1
|
Zhu D, Luo Y, Huang S, Ma L. Bioprosthetic heart valves with zwitterionic copolymer grafting to improve the properties of endothelialization and anti-calcification. Biomed Mater 2025; 20:035033. [PMID: 40315889 DOI: 10.1088/1748-605x/add3e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/02/2025] [Indexed: 05/04/2025]
Abstract
Heart valve replacement surgery has been the most effective treatment for severe valvular heart disease. Bioprosthetic heart valves (BHVs) crosslinked by glutaraldehyde (GA) have non-negligible advantages in clinical applications. However, structural valve degeneration, calcification, insufficient re-endothelialization and other factors lead to a shortened service life of BHVs. In this study, GA-crosslinked decellularized heart valves (GADHVs) were grafted with zwitterionic copolymer (PSBG) of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide and glycidyl methacrylate, and further treated with Arg-Glu-Asp-Val (REDV) peptide to obtain REDV-PSBG-GADHVs with anti-fouling ability and endothelial cell affinity. REDV-PSBG-GADHVs exhibited good collagen stability, reliable mechanical property and excellent hemocompatibility. Moreover,in vitroandin vivoexperiments demonstrated that REDV-PSBG-GADHVs exhibited better endothelialization property, lower immune responses and reduced calcification than GADHVs. This modified strategy for heart valve fabrication, which can improve the effect of anti-calcification and endothelialization while maintaining the original advantages of BHVs, shows great potential for application in heart valve replacement.
Collapse
Affiliation(s)
- Daoyang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shenyu Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
2
|
Zhang W, Guo X, Lang W, Zhao L, Zhang N, Du L, Xue B, Yang S. Ultrafiltration Membrane with High Stability and Anti-fouling Performance Fabricated via Stepwise Interfacial Complexation of Charged Polytrifluorostyrene. Macromol Rapid Commun 2025:e2500181. [PMID: 40350962 DOI: 10.1002/marc.202500181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Surface coating of polymer complexes driven by electrostatic interaction represents a facile strategy for membrane modification. However, chemical stability is still a major issue for the application of such polymer coatings and the study of polymer complex-modified membranes for ultrafiltration is less explored. In this study, positively charged quaternized poly(trifluorostyrene) (QPTFS) and negatively charged sulfonated poly(trifluorostyrene) (SPTFS) are synthesized and used to prepare ultrafiltration membranes through stepwise interfacial complexation. The successful complexation between QPTFS and SPTFS is verified using quartz crystal microbalance and spectroscopic ellipsometry. The separation performance of the modified membranes is evaluated and the QS-2 membrane (containing two bilayers of polymer complexes) demonstrates a desired water flux of 378 L m-2 h-1 bar-1 and an excellent BSA rejection of 96.8%. Moreover, the QPTFS/SPTFS selective layer exhibits remarkable stability against saturated NaCl or at extreme pHs, and its separation performance is maintained with BSA rejection above 95%. The cyclic filtration indicates the enhanced anti-fouling performance upon QPTFS/SPTFS decoration, in which the flux recovery rate of QS-2 is ≈3-fold higher than that of polyvinylidene fluoride substrate. This work proposes an accessible approach using charged fluoropolymers to achieve chemically stable ultrafiltration membranes with desired water flux, excellent protein separation performance and enhanced anti-fouling property.
Collapse
Affiliation(s)
- Wanting Zhang
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaotao Guo
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenyuan Lang
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ling Zhao
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Nuojin Zhang
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lijun Du
- Shanghai Huayi 3F New Materials Co., Ltd., Shanghai, 200025, P. R. China
| | - Bing Xue
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, P. R. China
| | - Shuguang Yang
- State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
3
|
Uwaezuoke OJ, Toit LCD, Kumar P, Ally N, Choonara YE. Ex Vivo-In Vitro Protein Adsorption and In Vivo Anti-Inflammatory Effects of Zwitterionized PVA Hydrogel Implants in the New Zealand Albino Rabbit Eye. J Pharm Sci 2025:103822. [PMID: 40348185 DOI: 10.1016/j.xphs.2025.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Implantable ocular devices are increasingly used to overcome the drug delivery challenges presented by the physio-anatomical barriers of the eye. Protein adsorption onto the biomaterial occurs within minutes of implantation and is usually the first step in the fouling process that could culminate in implant/device failure, infection, or even death if the infection is not properly managed. The eye can easily be damaged by any inflammatory process due to its immune privilege status, hence, the need for biomaterials that would inherently limit protein adsorption and reduce inflammation. Herein, a super hydrophilic hydrogel ocular device was formulated via facile photo-initiated crosslinking polymerization between polyvinyl alcohol and sulfobetaine methacrylate, 2 polymers that have previously been employed individually, for surface modification of biomaterials towards protein resistance. Protein adsorption onto the hydrogel was studied in vitro and ex vivo using a complex protein solution, and rabbit aqueous and vitreous humour, respectively. In vivo ocular cytocompatibility was studied in New Zealand albino rabbits by subconjunctival implantation over a period of 8 weeks. The concentration of the zwitterionic monomer significantly affected protein adsorption in vitro, and impacted the foreign body response in vivo. In vivo results after 1 week showed a graded acute inflammatory response indicative of tissue repair that resulted in full integration by the 8th week.
