1
|
Hammad M, Dugué J, Maubert E, Baugé C, Boumédiene K. Decellularized apple hypanthium as a plant-based biomaterial for cartilage regeneration in vitro: a comparative study of progenitor cell types and environmental conditions. J Biol Eng 2025; 19:38. [PMID: 40264116 PMCID: PMC12012941 DOI: 10.1186/s13036-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Decellularized plant tissues have been shown to enhance the integration and proliferation of human cells, demonstrating biocompatibility. These tissues are now being considered as valuable biomaterials for tissue engineering due to their diverse architectures and favorable cytocompatibility. In this study, we assessed decellularized apple hypanthium as a potential biomaterial for generating cartilage-like structures, utilizing four different progenitor cell types and varying environmental conditions in vitro. RESULTS Cell viability assays indicated integration and cell proliferation. Histological staining and gene expression analyses confirmed the synthesis and deposition of a cartilaginous extracellular matrix. Notably, hypoxia had varying effects on chondrogenesis based on the cell type. Among the progenitor cells evaluated, those derived from auricular perichondrium were particularly promising, as they differentiated into chondrocytes without requiring a low-oxygen environment. Additionally, our findings demonstrated that apple-derived biomaterials outperformed microencapsulation in alginate beads in promoting chondrogenesis. CONCLUSION These results highlight the potential of plant-based biomaterials for the development of implantable devices for cartilage regeneration and suggest broader applications in tissue engineering and future clinical endeavors.
Collapse
Affiliation(s)
- Mira Hammad
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Justin Dugué
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
- Service ORL et chirurgie Cervico-faciale, CHU de Caen, Caen, France
| | - Eric Maubert
- Phind Inserm UMR-S 1237, Université de Caen Normandie, Caen, France
| | - Catherine Baugé
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Karim Boumédiene
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France.
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France.
| |
Collapse
|
2
|
Mukasheva F, Adilova L, Dyussenbinov A, Yernaimanova B, Abilev M, Akilbekova D. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front Bioeng Biotechnol 2024; 12:1444986. [PMID: 39600888 PMCID: PMC11588461 DOI: 10.3389/fbioe.2024.1444986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Scaffold porosity is a critical factor in replicating the complex in vivo microenvironment, directly influencing cellular interactions, migration, nutrient transfer, vascularization, and the formation of functional tissues. For optimal tissue formation, scaffold design must account for various parameters, including material composition, morphology, mechanical properties, and cellular compatibility. This review highlights the importance of interconnected porosity and pore size, emphasizing their impact on cellular behavior and tissue formation across several tissue engineering domains, such as skin, bone, cardiovascular, and lung tissues. Specific pore size ranges enhance scaffold functionality for different tissues: small pores (∼1-2 µm) aid epidermal cell attachment in skin regeneration, moderate pores (∼2-12 µm) support dermal migration, and larger pores (∼40-100 µm) facilitate vascular structures. For bone tissue engineering, multi-layered scaffolds with smaller pores (50-100 µm) foster cell attachment, while larger pores (200-400 µm) enhance nutrient diffusion and angiogenesis. Cardiovascular and lung tissues benefit from moderate pore sizes (∼25-60 µm) to balance cell integration and nutrient diffusion. By addressing critical design challenges and optimizing pore size distributions, this review provides insights into scaffold innovations, ultimately advancing tissue regeneration strategies.
Collapse
Affiliation(s)
- Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Laura Adilova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Aibek Dyussenbinov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Bota Yernaimanova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Madi Abilev
- Department of Analytical, Colloid Chemistry and Technology of Rare Elements, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
3
|
Hu Y, Li L, Li Q, Pan S, Feng G, Lan X, Jiao J, Zhong L, Sun L. A biomimetic tri-phasic scaffold with spatiotemporal patterns of gastrodin to regulate hierarchical tissue-based vascular regeneration. Bioact Mater 2024; 38:512-527. [PMID: 38798891 PMCID: PMC11126808 DOI: 10.1016/j.bioactmat.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Clinical use of small-diameter vascular grafts remains a challenging issue in neovessel regeneration in view of thrombosis and intimal hyperplasia. Developing a vascular graft with structure and function similar to those of the native vessels necessitates a major direction of vascular tissue regeneration. Thus, this study sought to design and fabricate a range of tri-phasic scaffolds (0, 2, and 5 wt% gastrodin-polyurethane (PU)) with spatiotemporally defined structure and gastrodin-release for regulating the highly coordinated processes in growth of the intima and media. While the small pores of inner layer guided infiltration of human umbilical vein endothelial cells (HUVECs), the bigger pores of medial layer could offer smooth muscle cell (SMC)-friendly habitat, and external fibers conferred adequate mechanical properties. Correspondingly, spatial distribution and differential regulation of key proteins in HUVECs and SMCs were mediated by hierarchical release of gastrodin, of which rapid release in inner layer elicited enhanced HUVEC proliferation and migration against those of the SMC via activated endothelial nitric oxide synthase (eNOS) and heat shock protein 70 (HSP70) signal. Of note, superior anti-coagulation was reflected in 2 wt% gastrodin-PU ex vivo extracorporeal blood circulation experiment. After in vivo implantation for 12 weeks, there was no formation of obvious thrombosis and intimal hyperplasia in 2 wt% gastrodin-PU. The scaffold maintained high patency and improved vascular remodeling, including the formation of thin endothelialization in lumen and dense extracellular matrix deposition in medial layer. Taken together, the results demonstrate the positive function of hierarchical releasing system that responded to tri-phasic structure, which not only suppressed intimal thickening but also tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Sun
