1
|
González-Téllez SV, Riquelme M. CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2025; 5:1505388. [PMID: 39926406 PMCID: PMC11803449 DOI: 10.3389/ffunb.2024.1505388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In Saccharomyces cerevisiae, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The Neurospora crassa genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the Δcse-8 knockout strain of N. crassa, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the Δcse-8 strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A Δcse-7;Δcse-8 double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.
Collapse
Affiliation(s)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| |
Collapse
|
2
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
3
|
Varela Salgado M, Piatti S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. J Fungi (Basel) 2024; 10:642. [PMID: 39330402 PMCID: PMC11433133 DOI: 10.3390/jof10090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293 Montpellier, France
| |
Collapse
|
4
|
Roncero C, Celador R, Sánchez N, García P, Sánchez Y. The Role of the Cell Integrity Pathway in Septum Assembly in Yeast. J Fungi (Basel) 2021; 7:jof7090729. [PMID: 34575767 PMCID: PMC8471060 DOI: 10.3390/jof7090729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis, fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities in the assembly of the septa in both yeasts, there are significant mechanistic differences, including the relationship of this process with the cell integrity signalling pathways.
Collapse
|
5
|
Degani G, Popolo L. The Glucan-Remodeling Enzyme Phr1p and the Chitin Synthase Chs1p Cooperate to Maintain Proper Nuclear Segregation and Cell Integrity in Candida albicans. Front Cell Infect Microbiol 2019; 9:400. [PMID: 31824871 PMCID: PMC6882867 DOI: 10.3389/fcimb.2019.00400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
GH72 family of β-(1,3)-glucanosyltransferases is unique to fungi and is required for cell wall biogenesis, morphogenesis, virulence, and in some species is essential for life. Candida albicans PHR1 and PHR2 are pH-regulated genes that encode GH72 enzymes highly similar to Gas1p of Saccharomyces cerevisiae. PHR1 is expressed at pH ≥ 5.5 while PHR2 is transcribed at pH ≤ 5.5. Both are essential for C. albicans morphogenesis and virulence. During growth at neutral-alkaline pH, Phr1p-GFP preferentially localizes to sites of active cell wall formation as the incipient bud, the mother-daughter neck, the bud periphery, and concentrates in the septum at cytokinesis. We further investigated this latter localization. In chs3Δ cells, lacking the chitin of the chitin ring and lateral cell wall, Phr1p-GFP still concentrated along the thin line of the primary septum formed by chitin deposited by chitin synthase I (whose catalytic subunit is Chs1p) suggesting that it plays a role during formation of the secondary septa. RO-09-3143, a highly specific inhibitor of Chs1p activity, inhibits septum formation and blocks cell division. However, alternative septa are produced and are crucial for cell survival. Phr1p-GFP is excluded from such aberrant septa. Finally, we determined the effects of RO-09-3143 in cells lacking Phr1p. PHR1 null mutant was more susceptible to the drug than the wild type. The phr1Δ cells were larger, devoid of septa, and underwent endomitosis and cell death. Phr1p and Chs1p cooperate in maintaining cell integrity and in coupling morphogenesis with nuclear division in C. albicans.
Collapse
Affiliation(s)
- Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Aschenbroich J, Hussnaetter KP, Stoffels P, Langner T, Zander S, Sandrock B, Bölker M, Feldbrügge M, Schipper K. The germinal centre kinase Don3 is crucial for unconventional secretion of chitinase Cts1 in Ustilago maydis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140154. [DOI: 10.1016/j.bbapap.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023]
|
7
|
The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Curr Genet 2019; 66:141-153. [PMID: 31256233 DOI: 10.1007/s00294-019-01008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the thermotolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important roles in cytokinesis and morphogenesis in Metarhizium acridum.
Collapse
|
8
|
Kubo K, Okada H, Shimamoto T, Kimori Y, Mizunuma M, Bi E, Ohnuki S, Ohya Y. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae. Curr Genet 2019; 65:253-267. [PMID: 30066140 DOI: 10.1007/s00294-018-0872-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Abstract
The mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle. After screening of yeast non-essential gene-deletion mutants with the image processing software CalMorph, we comprehensively identified 274 mutants with broader necks during S/G2 phase. Among these yeasts, we extensively analyzed 19 representative deletion mutants with defects in genes annotated to six gene ontology terms (polarisome, actin reorganization, endosomal tethering complex, carboxy-terminal domain protein kinase complex, DNA replication, and maintenance of DNA trinucleotide repeats). The representative broad-necked mutants exhibited calcofluor white sensitivity, suggesting defects in their cell walls. Correlation analysis indicated that maintenance of mother-bud neck size is important for cellular processes such as cell growth, system robustness, and replicative lifespan. We conclude that neck-size maintenance in budding yeast is regulated by numerous genes and has several aspects that are physiologically significant.
Collapse
Affiliation(s)
- Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Takuya Shimamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Management and Information Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen, Fukui City, Fukui, 910-8505, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan.
| |
Collapse
|
9
|
A Potential Lock-Type Mechanism for Unconventional Secretion in Fungi. Int J Mol Sci 2019; 20:ijms20030460. [PMID: 30678160 PMCID: PMC6386918 DOI: 10.3390/ijms20030460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.
Collapse
|
10
|
Brace JL, Doerfler MD, Weiss EL. A cell separation checkpoint that enforces the proper order of late cytokinetic events. J Cell Biol 2019; 218:150-170. [PMID: 30455324 PMCID: PMC6314563 DOI: 10.1083/jcb.201805100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic cell division requires dependency relationships in which late processes commence only after early ones are appropriately completed. We have discovered a system that blocks late events of cytokinesis until early ones are successfully accomplished. In budding yeast, cytokinetic actomyosin ring contraction and membrane ingression are coupled with deposition of an extracellular septum that is selectively degraded in its primary septum immediately after its completion by secreted enzymes. We find this secretion event is linked to septum completion and forestalled when the process is slowed. Delay of septum degradation requires Fir1, an intrinsically disordered protein localized to the cytokinesis site that is degraded upon septum completion but stabilized when septation is aberrant. Fir1 protects cytokinesis in part by inhibiting a separation-specific exocytosis function of the NDR/LATS kinase Cbk1, a key component of "hippo" signaling that induces mother-daughter separation. We term this system enforcement of cytokinesis order, a checkpoint ensuring proper temporal sequence of mechanistically incompatible processes of cytokinesis.
