issues, we report a novel surface-enhanced Raman scattering (SERS) substrate based on a pyramidal pitted silicon (PPSi) array structure adhered with Au-shell Ag-core nanospheres (Au@Ag NSs). By preparing a highly uniform PPSi array substrate with controllable size and arrangement, and constructing SERS-active Au@Ag NSs on this substrate, a three-dimensional (3D) composite SERS substrate is realized. The enhancement performance and spectral uniformity of 3D composite SERS substrate were examined using crystal violet (CV) and Rhodamine 6G (R6G) molecules, achieving a minimum detectable concentration of R6G at 10-9 M and the analytical enhancement factor (AEF) of 4.2 × 108. Moreover, SERS detection of biological samples with varying concentrations of Staphylococcus aureus demonstrated excellent biocompatibility of the SERS substrate and enabled quantitative analysis of bacterial concentration (R 2 = 99.7 %). Theoretical simulations using finite-difference time-domain (FDTD) analysis were conducted to examine the electromagnetic field distribution of the three-dimensional SERS composite substrate, confirming its local electric field enhancement effect. These experimental and theoretical results indicate that the Au@Ag NSs/PPSi substrate with a regulable pyramidal pitted array is a promising candidate for sensitive, label-free SERS detection in medical and biotechnological applications.
Collapse
Affiliation(s)
- Wei Zhang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Siqi Liu
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Sijia Jiang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Jiahang Zhang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Hongtao Ma
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Liang Xu
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Mingyu Yang
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Ding Ma
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Qingbin Jiao
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| | - Xin Tan
- Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun130033, China
| |
Collapse
|
16
|
Chen Y, Danchana K, Kaneta T. Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay. Anal Bioanal Chem 2024; 416:6679-6686. [PMID: 39375210 PMCID: PMC11541255 DOI: 10.1007/s00216-024-05575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3',5,5'-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes.
Collapse
Affiliation(s)
- Yang Chen
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kaewta Danchana
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Takashi Kaneta
- Department of Chemistry, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
17
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
18
|
Xu S, Lee I, Kwon SJ, Kim E, Nevo L, Straight L, Murata H, Matyjaszewski K, Dordick JS. Split fluorescent protein-mediated multimerization of cell wall binding domain for highly sensitive and selective bacterial detection. N Biotechnol 2024; 82:54-64. [PMID: 38750815 DOI: 10.1016/j.nbt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Eunsol Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Liv Nevo
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Lorelli Straight
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | | | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA.
| |
Collapse
|
19
|
Peng S, Zhang Z, Xin M, Liu D. SERS-based Ag NCs@PDMS flexible substrate combined with chemometrics for rapid detection of foodborne pathogens on egg surface. Mikrochim Acta 2024; 191:612. [PMID: 39305299 DOI: 10.1007/s00604-024-06669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
An innovative method is introduced based on the combination of label-free surface-enhanced Raman scattering with advanced multivariate analysis. This technique allows both quantitative and qualitative assessment of Salmonella typhimurium and Escherichia coli on eggshells. Using silver nanocubes embedded in polydimethylsiloxane, we consistently achieved Raman spectra of bacteria. The stability of the Ag NCs@PDMS substrate is confirmed using rhodamine 6G over 30 days under standard conditions. Principal component analysis (PCA) effectively distinguishes between S. typhimurium and E. coli spectra. Partial least squares regression (PLS) models were developed for quantitative determination of bacteria on egg surfaces, yielding accurate results with minimal error. The S. typhimurium model achieves Rc2 = 0.9563 and RMSEC = 0.601 in calibration, and Rv2 = 0.9113 and RMSEV = 0.907 in validation. Similarly, the E. coli model achieves Rc2 = 0.9877 and RMSEC = 0.322 in calibration, and Rv2 = 0.9606 and RMSEV = 0.579 in validation. Recoveries validate PLS predictions by inoculating egg surfaces with varying bacterial amounts. Our study demonstrates the feasibility of SERS-PLS for quantitative determination of S. typhimurium and E. coli on eggshells, promising enhanced food safety protocols.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Mingwei Xin
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
20
|
Lewińska I, Bącal P, Tymecki Ł. Hydrogen peroxide stabilization with silica xerogel for paper-based analytical devices and its application to phenolic compounds determination. Anal Chim Acta 2024; 1320:343028. [PMID: 39142793 DOI: 10.1016/j.aca.2024.343028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide. RESULTS The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine. SIGNIFICANCE The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.
