1
|
Jiang R, Liu J, Liu X, Travas Sejdic J. Electrochemical biosensing platform based on AuNWs/rGO-CMC-PEDOT:PSS composite for the detection of superoxide anion released from living cells. Biosens Bioelectron 2024; 254:116228. [PMID: 38522233 DOI: 10.1016/j.bios.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOT:PSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 μM and 1.34 μM-42.97 μM) with corresponding sensitivity of 0.479 and 0.052 μA μM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 μM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.
Collapse
Affiliation(s)
- Renjun Jiang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaojiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, 475004, China.
| | - Jadranka Travas Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
2
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Radhika R, Shankar R. Theoretical aspects of the adsorption of normal and modified base pairs of DNA on graphene models toward DNA sequencing. J Biomol Struct Dyn 2023; 42:13059-13073. [PMID: 37909477 DOI: 10.1080/07391102.2023.2274969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023]
Abstract
A theoretical understanding of the adsorption of DNA base pairs (GC, AT, CAF-T and CAF-C) on the graphene models (Gr, SiGr and SiGr-COOH) is investigated. Among the complexes, SiGr-COOH_AT is found to have the highest adsorption energies of -202.83 kcal/mol. The strong adsorption between DNA base pairs and the SiGr-COOH model leads to concomitant charge transfer responsible for the stability of the corresponding models and is verified with NBO analysis. AIM analysis discloses the high orbital overlap that signifies the strong interaction. Closed-shell interactions are observed through the positive values of total electron density, and it is also observed that Si-O(N) interaction has both covalent and electrostatic characteristics. This is the first theoretical attempt to investigate the adsorption of DNA base pairs on SiGr-COOH, which is more favourable than other models and may call for further experimental studies, which is crucial in developing new bio-sensors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Radhika
- Department of Physics, Bharathiar University, Coimbatore, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Bisht N, Patel M, Dwivedi N, Kumar P, Mondal DP, Srivastava AK, Dhand C. Bio-inspired polynorepinephrine based nanocoatings for reduced graphene oxide/gold nanoparticles composite for high-performance biosensing of Mycobacterium tuberculosis. ENVIRONMENTAL RESEARCH 2023; 227:115684. [PMID: 36921790 DOI: 10.1016/j.envres.2023.115684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Polydopamine (PDA) has established itself as a promising grafting and coating material, particularly for functional group-deprived electrochemically active nanomaterials such as graphene, MXene, CNT, metal nanoparticles, and so on, and has proven its extensive applicability in the design and development of electrochemical biosensor devices. However, polynorepinephrine (PNE), a sister compound of PDA, having additional -OH groups and greater coating uniformity and biocompatibility, has never been studied in the field of biosensors. Herein, we investigated PNE as a coating material for reduced graphene oxide (RGO) and gold nanoparticles (Au) in order to build an electrochemical genosensor for Mycobacterium tuberculosis (MTB) detection. Biotin-Avidin chemistry was used to covalently immobilize probe DNA (ssDNA) specific to MTB to the nanocomposite surface on glassy carbon electrode (GCE) in order to construct biosensing electrodes. The formation of RGO/PNE and RGO/PNE/Au nanocomposite as well as the immobilization of ssDNA onto the bioelectrodes are both corroborated by UV-Visible, Raman, and XRD studies with FE-SEM and HR-TEM analysis. The electrochemical studies performed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) showed the significant enhancement in charge transfer kinetics of RGO/PNE/GCE and RGO/PNE/Au/GCE electrode compared to GO/GCE electrode. The biosensing investigations performed using ssDNA/avidin/RGO/PNE/Au/GCE bioelectrode showed high sensitivity (2.3 × 10-3 mA μM-1), low detection limit (0.1 × 10-7 μM), broad detection range (0.1 × 10-2 to 0.1 × 10-7 μM) with good selectivity and low response time (5 s) of the developed sensor. In comparison to the analogous RGO/PDA/Au material system, RGO/PNE/Au demonstrated increased enzyme loading, improved electrochemical responsiveness, and superior biosensing performance.
Collapse
Affiliation(s)
- Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Islam F, Khan FA, Khan NM, Ahmad S, Alsaiari AA, Almehmadi M, Ahmad N, Ul-Haq Z, Jan AK, Allahyani M, Alsharif A, Falade EO. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS OMEGA 2023; 8:20550-20560. [PMID: 37323383 PMCID: PMC10268258 DOI: 10.1021/acsomega.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.
Collapse
Affiliation(s)
- Fawad Islam
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Mehmood Khan
- Department
of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Amer Alsaiari
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Abdul Khaliq Jan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mamdouh Allahyani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebenezer Ola Falade
- Institute
of Food Science and Technology, Chinese
Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Yang B, Gu Y, Paternò GM, Teyssandier J, Maghsoumi A, Barker AJ, Mali KS, Scotognella F, De Feyter S, Tommasini M, Feng X, Narita A, Müllen K. Zigzag-Edged Polycyclic Aromatic Hydrocarbons from Benzo[m]tetraphene Precursors. Chemistry 2023; 29:e202203981. [PMID: 36695295 DOI: 10.1002/chem.202203981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.