Collapse
Affiliation(s)
- Jennifer L Brace
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Matthew D Doerfler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Eric L Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
11
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
12
|
Jackson-Hayes L, Atiq Z, Betton B, Freyaldenhoven WT, Myers L, Olsen E, Hill TW. Aspergillus nidulans protein kinase C forms a complex with the formin SepA that is involved in apical growth and septation. Fungal Genet Biol 2018; 122:21-30. [PMID: 30391723 DOI: 10.1016/j.fgb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/27/2022]
Abstract
The Aspergillus nidulans orthologue of Protein kinase C (PkcA) and the A. nidulans formin SepA participate in polarized growth. PkcA localizes to growing hyphal apices and septation sites, and amino acid sequences within PkcA that are required for PkcA to localize to these sites of cell wall synthesis have been identified. SepA is associated with the contractile actomyosin ring (CAR), and it localizes at hyphal tips in association with the Spitzenkörper (SPK) and as an apical dome. A mutation in the sepA gene (sepA1) renders A. nidulans aseptate at elevated temperature. Progress towards understanding the spatiotemporal relationship between PkcA and SepA during polarized growth is presented here. Fluorescent chimeras of PkcA and SepA strongly overlapped in some hyphal tips in a dome pattern, while other tips displayed SepA SPK and PkcA dome localization within the same tip. At septation sites PkcA and SepA consistently colocalized through late stages of CAR constriction. Bimolecular fluorescence complementation experimental results provide evidence that SepA and PkcA are both present in complexes at both hyphal tip domes and at cortical rings. A Gal4-based yeast two-hybrid analysis confirmed the physical interaction between SepA and PkcA, and indicted that the FH2 domain of SepA is involved in its physical interaction with PkcA. A functional interaction between PkcA and SepA was shown through complementation of the pkcA calC2 mutant's hypersensitivity to cell wall perturbing agents by overexpressed sepA and by the ability of the sepA1 mutation to block PkcA's ability to form cortical rings. Taken together these results suggest that a PkcA/SepA complex is involved in polarized growth. Through experiments using the actin disrupter latrunculin B, evidence is presented suggesting that actin plays a role in the PkcA/SepA complex.
Collapse
Affiliation(s)
- Loretta Jackson-Hayes
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA.
| | - Zainab Atiq
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Brianna Betton
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - W Toler Freyaldenhoven
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Lance Myers
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Elisabet Olsen
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Terry W Hill
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| |
Collapse
|
13
|
Muñoz JE, Rossi DCP, Ishida K, Spadari CC, Melhem MSC, Garcia DM, Caires ACF, Taborda CP, Rodrigues EG. Antifungal Activity of the Biphosphinic Cyclopalladate C7a against Candida albicans Yeast Forms In Vitro and In Vivo. Front Microbiol 2017; 8:771. [PMID: 28515716 PMCID: PMC5413578 DOI: 10.3389/fmicb.2017.00771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Vulvovaginal and invasive candidiasis are frequent conditions in immunosuppressed individuals caused by Candida albicans and non-albicans Candida spp. Fluconazole and Amphotericin B are the main drugs used to fight the infection. However, resistance to fluconazole and other azole antifungal drugs is an important clinical problem that encourages the search for new therapeutic alternatives. In this work, we evaluate the antifungal activity of the biphosphinic cyclopalladate C7a in the in vitro and in vivo model. Our results showed fungicidal activity, with low values of minimal inhibitory concentrations and minimum fungicidal concentrations, even for fluconazole and/or miconazole resistant Candida isolates. Fluorescence microscopy and transmission electron microscopy revealed that the compound was able to inhibit the formation of hyphae/pseudohyphae and, moreover, promoted morphological alterations in cellular organelles and structures, such as disruption of cell wall, apparent mitochondrial swelling, chromatin marginalization into the nuclei and increased numbers of electron-lucent vacuoles. C7a significantly decreased the biofilm formation and reduced the viability of yeast cells in mature biofilms when tested against a virulent C. albicans strain. In vivo assays demonstrated a significant decrease of fungal burden in local (vaginal canal) and disseminated (kidneys) infection. In addition, we observed a significant increase in the survival of the systemically infected animals treated with C7a. Our results suggest C7a as a novel therapeutic agent for vaginal and disseminated candidiasis, and an alternative for conventional drug-resistant Candida.
Collapse
Affiliation(s)
- Julian E Muñoz
- Department of Microbiology, Biomedical Sciences Institute, University of São PauloSão Paulo, Brazil.,Faculty of Health Sciences, Colegio Mayor de Cundinamarca UniversityBogotá, Colombia
| | - Diego C P Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São PauloSão Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Biomedical Sciences Institute, University of São PauloSão Paulo, Brazil
| | - Cristina C Spadari
- Department of Microbiology, Biomedical Sciences Institute, University of São PauloSão Paulo, Brazil
| | - Marcia S C Melhem
- Parasitology Section, Technical Division of Medical Biology, Instituto Adolfo LutzSão Paulo, Brazil
| | - Daniel M Garcia
- Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| | - Antonio C F Caires
- Interdisciplinary Center for Biochemical Investigation, University of Mogi das CruzesMogi das Cruzes, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São PauloSão Paulo, Brazil.,Laboratory of Medical Mycology-LIM53/IMTSP, University of São PauloSão Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP)São Paulo, Brazil
| |
Collapse
|
14
|
Cabib E. Climbing the yeast cell wall. FEMS Yeast Res 2017; 17:3053044. [PMID: 28334119 DOI: 10.1093/femsyr/fox013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here is a life in three countries, with different cultures, different political structures and even different skies. The constant through all these changes is the addiction of the subject of this story to science and laboratory work. Perhaps the tale that unfolds here will show to some beginners in research that persistence, seasoned with a little luck, can bring results and satisfaction in the long run.
