1
|
Yu M, Qiu Y, Wang Y, Wang Y, Ma Z, Wang Y, Liu S. Engineering multifunctional high-entropy oxide nanozymes for robust marine antifouling. J Colloid Interface Sci 2025; 693:137604. [PMID: 40245833 DOI: 10.1016/j.jcis.2025.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
High-performance interfacial antifouling coatings are crucial for sustainable marine resource utilization. This work reports a novel high-entropy oxide (HEO) nanozyme, CrMnFeNiCuOX nanoparticles, where the synergistic interplay of polymetallic cations and defect engineering yield remarkable multi-enzyme mimetic activity combined with a photothermal conversion efficiency of 40.06%. Under simulated solar irradiation, the HEO nanozyme exhibited complete (100%) bactericidal activity against both Escherichia coli and Staphylococcus aureus, and effectively suppresses biofilm formation in a simulated marine environment. Mechanistic investigations demonstrated that the HEO nanozyme exhibits a tailored electronic structure and adsorption properties, enabling disruption of bacterial membrane integrity, perturbation of intracellular redox homeostasis, and suppression of quorum sensing signaling. This multifaceted approach offers a promising strategy for developing durable and environmentally friendly antifouling coatings for diverse marine applications.
Collapse
Affiliation(s)
- Miao Yu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Yunfeng Qiu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China.
| | - Yuhang Wang
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Yanxia Wang
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuo Ma
- Faculty of Life Science and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China.
| | - Shaoqin Liu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Wu J, Liang H, Zeng S, Zhao S, Ye F. Smartphone-assisted portable swabs for thiram specific analysis based on target-regulated CuWO 4 nanozyme activity combined with sample pretreatment. Food Chem 2025; 484:144370. [PMID: 40273876 DOI: 10.1016/j.foodchem.2025.144370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Pesticide residues pose significant risks to consumer health. Therefore, it is essential to develop convenient and practical detection methods. Nanozyme colorimetric sensing is widely used for pesticide detection. However, improving its sensitivity and selectivity remains a major challenge. In this study, a smartphone-assisted portable test swab fabricated using CuWO4 as the extractant, combined with solid-phase extraction (SPE), was designed for the colorimetric detection of thiram (THR). Based on the specific binding between the Cu sites in CuWO4 and THR, interference was eliminated after the SPE to improve selectivity. Moreover, the sensitivity improved after SPE enrichment. Additionally, THR enhanced the peroxidase-like activity of CuWO4, whereas tungsten as a co-catalyst further boosted the nanozyme activity, thereby improving the detection sensitivity (limit of detection: 19 nM). The experimental results demonstrate that this method exhibits high stability and good selectivity, with recoveries in real samples ranging from 90.8 % to 112.4 %.
Collapse
Affiliation(s)
- Jia Wu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Huimei Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulan Zeng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Shulin Zhao
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Jin Z, Huang G, Song Y, Liu C, Wang X, Zhao K. Catalytic activity nanozymes for microbial detection. Coord Chem Rev 2025; 534:216578. [DOI: 10.1016/j.ccr.2025.216578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
|
4
|
Wang M, Tan J, Wang X, Han L. True Inhibition of CeO 2 Nanozymes by Antioxidants: Mechanistic Insights and Colorimetric Detection of Ergothioneine. Anal Chem 2025. [PMID: 40457767 DOI: 10.1021/acs.analchem.5c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Some nanozyme-based detection methods for antioxidants often rely on the direct decolorization of colorimetric substrates by corresponding antioxidants, which weakens the role of nanozymes. Here, CeO2 nanozymes exhibiting inherent oxidase-like activity were prepared via a one-pot hydrothermal technique. Ergothioneine (ERG), a natural antioxidant, was found to induce the true inhibition of the oxidase-like activity. Unlike other antioxidants including ascorbic acid, gallic acid and glutathione, ERG could really inhibit the oxidase-like activity of CeO2 nanozymes, instead of directly reducing colorimetric substrates. Further kinetic analysis revealed that ERG-induced inhibition is reversible and noncompetitive. This discovery highlights the unique behavior of ERG and provides an important mechanistic understanding of nanozyme inhibition by antioxidants. Leveraging the inhibitory effect, a novel colorimetric sensing platform for ERG was established with a low limit of detection (0.21 μM), excellent reusability, good storage stability and high accuracy, making it a simple, sensitive and rapid method for assessing ERG levels in functional foods. This study not only establishes a framework for investigating the interactions between nanozymes and small molecules but also paves a new pathway for expanding the applications of nanozymes in food and agricultural biosensing.
