1
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
2
|
Habtewold T, Tapanelli S, Masters EKG, Windbichler N, Christophides GK. The circadian clock modulates Anopheles gambiae infection with Plasmodium falciparum. PLoS One 2022; 17:e0278484. [PMID: 36454885 PMCID: PMC9714873 DOI: 10.1371/journal.pone.0278484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Key behaviours, physiologies and gene expressions in Anopheles mosquitoes impact the transmission of Plasmodium. Such mosquito factors are rhythmic to closely follow diel rhythms. Here, we set to explore the impact of the mosquito circadian rhythm on the tripartite interaction between the vector, the parasite and the midgut microbiota, and investigate how this may affect the parasite infection outcomes. We assess Plasmodium falciparum infection prevalence and intensity, as a proxy for gametocyte infectivity, in Anopheles gambiae mosquitoes that received a gametocyte-containing bloodfeed and measure the abundance of the midgut microbiota at different times of the mosquito rearing light-dark cycle. Gametocyte infectivity is also compared in mosquitoes reared and maintained under a reversed light-dark regime. The effect of the circadian clock on the infection outcome is also investigated through silencing of the CLOCK gene that is central in the regulation of animal circadian rhythms. The results reveal that the A. gambiae circadian cycle plays a key role in the intensity of infection of P. falciparum gametocytes. We show that parasite gametocytes are more infectious during the night-time, where standard membrane feeding assays (SMFAs) at different time points in the mosquito natural circadian rhythm demonstrate that gametocytes are more infectious when ingested at midnight than midday. When mosquitoes were cultured under a reversed light/dark regime, disrupting their natural physiological homeostasis, and infected with P. falciparum at evening hours, the infection intensity and prevalence were significantly decreased. Similar results were obtained in mosquitoes reared under the standard light/dark regime upon silencing of CLOCK, a key regulator of the circadian rhythm, highlighting the importance of the circadian rhythm for the mosquito vectorial capacity. At that time, the mosquito midgut microbiota load is significantly reduced, while the expression of lysozyme C-1 (LYSC-1) is elevated, which is involved in both the immune response and microbiota digestion. We conclude that the tripartite interactions between the mosquito vector, the malaria parasite and the mosquito gut microbiota are finely tuned to support and maintain malaria transmission. Our data add to the knowledge framework required for designing appropriate and biologically relevant SMFA protocols.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ellen K. G. Masters
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
3
|
Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, Boumegoura A, Agred R, Boudchicha RH, Smadi MA, Maurin M, Bitam I. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports 2022; 31:100735. [PMID: 35569916 DOI: 10.1016/j.vprsr.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne diseases represent a real threats worldwide, in reason of the lack of vaccine and cure for some diseases. Among arthropod vectors, mosquitoes are described to be the most dangerous animal on earth, resulting in an estimated 725,000 deaths per year due to their borne diseases. Geographical position of Algeria makes this country a high risk area for emerging and re-emerging diseases, such as dengue coming from north (Europe) and malaria from south (Africa). To prevent these threats, rapid and continuous surveillance of mosquito vectors is essential. For this purpose we aimed in this study to create a mosquito vectors locale database using MALDI-TOF mass spectrometry technology for rapid identification of these arthropods. This methodology was validated by testing 211 mosquitoes, including four species (Aedes albopictus, Culex pipiens, Culex quinquefasciatus, and Culiseta longiareolata), in two northern wilayahs of Algeria (Algiers and Bejaia). Species determination by MALDI TOF MS was highly concordant with reference phenotypic and genetic methods. Using this MALDI-TOF MS tool will allow better surveillance of mosquito species able to transmit mosquito borne diseases in Algeria.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ismail Lafri
- Laboratoire des Biotechnologies Liées à la Reproduction Animale, Institut des Sciences Vétérinaires, Université Blida 1, BP 270 Blida, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ali Boumegoura
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rym Agred
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rima Hind Boudchicha
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Mustapha Adnane Smadi
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna, Algeria
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400, Saint Martin d'Heres, France.
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Alimentaires, Alger 16004, Algeria
| |
Collapse
|
4
|
Juache-Villagrana AE, Pando-Robles V, Garcia-Luna SM, Ponce-Garcia G, Fernandez-Salas I, Lopez-Monroy B, Rodriguez-Sanchez IP, Flores AE. Assessing the Impact of Insecticide Resistance on Vector Competence: A Review. INSECTS 2022; 13:377. [PMID: 35447819 PMCID: PMC9024519 DOI: 10.3390/insects13040377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023]
Abstract
The primary strategy to avoid adverse impacts from insect-mediated pathogen transmission is the chemical control of vector populations through insecticides; its continued use has led to insecticide resistance and unknown consequences on vector competence. This review aims to systematically analyze and synthesize the research on the influence of insecticide resistance (IR) on vector competence (VC). Thirty studies met the inclusion criteria. Twenty studies, conducted either in laboratory or field settings, described the influence of phenotypic insecticide resistance and mechanisms on VC in vectors of human pathogens. Seven studies showed the effect of exposure to insecticides on VC in vectors of human pathogens. Three studies reported the influence of phenotypic resistance and mechanisms on VC in crop pests. The evidence shows that IR could enhance, impair, or have no direct effect on VC in either field or laboratory-designed studies. Similar positive and negative trends are found in pest vectors in crops and studies of insecticide exposure and VC. Even though there is evidence that exposure to insecticides and IR can enhance VC, thus increasing the risk of pathogen transmission, more investigations are needed to confirm the observed patterns and what implications these factors could have in vector control programs.