Collapse
|
15
|
Okada H, Kono K, Neiman AM, Ohya Y. Examination and Disruption of the Yeast Cell Wall. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top078659. [PMID: 27480724 DOI: 10.1101/pdb.top078659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi Prefecture 467-8601, Japan
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| |
Collapse
|
16
|
Abstract
The synthesis of the septum is a critical step during cytokinesis in the fungal cell. Moreover, in Saccharomyces cerevisiae septum assembly depends mostly on the proper synthesis and deposition of chitin and, accordingly, on the timely regulation of chitin synthases. In this chapter, we will see how to follow chitin synthesis by two complementary approaches: monitoring chitin deposition in vivo at the septum by calcofluor staining and fluorescence microscopy, and measuring the chitin synthase activities responsible for this synthesis.
Collapse
Affiliation(s)
- Irene Arcones
- Department of Microbiology and Genetics, Instituto de Biología Funcional y Genómica, CSIC/USAL, C/Zacarias Gonzalez 1, 37007, Salamanca, Spain
| | - Cesar Roncero
- Department of Microbiology and Genetics, Instituto de Biología Funcional y Genómica, CSIC/USAL, C/Zacarias Gonzalez 1, 37007, Salamanca, Spain.
| |
Collapse
|
17
|
How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 2013; 11:648-55. [PMID: 23949603 DOI: 10.1038/nrmicro3090] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother-bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.
Collapse
|
18
|
Onishi M, Ko N, Nishihama R, Pringle JR. Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis. J Cell Biol 2013; 202:311-29. [PMID: 23878277 PMCID: PMC3718969 DOI: 10.1083/jcb.201302001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023] Open
Abstract
In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis.
Collapse
Affiliation(s)
- Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
19
|
Walker LA, Lenardon MD, Preechasuth K, Munro CA, Gow NAR. Cell wall stress induces alternative fungal cytokinesis and septation strategies. J Cell Sci 2013; 126:2668-77. [PMID: 23606739 DOI: 10.1242/jcs.118885] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In fungi, as with all walled organisms, cytokinesis followed by septation marks the end of the cell cycle and is essential for cell division and viability. For yeasts, the septal cross-wall comprises a ring and primary septal plate composed of chitin, and a secondary septum thickened with β(1,3)-glucan. In the human pathogen Candida albicans, chitin synthase enzyme Chs1 builds the primary septum that is surrounded by a chitin ring made by Chs3. Here we show that the lethal phenotype induced by repression of CHS1 was abrogated by stress-induced synthesis of alternative and novel septal types synthesized by other chitin synthase enzymes that have never before been implicated in septation. Chs2 and Chs8 formed a functional salvage septum, even in the absence of both Chs1 and Chs3. A second type of salvage septum formed by Chs2 in combination with Chs3 or Chs8 was proximally offset in the mother-bud neck. Chs3 alone or in combination with Chs8 formed a greatly thickened third type of salvage septum. Therefore, cell wall stress induced alternative forms of septation that rescued cell division in the absence of Chs1, demonstrating that fungi have previously unsuspected redundant strategies to enable septation and cell division to be maintained, even under potentially lethal environmental conditions.
Collapse
Affiliation(s)
- Louise A Walker
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
20
|
Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 2013; 79:3590-600. [PMID: 23542628 DOI: 10.1128/aem.00463-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis.
Collapse
|
21
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
22
|
Devrekanli A, Foltman M, Roncero C, Sanchez-Diaz A, Labib K. Inn1 and Cyk3 regulate chitin synthase during cytokinesis in budding yeasts. J Cell Sci 2012; 125:5453-66. [PMID: 22956544 DOI: 10.1242/jcs.109157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chitin synthase that makes the primary septum during cell division in budding yeasts is an important therapeutic target with an unknown activation mechanism. We previously found that the C2-domain of the Saccharomyces cerevisiae Inn1 protein plays an essential but uncharacterised role at the cleavage site during cytokinesis. By combining a novel degron allele of INN1 with a point mutation in the C2-domain, we screened for mutations in other genes that suppress the resulting defect in cell division. In this way, we identified 22 dominant mutations of CHS2 (chitin synthase II) that map to two neighbouring sites in the catalytic domain. Chs2 in isolated cell membranes is normally nearly inactive (unless protease treatment is used to bypass inhibition); however, the dominant suppressor allele Chs2-V377I has enhanced activity in vitro. We show that Inn1 associates with Chs2 in yeast cell extracts. It also interacts in a yeast two-hybrid assay with the N-terminal 65% of Chs2, which contains the catalytic domain. In addition to compensating for mutations in the Inn1 C2-domain, the dominant CHS2 alleles suppress cytokinesis defects produced by the lack of the Cyk3 protein. Our data support a model in which the C2-domain of Inn1 acts in conjunction with Cyk3 to regulate the catalytic domain of Chs2 during cytokinesis. These findings suggest novel approaches for developing future drugs against important fungal pathogens.
Collapse
Affiliation(s)
- Asli Devrekanli
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | |
Collapse
|
23
|
Balazs A, Batta G, Miklos I, Acs-Szabo L, Vazquez de Aldana CR, Sipiczki M. Conserved regulators of the cell separation process in Schizosaccharomyces. Fungal Genet Biol 2012; 49:235-49. [PMID: 22300943 DOI: 10.1016/j.fgb.2012.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
The fission yeasts (Schizosaccharomyces) representing a highly divergent phylogenetic branch of Fungi evolved from filamentous ancestors by gradual transition from mycelial growth to yeast morphology. For the transition, a mechanism had been developed that separates the sister cells after the completion of cytokinesis. Numerous components of the separation mechanism have been characterised in Schizosaccharomycespombe, including the zinc-finger transcription factor Ace2p and the fork-head transcription factor Sep1p. Here we show that both regulators have regions conserved within the genus. The most conserved parts contain the DNA-binding domains whose amino-acid sequences perfectly reflect the phylogenetic positions of the species. The less conserved parts of the proteins contain sequence blocks specific for the whole genus or only for the species propagating predominantly or exclusively as yeasts. Inactivation of either gene in the dimorphic species Schizosaccharomycesjaponicus abolished cell separation in the yeast phase conferring hypha-like morphology but did not change the growth pattern to unipolar and did not cause extensive polar vacuolation characteristic of the true mycelium. Neither mutation affected the mycelial phase, but both mutations hampered the hyphal fragmentation at the mycelium-to-yeast transition. Ace2p(Sj) acts downstream of Sep1p(Sj) and regulates the orthologues of the Ace2p-dependent S.pombe genes agn1(+) (1,3-alpha-glucanase) and eng1(+) (1,3-beta-glucanase) but does not regulate the orthologue of cfh4(+) (chitin synthase regulatory factor). These results and the complementation of the cell separation defects of the ace2(-) and sep1(-) mutations of S.pombe by heterologously expressed ace2(Sj) and sep1(Sj) indicate that the cell separation mechanism is conserved in the Schizosaccharomyces genus.