Collapse
Affiliation(s)
- Meihan Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jingying Tan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| |
Collapse
|
5
|
Sun Y, Mao M, Tai S, Chao M, Xu H, Cai Y, Peng C, Ma W, Wang Z. Lateral flow assay with automatic signal amplification based on delayed substrate release. Talanta 2025; 286:127557. [PMID: 39805206 DOI: 10.1016/j.talanta.2025.127557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Minxin Mao
- Shandong Institute of Pomology, Taian, 271000, PR China
| | - Shengmei Tai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Mengjia Chao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Hengyu Xu
- China Tobacco Zhejiang Industrial Co. Ltd., Ningbo, 315502, PR China
| | - Yina Cai
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| |
Collapse
|
6
|
Huang Y, Han J, Ping Y, Chen X, Zhao Y, Chen G, Lv J, Xu D, Zhang Y, Chen J, Liu G. Peroxidase-like Active Cu-MOFs Nanozymes for Colorimetric Detection of Total Antioxidant Capacity in Fruits and Vegetables. Foods 2025; 14:1311. [PMID: 40282713 PMCID: PMC12026073 DOI: 10.3390/foods14081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
In this study, two types of Cu-MOFs (Cu-TCPP and CuO-TCPP) with a two-dimensional layered porous structure were prepared via in situ polymerization using Cu2+, CuO, and TCPP as raw materials. Both Cu-MOFs exhibited peroxidase-like activity, capable of catalyzing the oxidation of TMB by H2O2 to form oxTMB, resulting in an absorption peak at 652 nm and a color change from colorless to blue. Subsequently, the addition of AA can reduce oxTMB back to TMB, causing the color of the system to lighten or become colorless. Based on this principle, a simple and rapid colorimetric method for AA detection was established and successfully applied to the detection of TAC in fruits and vegetables. The results showed that Cu-TCPP and CuO-TCPP had a large linear range of ascorbic acid detection of 0.01-100 mM (Cu-TCPP) and 0.05-100 mM (CuO-TCPP). This study not only provides a novel method for preparing nanozymes with peroxidase-like activity, but also offers a simple approach for analyzing the TAC of food.
Collapse
Affiliation(s)
- Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Jiatong Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Yi Ping
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Xin Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 8 Zhihui Road, Agricultural High Tech Industry Demonstration Zone, Yellow River Delta, Dongying 257347, China
| | - Yanguo Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Jing Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; (Y.H.); (J.H.); (Y.P.); (X.C.); (Y.Z.); (G.C.); (J.L.); (D.X.); (Y.Z.); (J.C.)