Collapse
Affiliation(s)
- Alan E. Juache-Villagrana
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Victoria Pando-Robles
- Centro de Investigacion Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca 62100, Morelos, Mexico;
| | - Selene M. Garcia-Luna
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Ildefonso Fernandez-Salas
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
5
|
Sekar V, Rivero A, Pigeault R, Gandon S, Drews A, Ahren D, Hellgren O. Gene regulation of the avian malaria parasite Plasmodium relictum, during the different stages within the mosquito vector. Genomics 2021; 113:2327-2337. [PMID: 34023365 DOI: 10.1016/j.ygeno.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
The malaria parasite Plasmodium relictum is one of the most widespread species of avian malaria. As in the case of its human counterparts, bird Plasmodium undergoes a complex life cycle infecting two hosts: the arthropod vector and the vertebrate host. In this study, we examined transcriptomes of P. relictum (SGS1) during crucial timepoints within its vector, Culex pipiens quinquefasciatus. Differential gene-expression analyses identified genes linked to the parasites life-stages at: i) a few minutes after the blood meal is ingested, ii) during peak oocyst production phase, iii) during peak sporozoite phase and iv) during the late-stages of the infection. A large amount of genes coding for functions linked to host-immune invasion and multifunctional genes was active throughout the infection cycle. One gene associated with a conserved Plasmodium membrane protein with unknown function was upregulated throughout the parasite development in the vector, suggesting an important role in the successful completion of the sporogonic cycle. Gene expression analysis further identified genes, with unknown functions to be significantly differentially expressed during the infection in the vector as well as upregulation of reticulocyte-binding proteins, which raises the possibility of the multifunctionality of these RBPs. We establish the existence of highly stage-specific pathways being overexpressed during the infection. This first study of gene-expression of a non-human Plasmodium species in its vector provides a comprehensive insight into the molecular mechanisms of the common avian malaria parasite P. relictum and provides essential information on the evolutionary diversity in gene regulation of the Plasmodium's vector stages.
Collapse
Affiliation(s)
| | - Ana Rivero
- MIVEGEC (CNRS - Université de Montpellier - IRD), 34394 Montpellier, France; CREES (Centre de Recherche en Ecologie et Evolution de la Santé), 34394 Montpellier, France
| | - Romain Pigeault
- Department of Biology, Lund University, Sweden; Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Sylvain Gandon
- CEFE (CNRS - Université de Montpellier - Université Paul-Valéry - EPHE - IRD), Montpellier, France
| | - Anna Drews
- MEMEG, Department of Biology, Lund University, Sweden
| | - Dag Ahren
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Biology, Lund, Sweden
| | - Olof Hellgren
- MEMEG, Department of Biology, Lund University, Sweden.
| |
Collapse
|
6
|
Hosack GR, Ickowicz A, Hayes KR. Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201525. [PMID: 33959322 PMCID: PMC8074930 DOI: 10.1098/rsos.201525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The relative risk of disease transmission caused by the potential release of transgenic vectors, such as through sterile insect technique or gene drive systems, is assessed with comparison with wild-type vectors. The probabilistic risk framework is demonstrated with an assessment of the relative risk of lymphatic filariasis, malaria and o'nyong'nyong arbovirus transmission by mosquito vectors to human hosts given a released transgenic strain of Anopheles coluzzii carrying a dominant sterile male gene construct. Harm is quantified by a logarithmic loss function that depends on the causal risk ratio, which is a quotient of basic reproduction numbers derived from mathematical models of disease transmission. The basic reproduction numbers are predicted to depend on the number of generations in an insectary colony and the number of backcrosses between the transgenic and wild-type lineages. Analogous causal risk ratios for short-term exposure to a single cohort release are also derived. These causal risk ratios were parametrized by probabilistic elicitations, and updated with experimental data for adult vector mortality. For the wild-type, high numbers of insectary generations were predicted to reduce the number of infectious human cases compared with uncolonized wild-type. Transgenic strains were predicted to produce fewer infectious cases compared with the uncolonized wild-type.
