1
|
Luo Q, Kang X, Zhang C, Zhang H, Huang Y, Tang Q, Liao X, Gao F, Liu Z. Proximity hybridization-triggered cascade amplification for label-free SERS detection of Alzheimer's amyloid-β oligomers. Analyst 2025; 150:264-271. [PMID: 39687994 DOI: 10.1039/d4an01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Most of the existing SERS systems failed to achieve satisfactory results in early diagnosis of Alzheimer's disease owing to a lack of effective signal transduction. Herein, we developed a dual signal amplification strategy for SERS detection of amyloid-β oligomers based on proximity hybridization-triggered catalyzed hairpin assembly (CHA) and hybridization chain reaction (HCR). In the presence of the target protein and two DNA-labeled antibodies, a proximate complex formed in a homogeneous solution. Each of the AβO-DNA complexes served as a catalyst to trigger and accelerate numerous hybridization processes between MB1 and MB2. Subsequently, the single-strand fragment on the electrode surface initiated HCR, resulting in the hybridization reaction to form double-strand DNA concatemers on the substrate surface. The surface became negatively charged and allowed the absorption of silver ions on the DNA skeleton. After chemical reduction by hydroquinone, the formed silver nanoparticles could be further grown with a silver enhancement step to amplify the detectable SERS signal by absorbing rhodamine 6G as a SERS reporter on the silver nanoparticle surface. This biosensing platform had potential applications in molecular diagnostics of AD serum samples.
Collapse
Affiliation(s)
- Qisheng Luo
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xin Kang
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Chunyuan Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - He Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Yongning Huang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
2
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
3
|
Shang L, Shi BJ, Zhang W, Jia LP, Ma RN, Xue QW, Wang HS. Ratiometric Electrochemiluminescence Sensing of Carcinoembryonic Antigen Based on Luminol. Anal Chem 2022; 94:12845-12851. [PMID: 36067524 DOI: 10.1021/acs.analchem.2c02803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ratiometric electrochemiluminescence (ECL) sensors can efficiently remove environmental interference to attain precise detection. Nonetheless, two eligible luminophores or coreactants were usually needed, increasing the complexity and restricting their practical application. In this study, a single luminophore of luminol with a single coreactant of H2O2 was employed to construct a dual-potential ratiometric ECL sensor for the detection of carcinoembryonic antigen (CEA). The produced palladium nanoclusters (Pd NCs) employing a DNA duplex as a template could not only stimulate luminol to produce cathodic ECL (Icathodic) but also quench its anodic ECL (Ianodic). During the detection process, CEA could damage the double-stranded structure and reduce the Pd NCs' amount, triggering a significant decrease in the ratio of Icathodic to Ianodic (Icathodic/Ianodic) and thereby achieving sensitive CEA's detection. Furthermore, the Icathodic/Ianodic was independent of the H2O2 concentration, which avoided a prejudicial effect from H2O2 decomposition and considerably enhanced the detection's reliability. The developed ratiometric ECL sensor demonstrated a sensitive detection toward CEA with a wide linear range from 100 ag/mL to 10 ng/mL and a detection limit of 87.1 ag/mL (S/N = 3). In conclusion, this study offers a new idea for constructing ratiometric ECL sensors based on a single luminophore and technical support for cancer's early diagnosis.