Collapse
Affiliation(s)
- Onyinye Jennifer Uwaezuoke
- Wits Advanced Drug Delivery Platform, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Lisa Claire du Toit
- Wits Advanced Drug Delivery Platform, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Naseer Ally
- Wits Advanced Drug Delivery Platform, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
4
|
Wu Q, Li D, Liu J, Long S, Huang Y, Li X. Antifouling PTFE Hollow Fiber Microfiltration Membrane with a Double-Defense Mechanism. NANO LETTERS 2025; 25:7081-7088. [PMID: 40249846 DOI: 10.1021/acs.nanolett.5c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of in situ coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.
Collapse
Affiliation(s)
- Qiang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Dapeng Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
- Bioengineering Department, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747-2300, United States
| | - Jing Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang 441000, P. R. China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
5
|
Huang Y, Zhi L, Cheng C, Wei Q, Sun S, Zhao C. Sulfonated covalent organic frameworks (COF)/polyethersulfone (PES) membrane with enhanced hemocompatibility for blood oxygenation. Colloids Surf B Biointerfaces 2025; 253:114716. [PMID: 40252275 DOI: 10.1016/j.colsurfb.2025.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
In extracorporeal membrane oxygenation (ECMO) treatment, designing membrane with self-anticoagulant properties can solve problems resulting from the adverse effect of anticoagulants. In this study, 2,4,6-Triformylphloroglucinol (Tp) and 2,5-Diaminobenzenesulfonic acid (Pa-SO3H) were applied to grow a sulfonated COF film in situ on the polyethersulfone (PES) membrane. The introduction of sulfonic groups increased the hydrophilicity and electronegativity of the TpPa COF film, improved its anti-protein adhesion properties, maintained the normal morphology of blood cells, and endowed the COF film with antithrombotic properties. In the porcine blood circulation test, the duration to increase So2 (O2 saturation) from ∼75-95 % in TpPa-SO3H COF/PES membrane (M-TpPa-SO3H) was 70 min shorter than that in TpPa COF/PES membrane (M-TpPa). This preparation method is applicable to the preparation of not only flat membranes, but also hollow fiber membranes. These findings emphasize the potential of M-TpPa-SO3H in ECMO applications, providing superior antithrombotic property and CO2 efflux potential.
Collapse
Affiliation(s)
- Yue Huang
- Sichuan University, College of Biomedical Engineering, Chengdu, Sichuan 610065, PR China
| | - Lunhao Zhi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Amoako K, Ukita R, Cook KE. Antifouling Zwitterionic Polymer Coatings for Blood-Bearing Medical Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2994-3006. [PMID: 39871120 PMCID: PMC11823456 DOI: 10.1021/acs.langmuir.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Blood-bearing medical devices are essential for the delivery of critical care medicine and are often required to function for weeks to months. However, thrombus formation on their surfaces can lead to reduced device function and failure and expose patients to systemic thrombosis risks. While clinical anticoagulants reduce device related thrombosis, they also increase patient bleeding risk. The root cause of device thrombosis and inflammation is protein adsorption on the biomaterial surfaces of these devices. Protein adsorption activates the coagulation cascade and complement, and this, in turn, activates platelets and white blood cells. Surface modifications with zwitterionic polymers are particularly effective at reducing protein adsorption as well as conformational changes in proteins due to their hydrophilicity. Multiple coating strategies have been developed using carboxybetaine (CB), sulfobetaine (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterionic polymers applied to the metals and hydrophobic polymers that make up the bulk of blood-bearing medical devices. These coatings have been highly successful at creating large reductions in protein adsorption and platelet adhesion during studies on the order of hours on flat surfaces and at reducing thrombus formation for up to a few days in full medical devices. Future work needs to focus on their ability to limit inflammation, particularly during hemodialysis, and in providing anticoagulation on the order of weeks, particularly in artificial lungs.