Collapse
Affiliation(s)
- Geoffrey R. Hosack
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| | - Adrien Ickowicz
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| | - Keith R. Hayes
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
8
|
James SL, Marshall JM, Christophides GK, Okumu FO, Nolan T. Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. Vector Borne Zoonotic Dis 2020; 20:237-251. [PMID: 32155390 PMCID: PMC7153640 DOI: 10.1089/vbz.2019.2606] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mosquitoes containing gene drive systems are being developed as complementary tools to prevent transmission of malaria and other mosquito-borne diseases. As with any new tool, decision makers and other stakeholders will need to balance risks (safety) and benefits (efficacy) when considering the rationale for testing and deploying gene drive-modified mosquito products. Developers will benefit from standards for judging whether an investigational gene drive product meets acceptability criteria for advancing to field trials. Such standards may be formalized as preferred product characteristics and target product profiles, which describe the desired attributes of the product category and of a particular product, respectively. This report summarizes discussions from two scientific workshops aimed at identifying efficacy and safety characteristics that must be minimally met for an investigational gene drive-modified mosquito product to be deemed viable to move from contained testing to field release and the data that will be needed to support an application for first field release.
Collapse
Affiliation(s)
- Stephanie L James
- Foundation for the National Institutes of Health, North Bethesda, Maryland
| | | | | | | | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
9
|
Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Mol Biol Rep 2019; 47:211-224. [PMID: 31643044 DOI: 10.1007/s11033-019-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.
Collapse
|
10
|
Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, Cator L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl 2018; 11:456-469. [PMID: 29636799 PMCID: PMC5891056 DOI: 10.1111/eva.12571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.
Collapse
Affiliation(s)
- Thierry Lefevre
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Johanna Ohm
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Choisy
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Oxford University Clinical Research UnitHanoiVietnam
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Lauren Cator
- Grand Challenges in Ecosystems and EnvironmentImperial College LondonAscotUK
| |
Collapse
|
11
|
Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:289-298. [PMID: 28426182 DOI: 10.1111/mve.12230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/12/2016] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Arthropod-borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time-consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI-TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI-TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI-TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.
Collapse
Affiliation(s)
- F N Raharimalala
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - A Rakotondrasoa
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - J M Collard
- Unit of Experimental Bacteriology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - S Boyer
- Unit of Medical Entomology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
12
|
Liew JW, Fong MY, Lau YL. Quantitative real-time PCR analysis of Anopheles dirus TEP1 and NOS during Plasmodium berghei infection, using three reference genes. PeerJ 2017; 5:e3577. [PMID: 28761783 PMCID: PMC5533154 DOI: 10.7717/peerj.3577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1) and nitric oxide synthase (NOS), play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1), actin 1 (Act) and ribosomal protein S7 (S7) genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.
Collapse
Affiliation(s)
- Jonathan W.K. Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Balabaskaran Nina P, Mohanty AK, Ballav S, Vernekar S, Bhinge S, D'souza M, Walke J, Manoharan SK, Mascarenhas A, Gomes E, Chery L, Valecha N, Kumar A, Rathod PK. Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India. Malar J 2017; 16:284. [PMID: 28693607 PMCID: PMC5504555 DOI: 10.1186/s12936-017-1931-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/04/2017] [Indexed: 11/16/2022] Open
Abstract
Background In global efforts to track mosquito infectivity and parasite elimination, controlled mosquito-feeding experiments can help in understanding the dynamics of parasite development in vectors. Anopheles stephensi is often accepted as the major urban malaria vector that transmits Plasmodium in Goa and elsewhere in South Asia. However, much needs to be learned about the interactions of Plasmodium vivax with An. stephensi. As a component of the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA), a series of membrane-feeding experiments with wild An. stephensi and P. vivax were carried out to better understand this vector-parasite interaction. Methods Wild An. stephensi larvae and pupae were collected from curing water in construction sites in the city of Ponda, Goa, India. The larvae and pupae were reared at the MESA ICEMR insectary within the National Institute of Malaria Research (NIMR) field unit in Goa until they emerged into adult mosquitoes. Blood for membrane-feeding experiments was obtained from malaria patients at the local Goa Medical College and Hospital who volunteered for the study. Parasites were counted by Miller reticule technique and correlation between gametocytaemia/parasitaemia and successful mosquito infection was studied. Results A weak but significant correlation was found between patient blood gametocytaemia/parasitaemia and mosquito oocyst load. No correlation was observed between gametocytaemia/parasitaemia and oocyst infection rates, and between gametocyte sex ratio and oocyst load. When it came to development of the parasite in the mosquito, a strong positive correlation was observed between oocyst midgut levels and sporozoite infection rates, and between oocyst levels and salivary gland sporozoite loads. Kinetic studies showed that sporozoites appeared in the salivary gland as early as day 7, post-infection. Conclusions This is the first study in India to carry out membrane-feeding experiments with wild An. stephensi and P. vivax. A wide range of mosquito infection loads and infection rates were observed, pointing to a strong interplay between parasite, vector and human factors. Most of the present observations are in agreement with feeding experiments conducted with P. vivax elsewhere in the world. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1931-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ajeet Kumar Mohanty
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Shuvankar Ballav
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Smita Vernekar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Sushma Bhinge
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Maria D'souza
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Jayashree Walke
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Suresh Kumar Manoharan
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Anjali Mascarenhas
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Laura Chery
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Ashwani Kumar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Pradipsinh K Rathod
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
14
|
Stanczyk NM, Mescher MC, De Moraes CM. Effects of malaria infection on mosquito olfaction and behavior: extrapolating data to the field. CURRENT OPINION IN INSECT SCIENCE 2017; 20:7-12. [PMID: 28602239 DOI: 10.1016/j.cois.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Vector-borne pathogens have been shown to influence behavioral and other traits of their hosts and vectors across multiple systems, frequently in ways that enhance transmission. In malaria pathosystems, Plasmodium parasites have been reported to alter mosquito physiology, fitness and host-seeking behavior. Such effects on vector behavior have obvious medical relevance given their potential to influence disease transmission. However, most studies detailing these effects have faced methodological limitations, including experiments limited to laboratory settings with model vector/pathogen systems. Some recent studies indicate that similar effects may not be observed with natural field populations; furthermore, it has been suggested that previously reported effects on vectors might be explained by immune responses elicited due to the use of pathogen-vector systems that are not co-evolved. In light of these developments, further work is needed to determine the validity of extrapolation from laboratory studies to field conditions and to understand how parasite effects on vectors affect transmission dynamics in real-world settings.
