1
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
2
|
Temel ER, Eroğlu AE, Salih B, Boyaci E. Novel electrospun-based extractive probes for rapid determination of clinically important compounds in human plasma. Anal Chim Acta 2024; 1312:342750. [PMID: 38834264 DOI: 10.1016/j.aca.2024.342750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Coated blade spray (CBS) represents an innovative approach that utilizes solid-phase microextraction principles for sampling and sample preparation. When combined with ambient mass spectrometry (MS), it can also serve as an electrospray ionization source. Therefore, it became a promising tool in analytical applications as it can significantly reduce the analysis time. However, the current CBS coatings are based on the immobilization of extractive particles in bulk polymeric glue, which constrains the diffusion of the analytes to reach the extractive phase; therefore, the full reward of the system cannot be taken at pre-equilibrium. This has sparked the notion of developing new CBS probes that exhibit enhanced kinetics. RESULTS With this aim, to generate a new extractive phase with improved extraction kinetics, poly(divinylbenzene) (PDVB) nanoparticles were synthesized by mini-emulsion polymerization and then immobilized into sub-micrometer (in diameter) sized polyacrylonitrile fibers which were obtained by electrospinning method. Following the optimization and characterization studies, the electrospun-coated blades were used to determine cholesterol, testosterone, and progesterone in plasma spots using the CBS-MS approach. For testosterone and progesterone, 10 ng mL-1 limits of quantification could be obtained, which was 200 ng mL-1 for cholesterol in spot-sized samples without including any pre-treatment steps to samples prior to extraction. SIGNIFICANCE The comparison of the initial kinetics for dip-coated and electrospun-coated CBS probes proved that the electrospinning process could enhance the extraction kinetics; therefore, it can be used for more sensitive analyses. The total analysis time with this method, from sample preparation to instrumental analysis, takes only 7 min, which suggests that the new probes are promising for fast diagnostic applications.
Collapse
Affiliation(s)
- Ezgi Rana Temel
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkiye
| | - Ahmet E Eroğlu
- Department of Chemistry, İzmir Institute of Technology, Urla, 35430, İzmir, Turkiye
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, 06800, Turkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkiye.
| |
Collapse
|
3
|
Leszczyńska D, Hallmann A, Treder N, Bączek T, Roszkowska A. Recent advances in the use of SPME for drug analysis in clinical, toxicological, and forensic medicine studies. Talanta 2024; 270:125613. [PMID: 38159351 DOI: 10.1016/j.talanta.2023.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.
Collapse
Affiliation(s)
- Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland.
| |
Collapse
|
4
|
Kertesz V, Carper DL, Cahill JF. High-throughput mass spectrometry analysis using immediate drop-on-demand technology coupled with an open port sampling interface. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9687. [PMID: 38212650 DOI: 10.1002/rcm.9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
RATIONALE The sampling throughput of immediate drop-on-demand technology (I.DOT) coupled with an open port sampling interface (OPSI) is limited by software communication. To enable much-needed high-throughput mass spectrometry (MS) analysis capabilities, a novel software was developed that allows for flexible sample selection from a 96-well plate and for maximized analysis throughput using I.DOT/OPSI-MS coupling. METHODS Wells of a 96-well I.DOT plate were filled with propranolol solution and were used to test maximum sampling throughput strategies to minimize analysis time. Demonstration of chemical reaction monitoring was done using acid-catalyzed ring closure of 2,3-diaminonaphthalene (DAN) with nitrite to form 2,3-naphthotriazole (NAT). Analytes were detected in positive electrospray ionization mode using selected reaction monitoring. RESULTS A maximum throughput of 1.54 s/sample (7.41 min/96-well plate with three technical replicates) was achieved, and it was limited by the peak width of the MS signal resulting in an occasional slight overlap between the peaks. Relative standard deviation was 10 ± 1% with all tested sampling strategies. Chemical reaction monitoring of DAN to NAT using nitrite was successfully accomplished with 2 s/sample throughout showing almost complete transformation in 10 min with no signal overlap. CONCLUSIONS This work illustrates the development of a noncontact, automated I.DOT/OPSI-MS system with improved throughput achieved through an optimized software interface. Its achievable analysis time and precision make it a viable approach for drug discovery and in situ reaction monitoring studies.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
5
|
Mirabelli MF. Direct Coupling of SPME to Mass Spectrometry. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:290-314. [DOI: 10.1039/bk9781839167300-00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solid-phase microextraction devices are normally analyzed by gas or liquid chromatography. Their use has become increasingly widespread since their introduction in 1990, and nowadays most analytical laboratories use or have used SPME as an efficient and green method to perform analyte extraction and sample clean-up in one step. The SPME technique is intrinsically flexible, and allows for a high degree of optimization with regard to the extracting phase, as well as the way sample is analyzed. Since its introduction, researchers have been trying different ways to transfer analytes extracted from the solid phase to a mass spectrometer, with the aim to increase throughput and reduce solvent, gas usage and costs associated with conventional chromatographic techniques. Furthermore, but not less important, for pure fun of developing new, more efficient and sensitive analytical strategies! This chapter aims at providing a comprehensive overview of the most relevant non-chromatographic mass spectrometric approaches developed for SPME. Technical aspects of each SPME-MS approach will be discussed, highlighting their advantages, disadvantages and future potential developments. Particular emphasis will be given on the most recent direct coupling approaches using novel ionization approaches, and a concise overview of the existing applications will also be provided.
