1
|
Pazylbek S, Stadulis J, Doke G, Antuzevics A, Pankratov V, Merkininkaite G, Katelnikovas A, Zarkov A. Tunable broadband visible emission achieved by phase transformation-driven self-reduction of Eu 3+ to Eu 2+ in a calcium phosphate matrix. Dalton Trans 2025. [PMID: 40326469 DOI: 10.1039/d5dt00681c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In this work, we report the synthesis of Eu2+-doped alpha-tricalcium phosphate (α-TCP, α-Ca3(PO4)2) via a phase transformation of Eu3+-doped CaHPO4·2H2O. The phase conversion accompanied by a reduction of Eu3+ to Eu2+ occurred during the annealing of the starting material in a vacuum. The optical properties of the obtained α-TCP:Eu2+ were investigated by photoluminescence (PL), thermally stimulated luminescence, and persistent luminescence decay measurements. The obtained material exhibited tunable broadband PL with FWHM values ranging from 87 to 142 nm at room temperature. The PL can be tuned in terms of emission maximum and FWHM by varying the excitation wavelength. The broadband emission was achieved due to the multi-site occurrence of Eu2+ ions in the complex α-TCP matrix. Three types of traps were determined with activation energy values of 0.80, 0.75, and 0.68 eV. After irradiation with X-rays, an afterglow characterizable by an Eu2+ broadband spectrum with a maximum at around 480 nm can be detected for at least 10 h.
Collapse
Affiliation(s)
- Sapargali Pazylbek
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Jonas Stadulis
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Guna Doke
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Andris Antuzevics
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Vladimir Pankratov
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Greta Merkininkaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
2
|
Luo F, Yang Y, Li D, Mao R, Huang Y, Lu J, Zhu X, Wang K, Fan Y, Zhang X. Low-temperature plasma effect-induced enhancement of osteogenic activity in calcium phosphate ceramics. Acta Biomater 2025:S1742-7061(25)00301-0. [PMID: 40319990 DOI: 10.1016/j.actbio.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Calcium phosphate (Ca-P) ceramics are promising bioactive material that can be used for the remodeling and regeneration of bone tissue. However, it's sintering temperature-dependent mechanical strength, which is negatively correlated with its bioactivity, causes difficulties in improving the comprehensive performance of Ca-P ceramics. Here, the femtosecond laser (FSL) with low-temperature plasma effect was adopted to modify the hydroxyapatite (HA) ceramics after high temperatures (1250 °C) sintering, pursuing higher mechanical strength along with better osteogenic activity. The changes in the physicochemical properties of the materials and the osteogenic activity were characterized and investigated. Cell evaluations and in vivo experiments were performed to assess and verify the effect of FSL processing on the osteogenic capability of HA ceramics. The results indicated that α- and β-tricalcium phosphate (TCP) multiphase components were formed on the HA ceramic surfaces after laser treatment, simultaneously bringing about surface micro-nano porous structure, accelerated release of calcium (Ca) and phosphate (Pi) ions, enhancement of roughness, hydrophilicity and surface energy. Their synergistic effect facilitated apatite precipitation on the HA surface, promoted osteogenic differentiation and osteogenic/angiogenic gene expression. In vivo results also confirmed the enhancement of HA ceramic osteogenic activity by FSL treatment. This study presents an effective strategy of introducing FSL etching to high-temperature sintered Ca-P ceramics to improve the bone regeneration of HA ceramics and attain satisfactory mechanical strength at the same time. It will further promote the clinical application of HA ceramics in the field of bone regenerative repair. STATEMENT OF SIGNIFICANCE: This study introduces a method that uses the low-temperature plasma effect of the femtosecond laser (FSL) to modify the surfaces of high-temperature sintered hydroxyapatite (HA) ceramics, enhancing their osteogenic activity while maintaining the original mechanical strength. FSL processing induces the formation of bioactive multiphase of tricalcium phosphate (α-TCP and β-TCP) on the surfaces, creates micro-nano topographies, improves hydrophilicity and surface energy, promoting osteoblast differentiation and osteogenic gene expression for faster bone regeneration. This method overcomes the issue that high-temperature sintered HA ceramics have high strength but low osteogenic activity. It provides a modification method for HA ceramics with well-characterized performance enhancements, offering a convenient and effective strategy for high quality bone regenerative repair.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T, Lebullenger R, Adnyana IK, Lee K, Brézulier D. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025:1-19. [PMID: 40227056 DOI: 10.1080/17434440.2025.2492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION This systematic review and proportional meta-analysis aims to evaluate the postoperative complication rate (CR%) of ceramic-based 3D-printed bone grafts based on the reported scientific articles conducted with human individuals. METHODS MEDLINE and SCOPUS were used as information sources. The synthesis of the study was carried out from studies with human individuals and the use of 3D-printed bone graft-ceramic as inclusion criteria. Cohen's kappa (κ) was calculated for interrater reliability. Qualitative analysis was performed based on the characteristics and outcomes of the individual study, and quantitative analysis was performed using proportional meta-analysis for CR%. RESULTS A total of 1352 records were identified through databases and resulted in 11 included studies (κ = 0.81-1.00) consisting of prospective clinical trials (64.63%), case series (16.67%), and case reports (18.18%). The overall postoperative complication rate was 14.3% (95% Cl: 0.19-53.6). The postoperative complication rate for studies conducted on the cranial defect, the maxillofacial-zygomatic defect, and the tibial-femoral defect was 2.7%, 11.1%, and 15.6%, respectively. This review also highlights common 3D printing techniques, materials, and grafs' characteristics, as well as their clinical applications. CONCLUSIONS Ceramic-based 3D-printed bone grafts show potential as alternatives for bone tissue reconstruction.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Gyubok Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Siti Farah Rahmawati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Putu Diah Apri Anjalikha
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Timothy Sugito
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ronan Lebullenger
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
| | - I Ketut Adnyana
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kangwon Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Suwon, Republic of Korea
| | - Damien Brézulier
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
- CHU Rennes, Pole Odontologie, Univ Rennes, Rennes, France
| |
Collapse
|
4
|
Bezerra Melo MC, Spirandeli BR, Barbosa L, Ribeiro Dos Santos V, Bastos de Campos TM, Thim GP, de Sousa Trichês E. Enhanced mechanical strength and bioactivity of 3D-printed β-TCP scaffolds coated with bioactive glasses. J Mech Behav Biomed Mater 2025; 163:106850. [PMID: 39644802 DOI: 10.1016/j.jmbbm.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
3D printing in scaffold production offers a promising approach, enabling precise architectural design that closely mimics the porosity and interconnectivity of natural bone. β-Tricalcium phosphate (β-Ca₃(PO₄)₂, β-TCP), with a chemical composition similar to the inorganic component of bone, is a widely used material for scaffold fabrication. Recent advances have made it possible to functionalize ceramic scaffolds to improve bone regeneration and repair while enabling the in situ release of therapeutic agents to treat bone infections. In this study, 3D-printed β-TCP scaffolds were coated with bioactive glasses, 45S5 (45SiO₂ - 24.5Na₂O - 24.5CaO - 6P₂O₅, wt.%) and 58S (58SiO₂ - 33CaO - 9P₂O₅, wt.%), using sol-gel solutions through a vacuum impregnation technique. The β-TCP ink exhibited pseudoplastic behavior, which facilitated its 3D printing. The resulting scaffolds demonstrated high fidelity to the designed model, featuring well-aligned filaments and minimal collapse of the lower layers after sintering. Elemental mapping revealed that 45S5 glass formed a surface coating around the scaffold struts, whereas 58S glass penetrated the internal structure, this occurred due to their differing viscosities at high temperatures. Compared to uncoated β-TCP scaffolds, the coatings significantly improved mechanical strength, with increases of 63% and 126% for scaffolds coated with 45S5 and 58S, respectively. Bioactivity was confirmed through an apatite mineralization assay in simulated body fluid, which demonstrated hydroxyapatite precipitation on both coated scaffolds, albeit with distinct morphologies. Since this study focused on acellular scaffolds, further research is necessary to fully explore the potential of these bioactive scaffolds with optimized mechanical properties in biological systems.