Collapse
Affiliation(s)
- Nina M Stanczyk
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
15
|
Ndo C, Kopya E, Menze-Djantio B, Toto JC, Awono-Ambene P, Lycett G, Wondji CS. High susceptibility of wild Anopheles funestus to infection with natural Plasmodium falciparum gametocytes using membrane feeding assays. Parasit Vectors 2016; 9:341. [PMID: 27301693 PMCID: PMC4908716 DOI: 10.1186/s13071-016-1626-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the characterisation of immune responses associated with this infection. Methods Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes. Results The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25–100 %) and the median oocyst number was 12.5 (range 1–139). In parallel, the prevalence in An. coluzzii was 39.92 % (range 6.85–97.5 %), while the median oocyst number was 32.1 (range 1–351). Conclusions Overall, our observations are in line with the fact that both species are readily infected with P. falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is widespread throughout Africa, malaria vector control research and implementation needs to seriously address this vector species too. Additionally, the present work indicates that it is feasible to generate large number of wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for comprehensive study of interactions with the Plasmodium parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1626-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cyrille Ndo
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
| | - Edmond Kopya
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin Menze-Djantio
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| |
Collapse
|
16
|
Lainhart W, Bickersmith SA, Moreno M, Rios CT, Vinetz JM, Conn JE. Changes in Genetic Diversity from Field to Laboratory During Colonization of Anopheles darlingi Root (Diptera: Culicidae). Am J Trop Med Hyg 2015; 93:998-1001. [PMID: 26283742 PMCID: PMC4703261 DOI: 10.4269/ajtmh.15-0336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/17/2015] [Indexed: 11/07/2022] Open
Abstract
The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of Anopheles darlingi, the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory An. darlingi had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this An. darlingi colony need to be interpreted cautiously.
Collapse
Affiliation(s)
- William Lainhart
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A Bickersmith
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Tong Rios
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
17
|
Vantaux A, de Sales Hien DF, Yameogo B, Dabiré KR, Thomas F, Cohuet A, Lefèvre T. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Lawniczak MK. Connecting genotypes to medically relevant phenotypes in major vector mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2015; 10:59-64. [PMID: 29588015 DOI: 10.1016/j.cois.2015.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 06/08/2023]
Abstract
Transmission of mosquito-borne human disease relies on vectors maintaining strong human host preference and continued susceptibility to disease-causing pathogens or parasites. These traits are affected by the genetics and the environments of all involved organisms, and genotypic interactions are common between parasite and vector, and between virus and vector. A recent study on Aedes host preference has exploited natural genetic variation to make great progress. Here I review our current understanding of the genetic basis of transmission-relevant traits in Anopheles and Aedes, highlighting additional research areas that would benefit from the integration of natural genetic variation.
Collapse
Affiliation(s)
- Mara Kn Lawniczak
- Wellcome Trust Sanger Institute, Malaria Programme, Hinxton CB10 1SA, United Kingdom; Imperial College London, Department of Life Sciences, London SW7 2AZ, United Kingdom.
| |
Collapse
|
19
|
Ng'habi KR, Lee Y, Knols BGJ, Mwasheshi D, Lanzaro GC, Ferguson HM. Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malar J 2015; 14:10. [PMID: 25604997 PMCID: PMC4340333 DOI: 10.1186/s12936-014-0523-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/20/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods. METHODS Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10(th) generation and compared to founder wild population. RESULTS In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population. CONCLUSIONS Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.
Collapse
Affiliation(s)
- Kija R Ng'habi
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Kilombero, Morogoro, United Republic of Tanzania.
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of Calfornia, Davis, USA.
| | - Bart G J Knols
- In2Care BV, Costerweg 5, 6702 AA, Wageningen, The Netherlands.
| | - Dickson Mwasheshi
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Kilombero, Morogoro, United Republic of Tanzania.
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of Calfornia, Davis, USA.
