1
|
Zarrinkar F, Sharifi I, Tavakoli Oliaee R, Afgar A, Molaakbari E, Bamorovat M, Babaei Z, Eskandari E, Salarkia E, Asadi M. Identification of CβS and ODC antimony resistance markers in anthroponotic cutaneous leishmaniasis field isolates by gene expression profiling. Parasite Epidemiol Control 2025; 28:e00413. [PMID: 39959455 PMCID: PMC11830360 DOI: 10.1016/j.parepi.2025.e00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Antiparasitic resistance represents a serious global public health concern with tremendous economic and safety implications. This study intended to investigate the expression of the two major resistant markers: cystathionine β synthase (CβS) and ornithine decarboxylase (ODC) in antimony unresponsive Leishmania tropica isolates compared to responsive ones. Twenty-six patients were randomly selected from widely known foci of anthroponotic cutaneous leishmaniasis in southeastern Iran. Written informed consent of the patients was obtained. Two smears were prepared from the edge of each active lesion; one for microscopic direct smear preparation and the other for inoculation into monophasic NNN media, then for mass production of promastigotes into RPMI-1640 monophasic culture for performing nested PCR and gene expression quantification by real-time PCR. Twenty-six patients consisting of 13 unresponsive and 13 responsive equally distributed among female and male groups. All cases were identified to be L. tropica. Both resistant gene markers were significantly up-regulated in unresponsive and responsive isolates. The findings showed that CβS and ODC are directly linked with the resistance to L. tropica. Alternative drugs or combination therapy and monitoring drug resistance to prevent the spread of resistant isolates are proper strategies to control the disease.
Collapse
Affiliation(s)
- Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ali Afgar
- Center for Hydatid Disease, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Eskandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Asadi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Gobert AP, Latour YL, McNamara KM, Hawkins CV, Williams KJ, Asim M, Barry DP, Allaman MM, Delgado AG, Milne GL, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Wilson KT. The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice. Amino Acids 2024; 56:63. [PMID: 39427081 PMCID: PMC11490428 DOI: 10.1007/s00726-024-03423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of Cth-/- mice. We observed that clinical and histological parameters are ameliorated in Cth-deficient mice compared to wild-type animals. However, Cth deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene Slc7a11 encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in Cth-/- mice compared to both WT and Slc7a11-/- mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ginger L Milne
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Kay Washington
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Zmich A, Perkins LJ, Bingman C, Buller AR. Elucidation of the stereochemical mechanism of cystathionine γ-lyase reveals how substrate specificity constrains catalysis. ACS Catal 2024; 14:11196-11204. [PMID: 39391268 PMCID: PMC11464002 DOI: 10.1021/acscatal.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes play essential roles in metabolism and have found applications for organic synthesis and as enzyme therapeutics. The vinylglycine ketimine (VGK) subfamily hosts a growing set of enzymes that play diverse roles in primary and secondary metabolism. However, the molecular determinates of substrate specificity and the complex acid-base chemistry that enables VGK catalysis remain enigmatic. We use a recently discovered amino acid γ-lyase as a model system to probe catalysis in this enzyme family. We discovered that two stereochemically distinct proton transfer pathways occur. Combined kinetic and spectroscopic analysis revealed that progression through the catalytic cycle is correlated with the presence of an H-bond donor after Cγ of an amino acid substrate, suggesting substrate binding is kinetically coupled to a conformational change. High-resolution X-ray crystallography shows that cystathionine-γ-lyases generate an s-trans intermediate and that this geometry is likely conserved throughout the VGK family. An H-bond acceptor in the active site templates substrate binding but does so by pre-organizing substrates away from catalytically productive orientations. Mutagenesis eliminates this pre-organization, such that there is a relaxation of the substrate specificity, but an increase in k cat for diverse substrates. We exploit this information to perform preparative scale α,β,β-tri-deuteration of polar amino acids. Together, these data untangle a complex mode of substrate specificity and provide a foundation for the future study and applications of VGK enzymes.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Liu S, Yeh C, Reavill C, Jones B, Zou Y, Hai Y. Molecular and Structural Basis for Cγ-C Bond Formation by PLP-Dependent Enzyme Fub7. Angew Chem Int Ed Engl 2024; 63:e202317161. [PMID: 38308582 PMCID: PMC10947850 DOI: 10.1002/anie.202317161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/05/2024]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes that catalyze γ-replacement reactions are prevalent, yet their utilization of carbon nucleophile substrates is rare. The recent discovery of two PLP-dependent enzymes, CndF and Fub7, has unveiled unique C-C bond forming capabilities, enabling the biocatalytic synthesis of alkyl- substituted pipecolic acids from O-acetyl-L-homoserine and β-keto acid or aldehyde derived enolates. This breakthrough presents fresh avenues for the biosynthesis of pipecolic acid derivatives. However, the catalytic mechanisms of these enzymes remain elusive, and a dearth of structural information hampers their extensive application. Here, we have broadened the catalytic scope of Fub7 by employing ketone-derived enolates as carbon nucleophiles, revealing Fub7's capacity for substrate-dependent regioselective α-alkylation of unsymmetrical ketones. Through an integrated approach combining X-ray crystallography, spectroscopy, mutagenesis, and computational docking studies, we offer a detailed mechanistic insight into Fub7 catalysis. Our findings elucidate the structural basis for its substrate specificity, stereoselectivity, and regioselectivity. Our work sets the stage ready for subsequent protein engineering effort aimed at expanding the synthetic utility of Fub7, potentially unlocking novel methods to access a broader array of noncanonical amino acids.