Collapse
Affiliation(s)
- Kagya Amoako
- Department
of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Rei Ukita
- Department
of Cardiac Surgery, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Keith E. Cook
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Uwaezuoke O, Kumar P, du Toit LC, Ally N, Choonara YE. Design Characteristics of a Neoteric, Superhydrophilic, Mechanically Robust Hydrogel Engineered To Limit Fouling in the Ocular Environment. ACS OMEGA 2024; 9:31410-31426. [PMID: 39072132 PMCID: PMC11270697 DOI: 10.1021/acsomega.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
Current challenges with ocular drug delivery and the chronic nature of many ocular ailments render the use of traditional ocular devices for additional drug delivery purposes very attractive. To achieve this feat, there is the need to develop biomaterials that are biocompatible, mechanically robust for ocular applications, highly transparent (depending on the targeted ocular device), and with ultralow protein adhesion potential (the primary step in processes that lead to fouling and potential device failure). Herein is reported the facile synthesis of a novel, highly transparent, mechanically robust, nontoxic, bulk functionalized hydrogel with characteristics suited to scalable fabrication of ocular implantable and nonimplantable devices. Synergistic superhydrophilicity between methacrylated poly(vinyl alcohol) (PVAGMA) and zwitterionic sulfobetaine methacrylate was exploited to obtain a superhydrophilic polymer conjugate through facile photoinitiated cross-linking polymerization. Proton nuclear magnetic resonance (1H NMR), attenuated total reflectance-Fourier transform infrared spectroscopy (ATF-FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to confirm the synthesis and establish the physicochemical parameters for both the starting materials, the conjugated polymer, and the hydrogels. Cytotoxicity and cell adhesion potential evaluated in primary human retinal epithelial cells showed no toxicity or adhesion of the ocular cells. Biofilm adhesion studies in Escherichia coli and Staphylococcus aureus showed over 85% reduction in biofilm adhesion for the best-modified polymer compared to the unconjugated PVAGMA, highlighting its antifouling potential.
Collapse
Affiliation(s)
- Onyinye
J. Uwaezuoke
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Department
of Neurosciences, Division of Ophthalmology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
8
|
Lee DU, Kayumov M, Park J, Park SK, Kang Y, Ahn Y, Kim W, Yoo SH, Park JK, Kim BG, Oh YS, Jeong IS, Choi DY. Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater 2024; 34:112-124. [PMID: 38204564 PMCID: PMC10777421 DOI: 10.1016/j.bioactmat.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.
Collapse
Affiliation(s)
- Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Mukhammad Kayumov
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Yeongkwon Kang
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woojin Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | | | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| |
Collapse
|
9
|
Sharma P, Singh J, Singh B. Evaluation of physiochemical and biomedical properties of psyllium-poly(vinyl phosphonic acid-co-acrylamide)-cl-N,N-methylene bis acrylamide based hydrogels. Int J Biol Macromol 2024; 260:129546. [PMID: 38246461 DOI: 10.1016/j.ijbiomac.2024.129546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Present investigation deals with the synthesis of psyllium based copolymeric hydrogels and evaluation of their physiochemical and biomedical properties. These copolymers have been prepared by grafting of poly(vinyl phosphonic acid) (poly (VPA)) and poly(acrylamide) (poly(AAm)) onto psyllium in the presence of crosslinker N,N-methylene bis acrylamide (NNMBA). These copolymers [psyllium-poly(VPA-co-AAm)-cl-NNMBA] were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA)- differential thermal analysis (DTG). FESEM, AFM and XRD demonstrated heterogeneous morphology with a rough surface and an amorphous nature. Diffusion of ornidazole occurred with a non-Fickian diffusion mechanism, and the release profile data was fitted in the Korsemeyer-Peppas kinetic model. Biochemical analysis of hydrogel properties confirmed the blood-compatible nature during blood-polymer interactions and revealed haemolysis value 3.95 ± 0.05 %. The hydrogels exhibited mucoadhesive character during biomembrane-polymer interactions and demonstrated detachment force = 99.0 ± 0.016 mN. During 2,2-diphenyl-1-picrylhydrazyl reagent (DPPH) assay, free radical scavenging was observed 37.83 ± 3.64 % which illustrated antioxidant properties of hydrogels. Physiological and biomedical properties revealed that these hydrogels could be explored for drug delivery uses.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Jasvir Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
10
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
11
|
Miao C, Wang L, Shang Y, Du M, Yang J, Yuan J. Tannic Acid-Assisted Immobilization of Copper(II), Carboxybetaine, and Argatroban on Poly(ethylene terephthalate) Mats for Synergistic Improvement of Blood Compatibility and Endothelialization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15683-15693. [PMID: 36480797 DOI: 10.1021/acs.langmuir.2c02508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to thrombosis and intimal hyperplasia, small-diameter vascular grafts have poor long-term patency. A combination strategy based on nitric oxide (NO) and anticoagulants has the potential to address those issues. In this study, poly(ethylene terephthalate) (PET) mats were prepared by electrospinning and coated with tannic acid (TA)/copper ion complexes. The chelated copper ions endowed the mats with sustained NO generation by catalytic decomposition of endogenous S-nitrosothiol. Subsequently, zwitterionic carboxybetaine acrylate (CBA) and argatroban (AG) were immobilized on the mats. The introduced AG and CBA had synergistic effects on the improvement of blood compatibility, resulting in reduced platelet adhesion and prolonged blood clotting time. The biocomposite mats selectively promoted the proliferation and migration of human umbilical vein endothelial cells while inhibiting the proliferation and migration of human umbilical arterial smooth muscle cells under physiological conditions. In addition, the prepared mats exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Collectively, the prepared mats hold great promise as artificial small-diameter vascular grafts.