Collapse
Affiliation(s)
- Izabela Lewińska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| | - Paweł Bącal
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Łukasz Tymecki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
21
|
Li X, Li X, Chen J, Tan Z, Wang C. ICP-MS based detection method combined with Au NP and Ag NP labeling for bacteremia diagnosis. Anal Biochem 2024; 692:115559. [PMID: 38723993 DOI: 10.1016/j.ab.2024.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Bacteremia, as a serious infectious disease, has an increasing incidence and a high mortality rate. Early diagnosis and early treatment are crucial for improving the cure rate. In this work, we proposed an inductively coupled plasma mass spectrometry (ICP-MS)-based detection method combined with gold nanoparticle (Au NP) and silver nanoparticle (Ag NP) labeling for the simultaneous detection of Salmonella and Escherichia coli (E. coli O157:H7) in human blood samples. Salmonella and E. coli O157:H7 were captured by magnetic beads coupled with anti-8G3 and anti-7C2, and then specifically labeled by Au NP-anti-5H12 and Ag NP-anti-8B1 respectively, which were used as signal probes for ICP-MS detection. Under the optimal experimental conditions, the limits of detection of 164 CFU mL-1 for Salmonella, 220 CFU mL-1for E. coli O157:H7 and the linear ranges of 400-80,000 CFU mL-1Salmonella, 400-60,000 CFU mL-1 E. coli O157:H7 were obtained. The proposed method can realize the simultaneous detection of two types of pathogenic bacteria in human whole blood in 3.5 h, showing great potential for the rapid diagnosis of bacteremia in clinic.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Xin Li
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Jiayi Chen
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zuomin Tan
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Chuan Wang
- Department of Science and Education Division, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China.
| |
Collapse
|
22
|
Liu B, Cao J, Hong B, You H, Li T, Yu Z, Li D, Liang B, Gan N. A microfluidic chip platform based on Pt nanozyme and magnetized phage composite probes for dual-mode detecting and imaging pathogenic bacteria viability. Talanta 2024; 275:126067. [PMID: 38640522 DOI: 10.1016/j.talanta.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.
Collapse
Affiliation(s)
- Bailu Liu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Jingya Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Binxin Hong
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Hang You
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Tianhua Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Dengfeng Li
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, China; Ningbo Fotile Kitchenware Co., Ltd., Ningbo, Zhejiang 315336, China.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| |
Collapse
|
23
|
Wang X, Zhang H, Li H, Ding Y, Li J, Zhao C, Yao S. A smartphone-enabled colorimetric platform based on enzyme cascade amplification strategy for detection of Staphylococcus aureus in milk. J Dairy Sci 2024; 107:5438-5448. [PMID: 38608956 DOI: 10.3168/jds.2023-24439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Staphylococcus aureus is a pathogenic bacterium contaminating milk and dairy foods causing food poisoning and foodborne pathogens. In this work, a smartphone-enabled enzyme cascade-triggered colorimetric platform was constructed using a cascade bio-nanozyme formed by immobilized glucose oxidase (GOx) on Fe3O4@Ag for rapid detection of S. aureus. Benefiting from reasonable experimental design, a bio-nanozyme cascade-triggered reaction was achieved through H2O2 produced by GOx oxidation of glucose, followed by in situ catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) by the inherent peroxidase-like activity of Fe3O4@Ag to produce color signals. Staphylococcus aureus detection could be performed through naked-eye observation and smartphone measurement, and the developed assay can achieve quantitative and qualitative detection of S. aureus. The on-site nanoplatform had satisfactory specificity and sensitivity with a low detection limit of 6.9 cfu·mL-1 in 50 min. Moreover, the nanoplatform has good practicality in the detection of S. aureus in milk samples. Therefore, the assay has potential application prospects in food safety inspection.
Collapse
Affiliation(s)
- Xuechen Wang
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Huiqian Zhang
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Hang Li
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Yukun Ding
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Shao Y, Li X, Qi X, Li J, Zhao S, Sun P, Wang H, Cheng Y, Zhang Z, Chen L, Zhang X, Zhu M. A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal Chim Acta 2024; 1314:342781. [PMID: 38876519 DOI: 10.1016/j.aca.2024.342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Juan Li
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Sheng Zhao
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Peiyan Sun
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
25
|
Sogore T, Guo M, Sun N, Jiang D, Shen M, Ding T. Microbiological and chemical hazards in cultured meat and methods for their detection. Compr Rev Food Sci Food Saf 2024; 23:e13392. [PMID: 38865212 DOI: 10.1111/1541-4337.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.
Collapse
Affiliation(s)
- Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Meimei Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donglei Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| |
Collapse
|
26
|
Saleh EAM, Ali E, Muxamadovna GM, Kassem AF, Kaur I, Kumar A, Jabbar HS, Alwaily ER, Elawady A, Omran AA. CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3448-3463. [PMID: 38804827 DOI: 10.1039/d4ay00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | | | - Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Yekaterinburg 620002, Russia
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Alaa A Omran
- Department of Engineering, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
27
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
28
|
Qu X, Zhou P, Shi B, Zheng Y, Kan L, Jiang L. A sandwich-structured multifunctional platform based on self-assembled Ti 3C 2T x@Au NPs films, antibiotics, and silent region SERS probe for the capture, determination, and drug resistance analysis of Gram-positive bacteria. Mikrochim Acta 2024; 191:305. [PMID: 38713444 DOI: 10.1007/s00604-024-06387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.