Collapse
Affiliation(s)
- Shaonan Liu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, 93110, Santa Barbara, CA, USA
| | - Christopher Yeh
- Department of Chemistry and Biochemistry, University of California Santa Barbara, 93110, Santa Barbara, CA, USA
| | - Chloe Reavill
- Department of Chemistry and Biochemistry, University of California Santa Barbara, 93110, Santa Barbara, CA, USA
| | - Benjamin Jones
- Department of Chemistry and Biochemistry, University of California Santa Barbara, 93110, Santa Barbara, CA, USA
| | - Yike Zou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California Santa Barbara, 93110, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Zmich A, Perkins LJ, Bingman C, Acheson JF, Buller AR. Multiplexed Assessment of Promiscuous Non-Canonical Amino Acid Synthase Activity in a Pyridoxal Phosphate-Dependent Protein Family. ACS Catal 2023; 13:11644-11655. [PMID: 37720819 PMCID: PMC10501158 DOI: 10.1021/acscatal.3c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes afford access to a variety of non-canonical amino acids (ncAAs), which are premier buildings blocks for the construction of complex bioactive molecules. The vinylglycine ketimine (VGK) subfamily of PLP-dependent enzymes plays a critical role in sulfur metabolism and is home to a growing set of secondary metabolic enzymes that synthesize γ-substituted ncAAs. Identification of VGK enzymes for biocatalysis faces a distinct challenge because the subfamily contains both desirable synthases as well as lyases that break down ncAAs. Some enzymes have both activities, which may contribute to pervasive mis-annotation. To navigate this complex functional landscape, we used a substrate multiplexed screening approach to rapidly measure the substrate promiscuity of 40 homologs in the VGK subfamily. We found that enzymes involved in transsulfuration are less likely to have promiscuous activities and often possess undesirable lyase activity. Enzymes from direct sulfuration and secondary metabolism generally had a high degree of substrate promiscuity. From this cohort, we identified an exemplary γ-synthase from Caldicellulosiruptor hydrothermalis (CahyGS). This enzyme is thermostable and has high expression (~400 mg protein per L culture), enabling preparative scale synthesis of thioether containing ncAAs. When assayed with l-allylglycine, CahyGS catalyzes a stereoselective γ-addition reaction to afford access to a unique set of γ-methyl branched ncAAs. We determined high-resolution crystal structures of this enzyme that define an open-close transition associated with ligand binding and set the stage for future engineering within this enzyme subfamily.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Ouyang Y, Zhu Z, Meng L, Wang R, Huo J, Xu S, Ou X. The histone H2B ubiquitination regulator Wac is essential for plasma cell differentiation. FEBS Lett 2023; 597:1748-1760. [PMID: 37171241 DOI: 10.1002/1873-3468.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Naïve B cells become activated and differentiate into antibody-secreting plasma cells (PCs) when encountering antigens. Here, we reveal that the WW domain-containing adapter protein with coiled-coil (Wac), which is important for histone H2B ubiquitination (ubH2B), is essential for PC differentiation. We demonstrate that B cell-specific Wac knockout mice have severely compromised T cell-dependent and -independent antibody responses. PC differentiation is drastically compromised despite undisturbed germinal center B cell response in the mutant mice. We also observe a significant reduction in global ubH2B in Wac-deficient B cells, which is correlated with downregulated expression of some genes critical for cell metabolism. Thus, our findings demonstrate an essential role of Wac-mediated ubH2B in PC differentiation and shed light on the epigenetic mechanisms underlying this process.
Collapse
Affiliation(s)
- Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Zhejiang, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Limin Meng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruisi Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Le Corre L, Padovani D. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Sci Rep 2023; 13:7287. [PMID: 37142727 PMCID: PMC10160035 DOI: 10.1038/s41598-023-34405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that participates in various signaling functions in health and diseases. The tetrameric cystathionine γ-lyase (CSE) contributes to H2S biogenesis and several investigations provide evidence on the pharmacological modulation of CSE as a potential target for the treatment of a multitude of conditions. D-penicillamine (D-pen) has recently been reported to selectively impede CSE-catalyzed H2S production but the molecular bases for such inhibitory effect have not been investigated. In this study, we report that D-pen follows a mixed-inhibition mechanism to inhibit both cystathionine (CST) cleavage and H2S biogenesis by human CSE. To decipher the molecular mechanisms underlying such a mixed inhibition, we performed docking and molecular dynamics (MD) simulations. Interestingly, MD analysis of CST binding reveals a likely active site configuration prior to gem-diamine intermediate formation, particularly H-bond formation between the amino group of the substrate and the O3' of PLP. Similar analyses realized with both CST and D-pen identified three potent interfacial ligand-binding sites for D-pen and offered a rational for D-pen effect. Thus, inhibitor binding not only induces the creation of an entirely new interacting network at the vicinity of the interface between enzyme subunits, but it also exerts long range effects by propagating to the active site. Overall, our study paves the way for the design of new allosteric interfacial inhibitory compounds that will specifically modulate H2S biogenesis by cystathionine γ-lyase.
Collapse
Affiliation(s)
- Laurent Le Corre
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France
| | - Dominique Padovani
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France.
| |
Collapse
|
8
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
9
|
Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022; 10:7924-7954. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the smallest and simplest biological thiol in living systems, is the third member of the family of signaling mediators. H2S participates in the regulation of a series of complex physiological and pathological functions in the body, making it a critical fulcrum that balances health and disease in human physiology. Small-molecule fluorescent probes have been proven to possess the unique advantages of high temporal and spatial resolution, good biocompatibility and high sensitivity, and thus their use is a powerful approach for monitoring the level and dynamics of H2S in living cells and organisms and better understanding its basic cellular functions. The field of small-molecule fluorescent probes for monitoring the complex biological activities of H2S in vivo has been thriving in recent years. Herein, we systematically summarize the latest developments in the field of fluorescent probes for the detection of H2S, illustrate their biological applications according to the classification of target-responsive sites, and emphasize the development direction and challenges of H2S-responsive fluorescent probes, hoping to give implications of researchers on fluorescent probes for future research.
Collapse
Affiliation(s)
- Lingxiu Kong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Wenjuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Xiaoli Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, China
| | - Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Jiarao Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Yanfeng Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| |
Collapse
|
10
|
Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022; 13:e0075422. [PMID: 35856606 PMCID: PMC9426449 DOI: 10.1128/mbio.00754-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine β-synthase (CβS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CβS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Collapse
|
11
|
Saxena VK, Vedamurthy GV, Swarnkar CP, Kadam V, Onteru SK, Ahmad H, Singh R. De novo pathway is an active metabolic pathway of cysteine synthesis in Haemonchus contortus. Biochimie 2021; 187:110-120. [PMID: 34082042 DOI: 10.1016/j.biochi.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023]
Abstract
Haemonchus contortus, commonly known as Barber's pole worm, is an economically important gastrointestinal nematode of sheep and goats especially in tropical and sub-tropical regions of the world. Cysteine synthesis is a very important metabolic pathway for the parasite, however the functional aspects of cysteine synthesis in parasite are largely unknown. The key question which we have investigated in the study is; whether the parasite uses a de novo pathway of cysteine synthesis, which is unknown in multicellular organisms of the animal kingdom and known to be absent in mammals. Directional cloning of the cysteine synthase (CS) gene was done in pET303 champion vector using restriction sites XbaI and XhoI. The CS gene of the H.contortus was closely related to CS-A protein of Oesophagostomum dentatum and a hypothetical protein of Ancylostoma ceylanicum. Recombinant protein of the H contortus CS (rHC-CS) gene was expressed using pET303 vector in pLysS BL21 strain of E.coli and subsequently purified by Ni-NTA affinity chromatography. Western blot using anti-His tag antibody confirmed the presence of rHC-CS. Biochemical assay, FTIR and enzyme kinetics studies revealed that rHC-CS used O-acetyl serine as substrate to produce cysteine using de novo pathway and CS activity was also confirmed with the homogenate of H.contortus. Upregulation of CS transcripts in the adult and its downregulation in the L3 larval stage suggests that de novo pathway contributes to the cysteine requirement of mature H.contortus. It is concluded that de novo pathway is an active metabolic pathway in H.contortus.