Collapse
Affiliation(s)
- Cuie Miao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Pan T, Li G, Li R, Cui X, Zhang W. Selective Removal of Boron from Aqueous Solutions Using ECH@NGM Aerogels with Excellent Hydrophilic and Mechanical Properties: Performance and Response Surface Methodology Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14879-14890. [PMID: 36399773 DOI: 10.1021/acs.langmuir.2c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The remediation of environmental boron contamination has received extensive research attention. The adsorbent ECH@NGM aerogel with high hydrophilic and mechanical properties was synthesized to remove boron. The ECH@NGM aerogel had a high adsorption capacity of 81.11 mg/g, which was 14.50% higher than that of commercial boron-selective resin Amberlite IRA743. The Freundlich model and pseudo-second-order model described the adsorption behavior well. In addition, the response surface methodology (RSM) could predict the experimental outcomes and optimize the reaction conditions, and X-ray photoelectron spectroscopy (XPS) and control tests were utilized to investigate probable adsorption mechanisms. These data showed that the B ← N coordination bond was the primary adsorption force. The adsorbent had good resistance to interference from coexisting salts, high reusability, good adsorption performance even after five reuse cycles, and a high desorption rate in a relatively short time. The adsorption performance in real brines could be maintained at 80%. Therefore, this work not only provided ECH@NGM aerogels for the removal of boron from brine but also elucidated the main adsorption processes between N-containing adsorbents and boron, facilitating the design of future adsorbents for boron removal.
Collapse
Affiliation(s)
- Tongtong Pan
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Gan Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Rujie Li
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Xiangmei Cui
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Weidong Zhang
- College of Chemical Engineering, Qinghai University, Xining810016, China
| |
Collapse
|
13
|
Zaman SU, Rafiq S, Ali A, Mehdi MS, Arshad A, Rehman SU, Muhammad N, Irfan M, Khurram MS, Zaman MKU, Hanbazazah AS, Lim HR, Show PL. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes. CHEMOSPHERE 2022; 307:135626. [PMID: 35863415 DOI: 10.1016/j.chemosphere.2022.135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 05/27/2023]
Abstract
The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Pakistan.
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan.
| | - Saif-Ur Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Muhammad Irfan
- Centre of Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | | | | | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
In-situ modified polyethersulfone oxygenation membrane with improved hemocompatibility and gas transfer efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
16
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Anbarasan R, Ranchani AAJ, Liu Y, Tung K. Synthesis and Characterization of Zwitter ion Functionalized Polysulfone Membrane. ChemistrySelect 2022. [DOI: 10.1002/slct.202200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramasamy Anbarasan
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
| | - Anthonisamy Amala Jeya Ranchani
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
- Department of Physics, HITS Chennai 603 103 Tamilnadu India
| | - Yu‐Cheng Liu
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
| | - Kuo‐Lun Tung
- Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
18
|
Huang S, Chen Y, Wang X, Guo J, Li Y, Dai L, Li S, Zhang S. Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Radu ER, Voicu SI. Functionalized Hemodialysis Polysulfone Membranes with Improved Hemocompatibility. Polymers (Basel) 2022; 14:1130. [PMID: 35335460 PMCID: PMC8954096 DOI: 10.3390/polym14061130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
The field of membrane materials is one of the most dynamic due to the continuously changing requirements regarding the selectivity and the upgradation of the materials developed with the constantly changing needs. Two membrane processes are essential at present, not for development, but for everyday life-desalination and hemodialysis. Hemodialysis has preserved life and increased life expectancy over the past 60-70 years for tens of millions of people with chronic kidney dysfunction. In addition to the challenges related to the efficiency and separative properties of the membranes, the biggest challenge remained and still remains the assurance of hemocompatibility-not affecting the blood during its recirculation outside the body for 4 h once every two days. This review presents the latest research carried out in the field of functionalization of polysulfone membranes (the most used polymer in the preparation of membranes for hemodialysis) with the purpose of increasing the hemocompatibility and efficiency of the separation process itself with a decreasing impact on the body.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
20
|
Zwitterionic analog structured ultrafiltration membranes for high permeate flux and improved anti-fouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review. ENVIRONMENTAL RESEARCH 2022; 204:112045. [PMID: 34536369 DOI: 10.1016/j.envres.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