Collapse
Affiliation(s)
- Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Bing-Jiao Shi
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| |
Collapse
|
4
|
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res 2022; 10:40. [PMID: 35606345 PMCID: PMC9125017 DOI: 10.1038/s41413-022-00212-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
The physicochemical nature of DNA allows the assembly of highly predictable structures via several fabrication strategies, which have been applied to make breakthroughs in various fields. Moreover, DNA nanostructures are regarded as materials with excellent editability and biocompatibility for biomedical applications. The ongoing maintenance and release of new DNA structure design tools ease the work and make large and arbitrary DNA structures feasible for different applications. However, the nature of DNA nanostructures endows them with several stimulus-responsive mechanisms capable of responding to biomolecules, such as nucleic acids and proteins, as well as biophysical environmental parameters, such as temperature and pH. Via these mechanisms, stimulus-responsive dynamic DNA nanostructures have been applied in several biomedical settings, including basic research, active drug delivery, biosensor development, and tissue engineering. These applications have shown the versatility of dynamic DNA nanostructures, with unignorable merits that exceed those of their traditional counterparts, such as polymers and metal particles. However, there are stability, yield, exogenous DNA, and ethical considerations regarding their clinical translation. In this review, we first introduce the recent efforts and discoveries in DNA nanotechnology, highlighting the uses of dynamic DNA nanostructures in biomedical applications. Then, several dynamic DNA nanostructures are presented, and their typical biomedical applications, including their use as DNA aptamers, ion concentration/pH-sensitive DNA molecules, DNA nanostructures capable of strand displacement reactions, and protein-based dynamic DNA nanostructures, are discussed. Finally, the challenges regarding the biomedical applications of dynamic DNA nanostructures are discussed.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjing Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
5
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
7
|
Conformational changes of high-molecular-weight DNA upon binding to noble metal nanoparticles in solution. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Dong X, Du Y, Zhao G, Cao W, Fan D, Kuang X, Wei Q, Ju H. Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on "dual-potential" emitter Ru(bpy) 32+ functionalized zinc-based metal-organic frameworks. Biosens Bioelectron 2021; 192:113505. [PMID: 34298497 DOI: 10.1016/j.bios.2021.113505] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
Neuron-specific enolase (NSE) is the preferred marker for monitoring small cell lung cancer and neuroblastoma. We devised a dual-signal ratiometric electrochemiluminescence (ECL) sensing strategy for sensitive detection of NSE. In this work, Ru (bpy)32+ functionalized zinc-based metal-organic framework (Ru-MOF-5) nanoflowers (NFs) with plentiful carboxyl groups provide an excellent biocompatible sensing platform for the construction of immunosensor. Importantly, Ru-MOF-5 NFs possess stable and efficient "dual-potential" ECL emission of cathode (-1.5 V) and anode (1.5 V) in the existence of co-reactant K2S2O8. Simultaneously, the cathode ECL emitter ZnO-AgNPs are employed as the secondary antibody marker, whose participation amplify the cathode ECL signal as well attenuate the anode ECL emission of Ru-MOF-5 NFs. By monitoring the ECL dual-signal of -1.5 V and 1.5 V and calculating their ratios, a ratiometric strategy of quantified readout proportional is implemented for the proposed immunosensor to precise analyze NSE. Based on optimization conditions, the ECL immunosensor displays the wide linear range of 0.0001 ng/mL to 200 ng/mL and the minimum detection limit is 0.041 pg/mL. The "dual-potential" ratiometric ECL immunosensor effectively reduces system error or background signal by self-calibration from both emissions and improves detection reliability. The dual-signal ratiometric strategy with satisfactory reproducibility and stability provides further development possibilities for other biomolecular detection and analysis.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China.
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
10
|
Su S, Ma J, Xu Y, Pan H, Zhu D, Chao J, Weng L, Wang L. Electrochemical Analysis of Target-Induced Hairpin-Mediated Aptamer Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48133-48139. [PMID: 32955243 DOI: 10.1021/acsami.0c12897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The state of probe DNA at the biosensing interface greatly affects the detection performance of electrochemical DNA biosensors. Herein, we constructed a target-induced hairpin-mediated biosensing interface to study the effect of probe DNA on the analytical performance of adenosine triphosphate aptamer (ATPA) and adenosine triphosphate (ATP) detection. Moreover, we also explored the electrochemical contribution of the coexisting hairpin and double-stranded DNA (dsDNA) to this sensing interface. Experimental results suggested that the molecular recognition ability and detection performance of the biosensing interface were majorly dependent on the surface density of methylene blue (MB)-labeled probe hairpin DNA and partly affected by the spatial state of the formed dsDNA. When the surface density of hairpin DNA was moderate (5.72 pmol cm-2), this sensing interface determined as low as 0.74 fM ATPA and 5.04 pM ATP with high selectivity and excellent regeneration, respectively. Furthermore, we calculated that the formed dsDNA had a 31.87% contribution in the total electrochemical signal for 10 pM ATPA detection. Based on the above results, we designed an XOR logic gate based on the biosensing interface for ATPA and ATP detection.