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 2014; 30:115-22. [DOI: 10.1016/j.pt.2013.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 12/29/2022]
|
21
|
CIOTA ALEXANDERT, MATACCHIERO AMYC, KILPATRICK AMARM, KRAMER LAURAD. The effect of temperature on life history traits of Culex mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:55-62. [PMID: 24605453 PMCID: PMC3955846 DOI: 10.1603/me13003] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climatic changes forecasted in the coming years are likely to result in substantial alterations to the distributions and populations of vectors of arthropod-borne pathogens. Characterization of the effect of temperature shifts on the life history traits of specific vectors is needed to more accurately define how such changes could impact the epidemiological patterns of vector-borne disease. Here, we determined the effect of temperatures including 16, 20, 24, 28, and 32 degreeC on development time, immature survival, adult survival, mosquito size, blood feeding, and fecundity of both field and colonized populations of the Culex mosquitoes Culex pipiens L, Culex quinquefasciatus Say, and Culex restuans Theobald. Our results demonstrate that temperature significantly affects all of these traits, yet also that the extent of this effect is at times incongruent among temperatures, as well as being population and species-specific. Comparisons of colonized mosquitoes with field populations generally demonstrate decreased adult and immature survival, increased blood feeding and egg production, and significant variation in the effects of temperature, indicating that such colonies are not fully representative of natural populations. Results with field populations in general indicate that increases in temperature are likely to accelerate mosquito development, and that this effect is greater at temperatures below 24 degreeC, but also that temperature significantly increases mortality. Among field populations, Cx. restuans were most affected by temperature increases, with decreased longevity relative to other species and significant increases in adult and immature mortality measured with each incremental temperature increase. Despite the unique climates characteristic of the geographic ranges ofCx. quinquefasciatus and Cx. pipiens, evidence of significant species-specific adaptation to temperature ranges was not seen. Taken together, these results indicate that geographic region, as well as species and population differences, must be considered when measuring the effect of temperature on vector populations.
Collapse
Affiliation(s)
- ALEXANDER T. CIOTA
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159
| | - AMY C. MATACCHIERO
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159
| | - A. MARM KILPATRICK
- Department of Ecology and Evolutionary Biology, 1156 High Street, University of California, Santa Cruz, CA 95064
| | - LAURA D. KRAMER
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159
- School of Public Health, Department of Biomedical Sciences, SUNY, One University Place, Albany, NY 12201
- Corresponding author,
| |
Collapse
|
22
|
Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis 2013; 7:e2295. [PMID: 23861987 PMCID: PMC3701703 DOI: 10.1371/journal.pntd.0002295] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023] Open
Abstract
Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV). While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector. Genetic variations among Aedes aegypti mosquito populations can greatly influence their ability to transmit human pathogens such as the dengue virus (DENV). Some of these variations between mosquito populations are represented by differences in the expression of specific genes that control susceptibility to a pathogen. We have compared susceptibilities to dengue virus infection and the genome-wide gene expression patterns between laboratory-maintained Aedes aegypti strains as well as field-derived colonies collected from geographically-distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. These analyses in conjunction with functional gene silencing assays showed that the basal immune activity is a likely determinant of resistance to the dengue virus, along with other novel factors. Our study also identified two potential DENV host factors and one potential restriction factor, thereby elucidating novel aspects of dengue virus – mosquito interactions.
Collapse
|
23
|
Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK, Djogbénou LS, Corbel V, Cohuet A. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One 2013; 8:e63849. [PMID: 23704944 PMCID: PMC3660590 DOI: 10.1371/journal.pone.0063849] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/06/2013] [Indexed: 11/19/2022] Open
Abstract
The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1(R) mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa) by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1 (R) resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.
Collapse
Affiliation(s)
- Haoues Alout
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| | - Nicaise Tuikue Ndam
- Institut des Sciences Biomédicale et Appliquées, Cotonou, Bénin
- IRD, UMR 216, Mère et Enfant face aux Infections Tropicales, Université Paris Descartes, Paris, France
| | - Marcel Maurice Sandeu
- IRD, UMR 216, Mère et Enfant face aux Infections Tropicales, Université Paris Descartes, Paris, France
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
| | - Innocent Djégbe
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
| | - Fabrice Chandre
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| | | | - Vincent Corbel
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Anna Cohuet
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM1-UM2-CNRS 5290 IRD 224, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
24
|