Collapse
Affiliation(s)
- Márcia Cristina Bezerra Melo
- Federal University of São Paulo, Institute of Science and Technology, Bioceramics Laboratory, 330 Talim St, 12231-280, São José dos Campos, SP, Brazil
| | - Bruno Roberto Spirandeli
- Federal University of São Paulo, Institute of Science and Technology, Bioceramics Laboratory, 330 Talim St, 12231-280, São José dos Campos, SP, Brazil; Federal Institute of São Paulo (IFSP), São José dos Campos, 12223-201, São Paulo, Brazil
| | - Lucas Barbosa
- Federal University of São Paulo, Institute of Science and Technology, Bioceramics Laboratory, 330 Talim St, 12231-280, São José dos Campos, SP, Brazil
| | - Verônica Ribeiro Dos Santos
- Federal University of São Paulo, Institute of Science and Technology, Bioceramics Laboratory, 330 Talim St, 12231-280, São José dos Campos, SP, Brazil; Sao Paulo State University, Institute of Science and Technology, Department of Bioscience and Buccal Diagnose, 12245-700, São José dos Campos, SP, Brazil
| | | | - Gilmar Patrocínio Thim
- Aeronautic Technological Institute, Plasmas and Processes Laboratory, São José dos Campos, SP, 12228-900, Brazil
| | - Eliandra de Sousa Trichês
- Federal University of São Paulo, Institute of Science and Technology, Bioceramics Laboratory, 330 Talim St, 12231-280, São José dos Campos, SP, Brazil.
| |
Collapse
|
5
|
Fujioka-Kobayashi M, Urbanova V, Lang NP, Katagiri H, Saulacic N. Combined use of deproteinized bovine bone mineral and α-tricalcium phosphate using gelatin carriers. BMC Oral Health 2025; 25:275. [PMID: 39984888 PMCID: PMC11846255 DOI: 10.1186/s12903-025-05644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE To study the effect on biomaterial degradation and bone formation of different ratios between α-tricalcium phosphate (α-TCP) and deproteinized bovine bone mineral (DBBM) using various gelatins as a carrier. MATERIALS AND METHODS Thirty-six critical-sized calvarial bone defects were randomly treated in 18 animals. Four biomaterials with different compositional relations of DBBM to α-TCP and granules to carrier were investigated: (1) 40 ± 10% DBBM/40 ± 10% α-TCP with 20 ± 10% gelatin type 1 in ratio 4:1 (B1/G1), (2) 20 ± 10% DBBM/60 ± 10% α-TCP with 20 ± 10% gelatin type 1 in ratio 4:1 (B2/G1), (3) 20 ± 10% DBBM/60 ± 10% α-TCP with 15 ± 10%/5 ± 5% gelatin type 2/ glycerine (B2/G2) and 4), 10 ± 10% DBBM/60 ± 10% α-TCP with 20 ± 10%/10 ± 10% gelatin type 2/ glycerine (B3/G2). As a positive control 50 ± 10% DBBM/50 ± 10% α-TCP without gelatin (PC, B1/G0) and as a negative control (NC) empty defects were chosen. All defects were covered with a collagen membrane. The samples were harvested 4 weeks post-surgically and examined by micro-CT and histomorphometric analysis. RESULTS New bone formation was evident in all defects. The mineralized tissue volume was significantly higher in the four tested biomaterials than in the NC group, but lower compared to the PC group. Histomorphometry showed similar levels of bone formation in all groups, whereas only the PC group reached a significantly higher total augmentation area than that of the NC. The PC group showed significantly higher mineralized tissue density and residual material area compared to the B3/G2 group, and more residual DBBM than the four tested biomaterials. CONCLUSIONS New bone formation was not significantly affected either by different DBBM:α-TCP compositional ratios nor the presence of various gelatin carriers. CLINICAL RELEVANCE Similar levels of osteoconductivity indicates the presumptive use of combined products in alveolar ridge augmentation to support bone formation. Gelatin with or without glycerine may be considered for its use as a carrier to the biomaterials frequently applied in peri-implant surgery.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Shimane, Japan
| | - Veronika Urbanova
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Niklaus P Lang
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Hiroki Katagiri
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
6
|
Sugimoto K, Akutsu R, Yamada S, Peñaflor Galindo TG, Tagaya M. Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7131-7141. [PMID: 39804096 DOI: 10.1021/acsami.4c18645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices. Therefore, it is important to clarify the biodevice-apatite nanointerfaces by characterizing their physicochemical properties. This research aims to control the apatite nanoparticle surfaces using different types of pH adjusters as well as to investigate biodevice-apatite interfaces. In this study, tetramethylammonium hydroxide, sodium hydroxide, and potassium hydroxide were used to adjust the pH during the synthesis of apatite nanoparticles. As a result, it was found that the ratio of Ca-deficient hydroxyapatite phase to B-type carbonate ion-substituted hydroxyapatite phase could be controlled by adjusting the OH- concentration and that the formation of B-type carbonate ion substituted hydroxyapatite phase was demonstrated in terms of the charge compensation because hydrogen phosphate ion in the non-apatitic layer would be diffused and substituted inside the apatite core structure by the replacement of carbonate ion. By contrast, the phosphate ions in the core structure were moved and contained in the non-apatitic layer, and the proportion of phosphate ions in the non-apatitic layer increased. The surface changes of the nanoparticles provide an effective biodevice surface coating. It was observed that the thickness of the electrophoretically deposited nanoparticles clearly increased with the proportion of phosphate ions in the non-apatitic layer. Furthermore, the formation of the hydration layer with immersion in biological fluid was evaluated. It was inferred that the water molecules in the hydration layer interacted with the substituted ions and remained as nonfreezing water layer on the top surface of the nanoparticles, while the abundant phosphate ions newly interacted with the water molecules in the non-apatitic layer, thus increasing the proportion of intermediate water. These results indicated that the hydrogen phosphate and phosphate ions were retained in the non-apatitic layer on the top surfaces of apatite nanoparticles, so that the thickness of the electrophoretically deposited film and the weight fraction of the hydrated layer can be controlled by the component ratio of phosphate ions in the non-apatitic layer. It is expected that surface coating technology using apatite nanoparticles will be applied for biodevices.
Collapse
Affiliation(s)
- Kazuto Sugimoto
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryota Akutsu
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shota Yamada
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | | | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
7
|
Hara S, Kojima A, Furukawa A, Toyama T, Ikake H, Shimizu S, Kurita K. Mechanical Properties and Decomposition Behavior of Compression Moldable Poly(Malic Acid)/ α-Tricalcium Phosphate Hybrid Materials. Polymers (Basel) 2025; 17:147. [PMID: 39861221 PMCID: PMC11768388 DOI: 10.3390/polym17020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications. Nevertheless, its rapid dissolution rate presents challenges when used as a reinforcing agent. In this study, we developed a hybrid material composed of poly(malic acid) (PMA) and α-TCP to achieve controlled calcium release while maintaining mechanical strength. The hybrid materials were prepared using a compression molding method optimized to suppress the hydrolysis of PMA. The bond between the carboxyl group of PMA and α-TCP was confirmed through infrared (IR) spectroscopy. A calcium release test demonstrated that the interaction between PMA and α-TCP extends the dissolution period of both components. These findings indicate that PMA/α-TCP hybrid materials have significant potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuta Hara
- Department of Material and Life Chemistry, Kanagawa University, 3-6-1, Kanagawa-ku, Yokohama 221-8686, Japan;
| | - Akiko Kojima
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| | - Atsushi Furukawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| | - Takeshi Toyama
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| | - Hiroki Ikake
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| | - Shigeru Shimizu
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| | - Kimio Kurita
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan (T.T.); (S.S.)
| |
Collapse
|
8
|
Li F, Ye J, Liu P, Jiang J, Chen X. An Overview on Bioactive Glasses for Bone Regeneration and Repair: Preparation, Reinforcement, and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 39761075 DOI: 10.1089/ten.teb.2024.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively. Moreover, the article outlines some frequently used manufacturing methods for three-dimensional BG-based bone bioscaffolds and highlights the remarkable achievements of these scaffolds in the field of bone defect repair in recent years. Lastly, based on the many potential challenges encountered in the preparation and application of BGs, a brief outlook on their future directions is presented. This review may help to provide new ideas for researchers to develop ideal BG-based bone substitutes for bone reconstruction and functional recovery.