Collapse
Affiliation(s)
- Vijay Kumar Saxena
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India.
| | - G V Vedamurthy
- Livestock Research Centre, Southren Regional Station, National Dairy Research Institute, ICAR-NDRI (SRS), Bengaluru, Karnataka, 560030, India
| | - C P Swarnkar
- Animal Health Division, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| | - Vinod Kadam
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304501, India
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Haseen Ahmad
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Raghvendar Singh
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| |
Collapse
|
12
|
Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem 2021; 296:100797. [PMID: 34019879 PMCID: PMC8191291 DOI: 10.1016/j.jbc.2021.100797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Collapse
Affiliation(s)
- Jodi L Brewster
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
13
|
The Streptococcus pyogenes signaling peptide SpoV regulates streptolysin O and enhances survival in murine blood. J Bacteriol 2021; 203:JB.00586-20. [PMID: 33722844 PMCID: PMC8117530 DOI: 10.1128/jb.00586-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS must sense and respond to environmental changes. Intercellular communication mediated by peptides is one way GAS coordinates gene expression in response to diverse environmental stressors, which enhances bacterial survival and contributes to virulence. Using peptidomics we identified SpoV (Streptococcal peptide controlling virulence) in culture supernatant fluids. SpoV is a secreted peptide encoded near the gene encoding the extracellular cholesterol-dependent cytolysin streptolysin O (slo) The addition of synthetic SpoV peptide derivatives, but not control peptides, increased slo transcript abundance in an M49 isolate but not in an M3 isolate. Deletion of spoV decreased slo transcript abundance, extracellular SLO protein levels, and SLO-specific hemolytic activity. Complementation of the spoV mutant increased slo transcript abundance. Lastly, a spoV mutant was deficient in the ability to survive in murine blood compared to the parental strain. Moreover, pre-incubation of the spoV mutant with synthetic SpoV peptide derivatives increased GAS survival. Our findings show that slo expression is regulated, in part, by the GAS-specific signaling peptide SpoV.IMPORTANCEGAS secretes signaling peptides that can alter gene expression and impact virulence. We used peptidomics to identify a signaling peptide designated SpoV. Further, we showed that SpoV altered the expression of the cholesterol-dependent cytolysin SLO. Peptide signaling plays an important regulatory role during disease progression among several bacterial pathogens, including GAS. The therapeutic potential of manipulating peptide-controlled regulatory networks is an attractive option for the development of novel therapeutic strategies that disrupt virulence gene expression.
Collapse
|
14
|
Zhu WY, Niu K, Liu P, Fan YH, Liu ZQ, Zheng YG. Identification and Characterization of an O-Succinyl-L-Homoserine Sulfhydrylase From Thioalkalivibrio sulfidiphilus. Front Chem 2021; 9:672414. [PMID: 33937207 PMCID: PMC8080516 DOI: 10.3389/fchem.2021.672414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
L-methionine is an important natural amino acid with broad application prospects. A novel gene encoding the enzyme with the ability to catalyze O-succinyl-L-homoserine (OSH) to L-methionine was screened and characterized. The recombinant O-succinyl-L-homoserine sulfhydrylase from Thioalkalivibrio sulfidiphilus (tsOSHS) exhibited maximum activity at 35°C and pH 6.5. OSHS displayed an excellent thermostability with a half-life of 21.72 h at 30°C. Furthermore, the activity of OSHS increased 115% after Fe2+ added. L-methionine was obtained with a total yield reaching 42.63 g/L under the concentration of O-succinyl-L-homoserine 400 mM (87.6 g/L). These results indicated that OSHS is a potential candidate for applying in the large-scale bioproduction of L-methionine.
Collapse
Affiliation(s)
- Wen-Yuan Zhu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Peng Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Hang Fan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
15
|
Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci Rep 2020; 10:14886. [PMID: 32913258 PMCID: PMC7483736 DOI: 10.1038/s41598-020-71756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The reverse transsulfuration pathway, which is composed of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize l-cysteine using l-serine and the sulfur atom in l-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-l-serine and l-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate l-cysteine, together with the β-lyase activity toward l-cystine to generate l-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or l-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or β-elimination reaction, with the former being the major reaction in the case of cystathionine.
Collapse
|
16
|
Aon MA, Bernier M, Mitchell SJ, Di Germanio C, Mattison JA, Ehrlich MR, Colman RJ, Anderson RM, de Cabo R. Untangling Determinants of Enhanced Health and Lifespan through a Multi-omics Approach in Mice. Cell Metab 2020; 32:100-116.e4. [PMID: 32413334 PMCID: PMC8214079 DOI: 10.1016/j.cmet.2020.04.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
The impact of chronic caloric restriction (CR) on health and survival is complex with poorly understood underlying molecular mechanisms. A recent study in mice addressing the diets used in nonhuman primate CR studies found that while diet composition did not impact longevity, fasting time and total calorie intake were determinant for increased survival. Here, integrated analysis of physiological and multi-omics data from ad libitum, meal-fed, or CR animals was used to gain insight into pathways associated with improved health and survival. We identified a potential involvement of the glycine-serine-threonine metabolic axis in longevity and related molecular mechanisms. Direct comparison of the different feeding strategies unveiled a pattern of shared pathways of improved health that included short-chain fatty acids and essential PUFA metabolism. These findings were recapitulated in the serum metabolome from nonhuman primates. We propose that the pathways identified might be targeted for their potential role in healthy aging.
Collapse
Affiliation(s)
- Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53715, USA; Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
18
|
Shen D, Hensley K, Denton TT. An overview of sulfur-containing compounds originating from natural metabolites: Lanthionine ketimine and its analogues. Anal Biochem 2019; 591:113543. [PMID: 31862405 DOI: 10.1016/j.ab.2019.113543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Dunxin Shen
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, 7000 Chad Colley Blvd, Fort Smith, AR, 72916, USA
| | - Travis T Denton
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA.
| |
Collapse
|
19
|
Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. mBio 2019; 10:mBio.02174-19. [PMID: 31662455 PMCID: PMC6819659 DOI: 10.1128/mbio.02174-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages. The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.