Collapse
Affiliation(s)
- Bo Yang
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Yanwei Gu
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy.,Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Joan Teyssandier
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Ali Maghsoumi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Alex J Barker
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Francesco Scotognella
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany.,Max Planck Institute of Microstructure Physics Weinberg 2, 06120, Halle, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany.,Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
8
|
Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023; 11:500-518. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, graphene-based composites have received increasing attention due to their high biocompatibility, large specific surface area, high electrical conductivity and unique mechanical properties. The combination of biomacromolecules and graphene provides a promising route for the preparation of novel graphene-based nanocomposites. Novel graphene-based nanocomposites with unique functions could be applied to medicine, biology, biosensors, environmental science, energy storage and other fields. Graphene-biomacromolecule nanocomposites have excellent biocompatibility, outstanding biofunctionality and low cytotoxicity, and have more advantages and development prospects than other traditional graphene-based materials in biological and biomedical fields. In this work, we summarize the research on the covalent and non-covalent interactions between different biomacromolecules (peptides, DNA/RNA, proteins and enzymes) and graphene, as well as the synthesis methods of novel functionalized graphene-biomacromolecule composites in recent years. We mainly introduce the recent advances (last 5 years) of graphene-biomacromolecule nanocomposites in medical applications, such as medical detection and disease treatment. We hope that this review will help readers to understand the methods and mechanisms of biomolecules modifying the surface of graphene, as well as the synthesis and application of graphene-based nanocomposites, which will promote the future developments of graphene-biomolecule composites in biomedicine, tissue engineering, materials engineering, and so on.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jinhui Yu
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Li Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Xie J, Zhang L, Liu Z, Ling G, Zhang P. Application of electrochemical sensors based on nanomaterials modifiers in the determination of antipsychotics. Colloids Surf B Biointerfaces 2022; 214:112442. [PMID: 35278857 DOI: 10.1016/j.colsurfb.2022.112442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
At present, the content of antipsychotics in samples is always analyzed by traditional detection methods, including mass spectrometry (MS), spectrophotometry, fluorescence, capillary electrophoresis (CE). However, conventional methods are cumbersome and complex, require a large sample volume, many pre-processing steps, long analysis cycles, expensive instruments, and need well-trained detection capabilities personnel. In addition, patients with schizophrenia require frequent and painful blood collection procedures, which adds additional treatment costs and time burdens. In view of these factors, electrochemical methods have become the most promising candidate technology for timely analysis due to their low cost, simple operation, excellent sensitivity and specificity. As we all know, nanomaterials play an extremely important role in electrochemical sensing applications. As the sensor modifiers, nanomaterials enable electrochemical analysis to overcome the time-consuming and labor-intensive shortcomings of traditional detection methods, and greatly reduce the research cost. Nanomaterials modified electrodes can be used as sensors to determine the concentration of antipsychotics in organisms quickly and accurately, which is a bright spot in the application of nanomaterials. The combination of different nanomaterials can even form a nanocomposite with a synergistic effect. This paper firstly reviews the application of nanomaterials-modified sensors on the basis of research in the past ten years, reviews the use of nanomaterial-modified sensors to quickly and accurately determine the concentration of antipsychotics in biological samples, and demonstrates a new idea of using nanomaterials sensors for drug monitoring and determination. At the end of this review, a brief overview is given of the limitations and the future prospects of nanomaterial sensors for the determination of antipsychotics concentrations.
Collapse
Affiliation(s)
- Jiao Xie
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijing Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhiling Liu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
10
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
11
|
Piccinini E, Allegretto JA, Scotto J, Cantillo AL, Fenoy GE, Marmisollé WA, Azzaroni O. Surface Engineering of Graphene through Heterobifunctional Supramolecular-Covalent Scaffolds for Rapid COVID-19 Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43696-43707. [PMID: 34470205 DOI: 10.1021/acsami.1c12142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene is a two-dimensional semiconducting material whose application for diagnostics has been a real game-changer in terms of sensitivity and response time, variables of paramount importance to stop the COVID-19 spreading. Nevertheless, strategies for the modification of docking recognition and antifouling elements to obtain covalent-like stability without the disruption of the graphene band structure are still needed. In this work, we conducted surface engineering of graphene through heterofunctional supramolecular-covalent scaffolds based on vinylsulfonated-polyamines (PA-VS). In these scaffolds, one side binds graphene through multivalent π-π interactions with pyrene groups, and the other side presents vinylsulfonated pending groups that can be used for covalent binding. The construction of PA-VS scaffolds was demonstrated by spectroscopic ellipsometry, Raman spectroscopy, and contact angle measurements. The covalent binding of -SH, -NH2, or -OH groups was confirmed, and it evidenced great chemical versatility. After field-effect studies, we found that the PA-VS-based scaffolds do not disrupt the semiconducting properties of graphene. Moreover, the scaffolds were covalently modified with poly(ethylene glycol) (PEG), which improved the resistance to nonspecific proteins by almost 7-fold compared to the widely used PEG-monopyrene approach. The attachment of recognition elements to PA-VS was optimized for concanavalin A (ConA), a model lectin with a high affinity to glycans. Lastly, the platform was implemented for the rapid, sensitive, and regenerable recognition of SARS-CoV-2 spike protein and human ferritin in lab-made samples. Those two are the target molecules of major importance for the rapid detection and monitoring of COVID-19-positive patients. For that purpose, monoclonal antibodies (mAbs) were bound to the scaffolds, resulting in a surface coverage of 436 ± 30 ng/cm2. KD affinity constants of 48.4 and 2.54 nM were obtained by surface plasmon resonance (SPR) spectroscopy for SARS-CoV-2 spike protein and human ferritin binding on these supramolecular scaffolds, respectively.