Collapse
Affiliation(s)
- Fulong Li
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Juelan Ye
- Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai, China
| | - Ping Liu
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Jiaqi Jiang
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Xiaohong Chen
- Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| |
Collapse
|
9
|
Pańtak P, Czechowska JP, Kashimbetova A, Čelko L, Montufar EB, Wójcik Ł, Zima A. Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents. J Mech Behav Biomed Mater 2025; 161:106792. [PMID: 39547073 DOI: 10.1016/j.jmbbm.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Bone cements are the subject of intensive research, primarily due to their versatility and the increasing importance for personalized medicine. In this study, novel hybrid self-setting scaffolds, based on calcium phosphates and natural polymers, were fabricated using the robocasting technique. Additionally, the influence of two different silane coupling agents, tetraethyl orthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS), on the physicochemical and biological properties of the obtained materials was thoroughly investigated. The chemical and phase compositions (XRF, XRD, FTIR), setting process, rheological properties, mechanical strength, microstructure (SEM), and chemical stability in vitro were comprehensively examined. The use of silane coupling agents improved compressive strength of the scaffolds from 5.20 to 9.26 MPa. The incorporation of citrus pectin into the liquid phase of the materials, along with the use of a hybrid hydroxyapatite-chitosan powder, not only facilitated the development of printable pastes suitable for robocasting but also enhanced the physicochemical properties of the robocasted scaffolds. The results presented in this study underscore the beneficial influence of silane coupling agents on the characteristics of calcium phosphate-based bone scaffolds. Developed robocasted scaffolds hold great potential for applications in the field of bone tissue engineering and personalized medicine. Further in vitro and in vivo studies are necessary to validate their suitability for clinical applications.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland.
| | - Joanna P Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland.
| | - Adelia Kashimbetova
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Łukasz Wójcik
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland
| |
Collapse
|
10
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
12
|
Nicolas T, Ségolène R, Thierry R, Maeva D, Joelle V, Arnaud P, Ludmila B, Pierre W, Pierre C, Baptiste C. Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration. Sci Rep 2024; 14:20848. [PMID: 39242756 PMCID: PMC11379694 DOI: 10.1038/s41598-024-71698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
Collapse
Affiliation(s)
- Touya Nicolas
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Reiss Ségolène
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Rouillon Thierry
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Dutilleul Maeva
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Veziers Joelle
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Pare Arnaud
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Brasset Ludmila
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Weiss Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Corre Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Charbonnier Baptiste
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France.
| |
Collapse
|
13
|
Skrinda-Melne M, Locs J, Grava A, Dubnika A. Calcium phosphates enhanced with liposomes - the future of bone regeneration and drug delivery. J Liposome Res 2024; 34:507-522. [PMID: 37988074 DOI: 10.1080/08982104.2023.2285973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.
Collapse
Affiliation(s)
- Marite Skrinda-Melne
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
14
|
Bača Ľ, Sivčáková T, Varchulová Nováková Z, Matejdes M, Horváth Orlovská M, Thurzo A, Danišovič Ľ, Janek M. Synthesis, sintering, radiopacity and cytotoxicity of Ca, Sr and Ba - phosphate bioceramics. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 2024; 44:5298-5307. [DOI: 10.1016/j.jeurceramsoc.2023.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Czechowska JP, Dorner-Reisel A, Zima A. Hybrid Bone Substitute Containing Tricalcium Phosphate and Silver Modified Hydroxyapatite-Methylcellulose Granules. J Funct Biomater 2024; 15:196. [PMID: 39057317 PMCID: PMC11278312 DOI: 10.3390/jfb15070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Despite years of extensive research, achieving the optimal properties for calcium phosphate-based biomaterials remains an ongoing challenge. Recently, 'biomicroconcretes' systems consisting of setting-phase-forming bone cement matrix and aggregates (granules/microspheres) have been developed and studied. However, further investigations are necessary to clarify the complex interplay between the synthesis, structure, and properties of these materials. This article focusses on the development and potential applications of hybrid biomaterials based on alpha-tricalcium phosphate (αTCP), hydroxyapatite (HA) and methylcellulose (MC) modified with silver (0.1 wt.% or 1.0 wt.%). The study presents the synthesis and characterization of silver-modified hybrid granules and seeks to determine the possibility and efficiency of incorporating these hybrid granules into αTCP-based biomicroconcretes. The αTCP and hydroxyapatite provide structural integrity and osteoconductivity, the presence of silver imparts antimicrobial properties, and MC allows for the self-assembling of granules. This combination creates an ideal environment for bone regeneration, while it potentially may prevent bacterial colonization and infection. The material's chemical and phase composition, setting times, compressive strength, microstructure, chemical stability, and bioactive potential in simulated body fluid are systematically investigated. The results of the setting time measurements showed that both the size and the composition of granules (especially the hybrid nature) have an impact on the setting process of biomicroconcretes. The addition of silver resulted in prolonged setting times compared to the unmodified materials. Developed biomicroconcretes, despite exhibiting lower compressive strength compared to traditional calcium phosphate cements, fall within the range of human cancellous bone and demonstrate chemical stability and bioactive potential, indicating their suitability for bone substitution and regeneration. Further in vitro studies and in vivo assessments are needed to check the potential of these biomaterials in clinical applications.
Collapse
Affiliation(s)
- Joanna P. Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland
| | - Annett Dorner-Reisel
- Faculty of Mechanical Engineering, Schmalkalden University of Applied Sciences, 98574 Schmalkalden, Germany
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland
| |
Collapse
|
16
|
Kimura R, Noda D, Liu Z, Shi W, Akutsu R, Tagaya M. Biological Surface Layer Formation on Bioceramic Particles for Protein Adsorption. Biomimetics (Basel) 2024; 9:347. [PMID: 38921227 PMCID: PMC11201679 DOI: 10.3390/biomimetics9060347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
In the biomedical fields of bone regenerative therapy, the immobilization of proteins on the bioceramic particles to maintain their highly ordered structures is significantly important. In this review, we comprehensively discussed the importance of the specific surface layer, which can be called "non-apatitic layer", affecting the immobilization of proteins on particles such as hydroxyapatite and amorphous silica. It was suggested that the water molecules and ions contained in the non-apatitic layer can determine and control the protein immobilization states. In amorphous silica particles, the direct interactions between proteins and silanol groups make it difficult to immobilize the proteins and maintain their highly ordered structures. Thus, the importance of the formation of a surface layer consisting of water molecules and ions (i.e., a non-apatitic layer) on the particle surfaces for immobilizing proteins and maintaining their highly ordered structures was suggested and described. In particular, chlorine-containing amorphous silica particles were also described, which can effectively form the surface layer of protein immobilization carriers. The design of the bio-interactive and bio-compatible surfaces for protein immobilization while maintaining the highly ordered structures will improve cell adhesion and tissue formation, thereby contributing to the construction of social infrastructures to support super-aged society.
Collapse
Affiliation(s)
| | | | | | | | | | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| |
Collapse
|
17
|
Kovrlija I, Menshikh K, Abreu H, Cochis A, Rimondini L, Marsan O, Rey C, Combes C, Locs J, Loca D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. BIOMATERIALS ADVANCES 2024; 160:213866. [PMID: 38642518 DOI: 10.1016/j.bioadv.2024.213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.