Collapse
Affiliation(s)
- Pooja Hariharan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Sujithra Sundarrajan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Sunanda Seshan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
22
|
Liu S, Tang J, Ji F, Lin W, Chen S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022; 8:46. [PMID: 35049581 PMCID: PMC8775195 DOI: 10.3390/gels8010046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Taizhou Technician College, Taizhou 318000, China
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
23
|
Maggay IVB, Aini HN, Lagman MMG, Tang SH, Aquino RR, Chang Y, Venault A. A Biofouling Resistant Zwitterionic Polysulfone Membrane Prepared by a Dual-Bath Procedure. MEMBRANES 2022; 12:69. [PMID: 35054595 PMCID: PMC8780878 DOI: 10.3390/membranes12010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/06/2023]
Abstract
This study introduces a zwitterionic material to modify polysulfone (PSf) membranes formed by a dual bath procedure, in view of reducing their fouling propensity. The zwitterionic copolymer, derived from a random polymer of styrene and 4-vinylpyrridine and referred to as zP(S-r-4VP), was incorporated to the PSf solution without any supplementary pore-forming additive to study the effect of the sole copolymer on membrane-structuring, chemical, and arising properties. XPS and mapping FT-IR provided evidence of the modification. Macrovoids appeared and then disappeared as the copolymer content increased in the range 1-4 wt%. The copolymer has hydrophilic units and its addition increases the casting solution viscosity. Both effects play an opposite role on transfers, and so on the growth of macrovoids. Biofouling tests demonstrated the efficiency of the copolymer to mitigate biofouling with a reduction in bacterial and blood cell attachment by more than 85%. Filtration tests revealed that the permeability increased by a twofold factor, the flux recovery ratio was augmented from 40% to 63% after water/BSA cycles, and irreversible fouling was reduced by 1/3. Although improvements are needed, these zwitterionic PSf membranes could be used in biomedical applications where resistance to biofouling by cells is a requirement.
Collapse
Affiliation(s)
- Irish Valerie B. Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Hana Nur Aini
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Mary Madelaine G. Lagman
- School of Chemical, Biological, and Materials Engineering and Science, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines; (M.M.G.L.); (R.R.A.)
| | - Shuo-Hsi Tang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Ruth R. Aquino
- School of Chemical, Biological, and Materials Engineering and Science, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines; (M.M.G.L.); (R.R.A.)
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (I.V.B.M.); (H.N.A.); (S.-H.T.)
| |
Collapse
|
24
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
25
|
|
26
|
Luo Q, Wang Y, Li L, Huang X, Cheng Z, Wang X, He L. Hydrothermal synthesis of hydroxyl terminated polymer boron adsorbents. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Tannic acid and Poly(N-acryloyl morpholine) layer-by-layer built hemodialysis membrane surface for intervening oxidative stress integrated with high biocompatibility and dialysis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Rao R, Liu X, Li Y, Tan X, Zhou H, Bai X, Yang X, Liu W. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci 2021; 9:685-699. [PMID: 33330897 DOI: 10.1039/d0bm01772h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal epithelial and mucus barriers on the gastrointestinal tract limit the bioavailability of oral protein or peptide drugs. Therefore, efficient mucus permeability and cellular internalization are required properties for oral delivery systems. To overcome these two obstacles, porous silicon nanoparticles were modified with poly (pyridyl disulfide ethylene phosphate/sulfobetaine) polymers to make P(PyEP-g-SBm)n-AmPSiNPs (m = 0.1, 0.2, 0.3 and n = 10, 20, 30) nanoparticles (NPs). The insulin-loaded P(PyEP-g-SB)-AmPSiNPs showed favorable stability and good biocompatibility in vitro. The zwitterionic dodecyl sulfobetaine (SB) coated nanoparticles improved the mucus permeability. P(PyEP-g-SBm)20 with the optimal conjugated ratio (m = 0.3) of SB units was determined by evaluating the mucus diffusion rate of NPs. The cellular uptake of P(PyEP-g-SB0.3)n-AmPSiNPs (n = 10, 20, 30) was much higher than AmPSiNPs in the presence of inhibitors (N-acetylcysteine solution and sodium chlorate) (p < 0.01) due to the enhanced charge shielding effect of P(PyEP-g-SB) modification. The P(PyEP-g-SB0.3)20-AmPSiNPs showed about 1.4-1.7 fold increase in the apparent permeability of insulin across Caco-2/HT-29-MTX cell monolayers, compared to AmPSiNPs (p < 0.01). Finally, the in vivo study showed that insulin-loaded P(PyEP-g-SB0.3)20-AmPSiNPs generated 20% reduction of the blood glucose level with an 2-fold increase in oral bioavailability. These suggested that zwitterionic polyphosphoester modified porous silicon nanoparticles, which were of enhanced mucus permeability and cellular internalization, represent a promising carrier for oral delivery of peptide and protein.