Collapse
|
6
|
Ieritano C, Hopkins WS. The hitchhiker's guide to dynamic ion-solvent clustering: applications in differential ion mobility spectrometry. Phys Chem Chem Phys 2022; 24:20594-20615. [PMID: 36000315 DOI: 10.1039/d2cp02540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the fundamentals of ion-solvent clustering processes that are pertinent to understanding an ion's behaviour during differential mobility spectrometry (DMS) experiments. We contrast DMS with static-field ion mobility, where separation is affected by mobility differences under the high-field and low-field conditions of an asymmetric oscillating electric field. Although commonly used in mass spectrometric (MS) workflows to enhance signal-to-noise ratios and remove isobaric contaminants, the chemistry and physics that underpins the phenomenon of differential mobility has yet to be fully fleshed out. Moreover, we are just now making progress towards understanding how the DMS separation waveform creates a dynamic clustering environment when the carrier gas is seeded with the vapour of a volatile solvent molecule (e.g., methanol). Interestingly, one can correlate the dynamic clustering behaviour observed in DMS experiments with gas-phase and solution-phase molecular properties such as hydrophobicity, acidity, and solubility. However, to create a generalized, global model for property determination using DMS data one must employ machine learning. In this article, we provide a first-principles description of differential ion mobility in a dynamic clustering environment. We then discuss the correlation between dynamic clustering propensity and analyte physicochemical properties and demonstrate that analytes exhibiting similar ion-solvent interactions (e.g., charge-dipole) follow well-defined trends with respect to DMS clustering behaviour. Finally, we describe how supervised machine learning can be used to create predictive models of molecular properties using DMS data. We additionally highlight open questions in the field and provide our perspective on future directions that can be explored.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
7
|
Effects of the LC mobile phase in vacuum differential mobility spectrometry-mass spectrometry for the selective analysis of antidepressant drugs in human plasma. Anal Bioanal Chem 2022; 414:7243-7252. [PMID: 35976423 PMCID: PMC9482904 DOI: 10.1007/s00216-022-04276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effect of LC mobile phase composition and flow rate (2–50 µL/min) on mobility behavior in vacuum differential mobility spectrometry (vDMS) was investigated for electrosprayed isobaric antidepressant drugs (AD); amitriptyline, maprotiline, venlafaxine; and structurally related antidepressants nortriptyline, imipramine, and desipramine. While at 2 µL/min, no difference in compensation voltage was observed with methanol and acetonitrile, at 50 µL/min, acetonitrile used for LC elution of analytes enabled the selectivity of the mobility separation to be improved. An accurate and sensitive method could be developed for the quantification of six AD drugs in human plasma using trap/elute micro-LC setup hyphenated to vDMS with mass spectrometric detection in the selected ion monitoring mode. The assay was found to be linear over three orders of magnitude, and the limit of quantification was of 25 ng/mL for all analytes. The LC-vDMS-SIM/MS method was compared to a LC-MRM/MS method, and in both cases, inter-assay precisions were lower than 12.5 and accuracies were in the range 91.5–110%, but with a four times reduced analysis time (2 min) for the LC-vDMS-SIM/MS method. This work illustrates that with vDMS, the LC mobile phase composition can be used to tune the ion mobility separation and to improve assay selectivity without additional hardware.
Collapse
|
8
|
Liu C. Acoustic Ejection Mass Spectrometry: Fundamentals and Applications in High-Throughput Drug Discovery. Expert Opin Drug Discov 2022; 17:775-787. [DOI: 10.1080/17460441.2022.2084069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| |
Collapse
|
9
|
Ieritano C, Le Blanc JCY, Schneider BB, Bissonnette JR, Haack A, Hopkins WS. Protonation-Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angew Chem Int Ed Engl 2021; 61:e202116794. [PMID: 34963024 DOI: 10.1002/anie.202116794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/12/2022]
Abstract
Upon development of a workflow to analyze (±)-Verapamil and its metabolites using differential mobility spectrometry (DMS), we noticed that the ionogram of protonated Verapamil consisted of two peaks. This was inconsistent with its metabolites, as each exhibited only a single peak in the respective ionograms. The unique behaviour of Verapamil was attributed to protonation at its tertiary amino moiety, which generated a stereogenic quaternary amine. The introduction of additional chirality upon N-protonation of Verapamil renders four possible stereochemical configurations for the protonated ion: ( R,R ), ( S,S ), ( R,S ), or ( S,R ). The ( R,R )/( S,S ) and ( R,S )/( S,R ) enantiomeric pairs are diastereomeric and thus exhibit unique conformations that are resolvable by linear and differential ion mobility techniques. Protonation-induced chirality appears to be a general phenomenon, as N -protonation of 12 additional chiral amines generated diastereomers that were readily resolved by DMS.