Collapse
Affiliation(s)
- Ilijana Kovrlija
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Hugo Abreu
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
18
|
Eknapakul T, Jiamprasertboon A, Amonpattaratkit P, Pimsawat A, Daengsakul S, Tanapongpisit N, Saenrang W, Bootchanont A, Wannapraphai P, Phetrattanarangsi T, Boonchuduang T, Khamkongkaeo A, Yimnirun R. Unraveling the structural complexity of and the effect of calcination temperature on calcium phosphates derived from Oreochromis niloticus bones. Heliyon 2024; 10:e29665. [PMID: 38644889 PMCID: PMC11031838 DOI: 10.1016/j.heliyon.2024.e29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
In this study, the interplay between the structural complexity, microstructure, and mechanical properties of calcium phosphates (CaPs) derived from fish bones, prepared at various calcination temperatures, and their corresponding sintered ceramics was explored. Fourier-transform infrared analysis revealed that the calcined powders primarily consisted of hydroxyapatite (HAp) and carbonated calcium hydroxyapatite, with an increasing concentration of Mg-substituted β-tricalcium phosphate (β-TCP) as the calcination temperature was increased. X-ray diffraction patterns showed enhanced sharpness of the peaks at higher temperatures, indicating a larger crystallite size and improved crystallinity. The ceramics exhibited a significantly larger crystallite size and an increased concentration of the β-TCP phase. Rietveld analysis revealed a larger volume of the β-TCP phase in the ceramics than in their calcined powders; this could be attributed to a newly formed β-TCP phase due to the decomposition of HAp. Extended X-ray absorption fine structure analysis revealed the incorporation of Mg in the Ca2 site of HAp, Ca2 site of β-TCP, and Ca5 site of β-TCP, with a higher substitution of Mg in the Ca5 site of β-TCP at elevated temperatures. The mechanical properties of HAp ceramics can be improved by increasing the calcination temperature because of their improved relative density and dense porous structure at elevated temperatures. This comprehensive investigation sheds light on the phase evolution, microstructural changes, and consequential impact on the mechanical properties of CaPs derived from fish bones, thereby facilitating the development of tailored CaP ceramics for biomedical applications.
Collapse
Affiliation(s)
- Tanachat Eknapakul
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arreerat Jiamprasertboon
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Penphitcha Amonpattaratkit
- Synchrotron Light Research Institute (Public Organization), Muang, Nakhon Ratchasima, 30000, Thailand
- Biodyne Co., Ltd, Seoul, 04793, Republic of Korea
| | - Adulphan Pimsawat
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Daengsakul
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantawat Tanapongpisit
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wittawat Saenrang
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Atipong Bootchanont
- Smart Materials Research Unit, Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani, 12110, Thailand
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12110, Thailand
| | - Pattarapong Wannapraphai
- Biomechanics Research Center, Meticuly Co. Ltd., Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Thanawat Phetrattanarangsi
- Biomechanics Research Center, Meticuly Co. Ltd., Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Thanachai Boonchuduang
- Biomechanics Research Center, Meticuly Co. Ltd., Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atchara Khamkongkaeo
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Rattikorn Yimnirun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology VISTEC, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
19
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
20
|
Zhang Y, Xie L, Jiao X, Yue X, Xu Y, Wang C, Li Y, Yang X, Yang G, Xu S, Wang Y, Weng X, Gou Z. Preferentially Biodegradable Gypsum Fibers Endowing Invisible Microporous Structures and Enhancing Osteogenic Capability of Calcium Phosphate Cements. ACS Biomater Sci Eng 2024; 10:1077-1089. [PMID: 38301150 DOI: 10.1021/acsbiomaterials.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 μm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The μCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Lijun Xie
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xiaoyi Jiao
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Xusong Yue
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Yan Xu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Cong Wang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Yifan Li
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Sanzhong Xu
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Raiseliene R, Linkaite G, Zarkov A, Kareiva A, Grigoraviciute I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:788. [PMID: 38399039 PMCID: PMC10890023 DOI: 10.3390/ma17040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.
Collapse
Affiliation(s)
- Ruta Raiseliene
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Greta Linkaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| | - Inga Grigoraviciute
- Institute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
22
|
Kim J, Kim S, Song I. Octacalcium phosphate, a promising bone substitute material: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:4-12. [PMID: 37157781 PMCID: PMC10834270 DOI: 10.12701/jyms.2023.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.
Collapse
Affiliation(s)
| | | | - Inhwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
23
|
Deyneko DV, Lebedev VN, Barbaro K, Titkov VV, Lazoryak BI, Fadeeva IV, Gosteva AN, Udyanskaya IL, Aksenov SM, Rau JV. Antimicrobial and Cell-Friendly Properties of Cobalt and Nickel-Doped Tricalcium Phosphate Ceramics. Biomimetics (Basel) 2023; 9:14. [PMID: 38248588 PMCID: PMC10813436 DOI: 10.3390/biomimetics9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
β-Tricalcium phosphate (β-TCP) is widely used as bone implant material. It has been observed that doping the β-TCP structure with certain cations can help in combating bacteria and pathogenic microorganisms. Previous literature investigations have focused on tricalcium phosphate structures with silver, copper, zinc, and iron cations. However, there are limited studies available on the biological properties of β-TCP containing nickel and cobalt ions. In this work, Ca10.5-xNix(PO4)7 and Ca10.5-xCox(PO4)7 solid solutions with the β-Ca3(PO4)2 structure were synthesized by a high-temperature solid-state reaction. Structural studies revealed the β-TCP structure becomes saturated at 9.5 mol/% for Co2+ or Ni2+ ions. Beyond this saturation point, Ni2+ and Co2+ ions form impurity phases after complete occupying of the octahedral M5 site. The incorporation of these ions into the β-TCP crystal structure delays the phase transition to the α-TCP phase and stabilizes the structure as the temperature increases. Biocompatibility tests conducted on adipose tissue-derived mesenchymal stem cells (aMSC) using the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay showed that all prepared samples did not exhibit cytotoxic effects. Furthermore, there was no inhibition of cell differentiation into the osteogenic lineage. Antibacterial properties were studied on the C. albicans fungus and on E. coli, E. faecalis, S. aureus, and P. aeruginosa bacteria strains. The Ni- and Co-doped β-TCP series exhibited varying degrees of bacterial growth inhibition depending on the doping ion concentration and the specific bacteria strain or fungus. The combination of antibacterial activity and cell-friendly properties makes these phosphates promising candidates for anti-infection bone substitute materials.
Collapse
Affiliation(s)
- Dina V. Deyneko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia;
| | - Vladimir N. Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy;
| | - Vladimir V. Titkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Bogdan I. Lazoryak
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia;
| | - Alevtina N. Gosteva
- Tananaev Institute of Chemistry, Kola Science Centre RAS, Akademgorodok 26A, 184209 Apatity, Russia;
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
| | - Sergey M. Aksenov
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia;
- Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
24
|
Soares Í, Sotelo L, Erceg I, Jean F, Lasgorceix M, Leriche A, Sikirić MD, Marušić K, Christiansen S, Daskalova A. Improvement of Metal-Doped β-TCP Scaffolds for Active Bone Substitutes via Ultra-Short Laser Structuring. Bioengineering (Basel) 2023; 10:1392. [PMID: 38135983 PMCID: PMC10741177 DOI: 10.3390/bioengineering10121392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Various efforts have been made to develop antibacterial biomaterials capable of also sustaining bone remodulation to be used as bone substitutes and reduce patient infection rates and related costs. In this work, beta-tricalcium phosphate (β-TCP) was chosen due to its known biocompatibility and use as a bone substitute. Metal dopants were incorporated into the crystal structure of the β-TCP, and disks were produced from this material. Magnesium and strontium, as well as copper and silver, were chosen as dopants to improve the osteogenic and antibacterial properties, respectively. The surface of the β-TCP samples was further modified using a femtosecond laser system. Grid and line patterns were produced on the plates' surface via laser ablation, creating grooves with depths lower than 20 μm and widths between 20 and 40 μm. Raman and FTIR analysis confirmed that laser ablation did not result in the degradation or phase change of the materials, making it suitable for surface patterning. Laser ablation resulted in increased hydrophilicity of the materials, as the control samples (non-ablated samples) have WCA values ranging from 70° to 93° and become, upon laser ablation, superwicking surfaces. Confocal measurements show an increase in specific surface area of 50% to 200% compared to the control. Overall, the results indicate the potential of laser ablation to improve the surface characteristics of β-TCP, which may lead to an improvement in the antibacterial and osteogenic properties of the produced materials.