Collapse
Affiliation(s)
- Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Juliana Scotto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Agustín L Cantillo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- GISENS BIOTECH, Ciudad Autónoma de Buenos Aires 1195, Argentina
| | - Gonzalo E Fenoy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| |
Collapse
|
12
|
Ramanavicius A, Morkvenaite-Vilkonciene I, Samukaite-Bubniene U, Petroniene JJ, Barkauskas J, Genys P, Ratautaite V, Viter R, Iatsunskyi I, Ramanaviciene A. Scanning electrochemical microscopy and electrochemical impedance spectroscopy-based characterization of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Behrouzifar F, Shahidi SA, Chekin F, Hosseini S, Ghorbani-HasanSaraei A. Colorimetric assay based on horseradish peroxidase/reduced graphene oxide hybrid for sensitive detection of hydrogen peroxide in beverages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119761. [PMID: 33845390 DOI: 10.1016/j.saa.2021.119761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
We reported a simple and sensitive colorimetric assay for detection of hydrogen peroxide (H2O2) based on the oxidation of 2,2׳-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by UV-Vis spectroscopy method. The reduced graphene oxide (rGO) was prepared using green tea extract as bio-reducing and stabilizer agent and decorated by horseradish peroxidase (HRP). The surface of Au interface was modified with HRP-rGO hybrid. The formation of HRP-rGO hybrid was confirmed by cyclic voltammetry, scanning electron microscopy (SEM), energy-dispersive X-ray Spectroscopy (EDX) and Raman spectroscopy·H2O2 can be catalysed by HRP-rGO hybrid and converted into water and oxygen. The ABTS substrate takes up oxygen to form a green coloured product that has absorption peaks at 421, 655 nm and 737 nm. The colour development is linearly dependent on HRP in the range of 4-50 µg/L. The color of the green product solution is stable for 20 min. The absorption intensity is strongly related to the hydrogen peroxide concentration. The absorption intensity of the formed product scaled linearly with the hydrogen peroxide concentration in the ranges of 0.3-20 µM and 20-8000 µM with a detection limit of ≈15 nM could be achieved. The biosensor with excellent limit detection and wide linear ranges was adapted to monitor H2O2 in different beverages.
Collapse
Affiliation(s)
- Fatemeh Behrouzifar
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Shabnam Hosseini
- Department of Material Science and Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | |
Collapse
|
14
|
Synthesis and fabrication of Ni-SiO2 nanosphere-decorated multilayer graphene nanosheets composite electrode for highly sensitive amperometric determination of guaifenesin drug. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Krause S, Ploetz E, Bohlen J, Schüler P, Yaadav R, Selbach F, Steiner F, Kamińska I, Tinnefeld P. Graphene-on-Glass Preparation and Cleaning Methods Characterized by Single-Molecule DNA Origami Fluorescent Probes and Raman Spectroscopy. ACS NANO 2021; 15:6430-6438. [PMID: 33834769 DOI: 10.1021/acsnano.0c08383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene exhibits outstanding fluorescence quenching properties that can become useful for biophysics and biosensing applications, but it remains challenging to harness these advantages due to the complex transfer procedure of chemical vapor deposition-grown graphene to glass coverslips and the low yield of usable samples. Here, we screen 10 graphene-on-glass preparation methods and present an optimized protocol. To obtain the required quality for single-molecule and super-resolution imaging on graphene, we introduce a graphene screening method that avoids consuming the investigated sample. We apply DNA origami nanostructures to place fluorescent probes at a defined distance on top of graphene-on-glass coverslips. Subsequent fluorescence lifetime imaging directly reports on the graphene quality, as deviations from the expected fluorescence lifetime indicate imperfections. We compare the DNA origami probes with conventional techniques for graphene characterization, including light microscopy, atomic force microscopy, and Raman spectroscopy. For the latter, we observe a discrepancy between the graphene quality implied by Raman spectra in comparison to the quality probed by fluorescence lifetime quenching measured at the same position. We attribute this discrepancy to the difference in the effective area that is probed by Raman spectroscopy and fluorescence quenching. Moreover, we demonstrate the applicability of already screened and positively evaluated graphene for studying single-molecule conformational dynamics on a second DNA origami structure. Our results constitute the basis for graphene-based biophysics and super-resolution microscopy.