Collapse
Affiliation(s)
- Xiangwen Qu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Pengwei Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Boya Shi
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Yekai Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Lian Kan
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
29
|
Wu W, Zhao Q, Zhang B. Viable Escherichia coli enumeration on a polydimethylsiloxane (PDMS) chip with vertical channel-well configuration. Mikrochim Acta 2024; 191:241. [PMID: 38573377 DOI: 10.1007/s00604-024-06338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The culture-based methods for viable Escherichia coli (E. coli) detection suffer from long detection time and laborious procedures, whereas the molecule tests and immune recognition technologies lack live/dead E. coli differentiation. Rapid, easy-to-use, and accessible viable E. coli detection is of benefit to bacterial infection diagnosis and risk warning of E. coli contamination of water and food, safeguarding human health. Herein, we propose a microwell chip-based solution to realize simple and rapid determination of viable E. coli. The vertical channel-well configuration is applied to develop the microwell array chip for increasing the microwell density (6200 wells/cm2), yielding a broad dynamic range from 103 to 107 CFU/mL. We incorporate an inducible enzyme assay with the developed chip and achieve the differentiation of live/dead E. coli within 4 h, significantly shortening the detection time from over 24 h in the standard method. By encapsulating single E. coli into microwells, the concentration of viable cells can be determined simultaneously through counting positive microwells. In addition, the air soluble PDMS that can store negative pressure for independent sample digitalization endows the developed chip with simple operation and less reliance on external equipment. With further developments for increasing the number of microwell and integrating more sample panels, the developed chip can become a useful tool for rapid viable E. coli enumeration with user-friendly operation, simple procedures, and accessibility in decentralized settings, thereby deploying this device for water and food safety monitoring, as well as clinical bacterial infection diagnosis.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin, 300131, China
| | - Boran Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
30
|
Turanoglu B, Omeroglu MA, Baltaci MO, Adiguzel G, Adiguzel A. Determination of foodborne pathogens in minced beef by real-time PCR without culture enrichment. J Microbiol Methods 2024; 219:106896. [PMID: 38341180 DOI: 10.1016/j.mimet.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/27/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Meat provides the necessary environment for the growth of foodborne pathogens due to its features such as being rich in protein and having sufficient water activity. Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157:H7, which can be transmitted through many foods, including water, and cause serious diseases, are among the significant pathogens. In the current study. Detection of Listeria monocytogenes, Escherichia coli and Salmonella enterica in 100 minced beef samples collected from different butchers and markets situated in the central districts of Erzurum province was performed by Real-Time PCR without pre-enrichment and DNA isolation. Linear regression equations of Ct values of standard pathogenic bacteria were created. Ct values of minced beef samples obtained as a result of Real-Time PCR analysis were substituted in the equations, and the amounts of pathogenic bacteria in the samples were determined. Listeria monocytogenes, Escherichia coli, and Salmonella enterica were detected in 45, 30, and 29 of 100 minced beef samples, respectively. It is known that the Real-Time PCR method, which is used to detect pathogenic bacteria, is more specific, fast, and reliable than conventional methods. According to the results obtained, it has been clearly observed that with our new approach, pathogenic bacteria growing on foods can be detected sensitively with less cost, shorter amount of time, and minimized workload without pre-enrichment and DNA isolation.
Collapse
Affiliation(s)
- Busra Turanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Akif Omeroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Gulsah Adiguzel
- Department of Food Science and Technology, Faculty of Veterinary Science, Ataturk University, Erzurum, Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
31
|
Pan B, El-Moghazy AY, Norwood M, Nitin N, Sun G. Rapid and Ultrasensitive Colorimetric Biosensors for Onsite Detection of Escherichia coli O157:H7 in Fluids. ACS Sens 2024; 9:912-922. [PMID: 38320289 PMCID: PMC10897931 DOI: 10.1021/acssensors.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
This study presents a breakthrough in the field of onsite bacterial detection, offering an innovative, rapid, and ultrasensitive colorimetric biosensor for the detection of Escherichia coli (E. coli) O157:H7, using chemically modified melamine foam (MF). Different from conventional platforms, such as 96-well plates and fiber-based membranes, the modified MF features a macroporous reticulated three-dimensional (3D) framework structure, allowing fast and free movement of large biomolecules and bacteria cells through the MF structure in every direction and ensuring good accessibility of entire active binding sites of the framework structure with the target bacteria, which significantly increased sensitive and volume-responsive detection of whole-cell bacteria. The biosensing platform requires less than 1.5 h to complete the quantitative detection with a sensitivity of 10 cfu/mL, discernible by the naked eye, and an enhanced sensitivity of 5 cfu/mL with the help of a smartphone. Following a short enrichment period of 1 h, the sensitivity was further amplified to 2 cfu/mL. The biosensor material is volume responsive, making the biosensing platform sensitivity increase as the volume of the sample increases, and is highly suitable for testing large-volume fluid samples. This novel material paves the way for the development of volume-flexible biosensing platforms for the record-fast, onsite, selective, and ultrasensitive detection of various pathogenic bacteria in real-world applications.