Collapse
Affiliation(s)
- Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianfeng Ma
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yongqiang Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hemeng Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
11
|
Su S, Sun Q, Ma J, Zhu D, Wang F, Chao J, Fan C, Li Q, Wang L. Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. Chem Commun (Camb) 2020; 56:9012-9015. [PMID: 32638751 DOI: 10.1039/d0cc03845h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nanoprobe-based signal amplification strategy is a powerful way to ultrasensitively detect biomolecules. Herein, a gold nanoparticle-decorated molybdenum disulfide (MoS2-AuNP)-based multilayer nanoprobe (MLNP) was designed for ultrasensitive analysis of microRNA-21 (miRNA-21). The MLNP-amplified electrochemical biosensor exhibited an ultrawide dynamic range (10 aM-1 μM) and an ultralow detection limit (38 aM) for target miRNA-21 analysis. Furthermore, this biosensor can determine miRNA-21 expression in cell lysates of 100 human cervical cancer (HeLa) cells. Our results demonstrate that MoS2-AuNP nanocomposites have great potential in constructing biosensors for target molecule analysis.
Collapse
Affiliation(s)
- Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Man Y, Liu J, Wu J, Yin L, Pei H, Wu Q, Xia Q, Ju H. An anchored monopodial DNA walker triggered by proximity hybridization for amplified amperometric biosensing of nucleic acid and protein. Anal Chim Acta 2020; 1107:48-54. [PMID: 32200901 DOI: 10.1016/j.aca.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022]
Abstract
This work designed an anchored monopodial DNA walker to amplify amperometric biosensing signal for sensitive detection of nucleic acid and protein. The biosensing surface was constructed by self-assembling hairpin DNA1 (H1) and small amount of P1-W (probe DNA1 hybridized with walking DNA) on a gold electrode. In the presence of target molecule, the walker could be triggered by the surface proximity hybridization product of P1, target and P2 to induce the cyclic hybridization of H1 with ferrocene modified hairpin DNA2 (H2-Fc), which took electroactive Fc to the electrode surface for amplified amperometric detection of the target. By linking P1 and P2 with dual specific DNA strands, aptamers or antibodies to recognize the target for proximity hybridization of P1 and P2, the walker amplified amperometric strategy could be used for highly sensitive biosensing of different targets. Using DNA and thrombin as the target models, the proposed biosensing methods achieved the linear range from 0.2 pM to 2 nM with a detection limit of 0.11 pM and 1.0 pM to 10 nM with a detection limit of 0.61 pM, respectively. The specific recognition process endowed the strategy with high selectivity and potential applications.