Collapse
Affiliation(s)
- Stefan Krause
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Patrick Schüler
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Renukka Yaadav
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Florian Steiner
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Izabela Kamińska
- Institute of Physical Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
16
|
Swamy NK, Mohana KNS, Hegde MB, Madhusudana AM, Rajitha K, Nayak SR. Fabrication of graphene nanoribbon-based enzyme-free electrochemical sensor for the sensitive and selective analysis of rutin in tablets. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01557-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Zhang Y, Zhu Y, Zeng Z, Zeng G, Xiao R, Wang Y, Hu Y, Tang L, Feng C. Sensors for the environmental pollutant detection: Are we already there? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Jin X, Feng C, Ponnamma D, Yi Z, Parameswaranpillai J, Thomas S, Salim NV. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Mikrochim Acta 2020; 187:646. [PMID: 33165663 DOI: 10.1007/s00604-020-04616-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 μmol L-1 and from 1.0 to 10 μmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
20
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
21
|
Walters F, Ali MM, Burwell G, Rozhko S, Tehrani Z, Daghigh Ahmadi E, Evans JE, Abbasi HY, Bigham R, Mitchell JJ, Kazakova O, Devadoss A, Guy OJ. A Facile Method for the Non-Covalent Amine Functionalization of Carbon-Based Surfaces for Use in Biosensor Development. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1808. [PMID: 32927839 PMCID: PMC7559712 DOI: 10.3390/nano10091808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Affinity biosensors based on graphene field-effect transistor (GFET) or resistor designs require the utilization of graphene's exceptional electrical properties. Therefore, it is critical when designing these sensors, that the electrical properties of graphene are maintained throughout the functionalization process. To that end, non-covalent functionalization may be preferred over covalent modification. Drop-cast 1,5-diaminonaphthalene (DAN) was investigated as a quick and simple method for the non-covalent amine functionalization of carbon-based surfaces such as graphene, for use in biosensor development. In this work, multiple graphene surfaces were functionalized with DAN via a drop-cast method, leading to amine moieties, available for subsequent attachment to receptor molecules. Successful modification of graphene with DAN via a drop-cast method was confirmed using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and real-time resistance measurements. Successful attachment of receptor molecules also confirmed using the aforementioned techniques. Furthermore, an investigation into the effect of sequential wash steps which are required in biosensor manufacture, on the presence of the DAN layer, confirmed that the functional layer was not removed, even after multiple solvent exposures. Drop-cast DAN is thus, a viable fast and robust method for the amine functionalization of graphene surfaces for use in biosensor development.
Collapse
Affiliation(s)
- Ffion Walters
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Muhammad Munem Ali
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Gregory Burwell
- Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, UK; (G.B.); (R.B.)
| | - Sergiy Rozhko
- National Physical Laboratory, Quantum Metrology Institute, Teddington, Middlesex TW11 0LW, UK; (S.R.); (O.K.)
| | - Zari Tehrani
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Ehsaneh Daghigh Ahmadi
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Jon E. Evans
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Hina Y. Abbasi
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Ryan Bigham
- Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, UK; (G.B.); (R.B.)
| | - Jacob John Mitchell
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Olga Kazakova
- National Physical Laboratory, Quantum Metrology Institute, Teddington, Middlesex TW11 0LW, UK; (S.R.); (O.K.)
| | - Anitha Devadoss
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Owen J. Guy
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
- Department of Chemistry, College of Science, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
22
|
Nishina Y, Eigler S. Chemical and electrochemical synthesis of graphene oxide - a generalized view. NANOSCALE 2020; 12:12731-12740. [PMID: 32524106 DOI: 10.1039/d0nr02164d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is a water soluble carbon material in general, suitable for applications in electronics, the environment, and biomedicine. GO is produced by oxidation of abundantly available graphite, turning black graphite into water-dispersible single layers of functionalized graphene-related materials. Therefore, oxidation gives chemicals access to the complete surface area of GO. These fundamentals have led to a rich chemistry of GO. Here, we review the progress made in controlling the synthesis of GO, introduce the current structural models used to explain the phenomena and present versatile strategies to functionalize the surface of GO. Finally, an outlook is given for future directions.
Collapse
Affiliation(s)
- Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan. and Research Core for Interdisciplinary Sciences, Okayama University Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Yang S, Yang J, Wang T, Li L, Yu S, Jia R, Chen P. Construction of a combined enzyme system of graphene oxide and manganese peroxidase for efficient oxidation of aromatic compounds. NANOSCALE 2020; 12:7976-7985. [PMID: 32232306 DOI: 10.1039/d0nr00408a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manganese peroxidase (MnP) from Irpex lacteus F17 has potential use as a biocatalyst in the field of environmental biotechnology because of its unique properties and ability to decompose harmful aromatic compounds. However, its requirement of harsh acidic reaction conditions and its insufficient catalytic activity restrict its practical applications. Here, we combine graphene oxide (GO) and MnP to construct an efficient enzyme system (GO-MnP) with improved catalytic efficiencies and a wide pH range for the oxidation of aromatic substances and dye decolorization. We found that the Michaelis constant (Km) of GO-MnP for Mn2+ was 2.8 times lower and the catalytic efficiency (kcat/Km) of GO-MnP was 4.5 times higher than those of MnP, and that the decolorization of various dyes by GO-MnP was significantly improved over the pH range of 4.5-5.5. A comparison of the midpoint redox potentials also reflects the strong oxidation ability of GO-MnP. Furthermore, we demonstrated that, in the GO-MnP system, the MnP activity is mainly determined by the amounts of epoxy and carboxyl groups in GO, based on an analysis of the functional group changes in GO and reduced GO associated with different reduction degrees as shown by X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Shichao Yang
- School of Life Science, Anhui University, Hefei, Anhui Province, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review. SENSORS 2020; 20:s20072046. [PMID: 32260585 PMCID: PMC7180950 DOI: 10.3390/s20072046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.