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
| |
Collapse
|
4
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
5
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li P, Liang F, Wang L, Jin D, Shang Y, Liu X, Pan Y, Yuan J, Shen J, Yin M. Bilayer vascular grafts with on-demand NO and H 2S release capabilities. Bioact Mater 2024; 31:38-52. [PMID: 37601276 PMCID: PMC10432902 DOI: 10.1016/j.bioactmat.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) gasotransmitters exhibit potential therapeutic effects in the cardiovascular system. Herein, biomimicking multilayer structures of biological blood vessels, bilayer small-diameter vascular grafts (SDVGs) with on-demand NO and H2S release capabilities, were designed and fabricated. The keratin-based H2S donor (KTC) with good biocompatibility and high stability was first synthesized and then electrospun with poly (l-lactide-co-caprolactone) (PLCL) to be used as the outer layer of grafts. The electrospun poly (ε-caprolactone) (PCL) mats were aminolyzed and further chelated with copper (II) ions to construct glutathione peroxidase (GPx)-like structural surfaces for the catalytic generation of NO, which acted as the inner layer of grafts. The on-demand release of NO and H2S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells (HUASMCs). Dual releases of NO and H2S gasotransmitters could enhance their respective production, resulting in enhanced promotion of HUVECs and inhibition of HUASMCs owing to their combined actions. In addition, the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress. In rat abdominal aorta replacement models, the grafts remained patency for 6 months. These grafts were capable of facilitating rapid endothelialization and alleviating neointimal hyperplasia without obvious injury, inflammation, or thrombosis. More importantly, the grafts were expected to avoid calcification with the degradation of the grafts. Taken together, these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| |
Collapse
|
7
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
9
|
Dokuchaeva AA, Mochalova AB, Timchenko TP, Kuznetsova EV, Podolskaya KS, Pashkovskaya OA, Filatova NA, Vaver AA, Zhuravleva IY. Remote Outcomes with Poly-ε-Caprolactone Aortic Grafts in Rats. Polymers (Basel) 2023; 15:4304. [PMID: 37959984 PMCID: PMC10649699 DOI: 10.3390/polym15214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Poly-ε-caprolactone ((1,7)-polyoxepan-2-one; PCL) is a biodegradable polymer widely used in various fields of bioengineering, but its behavior in long-term studies appears to depend on many conditions, such as application specificity, chemical structure, in vivo test systems, and even environmental conditions in which the construction is exploited in. In this study, we offer an observation of the remote outcomes of PCL tubular grafts for abdominal aorta replacement in an in vivo experiment on a rat model. Adult Wistar rats were implanted with PCL vascular matrices and observed for 180 days. The results of ultrasound diagnostics and X-ray tomography (CBCT) show that the grafts maintained patency for the entire follow-up period without thrombosis, leakage, or interruptions, but different types of tissue reactions were found at this time point. By the day of examination, all the implants revealed a confluent endothelial monolayer covering layers of hyperplastic neointima formed on the luminal surface of the grafts. Foreign body reactions were found in several explants including those without signs of stenosis. Most of the scaffolds showed a pronounced infiltration with fibroblastic cells. All the samples revealed subintimal calcium phosphate deposits. A correlation between chondroid metaplasia in profound cells of neointima and the process of mineralization was supported by immunohistochemical (IHC) staining for S100 proteins and EDS mapping. Microscopy showed that the scaffolds with an intensive inflammatory response or formed fibrotic capsules retain their fibrillar structure even on day 180 after implantation, but matrices infiltrated with viable cells partially save the original fibrillary network. This research highlights the advantages of PCL vascular scaffolds, such as graft permeability, revitalization, and good surgical outcomes. The disadvantages are low biodegradation rates and exceptionally high risks of mineralization and intimal hyperplasia.
Collapse
Affiliation(s)
- Anna A. Dokuchaeva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.B.M.); (T.P.T.); (E.V.K.); (K.S.P.); (O.A.P.); (N.A.F.); (A.A.V.); (I.Y.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang S, Chen H, Huang J, Shen S, Tang Z, Tan X, Lei D, Zhou G. Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration. APL Bioeng 2023; 7:036105. [PMID: 37547670 PMCID: PMC10404141 DOI: 10.1063/5.0152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic in vivo environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.