Collapse
|
20
|
Coavoy-Sánchez SA, Costa SKP, Muscará MN. Hydrogen sulfide and dermatological diseases. Br J Pharmacol 2019; 177:857-865. [PMID: 31051046 DOI: 10.1111/bph.14699] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Skin diseases constitute a major health problem affecting a high proportion of the population every day and have different aetiologies that include inflammation, infections, and tumours. Hydrogen sulfide (H2 S) is a gaseous signalling molecule recognized as a gasotransmitter together with NO and carbon monoxide. Under physiological conditions, H2 S is produced in the skin by enzymic pathways and plays a physiological role in a variety of functions, such as vasodilatation, cell proliferation, apoptosis, and inflammation. Alterations of H2 S production are implicated in a variety of dermatological diseases, such as psoriasis, melanoma, and other dermatoses. On the other hand, H2 S-releasing-based therapies based on H2 S donor compounds are being developed to treat some of these situations. In this review, we provide an up-to-date overview of the role of H2 S in the normal skin and its clinical and pathological significance, as well as the therapeutic potential of different H2 S donors for treatment of skin diseases. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Silvia A Coavoy-Sánchez
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Li Y, Zhang Y, Liu M, Qin Y, Liu Y. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiol 2019; 79:147-155. [DOI: 10.1016/j.fm.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 10/28/2022]
|
22
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
23
|
Shen J, Walsh BJC, Flores-Mireles AL, Peng H, Zhang Y, Zhang Y, Trinidad JC, Hultgren SJ, Giedroc DP. Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in Enterococcus faecalis. ACS Chem Biol 2018; 13:1610-1620. [PMID: 29712426 PMCID: PMC6088750 DOI: 10.1021/acschembio.8b00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies of hydrogen sulfide (H2S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme FeII persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Brenna J. C. Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ana Lidia Flores-Mireles
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63011, United States
| | - Hui Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63011, United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Majtan T, Krijt J, Sokolová J, Křížková M, Ralat MA, Kent J, Gregory JF, Kožich V, Kraus JP. Biogenesis of Hydrogen Sulfide and Thioethers by Cystathionine Beta-Synthase. Antioxid Redox Signal 2018; 28:311-323. [PMID: 28874062 DOI: 10.1089/ars.2017.7009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS The transsulfuration pathway enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase are thought to be the major source of hydrogen sulfide (H2S). In this study, we assessed the role of CBS in H2S biogenesis. RESULTS We show that despite discouraging enzyme kinetics of alternative H2S-producing reactions utilizing cysteine compared with the canonical condensation of serine and homocysteine, our simulations of substrate competitions at biologically relevant conditions suggest that cysteine is able to partially compete with serine on CBS, thus leading to generation of appreciable amounts of H2S. The leading H2S-producing reaction is condensation of cysteine with homocysteine, while cysteine desulfuration plays a dominant role when cysteine is more abundant than serine and homocysteine is limited. We found that the serine-to-cysteine ratio is the main determinant of CBS H2S productivity. Abundance of cysteine over serine, for example, in plasma, allowed for up to 43% of CBS activity being responsible for H2S production, while excess of serine typical for intracellular levels effectively limited such activity to less than 1.5%. CBS also produced lanthionine from serine and cysteine and a third of lanthionine coming from condensation of two cysteines contributed to the H2S pool. INNOVATION Our study characterizes the H2S-producing potential of CBS under biologically relevant conditions and highlights the serine-to-cysteine ratio as the main determinant of H2S production by CBS in vivo. CONCLUSION Our data clarify the function of CBS in H2S biogenesis and the role of thioethers as surrogate H2S markers. Antioxid. Redox Signal. 28, 311-323.
Collapse
Affiliation(s)
- Tomas Majtan
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jakub Krijt
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jitka Sokolová
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Michaela Křížková
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Maria A Ralat
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Jana Kent
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jesse F Gregory
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Viktor Kožich
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jan P Kraus
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| |
Collapse
|
25
|
Yao Y, Delgado-Rivera L, Samareh Afsari H, Yin L, Thatcher GRJ, Moore TW, Miller LW. Time-Gated Luminescence Detection of Enzymatically Produced Hydrogen Sulfide: Design, Synthesis, and Application of a Lanthanide-Based Probe. Inorg Chem 2017; 57:681-688. [PMID: 29281273 DOI: 10.1021/acs.inorgchem.7b02533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an important gaseous transmitter that is involved in a variety of biological processes. Here, we report the design and synthesis of a luminescent lanthanide biosensor for H2S, LP2-Cu(II)-Ln(III), a heterobinuclear metal complex that uses Cu(II) decomplexation to control millisecond-scale-lifetime-Tb(III)- or Eu(III)-emission intensity. LP2-Cu(II)-Ln(III) responded rapidly, selectively, and with high sensitivity to aqueous H2S. The probe's potential for biological applications was verified by measuring the H2S generated by the slow-releasing chemical-sulfide-donor GYY4147, by cystathionine γ-lyase (CSE), and by Na2S-stimulated HeLa cells.