Ciota AT, Ehrbar DJ, Matacchiero AC, Van Slyke GA, Kramer LD. The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evol Biol 2013; 13:71. [PMID: 23514328 PMCID: PMC3626576 DOI: 10.1186/1471-2148-13-71] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Virulence is often coupled with replicative fitness of viruses in vertebrate systems, yet the relationship between virulence and fitness of arthropod-borne viruses (arboviruses) in invertebrates has not been evaluated. Although the interactions between vector-borne pathogens and their invertebrate hosts have been characterized as being largely benign, some costs of arbovirus exposure have been identified for mosquitoes. The extent to which these costs may be strain-specific and the subsequent consequences of these interactions on vector and virus evolution has not been adequately explored. RESULTS Using West Nile virus (WNV) and Culex pipiens mosquitoes, we tested the hypothesis that intrahost fitness is correlated with virulence in mosquitoes by evaluating life history traits following exposure to either non-infectious bloodmeals or bloodmeals containing wildtype (WNV WT) or the high fitness, mosquito-adapted strain, WNV MP20 derived from WNV WT. Our results demonstrate strain-specific effects on mosquito survival, fecundity, and blood feeding behavior. Specifically, both resistance to and infection with WNV MP20, but not WNV WT, decreased survival of Cx. pipiens and altered fecundity and bloodfeeding such that early egg output was enhanced at a later cost. CONCLUSIONS As predicted by the trade-off hypothesis of virulence, costs of infection with WNV MP20 in terms of survival were directly correlated to viral load, yet resistance to infection with this virulent strain was equally costly. Taken together, these results demonstrate that WNV MP20 infection decreases the transmission potential of Cx. pipiens populations despite the increased intrahost fitness of this strain, indicating that a virulence-transmission trade-off in invertebrates could contribute significantly to the adaptive and evolutionary constraint of arboviruses.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, Arbovirus laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | | | | | | | | |
Collapse
|
25
|
Pollitt LC, Churcher TS, Dawes EJ, Khan SM, Sajid M, Basáñez MG, Colegrave N, Reece SE. Costs of crowding for the transmission of malaria parasites. Evol Appl 2013; 6:617-29. [PMID: 23789029 PMCID: PMC3684743 DOI: 10.1111/eva.12048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 01/03/2023] Open
Abstract
The utility of using evolutionary and ecological frameworks to understand the dynamics of infectious diseases is gaining increasing recognition. However, integrating evolutionary ecology and infectious disease epidemiology is challenging because within-host dynamics can have counterintuitive consequences for between-host transmission, especially for vector-borne parasites. A major obstacle to linking within- and between-host processes is that the drivers of the relationships between the density, virulence, and fitness of parasites are poorly understood. By experimentally manipulating the intensity of rodent malaria (Plasmodium berghei) infections in Anopheles stephensi mosquitoes under different environmental conditions, we show that parasites experience substantial density-dependent fitness costs because crowding reduces both parasite proliferation and vector survival. We then use our data to predict how interactions between parasite density and vector environmental conditions shape within-vector processes and onward disease transmission. Our model predicts that density-dependent processes can have substantial and unexpected effects on the transmission potential of vector-borne disease, which should be considered in the development and evaluation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh Edinburgh, UK ; Center for Infectious Disease Dynamics, Pennsylvania State University University Park, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lyons CL, Coetzee M, Terblanche JS, Chown SL. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar J 2012; 11:226. [PMID: 22770378 PMCID: PMC3507762 DOI: 10.1186/1475-2875-11-226] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 12/19/2022] Open
Abstract
Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal extremes may have significant implications for future malaria transmission, especially in areas of current seasonal transmission and in areas on the boundaries of current vector distribution.
Collapse
Affiliation(s)
- Candice L Lyons
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
27
|
Caragata EP, Poinsignon A, Moreira LA, Johnson PH, Leong YS, Ritchie SA, O'Neill SL, McGraw EA. Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection. INSECT MOLECULAR BIOLOGY 2011; 20:215-224. [PMID: 21114562 DOI: 10.1111/j.1365-2583.2010.01059.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Transcriptional profiling is an effective method of predicting age in the mosquito Aedes aegypti in the laboratory, however, its effectiveness is limited to younger mosquitoes. To address this we used a microarray to identify new gene candidates that show significant expression changes in older mosquitoes. These genes were then used to create a revised model, which upon evaluation in both laboratory and semi-field conditions, proved to have improved accuracy overall and for older mosquitoes. In association with the development of symbiont-based control strategies for Ae. aegypti, we also tested the model's accuracy for Wolbachia-infected mosquitoes and found no decline in performance. Our findings suggest that the new model is a robust and powerful tool for age determination in Australian Ae. aegypti populations.
Collapse
Affiliation(s)
- E P Caragata
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. INSECT MOLECULAR BIOLOGY 2010; 19:695-705. [PMID: 20738426 PMCID: PMC2975901 DOI: 10.1111/j.1365-2583.2010.01031.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of Anopheles gambiae molecular biology has mainly been based on studies using inbred laboratory strains. Differences in the environmental exposure of these and natural field mosquitoes have inevitably led to physiological divergences. We have used global transcript abundance analyses to probe into this divergence, and identified transcript abundance patterns of genes that provide insight on specific adaptations of caged and field mosquitoes. We also compared the gene transcript abundance profiles of field mosquitoes belonging to the two morphologically indistinguishable but reproductively isolated sympatric molecular forms, M and S, from two different locations in the Yaoundé area of Cameroon. This analysis suggested that environmental exposure has a greater influence on the transcriptome than does the mosquito's molecular form-specific genetic background.