Collapse
Affiliation(s)
- Christian Ieritano
- University of Waterloo Faculty of Science, Chemistry, 200 University Avenue West, N2L 3G1, Waterloo, CANADA
| | | | | | | | - Alexander Haack
- University of Waterloo Faculty of Science, Chemistry, CANADA
| | - W Scott Hopkins
- University of Waterloo, Chemistry, 200 University Ave. W, N2L 3G1, Waterloo, CANADA
| |
Collapse
|
10
|
Ieritano C, Le Blanc JCY, Schneider BB, Bissonnette JR, Haack A, Hopkins WS. Protonation‐Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Ieritano
- University of Waterloo Faculty of Science Chemistry 200 University Avenue West N2L 3G1 Waterloo CANADA
| | | | | | | | | | - W. Scott Hopkins
- University of Waterloo Chemistry 200 University Ave. W N2L 3G1 Waterloo CANADA
| |
Collapse
|
11
|
Simon D, Oleschuk R. The liquid micro junction-surface sampling probe (LMJ-SSP); a versatile ambient mass spectrometry interface. Analyst 2021; 146:6365-6378. [PMID: 34553725 DOI: 10.1039/d1an00725d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ambient ionization methods have become important tools in mass spectrometry. The LMJ-SSP can significantly simplify/reduce lengthy sample preparation requirements associated with mass spectrometry analysis. Samples may be introduced through direct contact, insertion and droplet injection, enabling applications from drug discovery and surface analysis to tissue profiling and metabolic mapping. This review examines the underlying principles associated with the LMJ-SSP interface and highlights modifications of the original design that have extended its capability. We summarize different application areas that have exploited the method and describe potential future directions for the adaptable ambient ionization source.
Collapse
Affiliation(s)
- David Simon
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
12
|
|
13
|
Zhang H, Liu C, Hua W, Ghislain LP, Liu J, Aschenbrenner L, Noell S, Dirico KJ, Lanyon LF, Steppan CM, West M, Arnold DW, Covey TR, Datwani SS, Troutman MD. Acoustic Ejection Mass Spectrometry for High-Throughput Analysis. Anal Chem 2021; 93:10850-10861. [PMID: 34320311 DOI: 10.1021/acs.analchem.1c01137] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a mass spectrometry (MS) analytical platform resulting from the novel integration of acoustic droplet ejection (ADE) technology, an open-port interface (OPI), and electrospray ionization (ESI)-MS that creates a transformative system enabling high-speed sampling and label-free analysis. The ADE technology delivers nanoliter droplets in a touchless manner with high speed, precision, and accuracy. Subsequent sample dilution within the OPI, in concert with the capabilities of modern ESI-MS, eliminates the laborious sample preparation and method development required in current approaches. This platform is applied to a variety of experiments, including high-throughput (HT) pharmacology screening, label-free in situ enzyme kinetics, in vitro absorption, distribution, metabolism, elimination, pharmacokinetic and biomarker analysis, and HT parallel medicinal chemistry.
Collapse
Affiliation(s)
- Hui Zhang
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Wenyi Hua
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lucien P Ghislain
- Beckman Coulter Life Sciences Inc., San Jose, California 95134, United States
| | - Jianhua Liu
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lisa Aschenbrenner
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Noell
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kenneth J Dirico
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lorraine F Lanyon
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Claire M Steppan
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mike West
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Don W Arnold
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Thomas R Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Sammy S Datwani
- Beckman Coulter Life Sciences Inc., San Jose, California 95134, United States
| | - Matthew D Troutman
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
14
|
Ieritano C, Campbell JL, Hopkins WS. Predicting differential ion mobility behaviour in silico using machine learning. Analyst 2021; 146:4737-4743. [PMID: 34212943 DOI: 10.1039/d1an00557j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although there has been a surge in popularity of differential mobility spectrometry (DMS) within analytical workflows, determining separation conditions within the DMS parameter space still requires manual optimization. A means of accurately predicting differential ion mobility would benefit practitioners by significantly reducing the time associated with method development. Here, we report a machine learning (ML) approach that predicts dispersion curves in an N2 environment, which are the compensation voltages (CVs) required for optimal ion transmission across a range of separation voltages (SVs) between 1500 to 4000 V. After training a random-forest based model using the DMS information of 409 cationic analytes, dispersion curves were reproduced with a mean absolute error (MAE) of ≤ 2.4 V, approaching typical experimental peak FWHMs of ±1.5 V. The predictive ML model was trained using only m/z and ion-neutral collision cross section (CCS) as inputs, both of which can be obtained from experimental databases before being extensively validated. By updating the model via inclusion of two CV datapoints at lower SVs (1500 V and 2000 V) accuracy was further improved to MAE ≤ 1.2 V. This improvement stems from the ability of the "guided" ML routine to accurately capture Type A and B behaviour, which was exhibited by only 2% and 17% of ions, respectively, within the dataset. Dispersion curve predictions of the database's most common Type C ions (81%) using the unguided and guided approaches exhibited average errors of 0.6 V and 0.1 V, respectively.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. and Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. and WaterMine Innovation, Inc., Waterloo, Ontario N0B 2T0, Canada and Bedrock Scientific Inc., Milton, Ontario L6T 6J9, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. and Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada and WaterMine Innovation, Inc., Waterloo, Ontario N0B 2T0, Canada and Centre for Eye and Vision Research, Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
15
|