Collapse
Affiliation(s)
- Yi Man
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, PR China; Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Jinbo Liu
- Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, PR China
| | - Hua Pei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, PR China
| | - Qiang Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, PR China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
13
|
A double signal amplification electrochemical MicroRNA biosensor based on catalytic hairpin assembly and bisferrocene label. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Chen Y, Mei LP, Feng JJ, Yuan PX, Luo X, Wang AJ. Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosens Bioelectron 2019; 145:111638. [DOI: 10.1016/j.bios.2019.111638] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
15
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
16
|
Feng Q, Qin L, Wang M, Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens Bioelectron 2019; 149:111847. [PMID: 31733487 DOI: 10.1016/j.bios.2019.111847] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
A promising electrochemical system was explored for DNA methylation detection according to the construction of a signal-on biosensor. Based on the ingenious design of probe DNA and auxiliary DNA, methylated target DNA triggered the exonuclease III (Exo III) digestion of auxiliary DNA from 3'-terminus, resulting in the conformational change of probe DNA with an electroactive methylene blue (MB) tag at 5'-terminus. Consequently, the MB tag in the probe DNA was close to the electrode surface for electron transfer, generating an increased current signal. Because of the target recycling of methylated DNA, significant signal amplification was obtained. Moreover, bisulfite conversion conferred an efficient approach for the universal analysis of any CpG sites without the restriction of specific DNA sequence. As a result, the target DNA with different methylation statuses were clearly recognized, and the fully methylated DNA was quantified in a wide range from 10 fM to 100 pM, with a detection limit of 4 fM. The present work realized the assay of methylated target DNA in serum samples with satisfactory results, illustrating the application performance of the system in complex sample matrix.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Li Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mengying Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
17
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
18
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Wang M, Hu M, Li Z, He L, Song Y, Jia Q, Zhang Z, Du M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron 2019; 142:111536. [PMID: 31362204 DOI: 10.1016/j.bios.2019.111536] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
Abstract
Combining different metal-organic frameworks (MOFs) into a conjugate material can integrate the properties of each MOF component and further lead to emergent properties from the synergistic heterostructured units. In this work, two kinds of bimetallic TbFe-MOFs have been designed by MOF-on-MOF strategy and utilized as a platform for anchoring carbohydrate antigen 125 (CA125) aptamer to detect CA125 and living michigan cancer foundation-7 (MCF-7) cells. Although the integrated MOF-on-MOF architectures show similar chemical and structural features to that of the top layer, the Fe-MOF-on-Tb-MOF and Tb-MOF-on-Fe-MOF have different surface nanostructures to their parent MOFs. The developed aptasensor based on Tb-MOF-on-Fe-MOF displays higher stability of the formed G-quadruplex between aptamer and CA125 than that based on Fe-MOF-on-Tb-MOF, owing to stronger immobilization behavior of the aptamer for the Tb-MOF-on-Fe-MOF composite. The developed aptasensor provides an extremely low detection limit of 58 μU·mL-1 towards CA125 within a wide linear range from 100 μU·mL-1 to 200 U·mL-1, which is significantly lower than those of all reported sensors. This aptasensor also has high selectivity, good stability, acceptable reproducibility, and excellent applicability in human serum. Moreover, the Tb-MOF-on-Fe-MOF nanoarchitecture demonstrates superior biocompatibility and good endocytosis. As a result, the developed aptasensor illustrates high sensitivity for detection of MCF-7 cells with an extremely low detection limit of 19 cell·mL-1. Therefore, the proposed aptasensor based on Tb-MOF-on-Fe-MOF exhibits great potentials for early diagnosis of tumors.
Collapse
Affiliation(s)
- Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Zhenzhen Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| |
Collapse
|
20
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
21
|
In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA. Biosens Bioelectron 2019; 137:82-87. [DOI: 10.1016/j.bios.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
|
22
|
Singh S, Gill AA, Nlooto M, Karpoormath R. Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors. Biosens Bioelectron 2019; 137:213-221. [DOI: 10.1016/j.bios.2019.03.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
|
23
|
Baek S, Ahn JK, Won BY, Park KS, Park HG. A one-step and label-free, electrochemical DNA detection using metal ion-mediated molecular beacon probe. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
25
|
Li Q, Zeng F, Lyu N, Liang J. Highly sensitive and specific electrochemical biosensor for microRNA-21 detection by coupling catalytic hairpin assembly with rolling circle amplification. Analyst 2019; 143:2304-2309. [PMID: 29675521 DOI: 10.1039/c8an00437d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNA plays a significant role in gene regulation and is usually regarded as an important biological marker. Electrochemical biosensors are excellent tools for microRNA detection. METHODS In this experiment, we take miRNA-21 as a target, combining catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) as a dual signal amplification strategy for the detection of microRNA in an electrochemical biosensor. RESULTS This strategy has a good linear range of 0.5-12 500 pmol of microRNA. The limit of detection (LOD) for miRNA is as low as 290 fmol, showing excellent performance. Finally, this method has been successfully applied to the detection of miRNA-21 from HeLa cells. CONCLUSION This method can be applied not only for microRNA detection with high sensitivity and speed, but can also detect small molecules and proteins combined with aptamers.