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 8 Zhihui Road, Agricultural High Tech Industry Demonstration Zone, Yellow River Delta, Dongying 257347, China
| |
Collapse
|
7
|
Gao MY, Wang M, Wang YT, Zhang ZL. Enhanced catalytic efficiency of nanozymes with a V-structured chip for microfluidic biosensing of S. typhimurium. J Mater Chem B 2025; 13:4471-4483. [PMID: 40111428 DOI: 10.1039/d5tb00172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Nanozymes, nanomaterials with enzyme-like characteristics which exhibit lower cost, easier synthesis and functionalization, and better stability compared with natural enzymes, have been widely developed for biosensing, disease therapy and environmental governance. However, the lack of catalytic efficiency of nanozymes compared to natural enzymes makes it difficult for them to completely replace natural enzymes to achieve higher sensitivity and lower detection limits in biosensing. Herein, magnetism-controlled technology was used to form a nanozyme array consisting of stacked Fe3O4/Au NPs at the bottom of the microchannel as a spatially confined microreactor for the catalytic reaction. By enhancing the mass transfer process of the substrate towards nanozymes mediated by the corresponding V-structure, a higher local concentration of the substrate and more efficient utilization of active sites of nanozymes were achieved to increase the catalytic efficiency (kcat/KM) of the nanozyme array consisting of Fe3O4/Au NPs by 95.2%, which was two orders of magnitude higher than that of the open reactor. Based on this, a colorimetric method on an integrated microfluidic platform was proposed for sensitive biosensing of Salmonella typhimurium. The entire detection could be completed within 30 minutes, yielding a linear range from 102 to 107 CFU mL-1 and a detection limit as low as 5.6 CFU mL-1.
Collapse
Affiliation(s)
- Ming-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Meng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yong-Tao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
8
|
Jia X, Wang E, Wang J. Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy. Chem Rev 2025; 125:2908-2952. [PMID: 39869790 DOI: 10.1021/acs.chemrev.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) in situ, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
9
|
Shi Y, Liu C, Gui Y, Guo Y, Zhang Y, Pan J, Tang H, Gao C, Xing J, Han Y, Jiang W. A Nattokinase-Loaded Nanozyme for Alleviating Acute Myocardial Infarction via Thrombolysis and Antioxidation. Adv Healthc Mater 2025; 14:e2402763. [PMID: 39676430 DOI: 10.1002/adhm.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Acute myocardial infarction (MI) induced by thrombus formation is a prevalent cardiovascular disorder, and thrombolytic therapy continues to be a principal treatment modality. Prior research indicates a substantial association among MI, thrombosis, and the activation of oxidative stress pathways. The effectiveness of current thrombolytic drugs is relatively constrained, and the need for innovative and versatile thrombolytic medications remains critical. Nattokinase (NK) is a naturally-occurring enzyme known for its thrombolytic characteristics. Nonetheless, nattokinase's limited stability and susceptibility to inactivation in biological systems have impeded its clinical utility. This study designs a manganese oxide nanozyme (MnOx) loaded with NK (MnOx@NK), which exhibits both antioxidant and thrombolytic function. The administration of MnOx@NK through tail vein injection significantly restores vascular function and further reduces myocardial injury in a mouse model of myocardial infarction, demonstrating a pronounced protective effect against oxidative stress. These findings indicate that nattokinase-loaded nanozymes can be a promising approach for treating acute myocardial infarction, providing a new strategy for clinical application.
Collapse
Affiliation(s)
- Yingchao Shi
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuesheng Gui
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yike Guo
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yuanhao Zhang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Jiangpeng Pan
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Hao Tang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Chuanyu Gao
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Junyue Xing
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yu Han
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Wei Jiang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| |
Collapse
|
10
|
Wei Y, Bai Q, Ning X, Bai X, Lv J, Li M. Covalent organic framework derived single-atom copper nanozymes for the detection of amyloid-β peptide and study of amyloidogenesis. Anal Bioanal Chem 2025; 417:1081-1092. [PMID: 39681699 DOI: 10.1007/s00216-024-05683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Sensitive and accurate detection of the amyloid-β (Aβ) monomer is of fundamental significance for early diagnosis of Alzheimer's disease (AD). Herein, inspired by the specific Cu-Aβ monomer coordination, a cutting-edge colorimetric assay based on single-atom Cu anchored N-doped carbon nanospheres (Cu-NCNSs) was developed for Aβ monomer detection and an amyloidogenesis study. By directly pyrolyzing Cu2+-incorporated covalent organic frameworks (COFs), the resulting Cu-NCNSs with a high loading of Cu (8.04 wt %) exhibited outstanding peroxidase-like activity. The strong binding affinity of Aβ monomer to Cu-NCNSs effectively inhibited their catalytic activity, providing the basis for the colorimetric assay. The Cu-NCNSs-based sensor showed a detection limit of 1.182 nM for Aβ monomer, surpassing traditional techniques in terms of efficiency, accuracy and simplicity. Moreover, the system was successfully utilized for Aβ monomer detection in rat cerebrospinal fluid (CSF). Notably, the distinct inhibitory effects of monomeric and aggregated Aβ species on the catalytic activity of Cu-NCNSs were allowed for monitoring of the dynamic aggregation process of Aβ. Compared to thioflavin T (ThT), the most widely used amyloid dye, the detection system exhibited greater sensitivity towards toxic Aβ oligomers, which was crucial for early AD diagnosis and treatment. Our work not only sheds light on the rational design of highly active single-atom nanozymes from COFs but also expands the potential applications of nanozymes in early disease diagnosis.