Collapse
Affiliation(s)
- Bofeng Pan
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| | - Ahmed Y. El-Moghazy
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Makela Norwood
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| | - Nitin Nitin
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Gang Sun
- Biological
and Agricultural Engineering, University
of California, Davis, California 95616, United States
| |
Collapse
|
32
|
Shirzad H, Panji M, Nezhad SAM, Houshmand P, Tamai IA. One-pot rapid visual detection of E. coli O157:H7 by label-free AuNP-based plasmonic-aptasensor in water sample. J Microbiol Methods 2024; 217-218:106858. [PMID: 38040292 DOI: 10.1016/j.mimet.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.
Collapse
Affiliation(s)
- Hadi Shirzad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Mohammad Panji
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Pouya Houshmand
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
33
|
Mukae T, Yoshii K, Oishi I. Application of Recombinant Monoclonal Antibodies from Transgenic Chicken Bioreactors in Enzyme-Linked Immunosorbent Assay. Biol Pharm Bull 2024; 47:1532-1541. [PMID: 39313389 DOI: 10.1248/bpb.b24-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Transgenic chicken bioreactors can efficiently produce egg whites containing large quantities of recombinant proteins. We previously developed transgenic chickens that produce recombinant monoclonal antibodies (mAbs) against epidermal growth factor receptor 2 (HER2). However, the practical applications of mAbs derived from transgenic eggs have not yet been examined. Therefore, we aimed to evaluate whether these recombinant mAbs can be used in enzyme-linked immunosorbent assay (ELISA). Recombinant HER2 mAbs from transgenic eggs were dissolved in phosphate-buffered saline and applied directly to 96-well microplates as immobilized antibodies without purification. The performance of ELISA using the unpurified recombinant HER2 mAbs from transgenic eggs was comparable to that of ELISA using commercially available purified recombinant HER2 mAbs. Moreover, ELISA using unpurified recombinant HER2 mAbs from transgenic eggs demonstrated high antigen specificity and was successfully applied to samples from cultured cell lysates derived from HER2-positive and HER2-negative cell lines. The unpurified recombinant HER2 mAbs from transgenic eggs were also efficiently used as immobilized antibodies in paper-based ELISA. In conclusion, our findings suggest that recombinant mAbs from transgenic eggs have the potential to be used to develop economic ELISA devices. To the best of our knowledge, this study is the first to use recombinant HER2 mAbs from transgenic eggs in ELISA.
Collapse
Affiliation(s)
- Takehiro Mukae
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Kyoko Yoshii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Isao Oishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
34
|
Panwar S, Duggirala KS, Yadav P, Debnath N, Yadav AK, Kumar A. Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges. Crit Rev Biotechnol 2023; 43:982-1000. [PMID: 35994308 DOI: 10.1080/07388551.2022.2095253] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
It is a public health imperative to have safe food and water across the population. Foodborne infections are one of the primary causes of sickness and mortality in both developed and developing countries. An estimated 100 million foodborne diseases and 120 000 foodborne illness-related fatalities occur each year in India. Several factors affect foodborne illness, such as improper farming methods, poor sanitary and hygienic conditions at all levels of the food supply chain, the lack of preventative measures in the food processing industry, the misuse of food additives, as well as improper storage and handling. In addition, chemical and microbiological combinations also play a key role in disease development. But recent disease outbreaks indicated that microbial pathogens played a major role in the development of foodborne diseases. Therefore, prompt, rapid, and accurate detection of high-risk food pathogens is extremely vital to warrant the safety of the food items. Conventional approaches for identifying foodborne pathogens are labor-intensive and cumbersome. As a result, a range of technologies for the rapid detection of foodborne bacterial pathogens have been developed. Presently, many methods are available for the instantaneous detection, identification, and monitoring of foodborne pathogens, such as nucleic acid-based methods, biosensor-based methods, and immunological-based methods. The goal of this review is to provide a complete evaluation of several existing and emerging strategies for detecting food-borne pathogens. Furthermore, this review outlines innovative methodologies and their uses in food testing, along with their existing limits and future possibilities in the detection of live pathogens in food.