Collapse
Affiliation(s)
- Yao Yao
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Loruhama Delgado-Rivera
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois at Chicago , Chicago, Illinois 60612, United States.,University of Illinois Cancer Center, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Hamid Samareh Afsari
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Liang Yin
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois at Chicago , Chicago, Illinois 60612, United States.,University of Illinois Cancer Center, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois at Chicago , Chicago, Illinois 60612, United States.,University of Illinois Cancer Center, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois at Chicago , Chicago, Illinois 60612, United States.,University of Illinois Cancer Center, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
26
|
Sato D, Shiba T, Mizuno S, Kawamura A, Hanada S, Yamada T, Shinozaki M, Yanagitani M, Tamura T, Inagaki K, Harada S. The hyperthermophilic cystathionine γ-synthase from the aerobic crenarchaeon Sulfolobus tokodaii: expression, purification, crystallization and structural insights. Acta Crystallogr F Struct Biol Commun 2017; 73:152-158. [PMID: 28291751 PMCID: PMC5349309 DOI: 10.1107/s2053230x17002011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Cystathionine γ-synthase (CGS; EC 2.5.1.48), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the formation of cystathionine from an L-homoserine derivative and L-cysteine in the first step of the transsulfuration pathway. Recombinant CGS from the thermoacidophilic archaeon Sulfolobus tokodaii (StCGS) was overexpressed in Escherichia coli and purified to homogeneity by heat treatment followed by hydroxyapatite and gel-filtration column chromatography. The purified enzyme shows higher enzymatic activity at 353 K under basic pH conditions compared with that at 293 K. Crystallization trials yielded three crystal forms from different temperature and pH conditions. Form I crystals (space group P21; unit-cell parameters a = 58.4, b = 149.3, c = 90.2 Å, β = 108.9°) were obtained at 293 K under acidic pH conditions using 2-methyl-2,4-pentanediol as a precipitant, whereas under basic pH conditions the enzyme crystallized in form II at 293 K (space group C2221; unit-cell parameters a = 117.7, b = 117.8, c = 251.3 Å) and in form II' at 313 K (space group C2221; unit-cell parameters a = 107.5, b = 127.7, c = 251.1 Å) using polyethylene glycol 3350 as a precipitant. X-ray diffraction data were collected to 2.2, 2.9 and 2.7 Å resolution for forms I, II and II', respectively. Structural analysis of these crystal forms shows that the orientation of the bound PLP in form II is significantly different from that in form II', suggesting that the change in orientation of PLP with temperature plays a role in the thermophilic enzymatic activity of StCGS.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sae Mizuno
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ayaka Kawamura
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shoko Hanada
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tetsuya Yamada
- Department of Biofunctional Chemistry, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mai Shinozaki
- Department of Biofunctional Chemistry, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Masahiko Yanagitani
- Department of Biofunctional Chemistry, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Gosho Kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
27
|
Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M. Crystallographic and mutational analyses of cystathionine β-synthase in the H 2 S-synthetic gene cluster in Lactobacillus plantarum. Protein Sci 2017; 26:763-783. [PMID: 28127810 DOI: 10.1002/pro.3123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/05/2022]
Abstract
Cystathionine β-synthase (CBS) catalyzes the formation of l-cystathionine from l-serine and l-homocysteine. The resulting l-cystathionine is decomposed into l-cysteine, ammonia, and α-ketobutylic acid by cystathionine γ-lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2 S). In some bacteria, including the plant-derived lactic acid bacterium Lactobacillus plantarum, the CBS- and CGL-encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2 S production in bacteria; interestingly, it has been shown that H2 S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O-acetyl-l-serine sulfhydrylase (OASS) that catalyzes the generation of l-cysteine from O-acetyl-l-serine (l-OAS) and H2 S. The L. plantarum CBS shows l-OAS- and l-cysteine-dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2 S in the presence of l-cysteine and l-homocysteine, together with the formation of l-cystathionine. The high affinity toward l-cysteine as a first substrate and tendency to use l-homocysteine as a second substrate might be associated with its enzymatic ability to generate H2 S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2 S-generating activity.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoki Yoshida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hisae Izuhara-Kihara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masafumi Noda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
28
|
Han H, Xue P, Dong H, Zhu S, Zhao Q, Huang B. Screening and characterization of apical membrane antigen 1 interacting proteins in Eimeria tenella. Exp Parasitol 2016; 170:116-124. [PMID: 27693220 DOI: 10.1016/j.exppara.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian coccidiosis is a widespread and economically significant disease of poultry. It is an enteric disease caused by several protozoan Eimeria species. Eimeria belongs to the phylum Apicomplexa, which exhibits an unusual mechanism of host cell invasion. During invasion of host cells, the protein apical membrane antigen 1 (AMA1) is essential for invasion of Toxoplasma gondii and Plasmodium. Contrary to the roles of AMA1 during host cell invasion in T. gondii and Plasmodium, the precise functions of Eimeria AMA1 (EtAMA1) are unclear. In order to study the functions of EtAMA1, a yeast two-hybrid cDNA library was constructed from E. tenella sporozoites. The EtAMA1 ectodomain was cloned into the pGBKT7 vector to construct the bait plasmid pGBKT7- EtAMA1. Autoactivation and toxicity of the bait protein in yeast cells were tested by comparison with the pGBKT7 empty vector. Expression of the bait protein was detected by western blots. The bait plasmid pGBKT7-EtAMA1 was used to screen yeast two-hybrid cDNA library from E. tenella sporozoites. After multiple screenings with high-screening-rate medium and exclusion of false-positive plasmids, positive preys were sequenced and analyzed using BLAST. We obtained 14 putative EtAMA1-interacting proteins including E. tenella acidic microneme protein2 (EtMIC2), E. tenella putative cystathionine beta-synthase, E. tenella Eimeria-specific protein, four E. tenella conserved hypothetical proteins (one in the serine/threonine protein kinase family) and seven unknown proteins. Gene Ontology analysis indicated that two known proteins were associated with metabolic process, pyridoxal phosphate binding and protein phosphorylation. Functional analysis indicated EtMIC2 was implicated in parasite motility, migration, recognition and invasion of host cells. The data suggested that EtAMA1 may be important during host cell invasion, but also involved in other biological processes.
Collapse
Affiliation(s)
- Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Pu Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
29
|
A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin. Appl Environ Microbiol 2015; 82:467-77. [PMID: 26519385 DOI: 10.1128/aem.02517-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/25/2015] [Indexed: 01/29/2023] Open
Abstract
Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development.
Collapse
|
30
|
Snijder PM, Baratashvili M, Grzeschik NA, Leuvenink HGD, Kuijpers L, Huitema S, Schaap O, Giepmans BNG, Kuipers J, Miljkovic JL, Mitrovic A, Bos EM, Szabó C, Kampinga HH, Dijkers PF, Bos EM, Szabó C, Kampinga HH, Dijkers PF, Dunnen WFAD, Filipovic MR, Goor HV, Sibon OCM. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3. Mol Med 2015; 21:758-768. [PMID: 26467707 DOI: 10.2119/molmed.2015.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.
Collapse
Affiliation(s)
- Pauline M Snijder
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Madina Baratashvili
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lucas Kuijpers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sippie Huitema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Onno Schaap
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- UMCG Microscopy and Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- UMCG Microscopy and Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Lj Miljkovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pascale F Dijkers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pascale F Dijkers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
31
|
Abstract
This review focuses on the steps unique to methionine biosynthesis, namely the conversion of homoserine to methionine. The past decade has provided a wealth of information concerning the details of methionine metabolism and the review focuses on providing a comprehensive overview of the field, emphasizing more recent findings. Details of methionine biosynthesis are addressed along with key cellular aspects, including regulation, uptake, utilization, AdoMet, the methyl cycle, and growing evidence that inhibition of methionine biosynthesis occurs under stressful cellular conditions. The first unique step in methionine biosynthesis is catalyzed by the metA gene product, homoserine transsuccinylase (HTS, or homoserine O-succinyltransferase). Recent experiments suggest that transcription of these genes is indeed regulated by MetJ, although the repressor-binding sites have not yet been verified. Methionine also serves as the precursor of S-adenosylmethionine, which is an essential molecule employed in numerous biological processes. S-adenosylhomocysteine is produced as a consequence of the numerous AdoMet-dependent methyl transfer reactions that occur within the cell. In E. coli and Salmonella, this molecule is recycled in two discrete steps to complete the methyl cycle. Cultures challenged by oxidative stress appear to experience a growth limitation that depends on methionine levels. E. coli that are deficient for the manganese and iron superoxide dismutases (the sodA and sodB gene products, respectively) require the addition of methionine or cysteine for aerobic growth. Modulation of methionine levels in response to stressful conditions further increases the complexity of its regulation.