Collapse
|
25
|
Kuzikov AV, Bulko TV, Koroleva PI, Masamrekh RA, Babkina SS, Gilep AA, Shumyantseva VV. [Electroanalytical and electrocatalytical characteristics of cytochrome P450 3A4 using electrodes modified with nanocomposite carbon nanomaterials]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:64-70. [PMID: 32116227 DOI: 10.18097/pbmc20206601064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The electroanalytical characteristics of recombinant cytochrome P450 3A4 (P450 3A4) immobilized on the surface of screen-printed graphite electrodes modified with multi-walled carbon nanotubes have been studied. The role and the influence of graphite working electrode modification with carbon nanotubes on electroanalytical characteristics of cytochrome P450 3A4 have been demonstrated. The conditions for the immobilization of cytochrome P450 3A4 on the obtained screen-printed graphite electrodes modified with carbon multi-walled nanotubes have been optimized. The electrochemical parameters of the oxidation and reduction of the heme iron of the enzyme have been estimated. The midpoint potential E0' was -0.35±0.01 V vs Ag/AgCl; the calculated heterogeneous electron transfer rate constant ks, was 0.57±0.04 s-1; the amount of electroactive cytochrome P450 3A4 on the electrode Г0, was determined as (2.6±0.6)⋅10-10 mol/cm2. The functioning mechanism of P450 3A4-based electrochemical sensor followed the "protein film voltammetry". In order to develop electrochemical analysis of drugs being substrates of that hemoprotein and respective medical biosensors the voltammetric study of catalytic activity of immobilized cytochrome P450 3A4 was carried out. Electrocatalytic properties of cytochrome P450 3A4, immobilized on modified screen-printed graphite electrodes, has been investigated using erythromycin (macrolide antibiotics). It has been shown that the modification of electrodes plays a decisive role for the study of the properties of cytochromes P450 in electrochemical investigations. Smart electrodes can serve as sensors for analytical purposes, as well as electrocatalysts for the study of biotransformation processes and metabolic processes. Electrodes modified with carbon nanomaterials are applicable for analytical purposes in the registration of hemoproteins. Electrodes modified with synthetic membrane-like compounds (e.g. didodecyldimethylammonium bromide) are effective in enzyme-dependent electrocatalysis.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - P I Koroleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - S S Babkina
- Russian Technological University, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry, Minsk, Belarus
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
26
|
Yu W, Sisi L, Haiyan Y, Jie L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 2020; 10:15328-15345. [PMID: 35495479 PMCID: PMC9052494 DOI: 10.1039/d0ra01068e] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique and excellent electronic, optical, mechanical, and chemical properties. This review focuses on the functional modification of graphene and graphene oxide. First, the basic structure, preparation methods and properties of graphene and graphene oxide are briefly described. Subsequently, the methods for the reduction of graphene oxide are introduced. Next, the functionalization of graphene and graphene oxide is mainly divided into covalent binding modification, non-covalent binding modification and elemental doping. Then, the properties and application prospects of the modified products are summarized. Finally, the current challenges and future research directions are presented in terms of surface functional modification for graphene and graphene oxide. Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique and excellent electronic, optical, mechanical, and chemical properties.![]()
Collapse
Affiliation(s)
- Wang Yu
- School of Mechanical Engineering
- Xihua University
- Chengdu City
- P. R. China
- School of Automation Engineering
| | - Li Sisi
- School of Materials Science and Engineering
- Southwest Petroleum University
- China
- Patent Examination Cooperation Sichuan Center of the Patent Office
- China
| | - Yang Haiyan
- School of Mechanical Engineering
- Xihua University
- Chengdu City
- P. R. China
| | - Luo Jie
- Petrochina Southwest Pipeline Company
- China
| |
Collapse
|
27
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Zhu M, Li R, Lai M, Ye H, Long N, Ye J, Wang J. Copper nanoparticles incorporating a cationic surfactant-graphene modified carbon paste electrode for the simultaneous determination of gatifloxacin and pefloxacin. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Sebastian N, Yu WC, Hu YC, Balram D, Yu YH. Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. ULTRASONICS SONOCHEMISTRY 2019; 59:104696. [PMID: 31430655 DOI: 10.1016/j.ultsonch.2019.104696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
We report a novel electrochemical sensor for the sensitive and selective determination of the antipsychotic drug chlorpromazine (CPZ) based on the iron (Fe) nanoparticles-loaded graphene oxide (GO-Fe)/three dimensional (3D) honeycomb-like zinc oxide (ZnO) nanohybrid modified screen printed carbon electrode (SPCE). The 3D hierarchical honeycomb-like ZnO was synthesized using a novel aqueous hydrothermal method and the GO-Fe/ZnO nanohybrid was prepared based on an inexpensive and fast sonochemical method using a high-intensity ultrasonic bath (Delta DC200H, 200 W, 40 KHz). Characterizations including scanning electron microscopy, elemental mapping, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were carried out as part of this work. The electrocatalytic oxidation behavior of CPZ at various electrodes was investigated using the cyclic voltammetry technique, through which the GO-Fe/ZnO modified SPCE was identified as the best performing electrode. The quantitative determination of CPZ was then performed using the differential pulse voltammetry technique. The as-prepared GO-Fe/ZnO/SPCE sensor exhibited a quick and sensitive response towards the oxidation of CPZ with linear concentration ranges from 0.02 to 172.74 μM and 222.48 to 1047.74 μM. The modified SPCE sensor displayed a low detection limit (LOD) of 0.02 µM and a high sensitivity of 7.56 µA µM-1 cm-2. The proposed sensor also showed remarkable operational and storage stability, reproducibility, and repeatability. Furthermore, the practicability of the GO-Fe/ZnO/SPCE sensor has been verified with real sample analysis using commercial antipsychotic CPZ tablets and human urine samples, and adequate recovery has been achieved.