Collapse
Affiliation(s)
- Anita Balazs
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
McMurray MA, Stefan CJ, Wemmer M, Odorizzi G, Emr SD, Thorner J. Genetic interactions with mutations affecting septin assembly reveal ESCRT functions in budding yeast cytokinesis. Biol Chem 2012; 392:699-712. [PMID: 21824003 DOI: 10.1515/bc.2011.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Membrane trafficking via targeted exocytosis to the Saccharomyces cerevisiae bud neck provides new membrane and membrane-associated factors that are critical for cytokinesis. It remains unknown whether yeast plasma membrane abscission, the final step of cytokinesis, occurs spontaneously following extensive vesicle fusion, as in plant cells, or requires dedicated membrane fission machinery, as in cultured mammalian cells. Components of the endosomal sorting complexes required for transport (ESCRT) pathway, or close relatives thereof, appear to participate in cytokinetic abscission in various cell types, but roles in cell division had not been documented in budding yeast, where ESCRTs were first characterized. By contrast, the septin family of filament-forming cytoskeletal proteins were first identified by their requirement for yeast cell division. We show here that mutations in ESCRT-encoding genes exacerbate the cytokinesis defects of cla4Δ or elm1Δ mutants, in which septin assembly is perturbed at an early stage in cell division, and alleviate phenotypes of cells carrying temperature-sensitive alleles of a septin-encoding gene, CDC10. Elevated chitin synthase II (Chs2) levels coupled with aberrant morphogenesis and chitin deposition in elm1Δ cells carrying ESCRT mutations suggest that ESCRTs normally enhance the efficiency of cell division by promoting timely endocytic turnover of key cytokinetic enzymes.
Collapse
Affiliation(s)
- Michael A McMurray
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 2011; 23:45-58. [PMID: 22072794 PMCID: PMC3248903 DOI: 10.1091/mbc.e11-05-0434] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sequestration of Cdc14 from the cytoplasm ensures Chs2 ER retention after MEN activation. The interdependence of chromosome segregation, MEN activation, decrease in mitotic CDK activity, and Cdc14 dispersal provides an effective mechanism for cells to order late mitotic events. Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother–daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.
Collapse
Affiliation(s)
- Cheen Fei Chin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
26
|
Phr1p, a glycosylphosphatidylinsitol-anchored β(1,3)-glucanosyltransferase critical for hyphal wall formation, localizes to the apical growth sites and septa in Candida albicans. Fungal Genet Biol 2011; 48:793-805. [DOI: 10.1016/j.fgb.2011.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/19/2023]
|
27
|
|
28
|
Seiler S, Justa-Schuch D. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 2010; 78:1058-76. [PMID: 21091496 DOI: 10.1111/j.1365-2958.2010.07392.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis is essential for cell proliferation, yet its molecular description is challenging, because >100 conserved proteins must be spatially and temporally co-ordinated. Despite the high importance of a tight co-ordination of cytokinesis with chromosome and organelle segregation, the mechanism for determining the cell division plane is one of the least conserved aspects of cytokinesis in eukaryotic cells. Budding and fission yeast have developed fundamentally distinct mechanisms to ensure proper nuclear segregation. The extent to which these pathways are conserved in multicellular fungi remains unknown. Recent progress indicates common components, but different mechanisms that are required for proper selection of the septation site in the different groups of Ascomycota. Cortical cues are used in yeast- and filament-forming species of the Saccharomycotina clade that are established at the incipient bud site or the hyphal tip respectively. In contrast, septum formation in the filament-forming Pezizomycotina species Aspergillus nidulans and Neurospora crassa seems more closely related to the fission yeast programme in that they may combine mitotic signals with a cell end-based marker system and Rho GTPase signalling. Thus, significant differences in the use and connection of conserved signalling modules become apparent that reflect the phylogenetic relationship of the analysed models.
Collapse
Affiliation(s)
- Stephan Seiler
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | |
Collapse
|
29
|
Roncero C, Sánchez Y. Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 2010; 27:521-30. [DOI: 10.1002/yea.1779] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
30
|
Meitinger F, Petrova B, Lombardi IM, Bertazzi DT, Hub B, Zentgraf H, Pereira G. Targeted localization of Inn1, Cyk3 and Chs2 by the mitotic-exit network regulates cytokinesis in budding yeast. J Cell Sci 2010; 123:1851-61. [PMID: 20442249 DOI: 10.1242/jcs.063891] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mitotic-exit network (MEN) is a signaling pathway that is essential for the coordination of mitotic exit and cytokinesis. Whereas the role of the MEN in mitotic exit is well established, the molecular mechanisms by which MEN components regulate cytokinesis remain poorly understood. Here, we show that the MEN controls components involved in septum formation, including Inn1, Cyk3 and Chs2. MEN-deficient mutants, forced to exit mitosis as a result of Cdk1 inactivation, show defects in targeting Cyk3 and Inn1 to the bud-neck region. In addition, we found that the chitin synthase Chs2 did not efficiently localize at the bud neck in the absence of MEN activity. Ultrastructural analysis of the bud neck revealed that low MEN activity led to unilateral, uncoordinated extension of the primary and secondary septa. This defect was partially suppressed by increased levels of Cyk3. We therefore propose that the MEN directly controls cytokinesis via targeting of Inn1, Cyk3 and Chs2 to the bud neck.