Ieritano C, Lee A, Crouse J, Bowman Z, Mashmoushi N, Crossley PM, Friebe BP, Campbell JL, Hopkins WS. Determining Collision Cross Sections from Differential Ion Mobility Spectrometry. Anal Chem 2021; 93:8937-8944. [PMID: 34132546 DOI: 10.1021/acs.analchem.1c01420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The experimental determination of ion-neutral collision cross sections (CCSs) is generally confined to ion mobility spectrometry (IMS) technologies that operate under the so-called low-field limit or those that enable empirical calibration strategies (e.g., traveling wave IMS; TWIMS). Correlation of ion trajectories to CCS in other non-linear IMS techniques that employ dynamic electric fields, such as differential mobility spectrometry (DMS), has remained a challenge since its inception. Here, we describe how an ion's CCS can be measured from DMS experiments using a machine learning (ML)-based calibration. The differential mobility of 409 molecular cations (m/z: 86-683 Da and CCS 110-236 Å2) was measured in a N2 environment to train the ML framework. Several open-source ML routines were tested and trained using DMS-MS data in the form of the parent ion's m/z and the compensation voltage required for elution at specific separation voltages between 1500 and 4000 V. The best performing ML model, random forest regression, predicted CCSs with a mean absolute percent error of 2.6 ± 0.4% for analytes excluded from the training set (i.e., out-of-the-bag external validation). This accuracy approaches the inherent statistical error of ∼2.2% for the MobCal-MPI CCS calculations employed for training purposes and the <2% threshold for matching literature CCSs with those obtained on a TWIMS platform.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- WaterMine Innovation, Inc., Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Arthur Lee
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- WaterMine Innovation, Inc., Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Jeff Crouse
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- WaterMine Innovation, Inc., Waterloo N0B 2T0, Ontario, Canada
| | - Zack Bowman
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Nour Mashmoushi
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Paige M Crossley
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Benjamin P Friebe
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- WaterMine Innovation, Inc., Waterloo N0B 2T0, Ontario, Canada
- Bedrock Scientific Inc., Milton, L6T 6J9, Ontario, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- WaterMine Innovation, Inc., Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
16
|
Liu C, Van Berkel GJ, Kovarik P, Perot JB, Inguva V, Covey TR. Fluid Dynamics of the Open Port Interface for High-Speed Nanoliter Volume Sampling Mass Spectrometry. Anal Chem 2021; 93:8559-8567. [DOI: 10.1021/acs.analchem.1c01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | | | - Peter Kovarik
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - J. Blair Perot
- Department of Mechanical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Venkatesh Inguva
- Department of Mechanical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas R. Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| |
Collapse
|
17
|
Ieritano C, Rickert D, Featherstone J, Honek JF, Campbell JL, Blanc JCYL, Schneider BB, Hopkins WS. The Charge-State and Structural Stability of Peptides Conferred by Microsolvating Environments in Differential Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:956-968. [PMID: 33733774 DOI: 10.1021/jasms.0c00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of solvent vapor in a differential mobility spectrometry (DMS) cell creates a microsolvating environment that can mitigate complications associated with field-induced heating. In the case of peptides, the microsolvation of protonation sites results in a stabilization of charge density through localized solvent clustering, sheltering the ion from collisional activation. Seeding the DMS carrier gas (N2) with a solvent vapor prevented nearly all field-induced fragmentation of the protonated peptides GGG, AAA, and the Lys-rich Polybia-MP1 (IDWKKLLDAAKQIL-NH2). Modeling the microsolvation propensity of protonated n-propylamine [PrNH3]+, a mimic of the Lys side chain and N-terminus, with common gas-phase modifiers (H2O, MeOH, EtOH, iPrOH, acetone, and MeCN) confirms that all solvent molecules form stable clusters at the site of protonation. Moreover, modeling populations of microsolvated clusters indicates that species containing protonated amine moieties exist as microsolvated species with one to six solvent ligands at all effective ion temperatures (Teff) accessible during a DMS experiment (ca. 375-600 K). Calculated Teff of protonated GGG, AAA, and Polybia-MPI using a modified two-temperature theory approach were up to 86 K cooler in DMS environments seeded with solvent vapor compared to pure N2 environments. Stabilizing effects were largely driven by an increase in the ion's apparent collision cross section and by evaporative cooling processes induced by the dynamic evaporation/condensation cycles incurred in the presence of an oscillating electric separation field. When the microsolvating partner was a protic solvent, abstraction of a proton from [MP1 + 3H]3+ to yield [MP1 + 2H]2+ was observed. This result was attributed to the proclivity of protic solvents to form hydrogen-bond networks with enhanced gas-phase basicity. Collectively, microsolvation provides analytes with a solvent "air bag," whereby charge reduction and microsolvation-induced stabilization were shown to shelter peptides from the fragmentation induced by field heating and may play a role in preserving native-like ion configurations.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Joshua Featherstone
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Bedrock Scientific, Milton L6T 6J9, Ontario, Canada
| | | | | | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
18
|
Walton CL, Kertesz V, Cahill JF. Design and Evaluation of a Tethered, Open Port Sampling Interface for Liquid Extraction-Mass Spectrometry Chemical Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:198-205. [PMID: 33180483 DOI: 10.1021/jasms.0c00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Presented is a tethered, liquid-extraction-sampling interface designed for the mass spectrometric surface sampling/analysis of 3D objects. The tethered, open port sampling interface (TOPSI) incorporates a vacuum line between the sampling probe and ionization source, which enables the ability for an extended, tethered sample transfer line. Herein, several designs of the hand-held TOPSI are presented and evaluated on the basis of the analytical metrics of analyte transport time, peak width, and analyte sensitivity. The best analytical metrics were obtained with capillary flow resistances arranged in a particular order and the vacuum region set at 6.2 kPa. This TOPSI design incorporated a transfer capillary 1 m in length, while retaining a fast analyte transport time (12 s), short signal peak width (5 s baseline-to-baseline), and high analyte signal at 90% of that obtained with a regular open port sampling interface (OPSI). The hand-held TOPSI was demonstrated for the characterization of extracted small molecules and metabolites from the surface of mint and rosemary leaves.