Collapse
Affiliation(s)
- Neethu Sebastian
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| | - Wan-Chin Yu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC.
| | - Yu-Chung Hu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan, ROC.
| |
Collapse
|
31
|
Moore TC, Yang AH, Ogungbesan O, Hartkamp R, Iacovella CR, Zhang Q, McCabe C. Influence of Single-Stranded DNA Coatings on the Interaction between Graphene Nanoflakes and Lipid Bilayers. J Phys Chem B 2019; 123:7711-7721. [PMID: 31405277 DOI: 10.1021/acs.jpcb.9b04042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using molecular dynamics simulations, it is demonstrated that a partial coating of single-stranded DNA (ssDNA) reduces the penetration depth of a graphene nanoflake (GNF) into a phospholipid bilayer by attenuating the hydrophobic force that drives the penetration. As the GNF penetrates the bilayer, the ssDNA remains adsorbed to the GNF outside of the bilayer where it shields the graphene from the surrounding water. The penetration depth is found to be controlled by the amount of ssDNA coating the GNF, with a sparser coating resulting in a deeper penetration since the ssDNA shields less of the GNF surface. As the coating density is increased, the likelihood of the GNF entering the bilayer is reduced where it instead tends to lie flat on the bilayer surface with the sugar phosphate backbone of ssDNA interacting with the hydrophilic lipid head groups. While no bilayer disruption is observed for a partially inserted ssDNA-coated GNF, a larger, bare, partially inserted GNF is found to preferentially extract phospholipids from the bilayer, offering further evidence of lipid extraction as a main cytotoxicity mechanism of GNFs. Therefore, a coating of ssDNA may reduce the cytotoxicity of GNFs by shielding the unfavorable graphene-water interaction, thus preventing graphene penetration and lipid extraction.
Collapse
Affiliation(s)
| | | | - Olu Ogungbesan
- Department of Chemical, Biochemical, and Environmental Engineering , University of Maryland Baltimore County , Baltimore , Maryland 21201 , United States
| | | | | | | | | |
Collapse
|
32
|
Lehner BAE, Janssen VAEC, Spiesz EM, Benz D, Brouns SJJ, Meyer AS, van der Zant HSJ. Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis. ChemistryOpen 2019; 8:888-895. [PMID: 31312588 PMCID: PMC6610442 DOI: 10.1002/open.201900186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Graphene's maximized surface-to-volume ratio, high conductance, mechanical strength, and flexibility make it a promising nanomaterial. However, large-scale graphene production is typically cost-intensive. This manuscript describes a microbial reduction approach for producing graphene that utilizes the bacterium Shewanella oneidensis in combination with modern nanotechnology to enable a low-cost, large-scale production method. The bacterial reduction approach presented in this paper increases the conductance of single graphene oxide flakes as well as bulk graphene oxide sheets by 2.1 to 2.7 orders of magnitude respectively while simultaneously retaining a high surface-area-to-thickness ratio. Shewanella-mediated reduction was employed in conjunction with electron-beam lithography to reduce one surface of individual graphene oxide flakes. This methodology yielded conducting flakes with differing functionalization on the top and bottom faces. Therefore, microbial reduction of graphene oxide enables the development and up-scaling of new types of graphene-based materials and devices with a variety of applications including nano-composites, conductive inks, and biosensors, while avoiding usage of hazardous, environmentally-unfriendly chemicals.