Collapse
Affiliation(s)
- Franz Meitinger
- German Cancer Research Centre, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia Unit, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen S, Liu D, Finley RL, Greenberg ML. Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 2010; 285:10397-407. [PMID: 20086012 DOI: 10.1074/jbc.m110.100784] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The anionic phospholipid cardiolipin and its precursor phosphatidylglycerol are synthesized and localized in the mitochondrial inner membrane of eukaryotes. They are required for structural integrity and optimal activities of a large number of mitochondrial proteins and complexes. Previous studies showed that loss of anionic phospholipids leads to cell inviability in the absence of mitochondrial DNA. However, the mechanism linking loss of anionic phospholipids to petite lethality was unclear. To elucidate the mechanism, we constructed a crd1Deltarho degrees mutant, which is viable and mimics phenotypes of pgs1Delta in the petite background. We found that loss of cardiolipin in rho degrees cells leads to elevated expression of Swe1p, a morphogenesis checkpoint protein. Moreover, the retrograde pathway is activated in crd1Deltarho degrees cells, most likely due to the exacerbation of mitochondrial dysfunction. Interestingly, the expression of SWE1 is dependent on retrograde regulation as elevated expression of SWE1 is suppressed by deletion of RTG2 or RTG3. Taken together, these findings indicate that activation of the retrograde pathway leads to up-regulation of SWE1 in crd1Deltarho degrees cells. These results suggest that anionic phospholipids are required for processes that are essential for normal cell division in rho degrees cells.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
32
|
Böhmer C, Ripp C, Bölker M. The germinal centre kinase Don3 triggers the dynamic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Mol Microbiol 2009; 74:1484-96. [PMID: 19906182 DOI: 10.1111/j.1365-2958.2009.06948.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dimorphic phytopathogenic fungus Ustilago maydis grows in its haploid phase by budding. Cytokinesis and separation of daughter cells are accomplished by the consecutive formation of two distinct septa. Here, we show that both septation events involve the dynamic rearrangement of septin assemblies from hourglass-shaped collars into ring-like structures. Using a chemical genetic approach we demonstrate that the germinal centre kinase Don3 triggers this septin reorganization during secondary septum formation. Although chemical inhibition of an analogue-sensitive version of Don3 prevented septation, a stable septin collar was assembled at the presumptive septation site. Interestingly, the essential light chain of type II myosin, Cdc4, was already associated with this septin collar. Release of Don3 kinase inhibition triggered immediate dispersal of septin filaments and concomitant incorporation of Cdc4 into a contractile actomyosin ring, which also contained the F-BAR domain protein Cdc15. Inhibition of actin polymerization or deletion of the cdc15 gene, did not affect assembly of the initial collar consisting of septin and myosin light chain. However, reassembly of septin filaments into a ring-like structure was prevented in the absence of either F-actin or Cdc15, indicating that septin ring formation in U. maydis depends on a functional contractile actomyosin ring.
Collapse
Affiliation(s)
- Christian Böhmer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | | | | |
Collapse
|
33
|
Rolli E, Ragni E, Calderon J, Porello S, Fascio U, Popolo L. Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol Biol Cell 2009; 20:4856-70. [PMID: 19793924 DOI: 10.1091/mbc.e08-11-1155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gas1p is a glucan-elongase that plays a crucial role in yeast morphogenesis. It is predominantly anchored to the plasma membrane through a glycosylphosphatidylinositol, but a fraction was also found covalently bound to the cell wall. We have used fusions with the green fluorescent protein or red fluorescent protein (RFP) to determine its localization. Gas1p was present in microdomains of the plasma membrane, at the mother-bud neck and in the bud scars. By exploiting the instability of RFP-Gas1p, we identified mobile and immobile pools of Gas1p. Moreover, in chs3Delta cells the chitin ring and the cross-linked Gas1p were missing, but this unveiled an additional unexpected localization of Gas1p along the septum line in cells at cytokinesis. Localization of Gas1p was also perturbed in a chs2Delta mutant where a remedial septum is produced. Phenotypic analysis of cells expressing a fusion of Gas1p to a transmembrane domain unmasked new roles of the cell wall-bound Gas1p in the maintenance of the bud neck size and in cell separation. We present evidence that Crh1p and Crh2p are required for tethering Gas1p to the chitin ring and bud scar. These results reveal a new mechanism of protein immobilization at specific sites of the cell envelope.
Collapse
Affiliation(s)
- Eleonora Rolli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Rockwell NC, Wolfger H, Kuchler K, Thorner J. ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 2009; 229:27-52. [PMID: 19452121 PMCID: PMC2687517 DOI: 10.1007/s00232-009-9173-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/21/2009] [Indexed: 01/24/2023]
Abstract
The eukaryotic plasma membrane exhibits both asymmetric distribution of lipids between the inner and the outer leaflet and lateral segregation of membrane components within the plane of the bilayer. In budding yeast (Saccharomyces cerevisiae), maintenance of leaflet asymmetry requires P-type ATPases, which are proposed to act as inward-directed lipid translocases (Dnf1, Dnf2, and the associated protein Lem3), and ATP-binding cassette (ABC) transporters, which are proposed to act as outward-directed lipid translocases (Pdr5 and Yor1). The S. cerevisiae genome encodes two other Pdr5-related ABC transporters: Pdr10 (67% identity) and Pdr15 (75% identity). We report the first analysis of Pdr10 localization and function. A Pdr10-GFP chimera was located in discrete puncta in the plasma membrane and was found in the detergent-resistant membrane fraction. Compared to control cells, a pdr10 mutant was resistant to sorbate but hypersensitive to the chitin-binding agent Calcofluor White. Calcofluor sensitivity was attributable to a partial defect in endocytosis of the chitin synthase Chs3, while sorbate resistance was attributable to accumulation of a higher than normal level of the sorbate exporter Pdr12. Epistasis analysis indicated that Pdr10 function requires Pdr5, Pdr12, Lem3, and mature sphingolipids. Strikingly, Pdr12 was shifted to the detergent-resistant membrane fraction in pdr10 cells. Pdr10 therefore acts as a negative regulator for incorporation of Pdr12 into detergent-resistant membranes, a novel role for members of the ABC transporter superfamily.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 USA
- c/o Lagarias Lab, Department of Molecular and Cellular Biology, University of California, 31 Briggs Hall, Davis, CA 95616 USA
| | - Hubert Wolfger
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Karl Kuchler
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Jeremy Thorner
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 USA
- Department of Molecular and Cell Biology, University of California, Room 16, Barker Hall, Berkeley, CA 94720-3202 USA
| |
Collapse
|
35
|
Deregulation of DSE1 gene expression results in aberrant budding within the birth scar and cell wall integrity pathway activation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:586-94. [PMID: 19252124 DOI: 10.1128/ec.00376-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strains of Saccharomyces cerevisiae lacking Isw2, the catalytic subunit of the Isw2 chromatin remodeling complex, show the mating type-independent activation of the cell wall integrity (CWI) signaling pathway. Since the CWI pathway activation usually reflects cell wall defects, we searched for the cell wall-related genes changed in expression. The genes DSE1, CTS1, and CHS1 were upregulated as a result of the absence of Isw2, according to previously published gene expression profiles (I. Frydlova, M. Basler, P. Vasicova, I. Malcova, and J. Hasek, Curr. Genet. 52:87-95, 2007). Western blot analyses of double deletion mutants, however, did not indicate the contribution of the chitin metabolism-related genes CTS1 and CHS1 to the CWI pathway activation. Nevertheless, the deletion of the DSE1 gene encoding a daughter cell-specific protein with unknown function suppressed CWI pathway activation in isw2Delta cells. In addition, the deletion of DSE1 also abolished the budding-within-the-birth-scar phenotype of isw2Delta cells. The plasmid-driven overexpression proved that the deregulation of Dse1 synthesis was also responsible for CWI pathway activation and manifestation of the budding-within-the-birth-scar phenotype in wild-type cells. The overproduced Dse1-green fluorescent protein localized to both sides of the septum and persisted in unbudded cells. Although the exact cellular role of this daughter cell-specific protein has to be elucidated, our data point to the involvement of Dse1 in bud site selection in haploid cells.