Collapse
Affiliation(s)
| | | | | | - Sisi Shen
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhengya Tang
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xiaoyan Tan
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Dong Lei
- Authors to whom correspondence should be addressed:; ; and
| | - Guangdong Zhou
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
11
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
12
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Isik M, Karakaya E, Arslan TS, Atila D, Erdogan YK, Arslan YE, Eskizengin H, Eylem CC, Nemutlu E, Ercan B, D'Este M, Okesola BO, Derkus B. 3D Printing of Extracellular Matrix-Based Multicomponent, All-Natural, Highly Elastic, and Functional Materials toward Vascular Tissue Engineering. Adv Healthc Mater 2023; 12:e2203044. [PMID: 37014809 PMCID: PMC11468991 DOI: 10.1002/adhm.202203044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/12/2023] [Indexed: 04/05/2023]
Abstract
3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Melis Isik
- Stem Cell Research LabDepartment of ChemistryFaculty of ScienceAnkara UniversityAnkara06560Turkey
| | - Ece Karakaya
- Stem Cell Research LabDepartment of ChemistryFaculty of ScienceAnkara UniversityAnkara06560Turkey
| | - Tugba Sezgin Arslan
- Stem Cell Research LabDepartment of ChemistryFaculty of ScienceAnkara UniversityAnkara06560Turkey
| | - Deniz Atila
- Department of Engineering SciencesMiddle East Technical UniversityAnkara06800Turkey
- International Centre for Research on Innovative Bio‐based Materials (ICRI‐BioM)Lodz University of TechnologyLodz90924Poland
| | - Yasar Kemal Erdogan
- Biomedical Engineering ProgramMiddle East Technical UniversityAnkara06800Turkey
- Department of Biomedical EngineeringIsparta University of Applied ScienceIsparta32260Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of EngineeringCanakkale Onsekiz Mart UniversityCanakkale17100Turkey
| | - Hakan Eskizengin
- Department of BiologyFaculty of ScienceAnkara UniversityAnkara06560Turkey
| | - Cemil Can Eylem
- Analytical Chemistry DivisionFaculty of PharmacyHacettepe UniversityAnkara06230Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry DivisionFaculty of PharmacyHacettepe UniversityAnkara06230Turkey
- Bioanalytic and Omics LaboratoryFaculty of PharmacyHacettepe UniversityAnkara06100Turkey
| | - Batur Ercan
- Biomedical Engineering ProgramMiddle East Technical UniversityAnkara06800Turkey
- Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkara06800Turkey
| | - Matteo D'Este
- AO Research Institute DavosClavadelerstrasse 8Davos Platz7270Switzerland
| | - Babatunde O. Okesola
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2UHUK
| | - Burak Derkus
- Stem Cell Research LabDepartment of ChemistryFaculty of ScienceAnkara UniversityAnkara06560Turkey
| |
Collapse
|
14
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
15
|
Zhang C, Cha R, Wang C, Chen X, Li Z, Xie Q, Jia L, Sun Y, Hu Z, Zhang L, Zhou F, Zhang Y, Jiang X. Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts. Biomaterials 2023; 297:122124. [PMID: 37087981 DOI: 10.1016/j.biomaterials.2023.122124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The off-the-shelf small-diameter vascular grafts (SDVGs) have inferior clinical efficacy. Red blood cell membrane (Rm) has easy availability and multiple bioactive components (such as phospholipids, proteins, and glycoproteins), which can improve the clinic's availability and patency of SDVGs. Here we developed a facile approach to preparing an Rm-functionalized poly-ε-caprolactone/poly-d-lysine (Rm@PCL/PDL) tube by co-incubation and single-step rolling. The integrity, stability, and bioactivity of Rm on Rm@PCL/PDL were evaluated. The revascularization of Rm@PCL/PDL tubes was studied by implantation in the carotid artery of rabbits. Rm@PCL/PDL can be quickly prepared and showed excellent bioactivity with good hemocompatibility and great anti-inflammatory. Rm@PCL/PDL tubes as the substitute for the carotid artery of rabbits had good patency and quick remodeling within 21 days. Rm, as a "self" biomaterial with high biosafety, provides a new and facile approach to developing personalized or universal SDVGs for the clinic, which is of great significance in cardiovascular regenerative medicine and organ chip.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China.
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Xingming Chen
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Zulan Li
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, No. 49 Huayuan Road North, Haidian District, Beijing, 100191, PR China
| | - Liujun Jia
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Lin Zhang
- Department of Adult Cardiac Surgery, Faculty of Cardiovascular Disease, The Sixth Medical Center of the General Hospital of the People's Liberation Army of China, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
16
|
Le HT, Mahara A, Nagasaki T, Yamaoka T. Prevention of anastomotic stenosis for decellularized vascular grafts using rapamycin-loaded boronic acid-based hydrogels mimicking the perivascular tissue function. BIOMATERIALS ADVANCES 2023; 147:213324. [PMID: 36796198 DOI: 10.1016/j.bioadv.2023.213324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) induces graft anastomotic stenosis, resulting in graft failure. Herein, we developed a drug-loaded tissue-adhesive hydrogel as artificial perivascular tissue to suppress VSMCs proliferation. Rapamycin (RPM), an anti-stenosis drug, is selected as the drug model. The hydrogel was composed of poly (3-acrylamidophenylboronic acid-co-acrylamide) (BAAm) and polyvinyl alcohol. Since phenylboronic acid reportedly binds to sialic acid of glycoproteins which is distributed on the tissues, the hydrogel is expected to be adherent to the vascular adventitia. Two hydrogels containing 25 or 50 mg/mL of BAAm (BAVA25 and BAVA50, respectively) were prepared. A decellularized vascular graft with a diameter of <2.5 mm was selected as a graft model. Lap-shear test indicates that both hydrogels adhered to the graft adventitia. In vitro release test indicated that 83 and 73 % of RPM in BAVA25 and BAVA50 hydrogels was released after 24 h, respectively. When VSMCs were cultured with RPM-loaded BAVA hydrogels, their proliferation was suppressed at an earlier stage in RPM-loaded BAVA25 hydrogels compared to RPM-loaded BAVA50 hydrogels. An in vivo preliminary test reveals that the graft coated with RPM-loaded BAVA25 hydrogel shows better graft patency for at least 180 d than the graft coated with RPM-loaded BAVA50 hydrogel or without hydrogel. Our results suggest that RPM-loaded BAVA25 hydrogel with tissue adhesive characteristics has potential to improve decellularized vascular graft patency.