Collapse
Affiliation(s)
- Íris Soares
- Laboratory of Micro and Nano-Photonics, Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Lamborghini Sotelo
- Institute for Nanotechnology and Correlative Microscopy vV INAM, Äußere Nürnberger Str. 62, 91301 Forcheim, Germany; (L.S.); (S.C.)
- Friedrich-Alexander University Erlangen-Nürnberg, Staudstraße 7, 91058 Erlangen, Germany
| | - Ina Erceg
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Äußere Nürnberger Str. 62, 91301 Forcheim, Germany;
| | - Florian Jean
- University Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS—Laboratoire de Matériaux Céramiques et de Mathématiques, F-59313 Valenciennes, France; (F.J.); (M.L.); (A.L.)
| | - Marie Lasgorceix
- University Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS—Laboratoire de Matériaux Céramiques et de Mathématiques, F-59313 Valenciennes, France; (F.J.); (M.L.); (A.L.)
| | - Anne Leriche
- University Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS—Laboratoire de Matériaux Céramiques et de Mathématiques, F-59313 Valenciennes, France; (F.J.); (M.L.); (A.L.)
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Katarina Marušić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy vV INAM, Äußere Nürnberger Str. 62, 91301 Forcheim, Germany; (L.S.); (S.C.)
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Äußere Nürnberger Str. 62, 91301 Forcheim, Germany;
- Frei Iniverssität Berlin, Arnimalle 14, 14995 Berlin, Germany
| | - Albena Daskalova
- Laboratory of Micro and Nano-Photonics, Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria
| |
Collapse
|
25
|
Pańtak P, Czechowska JP, Zima A. The influence of silane coupling agents on the properties of α-TCP-based ceramic bone substitutes for orthopaedic applications. RSC Adv 2023; 13:34020-34031. [PMID: 38020001 PMCID: PMC10663883 DOI: 10.1039/d3ra06027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials based on α-TCP are highly recommended for medical applications due to their ability to bond chemically with bone tissue. However, in order to improve their physicochemical properties, modifications are needed. In this work, novel, hybrid α-TCP-based bone cements were developed and examinated. The influence of two different silane coupling agents (SCAs) - tetraethoxysilane (TEOS) and 3-glycidoxypropyl trimethoxysilane (GPTMS) on the properties of the final materials was investigated. Application of modifiers allowed us to obtain hybrid materials due to the presence of different bonds in their structure, for example between calcium phosphates and SCA molecules. The use of SCAs increased the compressive strength of the bone cements from 7.24 ± 0.35 MPa to 12.17 ± 0.48 MPa. Moreover, modification impacted the final setting time of the cements, reducing it from 11.0 to 6.5 minutes. The developed materials displayed bioactive potential in simulated body fluid. Presented findings demonstrate the beneficial influence of silane coupling agents on the properties of calcium phosphate-based bone substitutes and pave the way for their further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Joanna P Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| |
Collapse
|
26
|
Beheshtizadeh N, Gharibshahian M, Bayati M, Maleki R, Strachan H, Doughty S, Tayebi L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 2023; 166:115301. [PMID: 37562236 DOI: 10.1016/j.biopha.2023.115301] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Bayati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Hannah Strachan
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
27
|
Sahadat Hossain M, Shaikh MAA, Uddin MN, Bashar MS, Ahmed S. β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds. RSC Adv 2023; 13:26435-26444. [PMID: 37674484 PMCID: PMC10477827 DOI: 10.1039/d3ra04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) was synthesized in an organic medium (acetone) to obtain a single-phase product while calcium carbonate (CaCO3) and ortho-phosphoric acid (H3PO4) were the sources of Ca, and P, respectively. The synthesized β-TCP was characterized by employing a number of sophisticated techniques vis. XRD, FTIR, FESEM, VSM and UV-Vis-NIR spectrometry. On the other hand, cytotoxicity, hemolysis, and antimicrobial activity for Gram-negative as well as Gram-positive (E. coli and S. aureus) bacteria were explored using this synthesized sample in powder format. However, to assess the drug loading and releasing profile, these powdered samples were first compressed into disks followed by sintering at 900 °C. Prior to loading the drug, porosity, density, and water absorbance characteristics of the scaffolds were examined in deionized water. Both loading and releasing profiles of the antibiotic (ciprofloxacin) were looked over at various selected time intervals which were continued up to 28 days. The observed results revealed that 2.87% of ciprofloxacin was loaded while 37% of this loaded drug was released within the selected time frame as set in this study. The scaffold was also immersed in SBF solution maintaining identical interim periods for the bioactivity evaluation. Furthermore, all three types of samples (e.g. drug-loaded, drug-released, and SBF-soaked) were characterized by FESEM and EDX while antimicrobial activity (against E. coli, S. typhi, and S. aureus) and efficacy to prevent hemolysis were also investigated. The drug-loaded scaffold presented a larger inhibition zone than the standard for all three types of microbes. Although powdered β-TCP was inactive in killing the Gram-negative bacteria, surprisingly the drug-released scaffold showed an inhibition zone.
Collapse
Affiliation(s)
- Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Najem Uddin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research & Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
28
|
Quan Q, Gongping X, Ruisi N, Shiwen L. New Research Progress of Modified Bone Cement Applied to Vertebroplasty. World Neurosurg 2023; 176:10-18. [PMID: 37087028 DOI: 10.1016/j.wneu.2023.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Percutaneous vertebroplasty and percutaneous kyphoplasty are effective methods to treat acute osteoporotic vertebral compression fractures that can quickly provide patients with pain relief, prevent further height loss of the vertebral body, and help correct kyphosis. Many clinical studies have investigated the characteristics of bone cement. Bone cement is a biomaterial injected into the vertebral body that must have good biocompatibility and biosafety. The optimization of the characteristics of bone cement has become of great interest. Bone cement can be mainly divided into 3 types: polymethyl methacrylate, calcium phosphate cement, and calcium sulfate cement. Each type of cement has its own advantages and disadvantages. In the past 10 years, the performance of bone cement has been greatly improved via different methods. The aim of our review is to provide an overview of the current progress in the types of modified bone cement and summarize the key clinical findings.
Collapse
Affiliation(s)
- Qi Quan
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Gongping
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Ruisi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Shiwen
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
Cassel JB, Tronco MC, de Melo BA, Oliveira FDSD, Dos Santos LAL. α-Tricalcium phosphate cement reinforced with silk fibroin: A high strength biomimetic bone cement with chloride-substituted hydroxyapatite. J Mech Behav Biomed Mater 2023; 143:105936. [PMID: 37244074 DOI: 10.1016/j.jmbbm.2023.105936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
In the past decades, bone defects have become an increasing factor in the development of disability in patients, impacting their quality of life. Large bone defects have minor chances to self-repair, requiring surgical intervention. Therefore, α-TCP-based cements are rigorously studied for the development of bone filling and replacement applications due to the possibility of application in minimally invasive procedures. However, α-TCP-based cements do not present adequate mechanical properties for most orthopedic applications. The aim of this study is to develop a biomimetic α-TCP cement reinforced with 0.250-1.000 wt% of silk fibroin using non-dialyzed SF solutions. Samples with SF additions higher than 0.250 wt% presented complete transformation of the α-TCP to a biphasic CDHA/HAp-Cl material, which could enhance the osteoconductivity of the material. Samples reinforced with concentrations of 0.500 wt% SF showed an increase of 450% of the fracture toughness and 182% of the compressive strength of the control sample, even with 31.09% porosity, which demonstrates good coupling between the SF and the CPs. All samples reinforced with SF showed a microstructure with smaller needle-like crystals when compared to the control sample, which possibly contributed to the material's reinforcement. Moreover, the composition of reinforced samples did not affect the cytotoxicity of the CPCs and enhanced the cell viability presented by the CPC without SF addition. Hence, biomimetic CPCs with mechanical reinforcement through the addition of SF were successfully obtained through the developed methodology, with the potential to be further evaluated as a suitable material for bone regeneration.