Collapse
Affiliation(s)
- Qing Li
- Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, China.
| | | | | | | |
Collapse
|
26
|
Contreras-Naranjo JE, Aguilar O. Suppressing Non-Specific Binding of Proteins onto Electrode Surfaces in the Development of Electrochemical Immunosensors. BIOSENSORS 2019; 9:E15. [PMID: 30669262 PMCID: PMC6468902 DOI: 10.3390/bios9010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Electrochemical immunosensors, EIs, are systems that combine the analytical power of electrochemical techniques and the high selectivity and specificity of antibodies in a solid phase immunoassay for target analyte. In EIs, the most used transducer platforms are screen printed electrodes, SPEs. Some characteristics of EIs are their low cost, portability for point of care testing (POCT) applications, high specificity and selectivity to the target molecule, low sample and reagent consumption and easy to use. Despite all these attractive features, still exist one to cover and it is the enhancement of the sensitivity of the EIs. In this review, an approach to understand how this can be achieved is presented. First, it is necessary to comprise thoroughly all the complex phenomena that happen simultaneously in the protein-surface interface when adsorption of the protein occurs. Physicochemical properties of the protein and the surface as well as the adsorption phenomena influence the sensitivity of the EIs. From this point, some strategies to suppress non-specific binding, NSB, of proteins onto electrode surfaces in order to improve the sensitivity of EIs are mentioned.
Collapse
Affiliation(s)
- Jesús E Contreras-Naranjo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| |
Collapse
|
27
|
Yun W, You L, Li F, Wu H, Chen L, Yang L. Proximity ligation assay induced and DNAzyme powered DNA motor for fluorescent detection of thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:39-45. [PMID: 30195184 DOI: 10.1016/j.saa.2018.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A novel DNA motor for thrombin detection was described here based on proximity ligation assay (PLA) induced DNAzyme recycling cleavage. Fluorophore labeled DNA is modified on gold nanoparticles (AuNPs) and the fluorescent signal is quenched by AuNPs. The PLA between target thrombin and two aptamers induces the forming of Mg2+-dependent DNAzyme. The fluorophore labeled DNA is cleaved circularly by the DNAzyme, releasing the fluorescent fragment from AuNPs surface. The cleavage and rebinding process create a processive walking along AuNPs surface track. As a result, the fluorescent intensity recovers significantly. A good linear relationship is obtained between the ratio of fluorescence intensity and thrombin concentration in the range from 10 pM to 10 nM. The limit of detection is calculated to be 4 pM. These results are comparable or even better than other amplification based methods.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Linfeng You
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fukun Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
28
|
Fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite. Biosens Bioelectron 2019; 129:1-6. [PMID: 30677696 DOI: 10.1016/j.bios.2018.12.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023]
Abstract
A lable-free electrochemical aptasensor was successfully developed for the sensitive detection of carcinoembryonic antigen as a tumor biomarker. To do this, a ternary nanocomposite of hemin, graphene oxide and multi-walled carbon nanotubes was used. The aptamer can be attached to the surface of a hemin, graphene oxide and multi-walled carbon nanotubes glassy carbon electrode through -NHCO- covalent bonds to form a sensing surface. Through fourier transform infrared spectroscopy and scanning electron microscopy, it was indicated that hemin can be successfully incorporated into hemin, graphene oxide and multi-walled carbon nanotubes. Hemin, which protects graphene nanosheets, also serves as an in-situ probe owing to its well-defined redox properties. Multi-walled carbon nanotubes in the modifier enhance conductivity and facilitate the electron transfer between hemin and the glassy carbon electrode. In this study, carcinoembryonic antigen got specifically bound to the aptamer, and the current changes were used for selective and specific detection of that antigen. The devised aptasensor proved to have excellent performance with a wide linear range of 1.0 × 10-15 - 1.0 × 10-8 gmL-1 and a detection limit of 0.82 fg mL-1. The inter-day and intra-day values of RSD% were obtained in the range of 0.10-2.91 and 2.21-4.56 respectively. According to the experiments conducted on real samples, it may be claimed that the proposed label-free electrochemical aptasensor is capable enough of determining carcinoembryonic antigen in clinical diagnostics.