Collapse
|
36
|
Tully GH, Nishihama R, Pringle JR, Morgan DO. The anaphase-promoting complex promotes actomyosin-ring disassembly during cytokinesis in yeast. Mol Biol Cell 2008; 20:1201-12. [PMID: 19109423 DOI: 10.1091/mbc.e08-08-0822] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The anaphase-promoting complex (APC) is a ubiquitin ligase that controls progression through mitosis by targeting specific proteins for degradation. It is unclear whether the APC also contributes to the control of cytokinesis, the process that divides the cell after mitosis. We addressed this question in the yeast Saccharomyces cerevisiae by studying the effects of APC mutations on the actomyosin ring, a structure containing actin, myosin, and several other proteins that forms at the division site and is important for cytokinesis. In wild-type cells, actomyosin-ring constituents are removed progressively from the ring during contraction and disassembled completely thereafter. In cells lacking the APC activator Cdh1, the actomyosin ring contracts at a normal rate, but ring constituents are not disassembled normally during or after contraction. After cytokinesis in mutant cells, aggregates of ring proteins remain at the division site and at additional foci in other parts of the cell. A key target of APC(Cdh1) is the ring component Iqg1, the destruction of which contributes to actomyosin-ring disassembly. Deletion of CDH1 also exacerbates actomyosin-ring disassembly defects in cells with mutations in the myosin light-chain Mlc2, suggesting that Mlc2 and the APC employ independent mechanisms to promote ring disassembly during cytokinesis.
Collapse
Affiliation(s)
- Gregory H Tully
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Saccharomyces cerevisiae Chs2 (chitin synthase 2) synthesizes the primary septum after mitosis is completed. It is essential for proper cell separation and is expected to be highly regulated. We have expressed Chs2 and a mutant lacking the N-terminal region in Pichia pastoris in an active form at high levels. Both constructs show a pH and cation dependence similar to the wild-type enzyme, as well as increased activity after trypsin treatment. Using further biochemical analysis, we have identified two mechanisms of chitin synthase regulation. First, it is hyperactivated by a soluble yeast protease. This protease is expressed during exponential growth phase, when budding cells require Chs2 activity. Secondly, LC-MS/MS (liquid chromatography tandem MS) experiments on purified Chs2 identify 12 phosphorylation sites, all in the N-terminal domain. Four of them show the perfect sequence motif for phosphorylation by the cyclin-dependent kinase Cdk1. As we also show that phosphorylation of the N-terminal domain is important for Chs2 stability, these sites might play an important role in the cell cycle-dependent degradation of the enzyme, and thus in cell division.
Collapse
|
38
|
Wu XZ, Cheng AX, Sun LM, Lou HX. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans. Acta Pharmacol Sin 2008; 29:1478-85. [PMID: 19026167 DOI: 10.1111/j.1745-7254.2008.00900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. METHODS The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular levels. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activities in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). RESULTS Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wall. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibition on the enzyme-active center. CONCLUSION These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.
Collapse
Affiliation(s)
- Xiu-zhen Wu
- School of Pharmaceutical Sciences, Shandong University, Ji-nan 250012, China
| | | | | | | |
Collapse
|
39
|
Firon A, Aubert S, Iraqui I, Guadagnini S, Goyard S, Prévost MC, Janbon G, d'Enfert C. The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol Microbiol 2007; 66:1256-75. [DOI: 10.1111/j.1365-2958.2007.06011.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN. Conserved processes and lineage-specific proteins in fungal cell wall evolution. EUKARYOTIC CELL 2007; 6:2269-77. [PMID: 17951517 PMCID: PMC2168262 DOI: 10.1128/ec.00044-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 10/03/2007] [Indexed: 11/20/2022]
Abstract
The cell wall is a defining organelle that differentiates fungi from its sister clades in the opisthokont superkingdom. With a sensitive technique to align low-complexity protein sequences, we have identified 187 cell wall-related proteins in Saccharomyces cerevisiae and determined the presence or absence of homologs in 17 other fungal genomes. There were both conserved and lineage-specific cell wall proteins, and the degree of conservation was strongly correlated with protein function. Some functional classes were poorly conserved and lineage specific: adhesins, structural wall glycoprotein components, and unannotated open reading frames. These proteins are primarily those that are constituents of the walls themselves. On the other hand, glycosyl hydrolases and transferases, proteases, lipases, proteins in the glycosyl phosphatidyl-inositol-protein synthesis pathway, and chaperones were strongly conserved. Many of these proteins are also conserved in other eukaryotes and are associated with wall synthesis in plants. This gene conservation, along with known similarities in wall architecture, implies that the basic architecture of fungal walls is ancestral to the divergence of the ascomycetes and basidiomycetes. The contrasting lineage specificity of wall resident proteins implies diversification. Therefore, fungal cell walls consist of rapidly diversifying proteins that are assembled by the products of an ancestral and conserved set of genes.