Collapse
Affiliation(s)
- Júlia B Cassel
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Matheus C Tronco
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Beatriz A de Melo
- Embriology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Fernanda Dos Santos de Oliveira
- Embriology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Luís A L Dos Santos
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Buer Boyetey MJ, Torgbo S, Sukyai P. Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. Eur Polym J 2023; 194:112168. [DOI: 10.1016/j.eurpolymj.2023.112168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
31
|
Mishchenko O, Yanovska A, Sulaieva O, Moskalenko R, Pernakov M, Husak Y, Korniienko V, Deineka V, Kosinov O, Varakuta O, Ramanavicius S, Varzhapetjan S, Ramanaviciene A, Krumina D, Knipše G, Ramanavicius A, Pogorielov M. From Synthesis to Clinical Trial: Novel Bioinductive Calcium Deficient HA/β-TCP Bone Grafting Nanomaterial. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1876. [PMID: 37368306 DOI: 10.3390/nano13121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Maxillary sinus augmentation is a commonly used procedure for the placement of dental implants. However, the use of natural and synthetic materials in this procedure has resulted in postoperative complications ranging from 12% to 38%. To address this issue, we developed a novel calcium deficient HA/β-TCP bone grafting nanomaterial using a two-step synthesis method with appropriate structural and chemical parameters for sinus lifting applications. We demonstrated that our nanomaterial exhibits high biocompatibility, enhances cell proliferation, and stimulates collagen expression. Furthermore, the degradation of β-TCP in our nanomaterial promotes blood clot formation, which supports cell aggregation and new bone growth. In a clinical trial involving eight cases, we observed the formation of compact bone tissue 8 months after the operation, allowing for the successful installation of dental implants without any early postoperative complications. Our results suggest that our novel bone grafting nanomaterial has the potential to improve the success rate of maxillary sinus augmentation procedures.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical And Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Vasylkivska Street, 45, 21000 Kyiv, Ukraine
| | - Roman Moskalenko
- Ukrainian-Swedish Centre SUMEYA, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Mykola Pernakov
- Department of Morphology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Yevheniia Husak
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Volodymyr Deineka
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Oleksii Kosinov
- Department of Surgical And Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine
| | - Olga Varakuta
- Department of Surgical And Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Suren Varzhapetjan
- Department of Surgical And Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Dzanna Krumina
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Gundega Knipše
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
32
|
Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114117. [PMID: 37297251 DOI: 10.3390/ma16114117] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This review provides an overview of various materials used in dentistry and oral and maxillofacial surgeries to replace or repair bone defects. The choice of material depends on factors such as tissue viability, size, shape, and defect volume. While small bone defects can regenerate naturally, extensive defects or loss or pathological fractures require surgical intervention and the use of substitute bones. Autologous bone, taken from the patient's own body, is the gold standard for bone grafting but has drawbacks such as uncertain prognosis, surgery at the donor site, and limited availability. Other alternatives for medium and small-sized defects include allografts (from human donors), xenografts (from animals), and synthetic materials with osteoconductive properties. Allografts are carefully selected and processed human bone materials, while xenografts are derived from animals and possess similar chemical composition to human bone. Synthetic materials such as ceramics and bioactive glasses are used for small defects but may lack osteoinductivity and moldability. Calcium-phosphate-based ceramics, particularly hydroxyapatite, are extensively studied and commonly used due to their compositional similarity to natural bone. Additional components, such as growth factors, autogenous bone, and therapeutic elements, can be incorporated into synthetic or xenogeneic scaffolds to enhance their osteogenic properties. This review aims to provide a comprehensive analysis of grafting materials in dentistry, discussing their properties, advantages, and disadvantages. It also highlights the challenges of analyzing in vivo and clinical studies to select the most suitable option for specific situations.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
33
|
Amaral SS, Lima BSDS, Avelino SOM, Spirandeli BR, Campos TMB, Thim GP, Trichês EDS, Prado RFD, Vasconcellos LMRD. β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications. Bioengineering (Basel) 2023; 10:bioengineering10050597. [PMID: 37237667 DOI: 10.3390/bioengineering10050597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American Type Culture Collection reference strains were used to determine the scaffold's antimicrobial potential. Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4 group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group. The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Simões Amaral
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Beatriz Samara de Sousa Lima
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Sarah Oliveira Marco Avelino
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Bruno Roberto Spirandeli
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Tiago Moreira Bastos Campos
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Gilmar Patrocínio Thim
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Renata Falchete do Prado
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
34
|
David LS, Anwar MN, Abdollahi MR, Bedford MR, Ravindran V. Calcium Nutrition of Broilers: Current Perspectives and Challenges. Animals (Basel) 2023; 13:ani13101590. [PMID: 37238019 DOI: 10.3390/ani13101590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium (Ca) plays an essential role in poultry nutrition as 99% of Ca is located in birds' skeletal system. However, oversupply of Ca rather than deficiency of Ca is the current concern in commercial broiler diets. Calcium is an inexpensive dietary nutrient due to the cheap and abundant availability of limestone, the major Ca source; therefore, little attention was given to the oversupply of Ca in the past. The recent shift in the use of digestible P in broiler feed formulations has necessitated a closer look at digestible Ca, as Ca and P are interrelated in their absorption and postabsorptive utilisation. In this context, data on ileal digestibility of Ca and P in ingredients has been determined. Preliminary data on the digestible Ca and digestible P requirements for the different growth stages of broilers have also recently become available. The present review focusses on these recent advances in Ca nutrition. In addition, aspects of homeostatic control mechanisms, different Ca sources and factors influencing Ca digestibility in poultry are covered.
Collapse
Affiliation(s)
- Laura Shiromi David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - M Naveed Anwar
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- Van Den Brink Poultry Ltd., Christchurch 7677, New Zealand
| | - M Reza Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | | | - Velmurugu Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
35
|
Hwang ET. Management of the poultry red mite Dermanyssus gallinae with physical control methods by inorganic material and future perspectives. Poult Sci 2023; 102:102772. [PMID: 37245438 DOI: 10.1016/j.psj.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
Poultry red mite (PRM), the ectoparasitic mite Dermanyssus gallinae found in laying hen farms, is a significant threat to poultry production and human health worldwide. It is a suspected disease vector and attacks hosts' other than chickens, including humans, and its economic importance has increased greatly. Different strategies to control PRM have been widely tested and investigated. In principle, several synthetic pesticides have been applied to control PRM. However, recent alternative control methods to avoid the side effects of pesticides have been introduced, although many remain in the early stage of commercialization. In particular, advances in material science have made various materials more affordable as alternatives for controlling PRM through physical interactions between PRM. This review provides a summary of PRM infestation, and then includes a discussion and comparison of different conventional approaches: 1) organic substances, 2) biological approaches, and 3) physical inorganic material treatment. The advantages of inorganic materials are discussed in detail, including the classification of materials, as well as the physical mechanism-induced effect on PRM. In this review, we also consider the perspective of using several synthetic inorganic materials to suggest novel strategies for improved monitoring and better information regarding treatment interventions.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
36
|
Alruwaili MK, Sugaya T, Morimoto Y, Nakanishi K, Akasaka T, Yoshida Y. Can a low dosage of recombinant human bone morphogenetic protein-2 loaded on collagen sponge induce ectopic bone? Dent Mater J 2023. [PMID: 37032102 DOI: 10.4012/dmj.2022-229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is one of the growth factors that may induce the formation of new bone. The aim was to determine the efficacy of low doses of rhBMP-2 for bone regeneration using a collagen sponge as a carrier. Three doses of rhBMP-2 (1.167, 0.117, and 0.039 mg/mL) were combined with an absorbable collagen sponge (ACS) as a delivery vehicle. The rhBMP-2/ACS implants were placed in the subcutaneous tissues of rat backs. X-ray microcomputed tomography (micro-CT) and histological analysis were used to evaluate bone formation. The samples treated with 1.167 mg/mL of rhBMP-2 showed greater bone formation than the samples treated with 0.117 mg/mL of rhBMP-2 four weeks after surgery. However, there was no evidence of bone formation in the samples that were treated with 0.039 mg/mL of rhBMP-2. It was found that rhBMP-2 was osteogenic even at one-tenth of its manufacturer's recommended concentration (1.167 mg/mL), indicating its potential for clinical use at lower concentrations.