Collapse
|
29
|
Zhang X, Lv H, Li Y, Zhang C, Wang P, Liu Q, Ai B, Xu Z, Zhao Z. Ultrasensitive sandwich-type immunosensor for cardiac troponin I based on enhanced electrocatalytic reduction of H2O2 using β-cyclodextrins functionalized 3D porous graphene-supported Pd@Au nanocubes. J Mater Chem B 2019; 7:1460-1468. [DOI: 10.1039/c8tb03362e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A signal amplification principle based on increased electrocatalytic reduction of H2O2 by the CDs-3D-PG-Pd@Au NCs using the mediated effect of Th.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Hui Lv
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Chunyan Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Bing Ai
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Zengdian Zhao
- Analysis and Testing Center
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
30
|
Zhang Y, Huang X, Luo F, Lei Y, Chen L, Weng Z, Guo L, Lin Z. Highly sensitive electrochemical immunosensor for golgi protein 73 based on proximity ligation assay and enzyme-powered recycling amplification. Anal Chim Acta 2018; 1040:150-157. [DOI: 10.1016/j.aca.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
31
|
Xiao Q, Wu J, Dang P, Ju H. Multiplexed chemiluminescence imaging assay of protein biomarkers using DNA microarray with proximity binding-induced hybridization chain reaction amplification. Anal Chim Acta 2018; 1032:130-137. [DOI: 10.1016/j.aca.2018.05.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
|
32
|
Kim HY, Sato S, Takenaka S, Lee MH. Membrane-Based Microwave-Mediated Electrochemical Immunoassay for the In Vitro, Highly Sensitive Detection of Osteoporosis-Related Biomarkers. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2933. [PMID: 30181433 PMCID: PMC6163632 DOI: 10.3390/s18092933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/19/2018] [Accepted: 08/31/2018] [Indexed: 12/02/2022]
Abstract
Highly sensitive and multiplexed in vitro detection of osteoporosis-related biochemical markers were carried out based on the membrane-based microwave-mediated electrochemical immunoassay (MMeEIA), where we can dramatically reduce the sample preparation time by shortening the incubation time of conjugation to obtain sensitive detection based on three dimensional conjugation of antibodies with target antigens in nylon membrane disk. C-terminal cross-linked telopeptide of type I collagen (CTx), Osteocalcin (OC), parathyroid hormone (PTH), and N-terminal propeptide of type I collagen (P1NP), which can be utilized to monitor the progress of osteoporosis, were quantified using their corresponding antibody immobilized in membranes. Coefficient of variations in this intra- and inter-assays were within 8.0% for all markers. When compared with data obtained from clinically used standard equipment (Roche modular E170), their coefficients of determination, R² values, are mostly more than 0.9. They show that the results obtained from MMeEIA are in good agreement with that from the conventional clinical instruments.