Collapse
Affiliation(s)
- Courtney L Walton
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
19
|
Rapid determination of tacrolimus and sirolimus in whole human blood by direct coupling of solid-phase microextraction to mass spectrometry via microfluidic open interface. Anal Chim Acta 2020; 1144:53-60. [PMID: 33453797 DOI: 10.1016/j.aca.2020.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Immunosuppressive drugs are administered to decrease immune system activity (e.g. of patients undergoing solid organ transplant). Concentrations of immunosuppressive drugs (ISDs) in circulating blood must be closely monitored during the period of immunosuppression therapy due to adverse effects that take place when concentration levels fall outside of the very narrow therapeutic concentration range of these drugs. This study presents the rapid determination of four relevant immunosuppressive drugs (tacrolimus, sirolimus, everolimus, and cyclosporine A) in whole human blood by directly coupling solid-phase microextraction to mass spectrometry via the microfluidic open interface (Bio-SPME-MOI-MS/MS). The BioSPME-MOI-MS/MS method offers ≤ 10% imprecision of in-house prepared quality controls over a 10-day period, ≤ 10% imprecision of ClinCal® Recipe calibrators over a three-day period, and single total turnaround time of ∼ 60 min (4.5 min for high throughput). The limits of quantification were determined to be 0.8 ng mL-1 for tacrolimus, 0.7 ng mL-1 sirolimus, 1.0 ng mL-1 for everolimus, and 0.8 ng mL-1 for cyclosporine. The limits of detection were determined to be 0.3 ng mL-1 for tacrolimus, 0.2 ng mL-1 for sirolimus, 0.3 ng mL-1 for everolimus, and 0.3 ng mL-1 for cyclosporine A. The R2 values for all analytes were above 0.9992 with linear dynamic range from 1.0 mL-1 to 50.0 ng mL-1 for tacrolimus, sirolimus, and everolimus while from 2.5 ng mL-1 to 500.0 ng mL-1 for cyclosporine A. To further evaluate the performance of the present method, 95 residual whole blood samples of tacrolimus and sirolimus from patients undergoing immunosuppression therapy were used to compare the Bio-SPME-MOI-MS/MS method against a clinically validated reference method based on chemiluminescent microparticle immunoassay, showing acceptable results. Our results demonstrated that Bio-SPME-MOI-MS/MS can be considered as a suitable alternative to existing methods for the determination of immunosuppressive drugs in whole blood providing faster analysis, better selectivity and sensitivity, and a wider dynamic range than current existing approaches.
Collapse
|
20
|
Campbell JL, Kafle A, Bowman Z, Blanc JCYL, Liu C, Hopkins WS. Separating chiral isomers of amphetamine and methamphetamine using chemical derivatization and differential mobility spectrometry. ANALYTICAL SCIENCE ADVANCES 2020; 1:233-244. [PMID: 38716384 PMCID: PMC10989161 DOI: 10.1002/ansa.202000066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2024]
Abstract
The separation and analysis of chiral compounds, especially enantiomers, presents a great challenge to modern analytical chemistry, particularly to mass spectrometry (MS). As a result, integrated orthogonal separations, such as chiral liquid chromatography (chiral LC), gas chromatography (GC), or capillary electrophoresis (CE), are often employed to separate enantiomers prior to MS analysis. Here, we combine chemical derivatization with differential mobility spectrometry (DMS) and MS to separate and quantitate the transformed enantiomeric pairs R- and S-amphetamine, as well as R- and S-methamphetamine. We also demonstrate separation of these drugs by using reverse-phase LC. However, while the LC method requires ∼5 min to provide separation, we have developed a flow-injection analysis (FIA) method using DMS as the exclusive mode of separation (FIA-DMS), requiring only ∼1.5 min with equivalent quantitative metrics (1-1000 ng/mL range) to the LC method. The DMS-based separation of each diastereomeric pair is driven by differences in binding energies between the analyte ions and the chemical modifier molecules (acetonitrile) added to the DMS environment.
Collapse
Affiliation(s)
- J. Larry Campbell
- SCIEXConcordOntarioCanada
- Department of ChemistryUniversity of Waterloo200 University Avenue WestWaterlooOntarioCanada
- Bedrock ScientificMiltonOntarioCanada
- WaterMine Innovation, Inc.WaterlooOntarioCanada
| | | | - Zack Bowman
- Department of ChemistryUniversity of Waterloo200 University Avenue WestWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of 200 University Avenue WestWaterlooOntarioCanada
| | | | | | - W. Scott Hopkins
- Department of ChemistryUniversity of Waterloo200 University Avenue WestWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of 200 University Avenue WestWaterlooOntarioCanada
- WaterMine Innovation, Inc.WaterlooOntarioCanada
| |
Collapse
|
21
|
Metwally H, Agrawal P, Smith R, Liu C, LeBlanc Y, Covey TR, Oleschuk R. Detection of Opioids on Mail/Packages Using Open Port Interface Mass Spectrometry (OPI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2370-2378. [PMID: 33079532 DOI: 10.1021/jasms.0c00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Opioids (and their more potent synthetic analogues) are used therapeutically as effective pain killers; however, recreational use and consequent overdoses are implicated in the deaths of thousands of people across the world annually. Trafficking of opioids and other illegal drugs through international mail has become a significant challenge for law enforcement personnel. Hundreds of millions of letters are sorted by the U.S. and Canadian postal services every day. Chemical analysis of this immense volume of mail requires a very fast sampling/detection method. This work explores the use of real-time mass spectrometry analysis with the recently developed Open Port Interface (OPI) for acoustically dispensed nanoliter volume sample droplets, a type of liquid microjunction surface sampling probe, for rapid and easy non-intrusive detection of fentanyl, heroin, and oxycodone. The OPI coupled to mass spectrometry is a novel sample introduction method that allows the rapid analysis of sample surfaces without preparation or modification. Opioids on different packaging materials (e.g., paper, bubble wrap, Ziploc bags) were rapidly (<10 s) interrogated by the OPI, and the sensitivities of the method compared. Furthermore, an opioid surrogate (caffeine) could be facilely detected on envelopes after processing through postal services.