Collapse
|
32
|
Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrob Agents Chemother 2015; 59:4770-81. [PMID: 26033728 DOI: 10.1128/aac.04880-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Cysteine metabolism is considered essential for the crucial maintenance of a reducing environment in trypanosomatids due to its importance as a precursor of trypanothione biosynthesis. Expression, activity, functional rescue, and overexpression of cysteine synthase (CS) and cystathionine β-synthase (CβS) were evaluated in Leishmania braziliensis promastigotes and intracellular amastigotes under in vitro stress conditions induced by hydrogen peroxide (H2O2), S-nitroso-N-acetylpenicillamine, or antimonial compounds. Our results demonstrate a stage-specific increase in the levels of protein expression and activity of L. braziliensis CS (LbrCS) and L. braziliensis CβS (LbrCβS), resulting in an increment of total thiol levels in response to both oxidative and nitrosative stress. The rescue of the CS activity in Trypanosoma rangeli, a trypanosome that does not perform cysteine biosynthesis de novo, resulted in increased rates of survival of epimastigotes expressing the LbrCS under stress conditions compared to those of wild-type parasites. We also found that the ability of L. braziliensis promastigotes and amastigotes overexpressing LbrCS and LbrCβS to resist oxidative stress was significantly enhanced compared to that of nontransfected cells, resulting in a phenotype far more resistant to treatment with the pentavalent form of Sb in vitro. In conclusion, the upregulation of protein expression and increment of the levels of LbrCS and LbrCβS activity alter parasite resistance to antimonials and may influence the efficacy of antimony treatment of New World leishmaniasis.
Collapse
|
33
|
L-cystathionine inhibits oxidized low density lipoprotein-induced THP-1-derived macrophage inflammatory cytokine monocyte chemoattractant protein-1 generation via the NF-κB pathway. Sci Rep 2015; 5:10453. [PMID: 26020416 PMCID: PMC4447071 DOI: 10.1038/srep10453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
This study aimed to explore whether and how L-cystathionine had any regulatory effect on the inflammatory response in THP-1-derived macrophages cultured in vitro under oxidized low-density lipoprotein (ox-LDL) stimulation. The human monocyte line THP-1 cell was cultured in vitro and differentiated into macrophages after 24 hours of PMA induction. Macrophages were pretreated with L-cystathionine and then treated with ox-LDL. The results showed that compared with the controls, ox-LDL stimulation significantly upregulated the expression of THP-1-derived macrophage MCP-1 by enhancing NF-κB p65 phosphorylation, nuclear translocation and DNA binding with the MCP-1 promoter. Compared with the ox-LDL group, 0.3 mmol/L and 1.0 mmol/L L-cystathionine significantly inhibited the expression of THP-1-derived macrophage MCP-1. Mechanistically, 0.3 mmol/L and 1.0 mmol/L L-cystathionine suppressed phosphorylation and nuclear translocation of the NF-κB p65 protein, as well as the DNA binding activity and DNA binding level of NF-κB with the MCP-1 promoter, which resulted in a reduced THP-1-derived macrophage MCP-1 generation. This study suggests that L-cystathionine could inhibit the expression of MCP-1 in THP-1-derived macrophages induced by ox-LDL via inhibition of NF-κB p65 phosphorylation, nuclear translocation, and binding of the MCP-1 promoter sequence after entry into the nucleus.
Collapse
|
34
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
35
|
L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci 2014; 15:23059-73. [PMID: 25514411 PMCID: PMC4284754 DOI: 10.3390/ijms151223059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022] Open
Abstract
This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation.
Collapse
|
36
|
Jarrett JT. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J Biol Chem 2014; 290:3972-9. [PMID: 25477512 DOI: 10.1074/jbc.r114.599308] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-L-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5'-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster's endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products.
Collapse
Affiliation(s)
- Joseph T Jarrett
- From the Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| |
Collapse
|
37
|
Song H, Xu R, Guo Z. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Chembiochem 2014; 16:100-9. [PMID: 25404066 DOI: 10.1002/cbic.201402489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 11/07/2022]
Abstract
CalE6 is a previously uncharacterized protein involved in the biosynthesis of calicheamicins in Micromonospora echinospora. It is a pyridoxal-5'-phosphate-dependent enzyme and exhibits high sequence homology to cystathionine γ-lyases and cystathionine γ-synthases. However, it was found to be active towards methionine and to convert this amino acid into α-ketobutyrate, ammonium, and methanethiol. The crystal structure of the cofactor-bound holoenzyme was resolved at 2.0 Å; it contains two active site residues, Gly105 and Val322, specific for methionine γ-lyases. Modeling of methionine into the active site allows identification of the active site residues responsible for substrate recognition and catalysis. These findings support that CalE6 is a putative methionine γ-lyase producing methanethiol as a building block in biosynthesis of calicheamicins.
Collapse
Affiliation(s)
- Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
| | | | | |
Collapse
|
38
|
Abstract
Methionine is essential in all organisms, as it is both a proteinogenic amino acid and a component of the cofactor, S-adenosyl methionine. The metabolic pathway for its biosynthesis has been extensively characterized in Escherichia coli; however, it is becoming apparent that most bacterial species do not use the E. coli pathway. Instead, studies on other organisms and genome sequencing data are uncovering significant diversity in the enzymes and metabolic intermediates that are used for methionine biosynthesis. This review summarizes the different biochemical strategies that are employed in the three key steps for methionine biosynthesis from homoserine (i.e. acylation, sulfurylation and methylation). A survey is presented of the presence and absence of the various biosynthetic enzymes in 1593 representative bacterial species, shedding light on the non-canonical nature of the E. coli pathway. This review also highlights ways in which knowledge of methionine biosynthesis can be utilized for biotechnological applications. Finally, gaps in the current understanding of bacterial methionine biosynthesis are noted. For example, the paper discusses the presence of one gene (metC) in a large number of species that appear to lack the gene encoding the enzyme for the preceding step in the pathway (metB), as it is understood in E. coli. Therefore, this review aims to move the focus away from E. coli, to better reflect the true diversity of bacterial pathways for methionine biosynthesis.