Collapse
Affiliation(s)
- Benjamin A. E. Lehner
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Vera A. E. C. Janssen
- Department of Quantum NanoscienceDelft University of TechnologyLorentzweg 12628 CJ DelftNetherlands
| | - Ewa M. Spiesz
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Dominik Benz
- Department of Chemical EngineeringDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Stan J. J. Brouns
- Department of BionanoscienceDelft University of TechnologyVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Anne S. Meyer
- Department of BiologyUniversity of Rochester Rochester, NY, 14627United States of America
| | - Herre S. J. van der Zant
- Department of Quantum NanoscienceDelft University of TechnologyLorentzweg 12628 CJ DelftNetherlands
| |
Collapse
|
33
|
Azevedo VHR, da Silva JL, Stradiotto NR. Silver oxide nanoparticles in reduced graphene oxide modified electrode for amino acids electrocatalytic oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Silver A, Kitadai H, Liu H, Granzier-Nakajima T, Terrones M, Ling X, Huang S. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E516. [PMID: 30986978 PMCID: PMC6523487 DOI: 10.3390/nano9040516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
Graphene is a two-dimensional (2D) material consisting of a single sheet of sp² hybridized carbon atoms laced in a hexagonal lattice, with potentially wide usage as a Raman enhancement substrate, also termed graphene-enhanced Raman scattering (GERS), making it ideal for sensing applications. GERS improves upon traditional surface-enhanced Raman scattering (SERS), combining its single-molecule sensitivity and spectral fingerprinting of molecules, and graphene's simple processing and superior uniformity. This enables fast and highly sensitive detection of a wide variety of analytes. Accordingly, GERS has been investigated for a wide variety of sensing applications, including chemical- and bio-sensing. As a derivative of GERS, the use of two-dimensional materials other than graphene for Raman enhancement has emerged, which possess remarkably interesting properties and potential wider applications in combination with GERS. In this review, we first introduce various types of 2D materials, including graphene, MoS₂, doped graphene, their properties, and synthesis. Then, we describe the principles of GERS and comprehensively explain how the GERS enhancement factors are influenced by molecular and 2D material properties. In the last section, we discuss the application of GERS in chemical- and bio-sensing, and the prospects of such a novel sensing method.
Collapse
Affiliation(s)
- Alexander Silver
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
- The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
36
|
Osikoya AO, Opoku F, Dikio ED, Govender PP. High-Throughput 2D Heteroatom Graphene Bioelectronic Nanosculpture: A Combined Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11238-11250. [PMID: 30817112 DOI: 10.1021/acsami.9b01914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, chemical vapor deposition-synthesized heteroatom graphene (HGr) bioelectronic interfaces have been developed for ultrafast, all-electronic detection and analysis of molecules by driving them through tiny holes-or atompores-in a thin lattice of the graphene sheet, including the efforts toward facilitating enhanced electrocatalytic and mapping electron transport activities. The presence of chlorine, nitrogen, and oxygen in the crystalline graphitic layers (<7) has been confirmed using Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. We report a swift bioelectrocatalytic response to step-by-step additions of the substrate with the achievement of a steady current within a few seconds. The response limit was 2.07 μM with a dynamic range of sensing from 2.07 μM to 2.97 mM. The electronic properties and adsorption energies of hydroquinone and p-benzophenone molecule adsorption on pristine, O-, N-, and Cl-doped graphene nanosheet surfaces were systematically investigated using first-principles calculations. The results revealed that the adsorption capacity was improved upon doping graphene nanosheets with O, N, and Cl atoms. Hence, Cl-doped graphene nanosheets were shown as a promising adsorbent toward hydroquinone and p-benzophenone detection.
Collapse
Affiliation(s)
- Adeniyi Olugbenga Osikoya
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| | - Francis Opoku
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| | - Ezekiel Dixon Dikio
- Applied Chemistry and Nanoscience Laboratory, Department of Chemistry , Vaal University of Technology , P.O. Box X021, 1900 Vanderbijlpark , South Africa
| | - Penny Poomani Govender
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| |
Collapse
|
37
|
Selective, Sensitive and Label-Free Detection of Fe3+ Ion in Tap Water Using Highly Fluorescent Graphene Quantum Dots. J Fluoresc 2019; 29:541-548. [DOI: 10.1007/s10895-019-02365-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/10/2019] [Indexed: 01/14/2023]
|
38
|
Lee JH, Park SJ, Choi JW. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. NANOMATERIALS 2019; 9:nano9020297. [PMID: 30791566 PMCID: PMC6409852 DOI: 10.3390/nano9020297] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Graphene, a single atom thick layer of two-dimensional closely packed honeycomb carbon lattice, and its derivatives have attracted much attention in the field of biomedical, due to its unique physicochemical properties. The valuable physicochemical properties, such as high surface area, excellent electrical conductivity, remarkable biocompatibility and ease of surface functionalization have shown great potentials in the applications of graphene-based bioelectronics devices, including electrochemical biosensors for biomarker analysis. In this review, we will provide a selective overview of recent advances on synthesis methods of graphene and its derivatives, as well as its application to electrochemical biosensor development. We believe the topics discussed here are useful, and able to provide a guideline in the development of novel graphene and on graphene-like 2-dimensional (2D) materials based biosensors in the future.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Soo-Jeong Park
- Research Center for Disease Biophysics of Sogang-Harvard, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
- Research Center for Disease Biophysics of Sogang-Harvard, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| |
Collapse
|
39
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
40
|
Wei T, Zhang W, Tan Q, Cui X, Dai Z. Electrochemical Assay of the Alpha Fetoprotein-L3 Isoform Ratio To Improve the Diagnostic Accuracy of Hepatocellular Carcinoma. Anal Chem 2018; 90:13051-13058. [PMID: 30350622 DOI: 10.1021/acs.analchem.8b04045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is now the major malignant disease with high morbidity and mortality, which seriously endangers human lives and health. Alpha fetoprotein (AFP) assay is a commonly used serological biomarker for clinical diagnosis of HCC, but it lacks specificity. Analysis of its isoform AFP-L3, especially the AFP-L3 ratio in total AFP (AFP-L3%), can significantly improve the specificity for HCC identification. Herein, an electrochemical approach has been first proposed for simple, accurate, and fast determination of AFP-L3% in clinical samples. On the basis of two independent electrochemical signals generated from the synthesized nanoparticles, 4-mercaptophenylboronic acid (MPA)-functionalized copper nanoparticles (MPA-CuNPs) and the Lens culinaris agglutinin (LCA)-functionalized silver nanoparticles (LCA-AgNPs), simultaneous quantification of the AFP-L3 and total AFP in serum sample has been achieved, thus achieving directly the electrochemical assay of AFP-L3%. To be noted, both the assay time and the assay procedure have been significantly compressed when compared to that of available techniques in clinical use. Therefore, with the integration of electrochemical techniques, this new approach for AFP-L3% analysis would be promising for the accurate diagnosis of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Dai
- Nanjing Normal University Center for Analysis and Testing , Nanjing 210023 , People's Republic of China
| |
Collapse
|
41
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
42
|
Makarska-Bialokoz M. Comparative study of binding interactions between porphyrin systems and aromatic compounds of biological importance by multiple spectroscopic techniques: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:263-274. [PMID: 29694930 DOI: 10.1016/j.saa.2018.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
Collapse
Affiliation(s)
- Magdalena Makarska-Bialokoz
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 2, 20-031 Lublin, Poland.