Collapse
Affiliation(s)
- Juan E Coronado
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
41
|
Schönitzer V, Weiss IM. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC STRUCTURAL BIOLOGY 2007; 7:71. [PMID: 17986326 PMCID: PMC2241824 DOI: 10.1186/1472-6807-7-71] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/06/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain. RESULTS Enzymatic mollusc chitin synthesis was investigated in vivo by using the small-molecule drug NikkomycinZ, a structural analogue to the sugar donor substrate UDP-N-acetyl-D-glucosamine (UDP-GlcNAc). The impact on mollusc shell formation was analyzed by binocular microscopy, polarized light video microscopy in vivo, and scanning electron microscopy data obtained from shell material formed in the presence of NikkomycinZ. The partial inhibition of chitin synthesis in vivo during larval development by NikkomycinZ (5 microM - 10 microM) dramatically alters the structure and thus the functionality of the larval shell at various growth fronts, such as the bivalve hinge and the shell's edges. CONCLUSION Provided that NikkomycinZ mainly affects chitin synthesis in molluscs, the presented data suggest that the mollusc chitin synthase fulfils an important enzymatic role in the coordinated formation of larval bivalve shells. It can be speculated that chitin synthesis bears the potential to contribute via signal transduction pathways to the implementation of hierarchical patterns into chitin mineral-composites such as prismatic, nacre, and crossed-lamellar shell types.
Collapse
Affiliation(s)
- Veronika Schönitzer
- Lehrstuhl Biochemie I, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ingrid M Weiss
- Lehrstuhl Biochemie I, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
- INM – Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
42
|
Kaufmann S, Weiss IM, Tanaka M. Quantitative in Vitro Biopolymerization to Chitin in Native Chitosomal Membranes Supported by Silica Microparticles. J Am Chem Soc 2007; 129:10807-13. [PMID: 17691776 DOI: 10.1021/ja072234p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the unknown physical mechanisms of chitin biosynthesis quantitatively, we designed a quantitative in vitro biopolymerization assay by deposition of native chitosomal membranes from Saccharomyces cerevisiae onto solid silica microparticles of a defined size (ø = 3 microm). The homogeneous coating of particle surfaces with native chitosomal membranes observed by confocal microscopy agrees well with the surface coverage calculated by the phosphate analysis. The amount of the synthesized chitin polymers is determined by radioactive assays, which demonstrate that chitin synthase in particle-supported membranes retains its specific enzymatic activity. In comparison to planar substrates, particle supports of defined size (and thus surface area) enable us to amplify the signals from immobilized proteins owing to the much larger surface area and to the capability of concentrating the sample to any given sample volume. Moreover, the large density of particle supports offers unique advantages over purified chitosomes in the quick separation of particle-supported membranes and materials in bulk within 1 min. This allows for the termination of the polymerization reaction without the disruption of the whole membranes, and thus the chitin polymers released in bulk can quantitatively be extracted. The obtained results demonstrate that the native biological membranes on particle supports can be utilized as a new in vitro biopolymerization assay to study the function of transmembrane enzyme complexes.
Collapse
Affiliation(s)
- Stefan Kaufmann
- Lehrstuhl für Biophysikalische Chemie II und Zentrum für Quantitative Biologie (BIOQUANT) der Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | | | | |
Collapse
|
43
|
Vernarecci S, Colotti G, Ornaghi P, Schiebel E, Chiancone E, Filetici P. The yeast penta-EF protein Pef1p is involved in cation-dependent budding and cell polarization. Mol Microbiol 2007; 65:1122-38. [PMID: 17640275 DOI: 10.1111/j.1365-2958.2007.05852.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Penta-EF-hand (PEF) proteins bind calcium and participate in a variety of calcium-dependent processes in vertebrates. In yeast, intracellular cations regulate processes like cell division and polarized growth. This study reports the identification of a unique PEF protein in Saccharomyces cerevisiae encoded by the uncharacterized open reading frame YGR058w. Pef1p has a long and unstructured N-terminal domain conserved in ascomycetes, and a highly conserved C-terminal calcium binding domain homologous to human ALG-2 and sorcin. Pef1p binds calcium and zinc and homodimerizes in vitro and in vivo like vertebrate homologues. Disruption of PEF1 induces defective growth in SDS and cation depletion conditions. Significantly, a critical substitution in the second EF hand (E218A) lowers the in vitro affinity for zinc and phenocopies growth defects. The dissection of protein-protein interactions and the cellular localization of Pef1p analogous to that of RAM pathway components controlling daughter-specific gene expression at the site of bud emergence bring out the importance of this novel protein. Our data suggest that cation homeostasis is involved in the control of polarized growth and in stress response in budding yeast.
Collapse
Affiliation(s)
- Stefano Vernarecci
- Istituto di Biologia e Patologia Molecolari, CNR, and Dipartemento di Genetica e Biologia Molecolare, Sapienza Università di Roma, P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The visualization of biologically relevant molecules and activities inside living cells continues to transform cell biology into a truly quantitative science. However, despite the spectacular achievements in some areas of cell biology, the majority of cellular processes still operate invisibly, not illuminated by even our brightest laser beams. Further progress therefore will depend not only on improvements in instrumentation but also increasingly on the development of new fluorophores and fluorescent sensors to target these activities. In the following, we review some of the recent approaches to generating such sensors, the methods to attach them to selected biomolecules, and their applications to various biological problems.
Collapse
Affiliation(s)
- Nils Johnsson
- Center for Molecular Biology of Inflammation, Cellular Biochemistry, University of Muenster, Von-Esmarch-Strasse 56, 48149 Muenster, Germany.