Collapse
Affiliation(s)
- Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Frederic Simard
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
- Institut de Recherche pour le Développement (IRD), Research Unit #016, 911 Avenue Agropolis, 34 394 Montpellier, France
| | - Colince Kamdem
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
| | - Tim Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Gregory E. Glass
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| |
Collapse
|
29
|
Lambrechts L, Knox TB, Wong J, Liebman KA, Albright RG, Stoddard ST. Shifting priorities in vector biology to improve control of vector-borne disease. Trop Med Int Health 2009; 14:1505-14. [DOI: 10.1111/j.1365-3156.2009.02401.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Wilkins EE, Marcet PL, Sutcliffe AC, Howell PI. Authentication scheme for routine verification of genetically similar laboratory colonies: a trial with Anopheles gambiae. BMC Biotechnol 2009; 9:91. [PMID: 19849838 PMCID: PMC2772846 DOI: 10.1186/1472-6750-9-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers"). In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results. RESULTS We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results. CONCLUSION These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains.
Collapse
Affiliation(s)
- Elien E Wilkins
- Entomology, Centers for Disease Control and Prevention (CDC), Atlanta GA, USA
| | - Paula L Marcet
- Entomology, Centers for Disease Control and Prevention (CDC), Atlanta GA, USA
| | - Alice C Sutcliffe
- Entomology, Centers for Disease Control and Prevention (CDC), Atlanta GA, USA
- Atlanta Research & Education Foundation (AREF), Veterans Affairs, Atlanta GA, USA
| | - Paul I Howell
- Entomology, Centers for Disease Control and Prevention (CDC), Atlanta GA, USA
| |
Collapse
|
31
|
Almeras L, Orlandi-Pradines E, Fontaine A, Villard C, Boucomont E, de Senneville LD, Baragatti M, Pascual A, Pradines B, Corre-Catelin N, Pages F, Reiter P, Rogier C, Fusai T. Sialome Individuality BetweenAedes aegyptiColonies. Vector Borne Zoonotic Dis 2009; 9:531-41. [DOI: 10.1089/vbz.2008.0056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- L. Almeras
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - E. Orlandi-Pradines
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - A. Fontaine
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - C. Villard
- Plateau Proteomique Timone, Université Aix-Marseille II; Marseille, France
| | - E. Boucomont
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - L. Denis de Senneville
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - M. Baragatti
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - A. Pascual
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - B. Pradines
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - N. Corre-Catelin
- Institut Pasteur, Insects and Infectious Diseases Unit; Paris, France
| | - F. Pages
- Unité d'Entomologie Médicale, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA); Marseille-Armées, France
| | - P. Reiter
- Institut Pasteur, Insects and Infectious Diseases Unit; Paris, France
| | - C. Rogier
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - T. Fusai
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| |
Collapse
|
32
|
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 2009; 5:e1000423. [PMID: 19424427 PMCID: PMC2673032 DOI: 10.1371/journal.ppat.1000423] [Citation(s) in RCA: 547] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/09/2009] [Indexed: 01/20/2023] Open
Abstract
Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. The Anopheles gambiae mosquito that transmits the malaria-causing parasite Plasmodium has an intestinal bacterial flora, or microbiota, which comprises a variety of species. Elimination of this microbiota with antibiotic treatment will render the Anopheles mosquito more susceptible to Plasmodium infection. In this study we show that these bacteria can inhibit the infection of the mosquito with the human malaria parasite Plasmodium falciparum through a mechanism that involves the mosquito's immune system. Our study suggests that the microbial flora of mosquitoes is stimulating a basal immune activity, which comprises several factors with known anti-Plasmodium activity. The same immune factors that are needed to control the mosquito's microbiota are also defending against the malaria parasite Plasmodium. This complex interplay among the mosquito's microbiota, the innate immune system, and the Plasmodium parasite may have significant implications for the transmission of malaria in the field where the bacterial exposure of mosquitoes may differ greatly between ecological niches.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fabio Manfredini
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Aurelie FDG, Jean M, Lebel TJ. Influence of water type and commercial diets on the production of Anopheles gambiae Giles, under laboratory conditions. Pak J Biol Sci 2009; 10:280-6. [PMID: 19070029 DOI: 10.3923/pjbs.2007.280.286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present research we investigated the influence of water resources (tap water, pond water and sprint water...) and nutritional quality on egg hatching and larval development of An. gambiae (Diptera: culicidae). Whatever the nutritive quality, the hatching rate was 84 +/- 4 in tap water, 89 +/- 1.4 in pond water and 91.8 +/- 2.2 in spring water. The duration of hatching is 72 hours in tap water and 48 h in spring water. The duration of development (from egg to emergence) is 19.3 +/- 1.1 days in tap water, 12.4 +/- 0.35 days in pond water and 11.55 +/- 0.4 days in spring water. The total death rate was 92% in tap water, 28% in pond water and 22% in spring water. Statistical test shows that the sex ratio at emergence was influenced by the type of water (X2 = 7.9; p = 0.02). The female from tap water laid an average of 11 eggs per female whereas female from pond and spring water laid about 150 eggs per female five days after emergence. Physico-chemical analysis shows that temperature of tap water, spring water and pond water were in average 24.5, 27.5 and 25 degrees C, respectively. Chloride concentration was in average 2.49 in tap water, 0.22 in spring water and 0.32 in pond water. Our observations indicated that spring water constituted the excellent medium for An. gambiae rearing.