Collapse
Affiliation(s)
- Hue Thi Le
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
17
|
Jin C, Chen D, Zhu T, Chen S, Du J, Zhang H, Dong W. Poly(ferulic acid)-hybrid nanofibers for reducing thrombosis and restraining intimal hyperplasia in vascular tissue engineering. BIOMATERIALS ADVANCES 2023; 146:213278. [PMID: 36638698 DOI: 10.1016/j.bioadv.2023.213278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Small-diameter blood vascular transplantation failure is mainly caused by the vascular materials' unreliable hemocompatibility and histocompatibility and the unmatched mechanical properties, which will cause unstable blood flow. How to solve the problems of coagulation and intimal hyperplasia caused by the above factors is formidable in vascular replacement. In this work, we have synthesized poly(ferulic acid) (PFA) and prepared poly(ester-urethane)urea (PEUU)/silk fibroin (SF)/poly(ferulic acid) (PFA) hybrid nanofibers vascular graft (PSPG) by random electrospinning and post-double network bond crosslinking for process optimization. The results in vitro demonstrated that the graft is of significant anti-oxidation, matched mechanical properties, reliable cytocompatibility, and blood compatibility. Replacing resected rat abdominal aorta and rabbit carotid artery models with PSPG vascular grafts indicated that the grafts are capable of homogeneous hybrid PFA significantly promoted the stabilization of endothelial cells and the ingrowth of smooth muscle cells, meanwhile stabilizing the immune microenvironment. This research demonstrates the PSPG vascular graft with substantial patency, indicating their potential for injured vascular healing.
Collapse
Affiliation(s)
- Changjie Jin
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Dian Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China; Shanghai PINE&POWER Biotech Co., Ltd, 500 Huaxi Rd., Shanghai 201108, PR China.
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China.
| | - Wei Dong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd., Shanghai 200127, PR China.
| |
Collapse
|
18
|
Watanabe T, Sassi S, Ulziibayar A, Hama R, Kitsuka T, Shinoka T. The Application of Porous Scaffolds for Cardiovascular Tissues. Bioengineering (Basel) 2023; 10:236. [PMID: 36829730 PMCID: PMC9952004 DOI: 10.3390/bioengineering10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
As the number of arteriosclerotic diseases continues to increase, much improvement is still needed with treatments for cardiovascular diseases. This is mainly due to the limitations of currently existing treatment options, including the limited number of donor organs available or the long-term durability of the artificial organs. Therefore, tissue engineering has attracted significant attention as a tissue regeneration therapy in this area. Porous scaffolds are one of the effective methods for tissue engineering. However, it could be better, and its effectiveness varies depending on the tissue application. This paper will address the challenges presented by various materials and their combinations. We will also describe some of the latest methods for tissue engineering.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Salha Sassi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Rikako Hama
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Takahiro Kitsuka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
19
|
Zia S, Djalali-Cuevas A, Pflaum M, Hegermann J, Dipresa D, Kalozoumis P, Kouvaka A, Burgwitz K, Andriopoulou S, Repanas A, Will F, Grote K, Schrimpf C, Toumpaniari S, Mueller M, Glasmacher B, Haverich A, Morticelli L, Korossis S. Development of a dual-component infection-resistant arterial replacement for small-caliber reconstructions: A proof-of-concept study. Front Bioeng Biotechnol 2023; 11:957458. [PMID: 36741762 PMCID: PMC9889865 DOI: 10.3389/fbioe.2023.957458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.