Collapse
Affiliation(s)
- Hye Youn Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea.
| | - Shinobu Sato
- Department of Applied Chemistry, Research Center for Biomicrosensing Technology, Kyushu Institute of Technology, Fukuoka 804-8550, Japan.
| | - Shigeori Takenaka
- Department of Applied Chemistry, Research Center for Biomicrosensing Technology, Kyushu Institute of Technology, Fukuoka 804-8550, Japan.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea.
| |
Collapse
|
33
|
Zhao G, Wang Y, Li X, Dong X, Wang H, Du B, Cao W, Wei Q. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in the UiO-67 Metal-Organic Framework and Gold Nanoparticles for Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22932-22938. [PMID: 29916688 DOI: 10.1021/acsami.8b04786] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work describes a sandwich-type electrochemiluminescence (ECL) strategy for insulin detection by using Ru(bpy)32+ as the luminophore which was encapsulated in the UiO-67 metal-organic framework (UiO-67/Ru(bpy)32+). Because UiO-67 possesses the characteristics of large specific surface area and porosity, more Ru(bpy)32+ could be loaded onto its surface and holes, thus greatly improving the ECL efficiency. Furthermore, the ECL resonance energy transfer (ECL-RET) could occur between UiO-67/Ru(bpy)32+ (ECL donor) and Au@SiO2 nanoparticles (ECL acceptor), resulting in a conspicuously decreased ECL response. The ECL spectrum of UiO-67/Ru(bpy)32+ which exhibited strong ECL intensity has suitable spectral overlap with the absorption spectrum of Au@SiO2, which further proved the occurrence of the ECL-RET action. The ECL intensity decreased with the increase of the concentration of insulin. In addition, the sandwich-type ECL immunosensor was applied to insulin detection, and the ECL decrease efficiency was found to be logarithmically related to the concentration of the insulin antigen in the range of 0.0025 to 50 ng mL-1 with the limit of detection of 0.001 ng mL-1. Meanwhile, this work provides an important reference for the application of metal-organic frameworks in the ECL and ECL-RET study and also exhibits potential capability in the detection of other hormones.
Collapse
Affiliation(s)
- Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Yaoguang Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xiaojian Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| |
Collapse
|
34
|
Wang Y, Zhao G, Wang H, Cao W, Du B, Wei Q. Sandwich-type electrochemical immunoassay based on Co3O4@MnO2-thionine and pseudo-ELISA method toward sensitive detection of alpha fetoprotein. Biosens Bioelectron 2018; 106:179-185. [DOI: 10.1016/j.bios.2018.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
|
35
|
Feng Q, Zhao X, Guo Y, Liu M, Wang P. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Biosens Bioelectron 2018. [PMID: 29522905 DOI: 10.1016/j.bios.2018.02.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A target-driven stochastic DNA walking electrochemical biosensor sensitized with gold nanocages@graphene nanoribbons (Au NCs@GNRs) was explored for sensitive detection of target DNA. Benefited from the large surface area and excellent conductivity of Au NCs and GNRs, the proposed sensing platform not only improved the electron transfer kinetics involved in electrochemical reactions, but also enhanced the loading capability for stem-loop structural DNA segment (H). Upon the addition of target DNA, the hairpin structure of H was opened and H:target DNA duplex was formed based on toehold-mediated DNA strand displacement. In the presence of exonuclease III (Exo III), the H:target DNA duplex was digested. As a result, target DNA spontaneously dissociated from H:target DNA duplex and then hybridized with another H strand. Therefore, the continuous locomotion of target DNA unceasingly triggered new digestion process from near to far along the electrode surface, resulting in great signal amplification. The proposed strategy exhibited excellent detection performances for DNA analysis in complex matrix such as human serum, which illuminated the practical application field of the sensing platform.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiaolei Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yuehua Guo
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, P. R. China
| | - Mingkai Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
36
|
Yuan Y, Zhang L, Wang H, Chai Y, Yuan R. Self-enhanced PEI-Ru(II) complex with polyamino acid as booster to construct ultrasensitive electrochemiluminescence immunosensor for carcinoembryonic antigen detection. Anal Chim Acta 2018; 1001:112-118. [DOI: 10.1016/j.aca.2017.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/04/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