Collapse
Affiliation(s)
- Surbhi Panwar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | | | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
35
|
Zhang M, Huang X, Wu H. Application of Biological Nanopore Sequencing Technology in the Detection of Microorganisms †. CHINESE J CHEM 2023; 41:3473-3483. [DOI: 10.1002/cjoc.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 01/05/2025]
Abstract
Comprehensive SummaryEnvironmental pollution and the spread of pathogenic microorganisms pose a significant threat to the health of humans and the planet. Thus, understanding and detecting microorganisms is crucial for maintaining a healthy living environment. Nanopore sequencing is a single‐molecule detection method developed in the 1990s that has revolutionized various research fields. It offers several advantages over traditional sequencing methods, including low cost, label‐free, time‐saving detection speed, long sequencing reading, real‐time monitoring, convenient carrying, and other significant advantages. In this review, we summarize the technical principles and characteristics of nanopore sequencing and discuss its applications in amplicon sequencing, metagenome sequencing, and whole‐genome sequencing of environmental microorganisms, as well as its in situ application under some special circumstances. We also analyze the advantages and challenges of nanopore sequencing in microbiology research. Overall, nanopore sequencing has the potential to greatly enhance the detection and understanding of microorganisms in environmental research, but further developments are needed to overcome the current challenges.
Collapse
Affiliation(s)
- Ming‐Qian Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Bin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hai‐Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Yinur D, Moges B, Hassen A, Tessema TS. Loop mediated isothermal amplification as a molecular diagnostic assay: Application and evaluation for detection of Enterohaemorrhagic Escherichia coli (O157:H7). Pract Lab Med 2023; 37:e00333. [PMID: 37693632 PMCID: PMC10492192 DOI: 10.1016/j.plabm.2023.e00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study aimed at evaluating the performance of the Loop Mediated Isothermal Amplification (LAMP) diagnostic test, which targets the putative Fimbria protein-encoding gene (Z3276) for rapid and specific detection of locally isolated enterohemorrhagic Escherichia coli (EHEC) O157:H7. Results A total number of 40 locally available bacteria isolates and standard strains, among them 6 entrohemorrhagic (O157:H7) and 10 entropathogenic E. coli, 7 non diarrheic E. coli strains and 13 non entrohemorrhagic shiga toxic (stx) E. coli isolates as well as 4 pathogenic non E. coli species were used to optimize and evaluate the LAMP assay. The LAMP amplified DNA samples were visualized as turbid DNA both by naked eye and gel electrophoresis followed by staining. The assay had a sensitivity of 100% (6/6), a specificity of 97.05% (33/34), and an efficiency of 97.5% (39/40). The assay was also exhibited with 100% negative predicted value and 85.7% positive predicted value. The LAMP assay was also 10-fold more sensitive than the conventional PCR assay; sensitivity was determined by serial dilution. The results of LAMP and the PCR tests showed very high agreement (k = 0.97) in the detection of the bacteria studied. Conclusion Compared with the performance of PCR and SMAC, LAMP assay was better in terms of efficiency, rapidity and cost-effectiveness, which can be used as a point-care diagnostic test in resource-limited laboratories.
Collapse
Affiliation(s)
- Degisew Yinur
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Biniam Moges
- Department of Biotechnology, Debre Berhan University, Debre Berhan, Ethiopia
| | - Aliyi Hassen
- Department of Biotechnology, Ambo University, Ambo, Ethiopia
| | | |
Collapse
|
37
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
38
|
Huo E, Shahab S, Dang H, Jia Q, Wang M. Triazine-based covalent-organic framework embedded with cuprous oxide as the bioplatform for photoelectrochemical aptasensing Escherichia coli. Mikrochim Acta 2023; 190:407. [PMID: 37731054 DOI: 10.1007/s00604-023-05987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
A superior photoelectrochemical (PEC) aptasensor was manufactured for the detection of Escherichia coli (E. coli) based on a hybrid of triazine-based covalent-organic framework (COF) and cuprous oxide (Cu2O). The COF synthesized using 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformylphloroglucinol (Tp) as building blocks acted as a scaffold for encapsulated Cu2O nanoparticles (denoted as Cu2O@TAPB-Tp-COF), which then was employed as the bioplatform for anchoring E. coli-targeted aptamer. Cu2O@Cu@TAPB-Tp-COF demonstrated enhanced separation of the photogenerated carriers and photoabsorption ability and boosted photoelectric conversion efficiency. The developed Cu2O@TAPB-Tp-COF-based PEC aptasensor exhibited a lower detection limit of 2.5 CFU mL-1 toward E. coli within a wider range of 10 CFU mL-1 to 1 × 104 CFU mL-1 than most of reported aptasensors for determining foodborne bacteria, together with high selectivity, good stability, and superior ability and reproducibility. The recoveries of E. coli spiked into milk and bread samples ranged within 95.3-103.6% and 96.6-102.8%, accompanying with low RSDs of 1.37-4.48% and 1.74-3.66%, respectively. The present study shows a promising alternative for the sensitive detection of foodborne bacteria from complex foodstuffs and pathogenic bacteria-polluted environment.