Collapse
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Prashant Agrawal
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Yves LeBlanc
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Thomas R Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Liu C, Van Berkel GJ, Cox DM, Covey TR. Operational Modes and Speed Considerations of an Acoustic Droplet Dispenser for Mass Spectrometry. Anal Chem 2020; 92:15818-15826. [DOI: 10.1021/acs.analchem.0c02999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | | | - David M. Cox
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Thomas R. Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| |
Collapse
|
23
|
Wagner A, Zhang J, Liu C, Covey TR, Olah TV, Weller H(BN, Shou WZ. Ultrahigh-Throughput and Chromatography-Free Bioanalysis of Polar Analytes with Acoustic Ejection Mass Spectrometry. Anal Chem 2020; 92:13525-13531. [DOI: 10.1021/acs.analchem.0c03006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew Wagner
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Jun Zhang
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Chang Liu
- Sciex, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Thomas R. Covey
- Sciex, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Timothy V. Olah
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Harold (Bud) N. Weller
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| | - Wilson Z. Shou
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton Road, Princeton, New Jersey 08648, United States
| |
Collapse
|
24
|
Häbe TT, Liu C, Covey TR, Simon RP, Reindl W, Büttner FH, Winter M, Bischoff D, Luippold AH, Runge F. Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry. Anal Chem 2020; 92:12242-12249. [DOI: 10.1021/acs.analchem.0c01632] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tim T. Häbe
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Chang Liu
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Tom R. Covey
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | - Roman P. Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Frank H. Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Andreas H. Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Frank Runge
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
25
|
Crouse J, Haack A, Benter T, Hopkins WS. Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH 2CH 2CH 2) 3Sn . JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:796-802. [PMID: 32129991 DOI: 10.1021/jasms.9b00042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of strong ion-solvent interactions on the differential mobility behavior of the tricarbastannatrane cation, N(CH2CH2CH2)3Sn+, has been investigated. Exotic "type D" dispersion behavior, which is intermediate to the more common types C and A behavior, is observed for gaseous N2 environments that are seeded with acetone and acetonitrile vapor. Quantum chemical calculations and first-principles modeling show that under low-field conditions [N(CH2CH2CH2)3Sn + solvent]+ complexes containing a single solvent molecule survive the entire separation waveform duty cycle and interact weakly with the chemically modified environment. However, at high separation voltages, the ion-solvent bond dissociates and dynamic clustering ensues.
Collapse
Affiliation(s)
- Jeff Crouse
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Alexander Haack
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - W Scott Hopkins
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Sosnowski P, Hopfgartner G. Application of 3D printed tools for customized open port probe-electrospray mass spectrometry. Talanta 2020; 215:120894. [PMID: 32312439 DOI: 10.1016/j.talanta.2020.120894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Three dimensional printed open port probe (3DP-OPP) and air displacement based liquid handler, were designed and optimized using fused deposition modeling (FDM) and stereolitography (SLA) 3D printing. The performance of the devices were investigated for the analysis of solid and liquid samples with electrospray ionization mass spectrometry (ESI-MS). Direct analysis in less than 1 min and without any sample preparation, enabled detection of pesticides (azoxtystrobin/imazalil) on fruits peel surface and illegal substances (MDMA/MDEA) in home-made pills. Conjunction of OPP in the overspill mode with a customized autosampler, equipped with disposable pipette tips, enables direct quantitative analysis of drugs of abuse in urine and plasma, with minimized carry-over and reduced matrix effect compared to flow injection analysis.
Collapse
Affiliation(s)
- Piotr Sosnowski
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 24, 1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 24, 1211, Geneva, Switzerland.
| |
Collapse
|
27
|
Wu R, Chen X, Wu WJ, Wang Z, Wong YLE, Hung YLW, Wong HT, Yang M, Zhang F, Chan TWD. Rapid Differentiation of Asian and American Ginseng by Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Using Stepwise Modulation of Gas Modifier Concentration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2212-2221. [PMID: 31502223 DOI: 10.1007/s13361-019-02317-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/21/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
This study reports a rapid and robust method for the differentiation of Asian and American ginseng samples based on differential ion mobility spectrometry-tandem mass spectrometry (DMS-MS/MS). Groups of bioactive ginsenoside/pseudo-ginsenoside isomers, including Rf/Rg1/F11, Rb2/Rb3/Rc, and Rd/Re, in the ginseng extracts were sequentially separated using DMS with stepwise changes in the gas modifier concentration prior to MS analysis. The identities of the spatially separated ginsenoside/pseudo-ginsenoside isomers were confirmed by their characteristic compensation voltages at specific modifier loading and MS/MS product ions. As expected, Asian ginseng samples contained some Rf and an insignificant amount of F11, whereas American ginseng samples had a high level of F11 but no Rf. The origin of the whole and sliced ginseng could further be confirmed using the quantitative ratios of three sets of ginsenoside markers, namely, Rg1/Re, Rb1/Rg1, and Rb2/Rc. Based on our results, new benchmark ratios of Rg1/Re < 0.15, Rb1/Rg1 > 2.15, and Rb2/Rc < 0.26 were proposed for American ginseng (as opposed to Asian ginseng).