Collapse
Affiliation(s)
- Sonia Zia
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adrian Djalali-Cuevas
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Michael Pflaum
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Panagiotis Kalozoumis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Artemis Kouvaka
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Karin Burgwitz
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sofia Andriopoulou
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Alexandros Repanas
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Fabian Will
- LLS ROWIAK LaserLabSolutions GmbH, Hannover, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sotiria Toumpaniari
- Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany,Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom,*Correspondence: Sotirios Korossis,
| |
Collapse
|
20
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
21
|
Xie X, Wu Q, Liu Y, Chen C, Chen Z, Xie C, Song M, Jiang Z, Qi X, Liu S, Tang Z, Wu Z. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol 2022; 10:1066266. [PMID: 36605251 PMCID: PMC9808043 DOI: 10.3389/fbioe.2022.1066266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Small-diameter vascular grafts (diameter <6 mm) are in high demand in clinical practice. Neointimal hyperplasia, a common complication after implantation of small-diameter vascular grafts, is one of the common causes of graft failure. Modulation of local inflammatory responses is a promising strategy to attenuates neointimal hyperplasia. Vascular endothelial growth factor (VEGF) is an angiogenesis stimulator that also induces macrophage polarization and modulates inflammatory responses. In the present study, we evaluated the effect of VEGF on the neointima hyperplasia and local inflammatory responses of decellularized vascular grafts. In the presence of rhVEGF-165 in RAW264.6 macrophage culture, rhVEGF-165 induces RAW264.6 macrophage polarization to M2 phenotype. Decellularized bovine internal mammary arteries were implanted into the subcutaneous and infrarenal abdominal aorta of New Zealand rabbits, with rhVEGF-165 applied locally to the adventitial of the grafts. The vascular grafts were removed en-bloc and submitted to histological and immunofluorescence analyses on days 7 and 28 following implantation. The thickness of the fibrous capsule and neointima was thinner in the VEGF group than that in the control group. In the immunofluorescence analysis, the number of M2 macrophages and the ratio of M2/M1 macrophages in vascular grafts in the VEGF group were higher than those in the control group, and the proinflammatory factor IL-1 was expressed less than in the control group, but the anti-inflammatory factor IL-10 was expressed more. In conclusion, local VEGF administration attenuates neointimal hyperplasia in decellularized small-diameter vascular grafts by inducing macrophage M2 polarization and modulating the inflammatory response.
Collapse
Affiliation(s)
- Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiying Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeguo Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China,*Correspondence: Zhongshi Wu,
| |
Collapse
|
22
|
Small Diameter Cell-Free Tissue-Engineered Vascular Grafts: Biomaterials and Manufacture Techniques to Reach Suitable Mechanical Properties. Polymers (Basel) 2022; 14:polym14173440. [PMID: 36080517 PMCID: PMC9460130 DOI: 10.3390/polym14173440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Vascular grafts (VGs) are medical devices intended to replace the function of a blood vessel. Available VGs in the market present low patency rates for small diameter applications setting the VG failure. This event arises from the inadequate response of the cells interacting with the biomaterial in the context of operative conditions generating chronic inflammation and a lack of regenerative signals where stenosis or aneurysms can occur. Tissue Engineered Vascular grafts (TEVGs) aim to induce the regeneration of the native vessel to overcome these limitations. Besides the biochemical stimuli, the biomaterial and the particular micro and macrostructure of the graft will determine the specific behavior under pulsatile pressure. The TEVG must support blood flow withstanding the exerted pressure, allowing the proper compliance required for the biomechanical stimulation needed for regeneration. Although the international standards outline the specific requirements to evaluate vascular grafts, the challenge remains in choosing the proper biomaterial and manufacturing TEVGs with good quality features to perform satisfactorily. In this review, we aim to recognize the best strategies to reach suitable mechanical properties in cell-free TEVGs according to the reported success of different approaches in clinical trials and pre-clinical trials.
Collapse
|
23
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
24
|
Wang F, Qin K, Wang K, Wang H, Liu Q, Qian M, Chen S, Sun Y, Hou J, Wei Y, Hu Y, Li Z, Xu Q, Zhao Q. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep 2022; 39:110981. [PMID: 35732119 DOI: 10.1016/j.celrep.2022.110981] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Kang Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yijin Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingli Hou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Kitsuka T, Hama R, Ulziibayar A, Matsuzaki Y, Kelly J, Shinoka T. Clinical Application for Tissue Engineering Focused on Materials. Biomedicines 2022; 10:1439. [PMID: 35740460 PMCID: PMC9220152 DOI: 10.3390/biomedicines10061439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular-related medical conditions remain a significant cause of death worldwide despite the advent of tissue engineering research more than half a century ago. Although autologous tissue is still the preferred treatment, donor tissue is limited, and there remains a need for tissue-engineered vascular grafts (TEVGs). The production of extensive vascular tissue (>1 cm3) in vitro meets the clinical needs of tissue grafts and biological research applications. The use of TEVGs in human patients remains limited due to issues related to thrombogenesis and stenosis. In addition to the advancement of simple manufacturing methods, the shift of attention to the combination of synthetic polymers and bio-derived materials and cell sources has enabled synergistic combinations of vascular tissue development. This review details the selection of biomaterials, cell sources and relevant clinical trials related to large diameter vascular grafts. Finally, we will discuss the remaining challenges in the tissue engineering field resulting from complex requirements by covering both basic and clinical research from the perspective of material design.
Collapse
Affiliation(s)
- Takahiro Kitsuka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Rikako Hama
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - John Kelly
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.K.); (R.H.); (A.U.); (Y.M.); (J.K.)
- Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
27
|
Rohringer S, Schneider KH, Eder G, Hager P, Enayati M, Kapeller B, Kiss H, Windberger U, Podesser BK, Bergmeister H. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio 2022; 14:100262. [PMID: 35509865 PMCID: PMC9059097 DOI: 10.1016/j.mtbio.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karl H. Schneider
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gabriela Eder
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Pia Hager
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marjan Enayati
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Kapeller
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Medical University of Vienna, Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Windberger
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K. Podesser
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
28
|
Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210029. [PMID: 37324581 PMCID: PMC10191062 DOI: 10.1002/exp.20210029] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Electrospinning (e-spin) technique has emerged as a versatile and feasible pathway for constructing diverse polymeric fabric structures, which show potential applications in many biological and biomedical fields. Owing to the advantages of adjustable mechanics, designable structures, versatile surface multi-functionalization, and biomimetic capability to natural tissue, remarkable progress has been made in flexible bioelectronics and tissue engineering for the sensing and therapeutic purposes. In this perspective, we review recent works on design of the hierarchically structured e-spin fibers, as well as, the fabrication strategies from one-dimensional individual fiber (1D) to three-dimensional (3D) fiber arrangements adaptive to specific applications. Then, we focus on the most cutting-edge progress of their applications in flexible bioelectronics and tissue engineering. Finally, we propose future challenges and perspectives for promoting electrospun fiber-based products toward industrialized, intelligent, multifunctional, and safe applications.
Collapse
Affiliation(s)
- Xingyi Wan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| |
Collapse
|
29
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
30
|
Yang S, Zheng X, Qian M, Wang H, Wang F, Wei Y, Midgley AC, He J, Tian H, Zhao Q. Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front Bioeng Biotechnol 2021; 9:770121. [PMID: 34917597 PMCID: PMC8670382 DOI: 10.3389/fbioe.2021.770121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.
Collapse
Affiliation(s)
- Sen Yang
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xueni Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.,Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
31
|
Sun B, Hou L, Sun B, Han Y, Zou Y, Huang J, Zhang Y, Feng C, Dou X, Xu F. Use of Electrospun Phenylalanine/Poly-ε-Caprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling. Front Bioeng Biotechnol 2021; 9:773635. [PMID: 34900965 PMCID: PMC8656108 DOI: 10.3389/fbioe.2021.773635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
The fabrication of tissue-engineered vascular grafts to replace damaged vessels is a promising therapy for cardiovascular diseases. Endothelial remodeling in the lumen of TEVGs is critical for successful revascularization. However, the construction of well-functioning TEVGs remains a fundamental challenge. Herein, chiral hybrid scaffolds were prepared by electrospinning using D/L-phenylalanine based gelators [D(L)PHEG] and poly-ε-caprolactone (PCL). The chirality of scaffolds significantly affected the endothelial remodeling progress of TEVGs. Compared with L-phenylalanine based gelators/poly-ε-caprolactone (L/PCL) and PCL, D-phenylalanine based gelators/poly-ε-caprolactone (D/PCL) scaffolds enhanced cell adhesion, and proliferation and upregulated the expression of fibronectin-1, and vinculin. These results suggests that chiral hybrid scaffolds can promote endothelial remodeling of TEVGs by upregulating adhesion-associated protein levels. This study offers an innovative strategy for endothelial remodeling of TEVGs by fabricating chiral hybrid scaffolds, and provides new insight for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Benlin Sun
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Lei Hou
- Department of Cardiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juexin Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Department of Subject Planning Shanghai, Ninth People's Hospital Shanghai, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
33
|
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112373. [PMID: 34579892 DOI: 10.1016/j.msec.2021.112373] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Due to the prevalence of cardiovascular diseases, there is a large need for small diameter vascular grafts that cannot be fulfilled using autologous vessels. Although medium to large diameter synthetic vessels are in use, no suitable small diameter vascular graft has been developed due to the unique dynamic environment that exists in small vessels. To achieve long term patency, a successful tissue engineered vascular graft would need to closely match the mechanical properties of native tissue, be non-thrombotic and non-immunogenic, and elicit the proper healing response and undergo remodeling to incorporate into the native vasculature. Electrospinning presents a promising approach to the development of a suitable tissue engineered vascular graft. This review provides a comprehensive overview of the different polymers, techniques, and functionalization approaches that have been used to develop an electrospun tissue engineered vascular graft.
Collapse
Affiliation(s)
- Alex P Rickel
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Xiajun Deng
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Daniel Engebretson
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Zhongkui Hong
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America.
| |
Collapse
|
34
|
Xing Z, Wu S, Zhao C, Bai Y, Jin D, Yin M, Liu H, Fan Y. Vascular transplantation with dual-biofunctional ePTFE vascular grafts in a porcine model. J Mater Chem B 2021; 9:7409-7422. [PMID: 34551061 DOI: 10.1039/d1tb01398j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| |
Collapse
|
35
|
Iwaki R, Shoji T, Matsuzaki Y, Ulziibayar A, Shinoka T. Current status of developing tissue engineering vascular technologies. Expert Opin Biol Ther 2021; 22:433-440. [PMID: 34427482 DOI: 10.1080/14712598.2021.1960976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death in western countries. Although surgical outcomes for CVD are dramatically improving with the development of surgical techniques, medications, and perioperative management strategies, adverse postoperative events related to the use of artificial prosthetic materials are still problematic. Moreover, in pediatric patients, using these artificial materials make future re-intervention inevitable due to their lack of growth potential. AREAS COVERED This review focuses on the most current tissue-engineering (TE) technologies to treat cardiovascular diseases and discusses their limitations through reports ranging from animal studies to clinical trials. EXPERT OPINION Tissue-engineered structures, derived from a patient's own autologous cells/tissues and biodegradable polymer scaffolds, can provide mechanical function similar to non-diseased tissue. However, unlike prosthetic materials, tissue-engineered structures are hypothetically more biocompatible and provide growth potential, saving patients from additional or repetitive interventions. While there are many methods being investigated to develop TE technologies in the hopes of finding better options to tackle CVD, most of these approaches are not ready for clinical use or trials. However, tissue engineering has great promise to potentially provide better treatment options to vastly improve cardiovascular surgical outcomes.