| | | |
Collapse
|
45
|
Zhang G, Kashimshetty R, Ng KE, Tan HB, Yeong FM. Exit from mitosis triggers Chs2p transport from the endoplasmic reticulum to mother-daughter neck via the secretory pathway in budding yeast. ACTA ACUST UNITED AC 2006; 174:207-20. [PMID: 16847101 PMCID: PMC2064181 DOI: 10.1083/jcb.200604094] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Budding yeast chitin synthase 2 (Chs2p), which lays down the primary septum, localizes to the mother–daughter neck in telophase. However, the mechanism underlying the timely neck localization of Chs2p is not known. Recently, it was found that a component of the exocyst complex, Sec3p–green fluorescent protein, arrives at the neck upon mitotic exit. It is not clear whether the neck localization of Chs2p, which is a cargo of the exocyst complex, was similarly regulated by mitotic exit. We report that Chs2p was restrained in the endoplasmic reticulum (ER) during metaphase. Furthermore, mitotic exit was sufficient to cause Chs2p neck localization specifically by triggering the Sec12p-dependent transport of Chs2p out of the ER. Chs2p was “forced” prematurely to the neck by mitotic kinase inactivation at metaphase, with chitin deposition occurring between mother and daughter cells. The dependence of Chs2p exit from the ER followed by its transport to the neck upon mitotic exit ensures that septum formation occurs only after the completion of mitotic events.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | |
Collapse
|
46
|
Martín-García R, Valdivieso MH. The fission yeast Chs2 protein interacts with the type-II myosin Myo3p and is required for the integrity of the actomyosin ring. J Cell Sci 2006; 119:2768-79. [PMID: 16772338 DOI: 10.1242/jcs.02998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Schizosaccharomyces pombe cytokinesis requires the function of a contractile actomyosin ring. Fission yeast Chs2p is a transmembrane protein structurally similar to chitin synthases that lacks such enzymatic activity. Chs2p localisation and assembly into a ring that contracts during division requires the general system for polarised secretion, some components of the actomyosin ring, and an active septation initiation network. Chs2p interacts physically with the type-II myosin Myo3p revealing a physical link between the plasma membrane and the ring. In chs2Delta mutants, actomyosin ring integrity is compromised during the last stages of contraction and it remains longer in the midzone. In synchronous cultures, chs2Delta cells exhibit a delay in septation with respect to the control strain. All these results show that Chs2p participates in the correct functioning of the medial ring.
Collapse
Affiliation(s)
- Rebeca Martín-García
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Laboratorio 231, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | |
Collapse
|
47
|
Zheng L, Mendoza L, Wang Z, Liu H, Park C, Kauffman S, Becker JM, Szaniszlo PJ. WdChs1p, a class II chitin synthase, is more responsible than WdChs2p (Class I) for normal yeast reproductive growth in the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis. Arch Microbiol 2006; 185:316-29. [PMID: 16544168 PMCID: PMC1482791 DOI: 10.1007/s00203-006-0101-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 02/18/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The chitin synthase gene WdCHS1 was isolated from a partial genomic DNA library of the pathogenic polymorphic fungus Wangiella dermatitidis. Sequencing showed that WdCHS1 encoded a class II chitin synthase composed of 988 amino acids. Disruption of WdCHS1 produced strains that were hyperpigmented in rich media, grew as yeast at wild-type rates at both 25 and 37 degrees C and were as virulent as the wild type in a mouse model. However, detailed morphological and cytological studies of the wdchs1Delta mutants showed that yeast cells often failed to separate, tended to be enriched with chitin in septal regions and, sometimes, were enlarged with multiple nuclei, had broader mother cell-daughter bud regions and had other cell wall defects seen considerably less often than in the wild type or wdchs2 Delta strains. Disruption of WdCHS1 and WdCHS2 in the same background revealed that WdChs1p had functions synergistic to those of WdChs2p, because mutants devoid of both isozymes produced growth that was very abnormal at 25 degrees C and was not viable at 37 degrees C unless osmotically stabilized. These results suggested that WdChs1p was more responsible than WdChs2p for normal yeast cell reproductive growth because strains with defects in the latter exhibited no morphological abnormalities, whereas those with defects in WdChs1p were frequently impaired in one or more yeast developmental processes.
Collapse
Affiliation(s)
- Li Zheng
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Leonel Mendoza
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Zheng Wang
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Hongbo Liu
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Changwon Park
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | - Sarah Kauffman
- Microbiology Department, University of Tennessee, Knoxville, TN 37919, USA
| | - Jeffrey M. Becker
- Microbiology Department, University of Tennessee, Knoxville, TN 37919, USA
| | - Paul J. Szaniszlo
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
- E-mail: , Tel.: +1-512-4713384, Fax: +1-512-4717088
| |
Collapse
|
48
|
Weiss IM, Schönitzer V, Eichner N, Sumper M. The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Lett 2006; 580:1846-52. [PMID: 16513115 DOI: 10.1016/j.febslet.2006.02.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/16/2006] [Accepted: 02/16/2006] [Indexed: 11/22/2022]
Abstract
Chitin is a key component in mollusk nacre formation. However, the enzyme complex responsible for chitin deposition in the mollusk shell remained unknown. We cloned and characterized the chitin synthase of the marine bivalve mollusk Atrina rigida. We present here the first chitin synthase sequence from invertebrates containing an unconventional myosin motor head domain. We further show that a homologous gene for chitin synthase is expressed in the shell forming tissue of larval Mytilus galloprovincialis even in early embryonic stages. The new data presented here are the first clear-cut indication for a functional role of cytoskeletal forces in the precisely controlled mineral deposition process of mollusk shell biogenesis.
Collapse
Affiliation(s)
- Ingrid M Weiss
- Universität Regensburg, c/o Lehrstuhl Biochemie 1, Universitätsstr. 31, D-93055 Regensburg, Germany.
| | | | | | | |
Collapse
|
49
|
Abstract
In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Schmidt M, Strenk ME, Boyer MP, Fritsch BJ. Importance of cell wall mannoproteins for septum formation in Saccharomyces cerevisiae. Yeast 2005; 22:715-23. [PMID: 16034811 DOI: 10.1002/yea.1242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mannosyltransferase mutants mnn9 and mnn10 were isolated in a genetic screen for septation defects in Saccharomyces cerevisiae. Ultrastructural examination of mutant cell walls revealed markedly thin septal structures and occasional failure to construct trilaminar septa, which then led to the formation of bulky default septa at the bud neck. In the absence of a functional septation apparatus, mnn10 mutants are unable to complete cytokinesis and die as cell chains with incompletely separated cytoplasms, indicating that mannosylation defects impair the ability to form remedial septa. We could not detect N-linked glycosylation of the beta(1,3)glucan synthase Fks1p and mnn10 defects do not change the molecular weight or abundance of the protein. We discuss a model explaining the pleiotropic effects of impaired N-linked protein glycosylation on septation in S. cerevisiae.
Collapse
Affiliation(s)
- Martin Schmidt
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | | | | | | |
Collapse
|