Collapse
Affiliation(s)
- Erfu Huo
- Henan Chemical Industry Institute Co. Ltd., Zhengzhou, People's Republic of China.
- Quality Inspection and Analytical Test Research Center, Henan Academy of Sciences, Zhengzhou, People's Republic of China.
| | - Siyamak Shahab
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
| | - Hao Dang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
39
|
Toldrà A, Chondrogiannis G, Hamedi MM. A 3D paper microfluidic device for enzyme-linked assays: Application to DNA analysis. Biotechnol J 2023; 18:e2300143. [PMID: 37222181 DOI: 10.1002/biot.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (μEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step. The entrapped complexes then interact with the chromogenic substrate stored on the detection paper, generating a color change on it, quantified with an open-source smartphone software. This is a universal paper-based technology suitable for high-sensitivity quantification of many analytes, such as proteins or nucleic acids, with different enzyme-linked formats. Here, the potential of the μEL-PAD is demonstrated to detect DNA from Staphylococcus epidermidis. After generation of isothermally amplified genomic DNA from bacteria, Biotin/FITC-labeled products were analyzed with the μEL-PAD, exploiting streptavidin-coated beads and antiFITC-horseradish peroxidase. The μEL-PAD achieved a limit of detection (LOD) and quantification <10 genome copies/μL, these being at least 70- and 1000-fold lower, respectively, than a traditional lateral flow assay (LFA) exploiting immobilized streptavidin and antiFITC-gold nanoparticles. It is envisaged that the device will be a good option for low-cost, simple, quantitative, and sensitive paper-based point-of-care testing.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
40
|
Abbas N, Song S, Chang MS, Chun MS. Point-of-Care Diagnostic Devices for Detection of Escherichia coli O157:H7 Using Microfluidic Systems: A Focused Review. BIOSENSORS 2023; 13:741. [PMID: 37504139 PMCID: PMC10377133 DOI: 10.3390/bios13070741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Bacterial infections represent a serious and global threat in modern medicine; thus, it is very important to rapidly detect pathogenic bacteria, such as Escherichia coli (E. coli) O157:H7. Once treatments are delayed after the commencement of symptoms, the patient's health quickly deteriorates. Hence, real-time detection and monitoring of infectious agents are highly critical in early diagnosis for correct treatment and safeguarding public health. To detect these pathogenic bacteria, many approaches have been applied by the biosensors community, for example, widely-used polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), culture-based method, and adenosine triphosphate (ATP) bioluminescence. However, these approaches have drawbacks, such as time-consumption, expensive equipment, and being labor-intensive, making it critical to develop ultra-sensitive and highly selective detection. The microfluidic platform based on surface plasmon resonance (SPR), electrochemical sensing, and rolling circle amplification (RCA) offers proper alternatives capable of supplementing the technological gap for pathogen detection. Note that the microfluidic biochip allows to develop rapid, sensitive, portable, and point-of-care (POC) diagnostic tools. This review focuses on recent studies regarding accurate and rapid detection of E. coli O157:H7, with an emphasis on POC methods and devices that complement microfluidic systems. We also examine the efficient whole-body detection by employing antimicrobial peptides (AMPs), which has attracted growing attention in many applications.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Myung-Suk Chun
- Sensor System Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
- Biomedical Engineering Division, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
41
|
Ming J, Zeng X, Zhou R. Portable biosensor-based oral pathogenic bacteria detection for community and family applications. Anal Bioanal Chem 2023:10.1007/s00216-023-04809-1. [PMID: 37389598 DOI: 10.1007/s00216-023-04809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Detection of oral pathogens is essential in the management of oral diseases, as their occurrence and progression are closely linked to an imbalance in these microorganisms. Detection techniques such as microbial cultures, enzyme-linked immunosorbent assays and polymerase chain reactions are highly dependent on complex testing procedures and specialized laboratory equipment, making prevention and early diagnosis of oral diseases difficult. To comprehensively implement oral disease prevention and early diagnosis in social groups, there is an urgent need for portable testing methods for oral pathogenic bacteria that can be applied in community and home settings. In this review, several common portable biosensors for pathogenic bacteria are first described. Based on the goal of achieving primary prevention and diagnosis of oral diseases, we elaborate and summarize portable biosensors for common oral pathogenic bacteria in terms of how to achieve portability of the technique. This review aims to reflect the current status of portable biosensors for common oral pathogens and to lay the foundation for the further realization of portable detection of oral pathogens.