Collapse
Affiliation(s)
- Mohammed Katib Alruwaili
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Preventive Dentistry, College of Dentistry, Jouf University
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhito Morimoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University
| | - Ko Nakanishi
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
37
|
Matharoo N, Walawalkar MG, Murugavel R. A rigid calcium 2-ethylhexylphosphate one-dimensional polymer: synthesis, structure, thermal behaviour and decomposition chemistry. Dalton Trans 2023; 52:2412-2423. [PMID: 36723225 DOI: 10.1039/d2dt03529d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The reactivity of two different phosphate esters has been explored with calcium ions. The reaction of calcium oxide with a mixture of mono/bis 2-ethylhexyl phosphate and 1,10-phenanthroline leads to the formation of the 1-D polymer [(phen)Ca(ehpH)2]n (1). On the other hand, the reaction of Ca(OAc)2 with trimethyl phosphate in the presence of 1,10-phenanthroline however yields needle-shaped colourless crystals of [(phen)Ca(OAc)2]n (2). Compounds 1 and 2 have been characterized by various spectroscopic and analytical techniques. The solid-state structures have been determined by single crystal X-ray diffraction studies. The arrangement of rigid and flexible parts in 1 makes it an interesting compound to be studied for its thermal behaviour. DSC experiments performed above and below room temperature reveal thermal transitions in both the ranges, where below room temperature transition is prominent. A combination of variable temperature powder and single crystal X-ray diffraction experiments provides further insights into these transitions. Solid-state bulk thermolysis of 1 at 500 °C leads to an amorphous material contaminated with graphitic carbon which upon further heating to 600 °C produces crystalline α-Ca(PO3)2.
Collapse
Affiliation(s)
- Navneet Matharoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Mrinalini G Walawalkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
38
|
Goto T, Yin S, Asakura Y, Cho SH, Sekino T. Simultaneous synthesis of hydroxyapatite fibres and β-tricalcium phosphate particles via a water controlled-release solvothermal process. CrystEngComm 2023. [DOI: 10.1039/d2ce01703b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fibrous hydroxyapatite, rice-like β-tricalcium phosphate and DCPA plates were synthesised by water controlled-release solvothermal process using the esterification reaction.
Collapse
Affiliation(s)
- Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-0877, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-0877, Japan
| | - Yusuke Asakura
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Sung Hun Cho
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
39
|
Al‐allaq AA, Kashan JS. A review: In vivo studies of bioceramics as bone substitute materials. NANO SELECT 2022. [DOI: 10.1002/nano.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ali A. Al‐allaq
- Ministry of Higher Education and Scientific Research Office Reconstruction and Projects Baghdad Iraq
| | - Jenan S. Kashan
- Biomedical Engineering Department University of Technology Baghdad Iraq
| |
Collapse
|
40
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
41
|
Weinand WR, Cruz JA, Medina AN, Lima WM, Sato F, da Silva Palacios R, Gibin MS, Volnistem EA, Rosso JM, Santos IA, Rohling JH, Bento AC, Baesso ML, da Silva CG, Dos Santos EX, Scatolim DB, Gavazzoni A, Queiroz AF, Companhoni MVP, Nakamura TU, Hernandes L, Bonadio TGM, Miranda LCM. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121407. [PMID: 35636138 DOI: 10.1016/j.saa.2022.121407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The search for gold-standard materials for bone regeneration is still a challenge in reconstruction surgery. The ratio between hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) in biphasic calcium phosphate ceramics (BCPs) is one of the most important factors in osteoinduction promotion and controlled biodegradability, configurating what is currently considered as a possible gold standard material for bone substitution in reconstructive surgery. Exploring the natural genesis of the HAp and β-TCP phases in fishbones during their postnatal growth, this study developed a biphasic bioceramic obtained from the calcination of Nile tilapia (Oreochromis niloticus) bones as a function of their ages. The natural genesis dynamics of the structural evolution of the β-TCP and HAp phases were characterized by physicochemical methods, taking into account of the age of the fish and the material processing conditions. Thermal analysis (TGA / DTA) showed complete removal of the organic matter and transitions associated with the transformation of carbonated hydroxyapatite (CDHA) to HAp and β-TCP phases. After calcination at 900 °C, the material was characterized by: X-ray diffraction (XRD) and refinement by the Rietveld method; Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR); Raman spectroscopy; Scanning Electron Microscopy (SEM) and Flame Atomic Absorption Spectroscopy (FAAS). The analysis allowed identification and quantitative estimate of the variations of the HAp and β-TCP phases in the formation of the BCPs. The results showed that the decrease in β-TCP against the increase in the HAp phases is symmetrical to the dynamics of the natural genesis of these phases, surprisingly maintaining the balanced phase proportion even when bones of young fishes were used. The microstructure analysis confirms the observed transformation. In addition, in vivo tests demonstrated the osteoinductive potential of BCP scaffolds implanted in an ectopic site, and their remarkable regenerative functionality, as bone graft, was demonstrated in alveolar bone after tooth extraction. MTT cytotoxicity assay for BCP samples for MC3T3-E1 pre-osteoblasts and L929 fibroblasts cells showed viability equal or higher than 100%. A logistic empirical model is presented to explain the three stages of HAp natural formation with fish age and it is also compared to the fish size evolution.
Collapse
Affiliation(s)
- Wilson Ricardo Weinand
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - José Adauto Cruz
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Antonio Neto Medina
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Walter Moreira Lima
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Raquel da Silva Palacios
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Sversut Gibin
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Eduardo Azzolini Volnistem
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jaciele Marcia Rosso
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ivair Aparecido Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jurandir Hillmann Rohling
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Antonio Carlos Bento
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mauro Luciano Baesso
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil.
| | - Camila Girotto da Silva
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Xavier Dos Santos
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Douglas Bolzon Scatolim
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Alessandro Gavazzoni
- Departamento de Odontologia, Universidade Estadual de Maringá, Av. Mandacarú, 1550, 87083-170 Maringá, Paraná, Brazil
| | - Alfredo Franco Queiroz
- Departamento de Odontologia, Universidade Estadual de Maringá, Av. Mandacarú, 1550, 87083-170 Maringá, Paraná, Brazil
| | | | - Tania Ueda Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Taiana Gabriela Moretti Bonadio
- Departamento de Física, Universidade Estadual do Centro Oeste, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, Paraná, Brazil
| | | |
Collapse
|
42
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
43
|
Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration. Gels 2022; 8:gels8100634. [PMID: 36286135 PMCID: PMC9602064 DOI: 10.3390/gels8100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The design and synthesis of sol-gel silica-based hybrid materials and composites offer significant benefits to obtain innovative biomaterials with controlled porosity at the nanostructure level for applications in bone tissue engineering. In this work, the combination of robocasting with sol-gel ink of suitable viscosity prepared by mixing tetraethoxysilane (TEOS), gelatin and β-tricalcium phosphate (β-TCP) allowed for the manufacture of 3D scaffolds consisting of a 3D square mesh of interpenetrating rods, with macropore size of 354.0 ± 17.0 μm, without the use of chemical additives at room temperature. The silica/gelatin/β-TCP system underwent irreversible gelation, and the resulting gels were also used to fabricate different 3D structures by means of an alternative scaffolding method, involving high-resolution laser micromachining by laser ablation. By this way, 3D scaffolds made of 2 mm thick rectangular prisms presenting a parallel macropore system drilled through the whole thickness and consisting of laser micromachined holes of 350.8 ± 16.6-micrometer diameter, whose centers were spaced 1312.0 ± 23.0 μm, were created. Both sol-gel based 3D scaffold configurations combined compressive strength in the range of 2–3 MPa and the biocompatibility of the hybrid material. In addition, the observed Si, Ca and P biodegradation provided a suitable microenvironment with significant focal adhesion development, maturation and also enhanced in vitro cell growth. In conclusion, this work successfully confirmed the feasibility of both strategies for the fabrication of new sol-gel-based hybrid scaffolds with osteoconductive properties.