Collapse
Affiliation(s)
- Matteo P. Ferla
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Wayne M. Patrick
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
39
|
Sekiya A, Fukada SI, Morita T, Kawagishi H, Sugiyama K. Suppression of Methionine-Induced Hyperhomocysteinemia by Dietary Eritadenine in Rats. Biosci Biotechnol Biochem 2014; 70:1987-91. [PMID: 16880595 DOI: 10.1271/bbb.60075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of dietary eritadenine on the plasma homocysteine concentration was investigated in methionine-induced hyperhomocysteinemic rats. The rats were fed on the control or eritadenine-supplemented (50 mg/kg) diet for 10 d. The animals were then injected with saline or methionine at a level of 100 or 300 mg/kg of body weight, and sacrificed 2 h or a more appropriate time after injection. The methionine injection increased the post-2 h concentration of plasma homocysteine in a dose-dependent manner in the control rats, this increase being significantly suppressed in the eritadenine-fed rats. This effect persisted up to 8 h after the methionine injection. The hepatic concentrations of S-adenosylmethionine and S-adenosylhomocysteine were increased by eritadenine, whereas the hepatic homocysteine concentration was inversely decreased. The cystathionine beta-synthase activity in the liver was increased by eritadenine. It is suggested from these results that eritadenine might suppress the methionine-induced increase in plasma homocysteine concentration by dual mechanisms: slowing the homocysteine production from S-adenosylhomocysteine and increasing the removal of homocysteine due to the enhanced activity of cystathionine beta-synthase.
Collapse
Affiliation(s)
- Atsushi Sekiya
- Forestry and Forest Products Research Institute, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
40
|
Romero I, Téllez J, Yamanaka LE, Steindel M, Romanha AJ, Grisard EC. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit Vectors 2014; 7:197. [PMID: 24761813 PMCID: PMC4005819 DOI: 10.1186/1756-3305-7-197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/15/2014] [Indexed: 11/12/2022] Open
Abstract
Background Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress. Methods We cloned and characterised genes coding for a cystathionine β-synthase (CβS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli. Results Our results show that T. rangeli CβS (TrCβS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CβS. Moreover, CβS biochemical assays revealed that the T. rangeli CβS enzyme also has serine sulfhydrylase activity. Conclusion These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite.
Collapse
Affiliation(s)
- Ibeth Romero
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-970, Brasil.
| | | | | | | | | | | |
Collapse
|
41
|
Jaworski AF, Aitken SM. Exploration of the six tryptophan residues of Escherichia coli cystathionine β-lyase as probes of enzyme conformational change. Arch Biochem Biophys 2013; 538:138-44. [DOI: 10.1016/j.abb.2013.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
42
|
Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms. N Biotechnol 2013; 30:219-26. [DOI: 10.1016/j.nbt.2012.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
|
43
|
Zeng Y, Kulkarni A, Yang Z, Patil PB, Zhou W, Chi X, Van Lanen S, Chen S. Biosynthesis of albomycin δ(2) provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem Biol 2012; 7:1565-75. [PMID: 22704654 DOI: 10.1021/cb300173x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
"Trojan horse" antibiotic albomycins are peptidyl nucleosides consisting of a highly modified 4'-thiofuranosyl cytosine moiety and a ferrichrome siderophore that are linked by a peptide bond via a serine residue. While the latter component serves to sequester iron from the environment, the seryl nucleoside portion is a potent inhibitor of bacterial seryl-tRNA synthetases, resulting in broad-spectrum antimicrobial activities of albomycin δ(2). The isolation of albomycins has revealed this biological activity is optimized only following two unusual cytosine modifications, N4-carbamoylation and N3-methylation. We identified a genetic locus (named abm) for albomycin production in Streptomyces sp. ATCC 700974. Gene deletion and complementation experiments along with bioinformatic analysis suggested 18 genes are responsible for albomycin biosynthesis and resistance, allowing us to propose a potential biosynthetic pathway for installing the novel chemical features. The gene abmI, encoding a putative methyltransferase, was functionally assigned in vitro and shown to modify the N3 of a variety of cytosine-containing nucleosides and antibiotics such as blasticidin S. Furthermore, a ΔabmI mutant was shown to produce the descarbamoyl-desmethyl albomycin analogue, supporting that the N3-methylation occurs before the N4-carbamoylation in the biosynthesis of albomycin δ(2). The combined genetic information was utilized to identify an abm-related locus (named ctj) from the draft genome of Streptomyces sp. C. Cross-complementation experiments and in vitro studies with CtjF, the AbmI homologue, suggest the production of a similar 4'-thiofuranosyl cytosine in this organism. In total, the genetic and biochemical data provide a biosynthetic template for assembling siderophore-inhibitor conjugates and modifying the albomycin scaffold to generate new derivatives.
Collapse
Affiliation(s)
- Yu Zeng
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Aditya Kulkarni
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Zhaoyong Yang
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Preeti B. Patil
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Wei Zhou
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Xiuling Chi
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Steven Van Lanen
- Department of Pharmaceutical
Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536, United States
| | - Shawn Chen
- Molecular and Cellular Biology
Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
44
|
Lodha PH, Aitken SM. Characterization of the Side-Chain Hydroxyl Moieties of Residues Y56, Y111, Y238, Y338, and S339 as Determinants of Specificity in E. coli Cystathionine β-Lyase. Biochemistry 2011; 50:9876-85. [DOI: 10.1021/bi201090n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pratik H. Lodha
- Department of Biology, Carleton University, Ottawa, Canada K1S 5B6
| | - Susan M. Aitken
- Department of Biology, Carleton University, Ottawa, Canada K1S 5B6
| |
Collapse
|
45
|
Lee KH, Shim MS, Kim JY, Jung HK, Lee E, Carlson BA, Xu XM, Park JM, Hatfield DL, Park T, Lee BJ. Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation. BMC Genomics 2011; 12:426. [PMID: 21864351 PMCID: PMC3218224 DOI: 10.1186/1471-2164-12-426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in Drosophila. The function of SPS1, however, has not been elucidated. Results Differentially expressed genes in Drosophila SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after SPS1 knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, the major phenotypic change observed by SPS1 knockdown. Conclusions These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities.