Collapse
Affiliation(s)
- Jieyu Ming
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
42
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
43
|
Zhu L, Liang Z, Xu Y, Chen Z, Wang J, Zhou L. Ultrasensitive and Rapid Visual Detection of Escherichia coli O157:H7 Based on RAA-CRISPR/Cas12a System. BIOSENSORS 2023; 13:659. [PMID: 37367024 DOI: 10.3390/bios13060659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Escherichia coli (E. coli) O157:H7 is a major foodborne and waterborne pathogen that can threaten human health. Due to its high toxicity at low concentrations, it is crucial to establish a time-saving and highly sensitive in situ detection method. Herein, we developed a rapid, ultrasensitive, and visualized method for detecting E. coli O157:H7 based on a combination of Recombinase-Aided Amplification (RAA) and CRISPR/Cas12a technology. The CRISPR/Cas12a-based system was pre-amplified using the RAA method, which showed high sensitivity and enabled detecting as low as ~1 CFU/mL (fluorescence method) and 1 × 102 CFU/mL (lateral flow assay) of E. coli O157:H7, which was much lower than the detection limit of the traditional real-time PCR technology (103 CFU/mL) and ELISA (104~107 CFU/mL). In addition, we demonstrated that this method still has good applicability in practical samples by simulating the detection in real milk and drinking water samples. Importantly, our RAA-CRISPR/Cas12a detection system could complete the overall process (including extraction, amplification, and detection) within 55 min under optimized conditions, which is faster than most other reported sensors, which take several hours to several days. The signal readout could also be visualized by fluorescence generated with a handheld UV lamp or a naked-eye-detected lateral flow assay depending on the DNA reporters used. Because of the advantages of being fast, having high sensitivity, and not requiring sophisticated equipment, this method has a promising application prospect for in situ detection of trace amounts of pathogens.
Collapse
Affiliation(s)
- Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongtao Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
44
|
Xiao S, Cao C, Ming T, Cao Y, Yu Z, Gan N. Simultaneous and rapid screening of live and dead E. coli O157:H7 with three signal outputs: An all-in-one biosensor using phage-apoferritin@CuO 2 signal tags on MXenes-modified electrode platform. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131875. [PMID: 37343409 DOI: 10.1016/j.jhazmat.2023.131875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Simultaneous detection of live and dead bacteria is a huge challenge for food safety. To solve this issue, an all-in-one biosensor for bacteria was developed using the phage-apoferritin@CuO2 (phage-Apo@CP) probe on an antimicrobial peptide (AMP)/MXenes-modified detection platform. With the specific recognition of AMP and phage-Apo@CP, the biosensor for the target Escherichia coli O157:H7 (E. coli O157:H7) presented multi-mode (bioluminescent, colorimetric, and electrochemical) signals to simultaneously measure live and dead bacteria. The bioluminescent signal caused by the adenosine triphosphate (ATP) from the bacteria was used to quantify live bacteria. The colorimetric and voltammetric signals triggered by ·OH and Cu2+ from the probe with the assistance of acid could rapidly screen and quantitative determination of total E. coli O157:H7 concentration. Thus, the dead one was obtained according to the total and live ones. All three signals could be mutually corrected to improve the accuracy. The biosensor was successfully used for on-site measurement of live and dead E. coli O157:H7 in food samples with the limit of detection of 30 CFU/mL for live ones and 6 CFU/mL for total bacteria within 50 min. This work presents a novel pathway for rapid and simultaneous quantification of both live and dead bacteria.