| |
Collapse
|
43
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
44
|
Liu X, Ye C, Li X, Cui N, Wu T, Du S, Wei Q, Fu L, Yin J, Lin CT. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors. MATERIALS 2018. [PMID: 29518950 PMCID: PMC5872978 DOI: 10.3390/ma11030399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Potassium (K+) ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM) with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.
Collapse
Affiliation(s)
- Xiangqi Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Xiaoqing Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Naiyuan Cui
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinece Acedemy of Science, Shenzhen 518055, China.
| | - Shiyu Du
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiancheng Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| |
Collapse
|
45
|
Abstract
Abstract
The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.
Collapse
Affiliation(s)
- Amirmasoud Mohtasebi
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario, L8S 4M1 , Canada
| | - Peter Kruse
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario, L8S 4M1 , Canada
| |
Collapse
|
46
|
Reta N, Saint CP, Michelmore A, Prieto-Simon B, Voelcker NH. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6055-6072. [PMID: 29369608 DOI: 10.1021/acsami.7b13943] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The emergence of nanostructured materials has opened new horizons in the development of next generation biosensors. Being able to control the design of the electrode interface at the nanoscale combined with the intrinsic characteristics of the nanomaterials engenders novel biosensing platforms with improved capabilities. The purpose of this review is to provide a comprehensive and critical overview of the latest trends in emerging nanostructured electrochemical biosensors. A detailed description and discussion of recent approaches to construct label-free electrochemical nanostructured electrodes is given with special focus on pathogen detection for environmental monitoring and food safety. This includes the use of nanoscale materials such as nanotubes, nanowires, nanoparticles, and nanosheets as well as porous nanostructured materials including nanoporous anodic alumina, mesoporous silica, porous silicon, and polystyrene nanochannels. These platforms may pave the way toward the development of point-of-care portable electronic devices for applications ranging from environmental analysis to biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Beatriz Prieto-Simon
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication , Clayton, Victoria 3168, Australia
| |
Collapse
|
47
|
Tseng SC, Wu TY, Chou JC, Liao YH, Lai CH, Yan SJ, Tseng TW. Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO₂/GO at Different Temperatures. SENSORS 2018; 18:s18020632. [PMID: 29461506 PMCID: PMC5855318 DOI: 10.3390/s18020632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO2)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO2/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C.
Collapse
Affiliation(s)
- Shi-Chang Tseng
- Graduate School of Mechanical Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Tong-Yu Wu
- Graduate School of Mechanical Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Jung-Chuan Chou
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Yi-Hung Liao
- Department of Information and Electronic Commerce Management, TransWorld University, Douliu 64002, Taiwan.
| | - Chih-Hsien Lai
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Siao-Jie Yan
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Ting-Wei Tseng
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| |
Collapse
|
48
|
Janica I, Patroniak V, Samorì P, Ciesielski A. Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D. Chem Asian J 2018; 13:465-481. [DOI: 10.1002/asia.201701629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Violetta Patroniak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
| | - Paolo Samorì
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
49
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
50
|
Liu Z, Liu J, Wang T, Li Q, Francis PS, Barrow CJ, Duan W, Yang W. Switching off the interactions between graphene oxide and doxorubicin using vitamin C: combining simplicity and efficiency in drug delivery. J Mater Chem B 2018; 6:1251-1259. [DOI: 10.1039/c7tb03063k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Delivery of doxorubicin using graphene oxide is remarkably improved by adding a little amount of vitamin C.
Collapse
Affiliation(s)
- Zhen Liu
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| | - Jingquan Liu
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
- Qingdao
| | - Tao Wang
- School of Nursing
- Zhengzhou University
- Zhengzhou
- China
- School of Medicine
| | - Qiong Li
- School of Medicine
- Faculty of Health
- Deakin University
- Geelong
- Australia
| | - Paul S. Francis
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| | - Wei Duan
- School of Medicine
- Faculty of Health
- Deakin University
- Geelong
- Australia
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- Geelong
- Australia
| |
Collapse
|