Collapse
Affiliation(s)
- Kwang Hee Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aitken SM, Lodha PH, Morneau DJK. The enzymes of the transsulfuration pathways: active-site characterizations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1511-7. [PMID: 21435402 DOI: 10.1016/j.bbapap.2011.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
Abstract
The diversity of reactions catalyzed by enzymes reliant on pyridoxal 5'-phosphate (PLP) demonstrates the catalytic versatility of this cofactor and the plasticity of the protein scaffolds of the major fold types of PLP-dependent enzymes. The enzymes of the transsulfuration (cystathionine γ-synthase and cystathionine β-lyase) and reverse transsulfuration (cystathionine β-synthase and cystathionine γ-lyase) pathways interconvert l-cysteine and l-homocysteine, the immediate precursor of l-methionine, in plants/bacteria and yeast/animals, respectively. These enzymes provide a useful model system for investigation of the mechanisms of substrate and reaction specificity in PLP-dependent enzymes as they catalyze distinct side chain rearrangements of similar amino acid substrates. Exploration of the underlying factors that enable enzymes to control the substrate and reaction specificity of this cofactor will enable the engineering of these properties and the development of therapeutics and antimicrobial compounds. Recent studies probing the role of active-site residues, of the enzymes of the transsulfuration pathways, as determinants of substrate and reaction specificity are the subject of this review. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Susan M Aitken
- Department of Biology, Carleton University, Ottowa, Canada.
| | | | | |
Collapse
|
47
|
The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 2011; 42:199-205. [PMID: 21369939 DOI: 10.1007/s00726-011-0864-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 02/06/2023]
Abstract
Astrocyte cells require cysteine as a substrate for glutamate cysteine ligase (γ-glutamylcysteine synthase; EC 6.3.2.2) catalyst of the rate-limiting step of the γ-glutamylcycle leading to formation of glutathione (L: -γ-glutamyl-L: -cysteinyl-glycine; GSH). In both astrocytes and glioblastoma/astrocytoma cells, the majority of cysteine originates from reduction of cystine imported by the x (c) (-) cystine-glutamate exchanger. However, the transsulfuration pathway, which supplies cysteine from the indispensable amino acid, methionine, has recently been identified as a significant contributor to GSH synthesis in astrocytes. The purpose of this review is to evaluate the importance of the transsulfuration pathway in these cells, particularly in the context of a reserve pathway that channels methionine towards cysteine when the demand for glutathione is high, or under conditions in which the supply of cystine by the x (c) (-) exchanger may be compromised.
Collapse
|
48
|
Lodha PH, Jaworski AF, Aitken SM. Characterization of site-directed mutants of residues R58, R59, D116, W340 and R372 in the active site of E. coli cystathionine beta-lyase. Protein Sci 2010; 19:383-91. [PMID: 20014435 DOI: 10.1002/pro.308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystathionine beta-lyase (CBL) catalyzes the hydrolysis of L-cystathionine (L-Cth) to produce L-homocysteine, pyruvate, and ammonia. A series of active-site mutants of Escherichia coli CBL (eCBL) was constructed to investigate the roles of residues R58, R59, D116, W340, and R372 in catalysis and inhibition by aminoethoxyvinylglycine (AVG). The effects of these mutations on the k(cat)/K(m) (L-Cth) for the beta-elimination reaction range from a reduction of only 3-fold for D116A and D116N to 6 orders of magnitude for the R372L and R372A mutants. The order of importance of these residues for the hydrolysis of L-Cth is: R372 >> R58 > W340 approximately R59 > D116. Comparison of the kinetic parameters for L-Cth hydrolysis with those for inhibition of eCBL by AVG demonstrates that residue R58 tethers the distal carboxylate group of the substrate and confirms that residues W340 and R372 interact with the alpha-carboxylate moiety. The increase in the pK(a) of the acidic limb and decrease in the pK(a) of the basic limb of the k(cat)/K(m) (L-Cth) versus pH profiles of the R58K and R58A mutants, respectively, support a role for this residue in modulating the pK(a) of an active-site residue.
Collapse
Affiliation(s)
- Pratik H Lodha
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | | | | |
Collapse
|
49
|
Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, O K. Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 2009; 297:F27-35. [PMID: 19439522 DOI: 10.1152/ajprenal.00096.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cystathionine-beta-synthase (CBS) catalyzes the rate-limiting step in the transsulfuration pathway for the metabolism of homocysteine (Hcy) in the kidney. Our recent study demonstrates that ischemia-reperfusion reduces the activity of CBS leading to Hcy accumulation in the kidney, which in turn contributes to renal injury. CBS is also capable of catalyzing the reaction of cysteine with Hcy to produce hydrogen sulfide (H(2)S), a gaseous molecule that plays an important role in many physiological and pathological processes. The aim of the present study was to examine the effect of ischemia-reperfusion on CBS-mediated H(2)S production in the kidney and to determine whether changes in the endogenous H(2)S generation had any impact on renal ischemia-reperfusion injury. The left kidney of Sprague-Dawley rat was subjected to 45-min ischemia followed by 6-h reperfusion. The ischemia-reperfusion caused lipid peroxidation and cell death in the kidney. The CBS-mediated H(2)S production was decreased, leading to a significant reduction in the renal H(2)S level. The activity of cystathionine-gamma-lyase, another enzyme responsible for endogenous H(2)S generation, was not significantly altered in the kidney upon ischemia-reperfusion. Partial restoration of CBS activity by intraperitoneal injection of the nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide not only increased renal H(2)S levels but also alleviated ischemia-reperfusion-induced lipid peroxidation and reduced cell damage in the kidney tissue. Furthermore, administration of an exogenous H(2)S donor, NaHS (100 microg/kg), improved renal function. Taken together, these results suggest that maintenance of tissue H(2)S level may offer a renal protective effect against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhibin Xu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Kushwaha HR, Singh AK, Sopory SK, Singla-Pareek SL, Pareek A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 2009; 10:200. [PMID: 19400948 PMCID: PMC2694836 DOI: 10.1186/1471-2164-10-200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 04/28/2009] [Indexed: 01/22/2023] Open
Abstract
Background In Arabidopsis thaliana (L.) Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs) in plants, we have chosen to work on proteins having a cystathionine β-synthase (CBS) domain. CBS domain as such has no defined function(s) but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Results Our analysis has identified 34 CBS domain containing proteins (CDCPs) in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s), which may indicate towards their probable functions. In order to investigate the role(s) of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data). We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. Conclusion We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through functional genomics.
Collapse
Affiliation(s)
- Hemant R Kushwaha
- Centre for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | | | |
Collapse
|