Collapse
Affiliation(s)
- Shu Xiao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Cong Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Papkovsky DB, Kerry JP. Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094519. [PMID: 37177723 PMCID: PMC10181535 DOI: 10.3390/s23094519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The current status of microbiological testing methods for the determination of viable bacteria in complex sample matrices, such as food samples, is the focus of this review. Established methods for the enumeration of microorganisms, particularly, the 'gold standard' agar plating method for the determination of total aerobic viable counts (TVC), bioluminescent detection of total ATP, selective molecular methods (immunoassays, DNA/RNA amplification, sequencing) and instrumental methods (flow cytometry, Raman spectroscopy, mass spectrometry, calorimetry), are analyzed and compared with emerging oxygen sensor-based respirometry techniques. The basic principles of optical O2 sensing and respirometry and the primary materials, detection modes and assay formats employed are described. The existing platforms for bacterial cell respirometry are then described, and examples of particular assays are provided, including the use of rapid TVC tests of food samples and swabs, the toxicological screening and profiling of cells and antimicrobial sterility testing. Overall, O2 sensor-based respirometry and TVC assays have high application potential in the food industry and related areas. They detect viable bacteria via their growth and respiration; the assay is fast (time to result is 2-8 h and dependent on TVC load), operates with complex samples (crude homogenates of food samples) in a simple mix-and-measure format, has low set-up and instrumentation costs and is inexpensive and portable.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 YT20 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Microbiology Building, College Road, T12 YT20 Cork, Ireland
| |
Collapse
|
46
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
47
|
Qiu S, Liu B, Leng Y, Fox E, Zhou X, Yan B, Sang X, Long K, Fu Y, He X, Yuan J, Farrell G, Wu Q. A label-free fiber ring laser biosensor for ultrahigh sensitivity detection of Salmonella Typhimurium. Biosens Bioelectron 2023; 234:115337. [PMID: 37126876 DOI: 10.1016/j.bios.2023.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The rapid detection of low concentrations of Salmonella Typhimurium (S. Typhimurium) is an essential preventive measure for food safety and prevention of foodborne illness. The study presented in this paper addresses this critical issue by proposing a single mode-tapered seven core-single mode (STSS) fiber ring laser (FRL) biosensor for S. Typhimurium detection. The experimental results show that the specific detection time of S. Typhimurium is less than 20 min and the wavelength shift can achieve -0.906 nm for an S. Typhimurium solution (10 cells/mL). Furthermore, at a lower concentration of 1 cell/mL applied to the biosensor, a result of -0.183 nm is observed in 9% of samples (1/11), which indicates that the proposed FRL biosensor has the ability to detect 1 cell/mL of S. Typhimurium. In addition, the detection results in chicken and pickled pork samples present an average deviation of -27% and -23%, respectively, from the measured results in phosphate buffered saline. Taken together, these results show the proposed FRL biosensor may have potential applications in the fields of food safety monitoring, medical diagnostics, etc.
Collapse
Affiliation(s)
- Shi Qiu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuankui Leng
- State Key Lab Food Sci & Technol, Nanchang University, Nanchang, China
| | - Edward Fox
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Xian Zhou
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Binbin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Keping Long
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yanjun Fu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xingdao He
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China; Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China.
| | - Gerald Farrell
- Photonics Research Centre, School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, Dublin 7, Ireland
| | - Qiang Wu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China; Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
48
|
Liang J, Huang Z, Wang K, Zhang L, Wan Y, Yang T, Zeng H. Ultrasensitive visual detection of the food-borne pathogen via MOF encapsulated enzyme. Talanta 2023; 259:124503. [PMID: 37027932 DOI: 10.1016/j.talanta.2023.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Various methods have been made to achieve sensitive detection (10 CFU/mL) of Escherichia coli O157:H7 (E. coli) in real samples, however, they are complex, time-consuming, or instrument-dependent. Enzyme-catalyzed reactions are one of the most efficient methods to amplify signals for sensitive detection. ZIF-8 owning stability, porosity, and high specific area are suitable for embedding enzymes which can effectively protect enzyme activity and thus improve detection sensitivity. Herein, a simple visual assay of E. coli with the limits of detection of 1 CFU/mL was developed based on this stable enzyme-catalyzed amplified system. A microbial safety test of milk, orange juice, seawater, cosmetic, and hydrolyzed yeast protein, was successfully performed with the limits of detection of 10 CFU/mL by the naked eye. And this bioassay possessed high selectivity and stability making the developed detection method practically promising.
Collapse
|
49
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
50
|
A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers. Anal Chim Acta 2023; 1245:340823. [PMID: 36737129 DOI: 10.1016/j.aca.2023.340823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Cytokines play a very important role in our immune system by acting as mediators to put up a coordinated defense against foreign elements in our body. Elevated levels of cytokines in the body can signal to an ongoing response of the immune system to some abnormality. Thus, the quantification of a panel of cytokines can provide valuable information regarding the diagnosis of specific diseases and state of overall health of an individual. Conventional Enzyme Linked Immunosorbent Assay (ELISA) is the gold-standard for quantification of cytokines, however the need for trained personnel and expensive equipment limits its application to centralized laboratories only. In this context, there is a lack of simple, low-cost and portable devices which can allow for quantification of panels of cytokines at point-of-care and/or resource limited settings. Here, we report the development of a versatile, low-cost and portable bead-based centrifugal microfluidic platform allowing for multiplexed detection of cytokines with minimal hands-on time and an integrated colorimetric signal readout without the need for any external equipment. As a model, multiplexed colorimetric quantification of three target cytokines i.e., Tumor necrosis factor alpha (TNF-α), Interferon gamma (IFN-γ) and Interleukin-2 (IL-2) was achieved in less than 30 min with limits of detection in ng/mL range. The developed platform was further evaluated using spiked-in plasma samples to test for matrix interference. The ease of use, low-cost and portability of the developed platform highlight its potential to serve as a sample-to-answer solution for detection of cytokine panels in resource limited settings.
Collapse
|