|
37
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
38
|
Liao X, Li L, Pan J, Peng T, Ge B, Tang Q. In situ biosensor for detection miRNA in living cells based on carbon nitride nanosheets with catalytic hairpin assembly amplification. LUMINESCENCE 2017; 33:190-195. [PMID: 28929579 DOI: 10.1002/bio.3392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
Abstract
In this study, an ultrasensitive fluorescence turn-on assay for in situ sensing of intracellular microRNA (miRNA) was developed utilizing a carbon nitride nanosheet (CNNS) and a catalytic hairpin assembly (CHA). The CHA showed favourable signal amplification for low-level biomarkers, and CNNS was an excellent candidate as a fluorescence quencher and gene vector. Moreover, the hairpin DNA of CHA could be adsorbed onto the surface of CNNS. An enzyme-free fluorescence biosensor for ultrasensitive sensing of intracellular miRNA in cells based on CHA and CNNS was designed. When faced with target miRNA, the fluorescence was recovered due to the miRNA, which could trigger cycling of CHA circuits, leading to the production of a marked enhanced fluorescence signal. Compared with traditional methods, the proposed method is convenient, with low cytotoxicity, and high specificity and ultrasensitivity. It has promising potential for detection low-level biomarkers.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, People's Republic of China.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Liqing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Tingting Peng
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Bin Ge
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, People's Republic of China.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| |
Collapse
|
39
|
Wang H, Xu Q, Wang J, Du W, Liu F, Hu X. Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing. Biosens Bioelectron 2017; 100:105-114. [PMID: 28881228 DOI: 10.1016/j.bios.2017.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/30/2017] [Indexed: 01/07/2023]
Abstract
In this work, a novel molecularly imprinted electrochemical sensor based on the amino-functionalized silica nanoparticles was built for the sensitive and selective detection of 2,4-dichlorophenoxyacetic acid (2,4-D). The hierarchical porous dendrimer-like silica nanoparticles (HPSNs-NH2) were synthesized by an ethyl ether emulsion method. The selective molecularly imprinted polymers (MIP) was prepared on the HPSNs-NH2 modified electrode via electropolymerization by using 2,4-D as the template and o-phenylenediamine (OPD) as the monomer. The porous structure of HPSNs-NH2 reduced the diffusion limitations of the analytes, enhanced the accessibility and increased the surface area of the sensor, while the MIP layer offered the ability to recognize and quantify target 2,4-D by using ferro/ferricyanide as probes. Several significant experimental parameters on the analytical performance of the MIP/HPSNs-NH2 sensor were explored and optimized. Under the optimized condition, the sensor displayed an appreciable selectivity over structurally related compounds and good sensitivity toward 2,4-D. The linear range of 2,4-D detection was from 1.00 × 10-10 to 2.50 × 10-8M and the detection limit was down to 1.17 × 10-11M according to the 3Sa/b criteria. This method has been applied to detect 2,4-D in bean sprout samples with satisfying results.
Collapse
Affiliation(s)
- Hongmei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Fengping Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
40
|
Lv J, Xie S, Cai W, Zhang J, Tang D, Tang Y. Highly effective target converting strategy for ultrasensitive electrochemical assay of Hg2+. Analyst 2017; 142:4708-4714. [DOI: 10.1039/c7an01306j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An electrochemical sensing system based on a highly effective Hg2+ converting strategy and RCA has been developed for the ultrasensitive detection of Hg2+.
Collapse
Affiliation(s)
- Jin Lv
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
- College of Chemistry and Chemical Engineering
| | - Shunbi Xie
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
| | - Wei Cai
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
- College of Chemistry and Chemical Engineering
| | - Jin Zhang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
- College of Chemistry and Chemical Engineering
| | - Dianyong Tang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
| | - Ying Tang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies (Chongqing University of Arts and Sciences)
- Chongqing University of Arts and Sciences
- Chongqing 402160
- PR China
| |
Collapse
|