Collapse
Affiliation(s)
- Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.
| | - Wei-Jing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Ze Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Y-L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Y-L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - H-T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
| |
Collapse
|
28
|
Miggiels P, Wouters B, van Westen GJ, Dubbelman AC, Hankemeier T. Novel technologies for metabolomics: More for less. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Analysis of endocannabinoids in plasma samples by biocompatible solid-phase microextraction devices coupled to mass spectrometry. Anal Chim Acta 2019; 1091:135-145. [PMID: 31679567 DOI: 10.1016/j.aca.2019.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/23/2022]
Abstract
Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) represent two of the most important endocannabinoids (ECs) investigated in neurobiology as therapeutic targets for several mental disorders. However, the determination of these ECs in biological matrices remains a challenging task because of the low concentrations, low stability and high protein-bound (LogP ∼ 6). This work describes innovative analytical methods based on biocompatible SPME (Bio-SPME), SPME-UHPLC-MS/MS and Bio-SPME-Nano-ESI-MS/MS, to determine AEA and 2-AG in human plasma samples. The direct coupling of Bio-SPME with nano-ESI-MS/MS can be considered an alternative tool for faster analysis. Different Bio-SPME fibers based on silica and polymeric coating (i.e. C18, C30, and HLB) were evaluated. Different desorption solvents based on combinations of methanol, acetonitrile, and isopropanol were also evaluated for efficient elution with minimum carry-over. Given the high protein binding analytes and the fact that SPME extracts the free-concentration of the analytes, the plasma samples were modified with additives such as guanidine hydrochloride (Gu-HCl), trifluoroacetic acid, and acetonitrile. This study was carried out by experimental design to achieve complete protein denaturation and the release of target analytes. The maximum extraction efficiency was obtained under the following conditions: HLB coated fibers (10 mm length, 20 μm coating thickness), matrix modified (300 μL of plasma) with 50 μL of Gu-HCL 1 mol L-1, 75 μL of ACN and 75 μL of water, and desorption with methanol/isopropanol solution (50:50, v/v). Both methods were validated based on current international guidelines and can be applied for monitoring of concentrations of endocannabinoids in plasma samples. SPME-UHPLC-MS/MS method presented lower LOQ values than SPME-nanoESI-MS/MS. The additional separation (chromatographic column) favored the detectability of LC-MS/MS method. However, the SPME-nano-ESI-MS/MS decrease the total analysis time, due to significant reductions in desorption and detection times.
Collapse
|
30
|
Wernisch S, Pennathur S. Application of differential mobility-mass spectrometry for untargeted human plasma metabolomic analysis. Anal Bioanal Chem 2019; 411:6297-6308. [PMID: 30941479 PMCID: PMC6721987 DOI: 10.1007/s00216-019-01719-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Differential mobility spectrometry (DMS) has been gaining popularity in small molecule analysis over the last few years due to its selectivity towards a variety of isomeric compounds. While DMS has been utilized in targeted liquid chromatography-mass spectrometry (LC-MS), its use in untargeted discovery workflows has not been systematically explored. In this contribution, we propose a novel workflow for untargeted metabolomics based solely on DMS separation in a clinically relevant chronic kidney disease (CKD) patient population. We analyzed ten plasma samples from early- and late-stage CKD patients. Peak finding, alignment, and filtering steps performed on the DMS-MS data yielded a list of 881 metabolic features (unique mass-to-charge and migration time combinations). Differential analysis by CKD patient group revealed three main features of interest. One of them was putatively identified as bilirubin based on high-accuracy MS data and comparison of its optimum compensation voltage (COV) with that of an authentic standard. The DMS-MS analysis was four times faster than a typical HPLC-MS run, which suggests a potential for the utilization of this technique in screening studies. However, its lower separation efficiency and reduced signal intensity make it less suitable for low-abundant features. Fewer features were detected by the DMS-based platform compared with an HPLC-MS-based approach, but importantly, the two approaches resulted in different features. This indicates a high degree of orthogonality between HPLC- and DMS-based approaches and demonstrates the need for larger studies comparing the two techniques. The workflow described here can be adapted for other areas of metabolomics and has a value as a prescreening method to develop semi-targeted workflows and as a faster alternative to HPLC in large biomedical studies.
Collapse
Affiliation(s)
- Stefanie Wernisch
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
31
|
Prata M, Ribeiro A, Figueirinha D, Rosado T, Oppolzer D, Restolho J, Araújo AR, Costa S, Barroso M, Gallardo E. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J Chromatogr A 2019; 1602:1-10. [DOI: 10.1016/j.chroma.2019.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/25/2022]
|
32
|
Wei MS, Kemperman RHJ, Yost RA. Effects of Solvent Vapor Modifiers for the Separation of Opioid Isomers in Micromachined FAIMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:731-742. [PMID: 30877655 DOI: 10.1007/s13361-019-02175-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Opioid addiction is an escalating problem that is compounded by the introduction of synthetic opiate analogues such as fentanyl. Screening methods for these compound classes are challenged by the availability of synthetically manufactured analogues, including isomers of existing substances. High-field asymmetric-waveform ion mobility spectrometry (FAIMS) utilizes an alternating asymmetric electric field to separate ions by their different mobilities at high and low fields as they travel through the separation space. When coupled to mass spectrometry (MS), FAIMS enhances the separation of analytes from other interfering compounds with little to no increase in analysis time. Addition of solvent vapor into the FAIMS carrier gas has been demonstrated to enable and improve the separation of isomers. Here we investigate the effects of several solvents for the separation of four opioids. FAIMS-MS spectra with added solvent vapors show dramatic compensation field (CF) shifts for opioid [M+H]+ ions when compared to spectra acquired using dry nitrogen. Addition of vapor from aprotic solvents, such as acetonitrile and acetone, produces significantly improved resolution between the tested opioids, with baseline resolution achieved between certain opioid isomers. For protic solvents, notable CF shift differences were observed in FAIMS separations between addition of water vapor and vapors from small alcohols. Graphical Abstract.
