1
|
Steiner K, Humpel C. Brain Slice Derived Nerve Fibers Grow along Microcontact Prints and are Stimulated by Beta-Amyloid(42). FRONT BIOSCI-LANDMRK 2024; 29:232. [PMID: 38940051 DOI: 10.31083/j.fbl2906232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by extracellular beta-amyloid plaques, intraneuronal tau neurofibrillary tangles and excessive neurodegeneration. The mechanisms of neuron degeneration and the potential of these neurons to form new nerve fibers for compensation remain elusive. The present study aimed to evaluate the impact of beta-amyloid and tau on new formations of nerve fibers from mouse organotypic brain slices connected to collagen-based microcontact prints. METHODS Organotypic brain slices of postnatal day 8-10 wild-type mice were connected to established collagen-based microcontact prints loaded with polyornithine to enhance nerve fiber outgrowth. Human beta-amyloid(42) or P301S mutated aggregated tau was co-loaded to the prints. Nerve fibers were immunohistochemically stained with neurofilament antibodies. The physiological activity of outgrown neurites was tested with neurotracer MiniRuby, voltage-sensitive dye FluoVolt, and calcium-sensitive dye Rhod-4. RESULTS Immunohistochemical staining revealed newly formed nerve fibers extending along the prints derived from the brain slices. While collagen-only microcontact prints stimulated nerve fiber growth, those loaded with polyornithine significantly enhanced nerve fiber outgrowth. Beta-amyloid(42) significantly increased the neurofilament-positive nerve fibers, while tau had only a weak effect. MiniRuby crystals, retrogradely transported along these newly formed nerve fibers, reached the hippocampus, while FluoVolt and Rhod-4 monitored electrical activity in newly formed nerve fibers. CONCLUSIONS Our data provide evidence that intact nerve fibers can form along collagen-based microcontact prints from mouse brain slices. The Alzheimer's peptide beta-amyloid(42) stimulates this growth, hinting at a neuroprotective function when physiologically active. This "brain-on-chip" model may offer a platform for screening bioactive factors or testing drug effects on nerve fiber growth.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Namchaiw P, Bunreangsri P, Eiamcharoen P, Eiamboonsert S, P. Poo-arporn R. An in vitro workflow of neuron-laden agarose-laminin hydrogel for studying small molecule-induced amyloidogenic condition. PLoS One 2022; 17:e0273458. [PMID: 36026506 PMCID: PMC9416999 DOI: 10.1371/journal.pone.0273458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
In vitro studies have been popularly used to determine the cellular and molecular mechanisms for many decades. However, the traditional two-dimension (2D) cell culture which grows cells on a flat surface does not fully recapitulate the pathological phenotypes. Alternatively, the three-dimension (3D) cell culture provides cell-cell and cell-ECM interaction that better mimics tissue-like structure. Thus, it has gained increasing attention recently. Yet, the expenses, time-consuming, and complications of cellular and biomolecular analysis are still major limitations of 3D culture. Herein, we describe a cost-effective and simplified workflow of the 3D neuronal cell-laden agarose-laminin preparation and the isolation of cells, RNAs, and proteins from the scaffold. To study the effects of the amyloidogenic condition in neurons, we utilized a neuron-like cell line, SH-SY5Y, and induced the amyloidogenic condition by using an amyloid forty-two inducer (Aftin-4). The effectiveness of RNAs, proteins and cells isolation from 3D scaffold enables us to investigate the cellular and molecular mechanisms underlying amyloidogenic cascade in neuronal cells. The results show that SH-SY5Y cultured in agarose-laminin scaffold differentiated to a mature TUJ1-expressing neuron cell on day 7. Furthermore, the gene expression profile from the Aftin-4-induced amyloidogenic condition revealed the expression of relevant gene-encoding proteins in the amyloidogenic pathway, including APP, BACE1, PS1, and PS2. This platform could induce the amyloid-beta 42 secretion and entrap secreted proteins in the scaffold. The induction of amyloidogenic conditions in a 3D culture facilitates the interaction between secreted amyloid-beta and neurons, which makes it resembles the pathological environment in Alzheimer's brain. Together, this workflow is applicable for studying the cellular and molecular analysis of amyloid-induced neuronal toxicity, such as those occurred in Alzheimer's disease progression. Importantly, our method is cost-effective, reproducible, and easy to manipulate.
Collapse
Affiliation(s)
- Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Patapon Bunreangsri
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Piyaporn Eiamcharoen
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Thung Kru, Bangkok, Thailand
- Veterinary Medical Teaching Hospital, University of California Davis, Davis, California, United States of America
| | - Salita Eiamboonsert
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
- Media Technology, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| | - Rungtiva P. Poo-arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Thung Kru, Bangkok, Thailand
| |
Collapse
|
3
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
4
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
5
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
6
|
Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J. 3D biomaterial models of human brain disease. Neurochem Int 2021; 147:105043. [PMID: 33887378 DOI: 10.1016/j.neuint.2021.105043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.