Collapse
Affiliation(s)
- Ryuma Iwaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
36
|
Yu L, Newton ER, Gillis DC, Sun K, Cooley BC, Keith AN, Sheiko SS, Tsihlis ND, Kibbe MR. Coating small-diameter ePTFE vascular grafts with tunable poly(diol-co-citrate-co-ascorbate) elastomers to reduce neointimal hyperplasia. Biomater Sci 2021; 9:5160-5174. [PMID: 34312627 PMCID: PMC12036540 DOI: 10.1039/d1bm00101a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lack of long-term patency has hindered the clinical use of small-diameter prosthetic vascular grafts with the majority of these failures due to the development of neointimal hyperplasia. Previous studies by our laboratory revealed that small-diameter expanded polytetrafluoroethylene (ePTFE) grafts coated with antioxidant elastomers are a promising localized therapy to inhibit neointimal hyperplasia. This work is focused on the development of poly(diol-co-citrate-co-ascorbate) (POCA) elastomers with tunable properties for coating ePTFE vascular grafts. A bioactive POCA elastomer (@20 : 20 : 8, [citrate] : [diol] : [ascorbate]) coating was applied on a 1.5 mm diameter ePTFE vascular graft as the most promising therapeutic candidate for reducing neointimal hyperplasia. Surface ascorbate density on the POCA elastomer was increased to 67.5 ± 7.3 ng mg-1 cm-2. The mechanical, antioxidant, biodegradable, and biocompatible properties of POCA demonstrated desirable performance for in vivo use, inhibiting human aortic smooth muscle cell proliferation, while supporting human aortic endothelial cells. POCA elastomer coating number was adjusted by a modified spin-coating method to prepare small-diameter ePTFE vascular grafts similar to natural vessels. A significant reduction in neointimal hyperplasia was observed after implanting POCA-coated ePTFE vascular grafts in a guinea pig aortic interposition bypass graft model. POCA elastomer thus offers a new avenue that shows promise for use in vascular engineering to improve long-term patency rates by coating small-diameter ePTFE vascular grafts.
Collapse
Affiliation(s)
- Lu Yu
- Department of Surgery, University of North Carolina at Chapel Hill, 4001 Burnett-Womack Building, CB #7050, Chapel Hill, NC 27599-7050, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Frazão LP, Fernandes AM, Oliveira C, Martins A, Silva TH, Vieira de Castro J, Nogueira-Silva C, Neves NM. New Vascular Graft Using the Decellularized Human Chorion Membrane. ACS Biomater Sci Eng 2021; 7:3423-3433. [PMID: 34097827 DOI: 10.1021/acsbiomaterials.1c00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increase of both arterial occlusive diseases and coronary heart diseases leads to a higher demand for small-diameter vascular grafts (<6 mm). The gold standard for small-diameter vessel replacement is the use of autologous veins. Nevertheless, up to 30% of these patients need to use vascular grafts. Although synthetic polymers have been successfully used for the replacement of large-diameter vascular grafts (>6 mm), they are associated with thrombosis, intimal hyperplasia, calcification, and chronic inflammation when used as small-diameter vascular grafts. Therefore, natural materials have been studied for this application. In this study, a decellularized human chorion membrane (dHCM) vascular graft with a 3-4 mm diameter was created. Herein, the biocompatibility of dHCM with endothelial cells was demonstrated in vitro and ex ovo. Blood biocompatibility of dHCM was also shown by studying plasma protein adsorption, platelet adhesion and activation, and its hemolytic potential. Furthermore, dHCM antibacterial properties against Staphylococcus aureus were also studied. In summary, the dHCM reticular layer side presented all the needed characteristics to be used in the inner side of a vascular graft. Additionally, the mechanical properties of the dHCM tubular construct were studied, being similar to the ones of the saphenous vein, the gold standard for autologous small-diameter vessel replacement.