Collapse
Affiliation(s)
- Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xuhan Liu
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, UK
| | - Yinghuan Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xicheng Bai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China. and National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China. and National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
29
|
Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:906-965. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable methods have so far been used for the surface modification of biomedical membranes. Several reviews and articles have been published on the improvements achieved in the field of poly(arylsulfone) membranes subjected to various surface modification methods and used in biomedical applications. This review concentrates on the surface modification, biological applications and future perspective of the poly(arylsulfone) biomedical membranes. Different surface modification procedures employed for the poly(arylsulfone) membranes have been classified, studied and compared. Diverse surface modification techniques include surface coating, chemical modification and immobilization/cross-linking, grafting, surface zwitterionicalization, mussel-inspired coating and layer-by-layer assembly. Furthermore, we review the recent research studies performed on the surface modification of the poly(arylsulfone) biomedical membranes. Meanwhile, the properties of biomedical membranes are also discussed in each section. At last, the future perspective and challenges of the strategies utilized for the surface modification of poly(arylsulfone) biomedical membranes are presented.
Collapse
Affiliation(s)
- Vahid Hoseinpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Laya Noori
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Saba Mahmoodpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
30
|
Shen X, Liu P, He C, Xia S, Liu J, Cheng F, Suo H, Zhao Y, Chen L. Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Dizon GV, Lee YS, Venault A, Maggay IV, Chang Y. Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Zhang Z, Dou Q, Wang S, Hu D, Yang B, Zhao Z, Liu H, Dai Q. The development of an antifouling interpenetrating polymer network hydrogel film for salivary glucose monitoring. NANOSCALE 2020; 12:22787-22797. [PMID: 33174578 DOI: 10.1039/d0nr05854h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to its rapid response and broad detection range, a phenylboronic acid (PBA)-functionalized hydrogel film-coated quartz crystal microbalance (QCM) sensor is used to non-invasively monitor salivary glucose in diabetic patients. However, nonspecific protein adsorption on the PBA-functionalized hydrogel film can cause dramatic loss of sensitivity and accuracy of the sensor. A traditional zwitterionic polymer surface with ultra-low protein fouling can hinder the interaction of PBA in the hydrogel matrix with glucose molecules owing to its steric hindrance, resulting in poor glucose sensitivity of the sensor. Herein, we developed a novel hydrogel film that enhanced the antifouling properties and sensitivity of the QCM sensor by infiltrating a glucose-sensitive monomer (i.e., PBA) into a zwitterionic polymer brush matrix to form an interpenetrating polymer network (IPN). The IPN hydrogel film could minimize the glucose sensitivity loss since the antifouling polymer distributed in its matrix. Moreover, a stable hydration layer was formed in this film that could prevent water from transporting out of the matrix, thus further improving its antifouling properties and glucose sensitivity. The experimental results confirmed that the IPN hydrogel film possessed excellent resistance to protein fouling by mucin from whole saliva with reductions in adsorption of nearly 88% and could also enhance the glucose sensitivity by nearly 2 fold, compared to the PBA-functionalized hydrogel film. Therefore, the IPN hydrogel film provides improved antifouling properties and sensitivity of the QCM sensor, which paves the way for non-invasive monitoring of low concentrations of glucose in saliva.
Collapse
Affiliation(s)
- Zifeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhu T, Gao W, Fang D, Liu Z, Wu G, Zhou M, Wan M, Mao C. Bifunctional polymer brush-grafted coronary stent for anticoagulation and endothelialization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111725. [PMID: 33545876 DOI: 10.1016/j.msec.2020.111725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
At present, cardiovascular stent intervention faces clinical complications such as delayed endothelialization, late thrombosis and restenosis after implantation. In this work, a kind of bifunctional polymer brush-grafted coronary stent with anticoagulant and endothelial functions was developed. First, a block copolymer brush with zwitterionic structure consisting of sulfoethyl methacrylate (SBMA) and glycidyl methacrylate (GMA) was surface-induced grafted onto the surface of bare metal coronary stent by atom transfer radical polymerization. The diethylenetriamine NONOate (DETA NONOate), acted as nitric oxide (NO) donor to promote endothelialization, was then attached to polyglycidyl methacrylate (PGMA) brush by a reactive epoxy group to produce NO. The process of chemical modification and the release behavior of NO were characterized in detail. Moreover, the results of anticoagulant test, cytotoxicity test, endothelial cells (ECs) proliferation test and animal experiment of this bifunctional polymer brush-grafted coronary stent we proposed indicate that the zwitterion modified and NO supplied bifunctional coatings has good anticoagulant property, no cytotoxicity and significant endothelialization effect. This work opens the door to combine biological activity of NO and anticoagulant effect of zwitterions, which has great potential to address post-operative side effects associated with restenosis and late stent thrombosis.