Collapse
Affiliation(s)
- Janko Kajtez
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden.
| | - Fredrik Nilsson
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Malin Parmar
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
8
|
Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, Mejias-Ortega M, Nuñez-Diaz C, Fernandez-Valenzuela JJ, Sanchez-Varo R, Davila JC, Vitorica J, Gutierrez A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186867. [PMID: 32962164 PMCID: PMC7558359 DOI: 10.3390/ijms21186867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular amyloid-beta deposition and intraneuronal Tau-laden neurofibrillary tangles are prime features of Alzheimer's disease (AD). The pathology of AD is very complex and still not fully understood, since different neural cell types are involved in the disease. Although neuronal function is clearly deteriorated in AD patients, recently, an increasing number of evidences have pointed towards glial cell dysfunction as one of the main causative phenomena implicated in AD pathogenesis. The complex disease pathology together with the lack of reliable disease models have precluded the development of effective therapies able to counteract disease progression. The discovery and implementation of human pluripotent stem cell technology represents an important opportunity in this field, as this system allows the generation of patient-derived cells to be used for disease modeling and therapeutic target identification and as a platform to be employed in drug discovery programs. In this review, we discuss the current studies using human pluripotent stem cells focused on AD, providing convincing evidences that this system is an excellent opportunity to advance in the comprehension of AD pathology, which will be translated to the development of the still missing effective therapies.
Collapse
Affiliation(s)
- Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| |
Collapse
|
9
|
Lee C, Willerth SM, Nygaard HB. The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer’s Disease Modeling. Prog Neurobiol 2020; 192:101804. [DOI: 10.1016/j.pneurobio.2020.101804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
|
10
|
Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as Bioink for Bioprinting: A Comprehensive Review. Int J Bioprint 2020; 6:270. [PMID: 33088985 PMCID: PMC7557346 DOI: 10.18063/ijb.v6i3.270] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Biomaterials made using collagen are successfully used as a three-dimensional (3D) substrate for cell culture and considered to be promising scaffolds for creating artificial tissues. An important task that arises for engineering such materials is the simulation of physical and morphological properties of tissues, which must be restored or replaced. Modern additive technologies, including 3D bioprinting, can be applied to successfully solve this task. This review provides the latest evidence on advances of 3D bioprinting with collagen in the field of tissue engineering. It contains modern approaches for printing pure collagen bioinks consisting only of collagen and cells, as well as the obtained results from the use of pure collagen bioinks in different fields of tissue engineering.
Collapse
Affiliation(s)
- Egor Olegovich Osidak
- Imtek Ltd., 3 Cherepkovskaya 15A, Moscow, Russia.,Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow, Russia
| | - Vadim Igorevich Kozhukhov
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow, Russia.,Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15A, Moscow, Russia
| | | | - Sergey Petrovich Domogatsky
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow, Russia.,Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15A, Moscow, Russia
| |
Collapse
|
11
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
12
|
Wang K, Chen Q, Wu N, Li Y, Zhang R, Wang J, Gong D, Zou X, Liu C, Chen J. Berberine Ameliorates Spatial Learning Memory Impairment and Modulates Cholinergic Anti-Inflammatory Pathway in Diabetic Rats. Front Pharmacol 2019; 10:1003. [PMID: 31551793 PMCID: PMC6743342 DOI: 10.3389/fphar.2019.01003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Cognitive impairment caused by diabetes has been recognized. Berberine is well known for its resistance to peripheral lesions, but it is rarely used for the treatment of spatial learning and memory caused by diabetes. This study explored the mechanism of berberine to alleviate cognitive impairment via the cholinergic anti-inflammatory and insulin signaling pathways. Methods: Morris water maze was used to appraise spatial learning and memory. Positron-emission tomography (PET) imaging was adopted to detect the transport of glucose, and blood/cerebrospinal fluid (CSF) glucose was checked using commercial blood glucose meter. Insulin level was measured by ELISA kit and β-Amyloid (Aβ) formation was observed by Congo red staining. Western-blot was performed to appraise protein expression. Results: We found that berberine rectified some aberrant changes in signal molecules concerning inflammation, and cholinergic and insulin signaling pathways in the hippocampus. Furthermore, CSF/blood glucose, inflammatory response or acetyl cholinesterase enzyme (AChE) activity were reduced by berberine. Additionally, acetylcholine levels were enhanced after berberine treatment in diabetic rats. Finally, Aβ formation in diabetic hippocampus was inhibited and spatial learning memory was ameliorated by berberine. Discussion: In conclusion, berberine clears Aβ deposit and consequently ameliorates spatial learning memory impairment via the activation of the cholinergic anti-inflammatory and insulin signaling pathways in diabetic rats.