Collapse
Affiliation(s)
- Michael S Wei
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA
| | - Robin H J Kemperman
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
|
34
|
A critical outlook on recent developments and applications of matrix compatible coatings for solid phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Looby NT, Tascon M, Acquaro VR, Reyes-Garcés N, Vasiljevic T, Gomez-Rios GA, Wąsowicz M, Pawliszyn J. Solid phase microextraction coupled to mass spectrometry via a microfluidic open interface for rapid therapeutic drug monitoring. Analyst 2019; 144:3721-3728. [PMID: 30968079 DOI: 10.1039/c9an00041k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tranexamic acid (TXA) is an antifibrinolytic used during cardiac surgery that presents high inter-patient variability.
Collapse
Affiliation(s)
- Nikita T. Looby
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| | - Marcos Tascon
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| | - Vinicius R. Acquaro
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| | - Tijana Vasiljevic
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| | | | - Marcin Wąsowicz
- Department of Anaesthesia and Pain Management
- Toronto General Hospital
- Toronto
- Canada M5G 2C4
| | - Janusz Pawliszyn
- Department of Chemistry
- University of Waterloo
- 200 University Avenue west
- Waterloo
- Canada
| |
Collapse
|
36
|
He Y, Concheiro-Guisan M. Microextraction sample preparation techniques in forensic analytical toxicology. Biomed Chromatogr 2018; 33:e4444. [DOI: 10.1002/bmc.4444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yi He
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| |
Collapse
|
37
|
Tong C, Tong X, Shi S, Guo K. Rapid discrimination and quantification of isomeric flavonoid-O-diglycosides in Citrus paradisi cv. changshanhuyou by online extraction-quadrupole time-of flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 165:24-30. [PMID: 30500597 DOI: 10.1016/j.jpba.2018.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
Rapid differentiation, characterization and quantification of isomers from complex mixtures by direct mass spectrometry (MS) remained an analytical challenge due to their similar or identical MS/MS spectra and matrix interferences. Here, we reported a novel online extraction-quadrupole time-of-flight tandem mass spectrometry (OLE-QTOF-MS/MS) system to rapid, efficient and sensitive analysis of interglycosidic linkage isomers (hesperidin and neohesperidin) in Citrus paradisi cv. Changshanhuyou (Changshanhuyou). OLE system packed with solid Changshanhuyou (0.02 mg) could be firstly used to online remove interferences with large polarities, and then online extract and enrich hesperidin and neohesperidin, which shows great potential to diminish the analysis time of sample pretreatment, as well as to reduce matrix effects and instrument consumption. Detailed fragmentation analysis found that, under positive ion mode, relative abundance of specific fragment ions m/z 449 to m/z 303 showed linear correlation to the mass content of hesperidin (0% to 100%) with good correlation coefficient (R2 = 0.9958). Utilizing this method, the mass ratio of hesperidin to neohesperidin in Changshanhuyou was relatively quantified as 3.7:96.3 with RSD at 2.9%. Finally, using internal standard method, the absolute quantitative analysis was performed with acceptable reproducibility (RSD 1.3 and 4.5% for intra- and inter-day variations) and recoveries (from 95.9% to 108.9%), acceptable limit of detection (0.33 ng). In general, OLE-QTOF-MS/MS represented a promising and practical method for simple, rapid and effective analysis of isomeric compounds in complex matrices.
Collapse
Affiliation(s)
- Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China.
| | - Keke Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, PR China
| |
Collapse
|
38
|
Adams KJ, Ramirez CE, Smith NF, Muñoz-Muñoz AC, Andrade L, Fernandez-Lima F. Analysis of isomeric opioids in urine using LC-TIMS-TOF MS. Talanta 2018; 183:177-183. [DOI: 10.1016/j.talanta.2018.02.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 01/25/2023]
|
39
|
Psutka JM, Dion-Fortier A, Dieckmann T, Campbell JL, Segura PA, Hopkins WS. Identifying Fenton-Reacted Trimethoprim Transformation Products Using Differential Mobility Spectrometry. Anal Chem 2018; 90:5352-5357. [DOI: 10.1021/acs.analchem.8b00484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jarrod M. Psutka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Annick Dion-Fortier
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J. Larry Campbell
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Pedro A. Segura
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
40
|
The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 2018; 42:60-66. [DOI: 10.1016/j.cbpa.2017.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
|
41
|
Coated blade spray: shifting the paradigm of direct sample introduction to MS. Bioanalysis 2018; 10:257-271. [DOI: 10.4155/bio-2017-0153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coated blade spray (CBS) is a solid-phase microextraction-based technology that can be directly coupled to MS to enable the rapid qualitative and quantitative analysis of complex matrices. The goal of this mini review is to concisely introduce CBS's operational fundamentals and to consider how it correlates/contrasts with existing direct-to-MS technologies suitable for bioanalytical applications. In addition, we provide a fair comparison of CBS to other existing solid-phase microextraction-to-MS approaches, as well as an overview of recent CBS applications/strategies that have been developed to analyze diverse compounds present in biofluids.
Collapse
|
42
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|