Collapse
Affiliation(s)
- Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wentao Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guangyan Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
34
|
Shen X, Liu T, Xia S, Liu J, Liu P, Cheng F, He C. Polyzwitterions Grafted onto Polyacrylonitrile Membranes by Thiol–Ene Click Chemistry for Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiang Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shubiao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jianjun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Peng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chixian He
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
35
|
Guo H, Wang Z, Liu Y, Huo P, Gu J, Zhao F. Synthesis and characterization of novel zwitterionic poly(aryl ether oxadiazole) ultrafiltration membrane with good antifouling and antibacterial properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Yang X, Sha D, Sun L, Chen L, Xu J, Shi K, Yu C, Wang B, Ji X. Charged group-modified poly(vinyl alcohol) hydrogels: Preparation and antibacterial property. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Phan QT, Patil MP, Tu TT, Le CM, Kim GD, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Wang L, Gong T, Brown Z, Randle C, Guan Y, Ye W, Ming W. Ascidian-Inspired Heparin-Mimetic Magnetic Nanoparticles with Potential for Application in Hemodialysis as Recycling Anticoagulants. ACS Biomater Sci Eng 2020; 6:1998-2006. [PMID: 33455351 DOI: 10.1021/acsbiomaterials.9b01865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, heparin-mimetic magnetic nanoparticles (HMNPs), which might be used as recycling anticoagulants, were synthesized by coating heparin-mimetic sodium alginate (HLSA) on the surface of iron oxide magnetic nanoparticles (MNPs), using 3,4,5-trihydroxyphenylalanine (TOPA) as a biological adhesive. HLSA was successfully immobilized on the MNP surface, as revealed by Fourier transform infrared spectroscopy and thermal gravimetric analysis, and the core (MNP)-shell (TOPA, HLSA) structure was confirmed by transmission electron microscopy observations. In addition, in vitro studies of protein adsorption, blood clotting time, and contact activation confirmed that the blood compatibility of the HMNP was significantly enhanced compared with the bare MNP. The improved hemocompatibility was attributed to the introduction of the multiple heparin-mimetic groups (-SO3Na, -COONa, and -OH). In addition, the HMNP showed outstanding recycle stability and, thus, can be reused if needed. The synthesized HMNP appeared to be a suitable biomaterial to safely replace heparin as an anticoagulant in patients undergoing long-term hemodialysis.
Collapse
Affiliation(s)
- Lingren Wang
- Department of Mechanical and Materials Engineering, Huaiyin Institute of Technology, Huaian 223003, China.,Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Tao Gong
- Department of Mechanical and Materials Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zachary Brown
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Christopher Randle
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Yingying Guan
- Department of Mechanical and Materials Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Wei Ye
- Department of Mechanical and Materials Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
40
|
Tang SH, Venault A, Hsieh C, Dizon GV, Lo CT, Chang Y. A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Marjani A, Nakhjiri AT, Adimi M, Jirandehi HF, Shirazian S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci Rep 2020; 10:2049. [PMID: 32029799 PMCID: PMC7005172 DOI: 10.1038/s41598-020-58472-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
In the present paper, Graphene Oxide (GO) particles were prepared via Hummer method, and used in synthesis of composite membranes. Polyethersulfone (PES) nanocomposite membranes were synthesized via wet phase inversion technique, and using water as non-solvent. The membrane morphology was investigated using scanning electron microscopy (SEM). Change in the membrane surface hydrophilicity after modification was studied using contact angle measurements. The performance of fabricated PES nanocomposite membranes was measured by evaluating pure water flux, salt rejection, dye retention and heavy metals removal. The results indicated that by increasing the filler percentage up to 5 wt.%, the contact angle between the water droplet and the membrane surface was decreased and the droplet was more dispersed on the membrane surface which implies higher hydrophilicity of the prepared nanocomposite membranes. Moreover, the experimental results corroborated that addition of GO to the membrane significantly improved the pure water flux, salt rejection and heavy metals removal, and can be used as a novel methodology for preparation of high performance membranes in water treatment.