Collapse
Affiliation(s)
- Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ninghua Wu
- Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yong Li
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jiawen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Di Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Tate KM, Munson JM. Assessing drug response in engineered brain microenvironments. Brain Res Bull 2019; 150:21-34. [PMID: 31054318 PMCID: PMC6754984 DOI: 10.1016/j.brainresbull.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
Tissue engineered systems are important models for the testing and discovery of therapeutics against a number of diseases. The use of these models in vitro can expand both our understanding of the mechanisms behind disease and allow for higher throughput and personalized modeling of therapeutic response. Over the past decade there has been an explosion of models of neurological disorders that can be used in vitro to study new therapies against devastating neurodegenerative, neurodevelopmental, and neuro-oncological disease. These models span several types of engineered microenvironments which are produced using microfluidic devices, microtissue technology and/or the incorporation of biomaterial scaffolds to model neurological conditions such as; Alzheimer's disease, idiopathic autism, Parkinson's disease, Zika-induced microcephaly and neoplasms. Using engineered brain microenvironments, therapeutics can be tested in more physiologically relevant ways leading to new knowledge of the underlying causes and interactions occurring at the tissue level. However, much is still left to learn and model within these systems to make them truly valuable in the discovery and testing of novel therapies. Here we review the current state of the art of engineered brain microenvironments being used specifically to screen and test new therapeutic strategies and discuss the current benefits and limitations that still exist.
Collapse
Affiliation(s)
- Kinsley M Tate
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer M Munson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
14
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Ranjan VD, Qiu L, Tan EK, Zeng L, Zhang Y. Modelling Alzheimer's disease: Insights from in vivo to in vitro three-dimensional culture platforms. J Tissue Eng Regen Med 2018; 12:1944-1958. [PMID: 30011422 DOI: 10.1002/term.2728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss, impairment of other cognitive functions, and inability to perform activities of daily life. The key to understanding AD aetiology lies in the development of effective disease models, which should ideally recapitulate all aspects pertaining to the disease. A plethora of techniques including in vivo, in vitro, and in silico platforms have been utilized in developing disease models of AD over the years. Each of these approaches has revealed certain essential characteristics of AD; however, none have managed to fully mimic the pathological hallmarks observed in the AD human brain. In this review, we will provide details into the genesis, evolution, and significance of the principal methods currently employed in modelling AD, the advantages and limitations faced in their application, including the headways made by each approach. This review will focus primarily on two-dimensional and three-dimensional in vitro modelling of AD, which during the last few years has made significant breakthroughs in the areas of AD pathology and therapeutic screening. In addition, a glimpse into state-of-the-art neural tissue engineering techniques incorporating biomaterials and microfluidics technologies is provided, which could pave the way for the development of more accurate and comprehensive AD models in the future.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore.,School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.,Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
17
|
Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural tissue models: From spheroids to bioprinting. Biomaterials 2017; 154:113-133. [PMID: 29120815 DOI: 10.1016/j.biomaterials.2017.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studies. In this paper, we review the recent developments in 3D in vitro neural tissue models, with a particular focus on the emerging bioprinted tissue structures. We draw on specific examples to describe the merits and limitations of each model, in terms of different applications. Bioprinting offers a revolutionary approach for constructing repeatable and controllable 3D in vitro neural tissues with diverse cell types, complex microscale features and tissue level responses. Further advances in bioprinting research would likely consolidate existing models and generate complex neural tissue structures bearing higher fidelity, which is ultimately useful for probing disease-specific mechanisms, facilitating development of novel therapeutics and promoting neural regeneration.
Collapse
Affiliation(s)
- Pei Zhuang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Alfred Xuyang Sun
- Department of Neurology, National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Chee Kai Chua
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
18
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
19
|
Watson PMD, Kavanagh E, Allenby G, Vassey M. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS DISCOVERY 2017; 22:583-601. [PMID: 28346104 DOI: 10.1177/2472555217691450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.
Collapse
|
20
|
Collins SJ, Haigh CL. Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochem Biophys 2016; 75:3-13. [PMID: 27796787 DOI: 10.1007/s12013-016-0768-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
The ability to model brain tissue in three-dimensions offers new potential for elucidating functional cellular interactions and corruption of such functions during pathogenesis. Many protocols now exist for growing neurones in three-dimensions and these vary in complexity and cost. Herein, we describe a straight-forward method for generating three-dimensional, terminally differentiated central nervous system cultures from adult murine neural stem cells. The protocol requires no specialist equipment, is not labour intensive or expensive and produces mature cultures within 10 days that can survive beyond a month. Populations of functional glutamatergic neurones could be identified within cultures. Additionally, the three dimensional neuronal cultures can be used to investigate tissue changes during the development of neurodegenerative disease where demonstration of hallmark features, such as plaque generation, has not previously been possible using two-dimensional cultures of neuronal cells. Using a prion model of acquired neurodegenerative disease, biochemical changes indicative of prion pathology were induced within 2-3 weeks in the three dimensional cultures. Our findings show that tissue differentiated in this simplified three dimensional culture model is physiologically competent to model central nervous system cellular behaviour as well as manifest the functional failures and pathological changes associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|