Collapse
|
34
|
Tripet F, Aboagye-Antwi F, Hurd H. Ecological immunology of mosquito-malaria interactions. Trends Parasitol 2008; 24:219-27. [PMID: 18424235 PMCID: PMC2474669 DOI: 10.1016/j.pt.2008.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 02/01/2023]
Abstract
More than a century after the discovery of the complex life cycle of its causative agent, malaria remains a major health problem. Understanding mosquito–malaria interactions could lead to breakthroughs in malaria control. Novel strategies, such as the design of transgenic mosquitoes refractory to Plasmodium, or design of human vaccines emulating mosquito resistance to the parasite, require extensive knowledge of processes involved in immune responses and of microevolutionary mechanisms that create and maintain variation in immune responses in wild vector populations. The recent realization of how intimately and specifically mosquitoes and Plasmodium co-evolve in Nature is driving vector molecular biologists and evolutionary ecologists to move closer to the natural setting under the common umbrella of ‘Ecological immunology’.
Collapse
Affiliation(s)
- Frédéric Tripet
- Centre for Applied Entomology and Parasitology, Huxley Building, Keele University, Newcastle, Staffordshire, UK ST5 5BG.
| | | | | |
Collapse
|
35
|
Hurd H. Nature or nurture in mosquito resistance to malaria? Trends Parasitol 2007; 23:135-8. [PMID: 17276733 PMCID: PMC2474662 DOI: 10.1016/j.pt.2007.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/11/2007] [Accepted: 01/26/2007] [Indexed: 02/04/2023]
Abstract
The genetic basis of mosquito resistance to malaria parasites is well established and currently receives a lot of attention. However this is not the sole determinant of the success or failure of an infection. In a recent article, Lambrechts and colleagues report the influence of the quality of the external environment of a mosquito on infection. They indicate that external variations could substantially reduce the importance of resistance genes in determining infection by malaria parasites. Furthermore, these variations could influence future plans to use malaria-resistant transgenic mosquitoes to control parasite transmission.
Collapse
Affiliation(s)
- Hilary Hurd
- Institute of Science and Technology in Medicine, Centre for Applied Entomology and Parasitology, Huxley Building, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
36
|
Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome. BMC Genomics 2007; 8:37. [PMID: 17261194 PMCID: PMC1804276 DOI: 10.1186/1471-2164-8-37] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 01/29/2007] [Indexed: 03/01/2023] Open
Abstract
Background The midgut of hematophagous insects, such as disease transmitting mosquitoes, carries out a variety of essential functions that mostly relate to blood feeding. The midgut of the female malaria vector mosquito Anopheles gambiae is a major site of interactions between the parasite and the vector. Distinct compartments and cell types of the midgut tissue carry out specific functions and vector borne pathogens interact and infect different parts of the midgut. Results A microarray based global gene expression approach was used to compare transcript abundance in the four major female midgut compartments (cardia, anterior, anterior part of posterior and posterior part of posterior midgut) and between the male and female Anopheles gambiae midgut. Major differences between the female and male midgut gene expression relate to digestive processes and immunity. Each compartment has a distinct gene function profile with the posterior midgut expressing digestive enzyme genes and the cardia and anterior midgut expressing high levels of antimicrobial peptide and other immune gene transcripts. Interestingly, the cardia expressed several known anti-Plasmodium factors. A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors. Conclusion The A. gambiae sex specific midgut and female midgut compartment specific transcriptomes correlates with their known functions. The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora. The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood. A detailed characterization of the functional specificities of the female mosquito midgut and its various compartments can greatly contribute to our understanding of its role in disease transmission and generate the necessary tools for the development of malaria control strategies.
Collapse
|
37
|
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2006; 2:e52. [PMID: 16789837 PMCID: PMC1475661 DOI: 10.1371/journal.ppat.0020052] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 04/24/2006] [Indexed: 12/14/2022] Open
Abstract
Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading ookinetes, thereby inducing anti-Plasmodium immune responses. The malarial parasite Plasmodium has to traverse the gut wall of the Anopheles mosquito in order to complete its lifecycle and to be transmitted between hosts. At the midgut stage of infection, the mosquito activates immune responses to eliminate most invading parasites. The features of these immune responses are not very well understood and have mainly been examined using the rodent parasite model P. berghei. Here the authors investigated the relationship between the Anopheles gambiae responses against the human pathogen P. falciparum, the rodent parasite P. berghei, and bacterial infections, at both the gene expression and functional levels. The mosquito responses against these pathogens were quite diverse, and the defense against the two malaria parasite species involved both common and species-specific components. Malaria-infected blood was sufficient to activate anti-Plasmodium immune responses, even in the absence of midgut invasion. Through this mechanism, the mosquito can initiate its defense against Plasmodium prior to invasion of the gut. Mosquito genes that could negatively influence Plasmodium development were also capable of regulating the resistance to bacterial infection, but several of the antibacterial genes had no effect on Plasmodium; thus, the mosquito apparently utilizes its antibacterial defense systems against the malaria parasite.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emma Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emmanuel Mongin
- Department of Human Genetics and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
- European Molecular Biology Laboratory, European Bioinformatics Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|