Collapse
Affiliation(s)
- Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Taghvaie Nakhjiri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Adimi
- Department of Chemical Engineering, Farahan Branch, Islamic Azad University, Farahan, Iran
| | | | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
42
|
Nikita K, Ray D, Aswal V, Murthy C. Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Kang S, Kim J, Kim S, Wufuer M, Park S, Kim Y, Choi D, Jin X, Kim Y, Huang Y, Jeon B, Choi TH, Park JU, Lee Y. Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomater Sci 2020; 8:1580-1591. [DOI: 10.1039/c9bm01802f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article presents the efficacy of heat-induced MPC-grafting against excessive fibrous capsule formation and related inflammation in tissues surrounding silicone breast implants inserted in a pig model.
Collapse
|
45
|
Bryuzgin E, Klimov V, Tarasova Y, Sprygina E, Nikolitchev D, Navrotsky A, Novakov I. Superhydrophilic and underwater superoleophobic coatings on the basis of grafted polyelectrolytes on a textured aluminum surface. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Wang J, Chu C, He Y, Xiang T, Zhou S. Light‐induced dynamically tunable micropatterned surface for the regulation of the endothelial cell alignment. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jiao Wang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Chengzhen Chu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Yang He
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| |
Collapse
|
48
|
Xie Y, Chen S, Zhang X, Shi Z, Wei Z, Bao J, Zhao W, Zhao C. Engineering of Tannic Acid Inspired Antifouling and Antibacterial Membranes through Co-deposition of Zwitterionic Polymers and Ag Nanoparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenqiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
49
|
Dobosz KM, Kuo-LeBlanc CA, Emrick T, Schiffman JD. Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1872-1881. [PMID: 30145903 PMCID: PMC6363866 DOI: 10.1021/acs.langmuir.8b02184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate antifouling ultrafiltration membranes with retained selectivity and pure water flux through the controlled deposition of zwitterionic polymers and poly(ethylene glycol) (PEG). Molecules for polymerization were immobilized on the membrane's surface yet prevented from attaching to the membrane's pores due to a backflow of nitrogen (N2) gas achieved using an in-house constructed apparatus that we named the polymer prevention apparatus, or "PolyPrev". First, the operating parameters of the PolyPrev were optimized by investigating the polymerization of dopamine, which was selected due to its versatility in enabling further chemical reactions, published metrics for comparison, and its oxidative self-polymerization. Membrane characterization revealed that the polydopamine-modified membranes exhibited enhanced hydrophilicity; moreover, their size selectivity and pure water flux were statistically the same as those of the unmodified membranes. Because it is well documented that polydopamine coatings do not provide a long-lasting antifouling activity, poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC, Mn = 30 kDa) and succinimidyl-carboxymethyl-ester-terminated PEG ( Mn = 40 kDa) were codeposited while dopamine was polymerizing to generate antifouling membranes. Statistically, the molecular-weight cutoff of the polyMPC- and PEG-functionalized membranes synthesized in the PolyPrev was equivalent to that of the unmodified membranes, and the pure water flux of the PEG membranes was equivalent to that of the unmodified membranes. Notably, membranes prepared in the PolyPrev with polyMPC and PEG decreased bovine serum albumin fouling and Escherichia coli attachment. This study demonstrates that by restricting antifouling chemistries from attaching within the pores of membranes, we can generate high-performance, antifouling membranes appropriate for a wide range of water treatment applications without compromising intrinsic transport properties.
Collapse
Affiliation(s)
- Kerianne M. Dobosz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A. Kuo-LeBlanc
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
50
|
Sun T, Guo X, Zhong R, Ma L, Li H, Gu Z, Guan J, Tan H, You C, Tian M. Interactions of oligochitosan with blood components. Int J Biol Macromol 2018; 124:304-313. [PMID: 30445093 DOI: 10.1016/j.ijbiomac.2018.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/15/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Oligochitosan (OCHI) is known to have some specific biological activities. However, its interactions with blood components and related correlation with molecular structures remains to be clarified due to its growing use in biomedical areas. Herein, a series of OCHI were prepared by hydrogen peroxide induced degradation combined fractionation in ethanol solutions and their molecular structures were characterized by GPC, FTIR, 1H and 13C NMR, and then the interactions of the prepared OCHI with blood components, including red blood cells (hemolysis, deformability, and aggregation), coagulation system, complement (C3a, and C5a activation), and platelet (activation, and aggregation), were investigated. For red blood cells, OCHI has a quite low risk of hemolysis in a dose- and MW-dependent manner and the deformability and aggregation were observed in its high MW fraction. The coagulation tests revealed that OCHI is capable of a mild anticoagulation through blocking the intrinsic pathway and the anticoagulation corresponding MW was identified. In terms of complement, OCHI could inhibit C3a in a dose-dependent manner and activate C5a with its high MW fraction. In addition, there is no significant effect of OCHI on platelet activation and aggregation. Based on above results, the interactions related mechanism was discussed and proposed.
Collapse
Affiliation(s)
- Tong Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Guo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|