Collapse
|
44
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
45
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
46
|
Mechanical Properties and In Vitro Biocompatibility of Hybrid Polymer-HA/BAG Ceramic Dental Materials. Polymers (Basel) 2022; 14:polym14183774. [PMID: 36145918 PMCID: PMC9505225 DOI: 10.3390/polym14183774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to prepare hybrid polymer-ceramic dental materials for chairside computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The hybrid polymer-ceramic materials were fabricated via infiltrating polymerizable monomer mixtures into sintered hydroxyapatite/bioactive glass (HA/BAG) ceramic blocks and thermo-curing. The microstructure was observed by scanning electron microscopy and an energy-dispersive spectrometer. The phase structure was analyzed by X-ray diffraction. The composition ratio was analyzed by a thermogravimetric analyzer. The hardness was measured by a Vickers hardness tester. The flexural strength, flexural modulus, and compressive strength were measured and calculated by a universal testing machine. The growth of human gingival fibroblasts was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and immunofluorescence staining. The results showed that the sintering temperature and BAG content affected the mechanical properties of the hybrid polymer-ceramic materials. The X-ray diffraction analysis showed that high-temperature sintering promoted the partial conversion of HA to β-tricalcium phosphate. The values of the hardness, flexural strength, flexural modulus, and compressive strength of all the hybrid polymer-ceramic materials were 0.89-3.51 GPa, 57.61-118.05 MPa, 20.26-39.77 GPa, and 60.36-390.46 MPa, respectively. The mechanical properties of the hybrid polymer-ceramic materials were similar to natural teeth. As a trade-off between flexural strength and hardness, hybrid polymer-ceramic material with 20 wt.% BAG sintered at 1000 °C was the best material. In vitro experiments confirmed the biocompatibility of the hybrid polymer-ceramic material. Therefore, the hybrid polymer-ceramic material is expected to become a new type of dental restoration material.
Collapse
|
47
|
Zheng Y, Yang X, Liu S, Bao S, Xu Y, Wang Y, Zhang F, Gou Z. Fast self-curing α-tricalcium phosphate/β-dicalcium silicate composites beneficial for root canal sealing treatment. Heliyon 2022; 8:e10713. [PMID: 36177238 PMCID: PMC9513771 DOI: 10.1016/j.heliyon.2022.e10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives α-tricalcium phosphate (α-TCP) and β-dicalcium silicate (β-C2S) have attracted much attention since these two types of self-curing Ca-phosphate and Ca-silicate are valuable biomaterials for bone defect or endodontic therapy. However, the injectable paste of their individual with high liquid/solid ratio is junior for root canal sealing due to very long self-setting time, low pH value and/or much volume shrinkage during paste-to-cement transformation. Methods Our studies evaluated the effect of biphasic ratio, liquid/solid ratio and pH condition of aqueous medium on setting time and mechanical strength of this biphasic composite cement, and also the hydroxyapatite re-mineralization potential and anti-microleakage level of the cements with different α-TCP/β-C2S ratio were explored in vitro. A control group free of paste filler was included in the extracted teeth model. Dentine re-mineralization and microleakage degree were observed by scanning electron microscopy and microCT reconstruction analysis. Results It indicated that the weak acidic solution with pH value of 6.0 may produce a significantly shorter initial setting time (from 90 min to less 20 min) and expected final setting time (<150 min) for the biphasic composite (2:1 or 1:2) in comparison with the pure β-C2S. Notably, the phasic composites exhibited limited microleakage and induced hydroxyapatite mineralization in the dentine tubules. These hydraulic pastes also produced strong alkaline feature and appreciable compressive resistance (12–18 MPa) after setting for a very short time stage. Moreover, a link between the addition of α-TCP leading to fast re-mineralization reaction was established. Significance Our findings suggest that the appreciable self-setting and physicochemical properties adaption to root canal sealability make α-TCP/β-C2S composites as preferential candidates for endodontic treatments.
Collapse
Affiliation(s)
- Youyang Zheng
- Department of Stomatology, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou 310009, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxin Liu
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Siqi Bao
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yuyue Xu
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunyi Wang
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Feng Zhang
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Corresponding author.
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
48
|
Tronco MC, Cassel JB, Dos Santos LA. α-TCP-based Calcium Phosphate Cements: a critical review. Acta Biomater 2022; 151:70-87. [PMID: 36028195 DOI: 10.1016/j.actbio.2022.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Calcium phosphates are promising materials for applications in bone repair and substitution, particularly for their bioactivity and ability to form self-setting cements. Among them, α-tricalcium phosphate (α-TCP) stands out due to its high solubility, its hydration reaction and bioresorbability. The synthesis of α-TCP is particularly complex and the interactions between some of the synthesis parameters are still not completely understood. The variety of methods available to synthesize α-TCP has provided a substantial variance in the properties of α-TCP-based cements and the decision about which method, parameters and starting reagents will be used for the powder's synthesis is determinant of the properties of the resulting material. Therefore, this review paper focuses on α-TCP's synthesis and properties, presenting the synthesis methods currently in use as well as a discussion of how the synthesis parameters and the cement preparation affect the reactivity and mechanical properties of the material, providing a guide for the selection of the most suitable process for each α-TCP application. STATEMENT OF SIGNIFICANCE: α-TCP is a calcium phosphate and it is currently one of the most investigated bioceramics for applications that explore its bioresorbability and the hydration reaction of α-TCP-based cements. Despite the increasing number of publications on the topic, there are still aspects not well understood. This review article aims at contributing to this fascinating subject by offering an update on the state of the art of α-TCP's synthesis methods, while also addressing topics that are not often discussed about this material, such as the preparation of α-TCP-based cements and how its parameters affect the properties of the resulting cements.
Collapse
Affiliation(s)
- Matheus C Tronco
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Júlia B Cassel
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Luís A Dos Santos
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
49
|
Mosina M, Kovrlija I, Stipniece L, Locs J. Gallium containing calcium phosphates: potential antibacterial agents or fictitious truth. Acta Biomater 2022; 150:48-57. [PMID: 35933101 DOI: 10.1016/j.actbio.2022.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Amidst an ever-increasing demand for the enhancement of the lifestyle and the modulation of modern diseases, the functionalization of biomaterials is of utmost importance. One of the leading materials for the aforementioned purpose have been calcium phosphates (CaPs). They have been widely used in bone regeneration displaying favourable regenerative potential and biological properties. Many studies have placed their entire focus on facilitating the osteogenic differentiation of stem cells and bone progenitor cells, while the aspect of antibacterial properties has been surmounted. Nevertheless, increasing antibiotic resistance of bacteria requires the development of new materials and the usage of alternative approaches such as ion doping. Gallium (Ga) has been the potential star on the rise among the ions. However, the obstacle that accompanies gallium is the scarcity of research performed and the variety of amalgamations. The question that imposes itself is how a growing field of therapeutics can be further entwined with advances in material science, and how will the incorporation of gallium bring a new outlook. The present study offers a comprehensive overview of state-of-the-art gallium containing calcium phosphates (GaCaPs), their synthesis methods, antibacterial properties, and biocompatibility. Considering their vast potential as antibacterial agents, the need for a methodical perspective is highly necessary to determine if it is a direction on the brink of recognition or a fruitless endeavour. STATEMENT OF SIGNIFICANCE: : Although several studies have been published on various metal ions-containing calcium phosphates, to this date there is no systematic overview pointing out the properties and benefits of gallium containing calcium phosphates. Here we offer a critical overview, including synthesis, structure and biological properties of gallium containing calcium phosphates.
Collapse
Affiliation(s)
- Marika Mosina
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia.
| | - Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
50
|
Simultaneous Substitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. MATERIALS 2022; 15:ma15134702. [PMID: 35806825 PMCID: PMC9268321 DOI: 10.3390/ma15134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
β-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in β-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted β-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The β-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca–O and P–O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS–HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in β-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.
Collapse
|