Collapse
Affiliation(s)
- Laura P Frazão
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana M Fernandes
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina Oliveira
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Nogueira-Silva
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal.,Department of Obstetrics and Gynecology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Nuno M Neves
- I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
38
|
Zeng Z, Hu C, Liang Q, Tang L, Cheng D, Ruan C. Coaxial-printed small-diameter polyelectrolyte-based tubes with an electrostatic self-assembly of heparin and YIGSR peptide for antithrombogenicity and endothelialization. Bioact Mater 2021; 6:1628-1638. [PMID: 33313443 PMCID: PMC7701915 DOI: 10.1016/j.bioactmat.2020.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/27/2022] Open
Abstract
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation. Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios, it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization. Herein, on basis of 3D-printed polyelectrolyte-based vascular grafts, a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described. A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles, in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used. Further, dual bioactive molecules, heparin with negative charges and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes. Due to the electrostatic interaction, the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization. This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction, revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
Collapse
Affiliation(s)
- Zhiwen Zeng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chengshen Hu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lan Tang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Delin Cheng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
39
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
40
|
Furdella KJ, Higuchi S, Behrangzade A, Kim K, Wagner WR, Vande Geest JP. In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance. Acta Biomater 2021; 123:298-311. [PMID: 33482362 DOI: 10.1016/j.actbio.2020.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) have the ability to be tuned to match a target vessel's compliance, diameter, wall thickness, and thereby prevent compliance mismatch. In this work, TEVG compliance was manipulated by computationally tuning its layered composition or by manipulating a crosslinking agent (genipin). In particular, these three acelluluar TEVGs were compared: a compliance matched graft (CMgel - high gelatin content); a hypocompliant PCL graft (HYPOpcl - high polycaprolactone content); and a hypocompliant genipin graft (HYPOgen - equivalent composition as CMgel but hypocompliant via increased genipin crosslinking). All constructs were implanted interpositionally into the abdominal aorta of 21 Sprague Dawley rats (n=7, males=11, females=10) for 28 days, imaged in-vivo using ultrasound, explanted, and assessed for remodeling using immunofluorescence and two photon excitation fluorescence imaging. Compliance matched grafts remained compliance-matched in-vivo compared to the hypocompliant grafts through 4 weeks (p<0.05). Construct degradation and cellular infiltration was increased in the CMgel and HYPOgen TEVGs. Contractile smooth muscle cell markers in the proximal anastomosis of the graft were increased in the CMgel group compared to the HYPOpcl (p=0.007) and HYPOgen grafts (p=0.04). Both hypocompliant grafts also had an increased pro-inflammatory response (increased ratio of CD163 to CD86 in the mid-axial location) compared to the CMgel group. Our results suggest that compliance matching using a computational optimization approach leads to the improved acute (28 day) remodeling of TEVGs. To the authors' knowledge, this is the first in-vivo rat study investigating TEVGs that have been computationally optimized for target vessel compliance.
Collapse
|
41
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
42
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
43
|
Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
45
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
46
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
47
|
Yang Q, Lei D, Huang S, Yang Y, Jiang C, Shi H, Chen W, Zhao Q, You Z, Ye X. A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways. Biomaterials 2020; 258:120254. [PMID: 32805499 DOI: 10.1016/j.biomaterials.2020.120254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Coronary artery bypass graft (CABG) has been confirmed to effectively improve the prognosis of coronary artery disease, which is a major public health concern worldwide. As the most frequently used conduits in CABG, saphenous vein grafts have the disadvantage of being susceptible to restenosis due to intimal hyperplasia. To meet the urgent clinical demand, adopting external stents (eStents) and illuminating the potential mechanisms underlying their function are important for preventing vein graft failure. Here, using 4-axis printing technology, we fabricated a novel biodegradable and flexible braided eStent, which exerts excellent inhibitory effect on intimal hyperplasia. The stented grafts downregulate Yes-associated protein (YAP), indicating that the eStent regulates vein graft remodeling via the Hippo-YAP signaling pathway. Further, as a drug-delivery vehicle, a rapamycin (RM)-coated eStent was designed to amplify the inhibitory effect of eStent on intimal hyperplasia through the synergistic effects of the Hippo and mammalian target of rapamycin (mTOR) signaling pathways. Overall, this study uncovers the underlying mechanisms of eStent function and identifies a new therapeutic target for the prevention of vein graft restenosis.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Chenyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wenyi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
48
|
Wen M, Yan H, Shi X, Zhao Y, Wang K, Kong D, Yuan X. Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
49
|
Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, Vorp DA, Mandal BB. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater 2020; 105:146-158. [PMID: 31958596 PMCID: PMC7050402 DOI: 10.1016/j.actbio.2020.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/14/2023]
Abstract
The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering, Indian Istitute of Technology Guwahati, Guwahati 781039, India; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Katherine L Lorentz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Eoghan M Cunnane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin D02 YN77, Ireland
| | - Aneesh K Ramaswamy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Justin S Weinbaum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - David A Vorp
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Istitute of Technology Guwahati, Guwahati 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
50
|
Wu T, Mo X, Xia Y. Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications. Adv Healthc Mater 2020; 9:e1901761. [PMID: 31999081 PMCID: PMC7758812 DOI: 10.1002/adhm.201901761] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Indexed: 12/20/2022]
Abstract
Over the past two decades, electrospun nanofibers have been actively explored for a range of applications, including those related to biomedicine, environmental science, energy harvesting, catalysis, photonics, and electronics. Regarding biomedical applications, one can readily produce nanofiber-based scaffolds with controlled compositions, structures, alignments, and functions by varying the material, design of collector, number of spinnerets, and electrospinning parameters. This report highlights both preclinical and translational applications of electrospun nanofibers and bioprinted constructs presented at the 2019 International Conference on Electrospinning, together with some perspectives on their future development.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|