Collapse
Affiliation(s)
- Yuxin Wei
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqing Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xinlu Ning
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaofan Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
- Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
11
|
Wang Y, Gao L, Cao Y, Yan D, Lukman R, Zhang J, Li Q, Liu J, Du F, Zhang L. Research progress on the synthesis, performance regulation, and applications of Prussian blue nanozymes. Int J Biol Macromol 2025; 295:139535. [PMID: 39761892 DOI: 10.1016/j.ijbiomac.2025.139535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
Nanocatalytic medicine offers a novel solution to address the issues of low efficacy, potential side effects, and the development of drug resistance associated with traditional therapies. Therefore, developing highly efficient and durable nanozymes is of great significance for treating diseases related to oxidative stress. In recent years, prussian blue nanoparticles (PBNPs) have been demonstrated to possess multiple enzyme-like catalytic activities and are thus referred to as prussian blue nanozymes (PBNZs). Their excellent biocompatibility and biodegradability make PBNZs promising candidates as biomedical materials. Due to their remarkable catalytic activities, PBNZs have shown great potential in various biomedical applications, such as heavy metal detoxification, antioxidative damage, and anticancer therapies. This paper systematically summarizes the Synthetic strategies of PBNZs, analyzes the regulatory factors of their catalytic performance, and highlights the corresponding modulation methods. Furthermore, the biomedical applications of PBNZs are also reviewed. This study aims to provide researchers with insights and inspirations for the design and preparation of high-performance PBNZs.
Collapse
Affiliation(s)
- Yiyang Wang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Gao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Yue Cao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Duanfeng Yan
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Rilwanu Lukman
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingxi Zhang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Quan Li
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiaying Liu
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengyi Du
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China; Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, PR China
| | - Li Zhang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, PR China.
| |
Collapse
|
12
|
Xu M, Zhou Y, Xu Y, Shao A, Han H, Ye J. Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408436. [PMID: 39792775 PMCID: PMC11884525 DOI: 10.1002/advs.202408436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction. By exploiting the recycling reactive oxygen species (ROS) scavenging capability of nanoceria and the anti-inflammation properties of MOR, the two-level strike during AMD pathogenesis can be precisely blocked by M@CCNP. Remarkably, excellent therapeutic efficacy to CNV is observed in vivo, achieving over 80% reduction in neovascularization and over 60% reduction in leakage area. In summary, the supramolecular engineered nanoceria provides an efficient approach for amelioration of AMD by blocking the two-level strike, and presents significant potential as an exceptional drug delivery platform, particularly for ROS-related diseases.
Collapse
Affiliation(s)
- Mingyu Xu
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Yifan Zhou
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Yufeng Xu
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - An Shao
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Haijie Han
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Juan Ye
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| |
Collapse
|
13
|
Lai CM, Xiao XS, Chen JY, He WY, Wang SS, Qin Y, He SH. Revolutionizing nanozymes: The synthesis, enzyme-mimicking capabilities of carbon dots, and advancements in catalytic mechanisms. Int J Biol Macromol 2025; 293:139284. [PMID: 39736288 DOI: 10.1016/j.ijbiomac.2024.139284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities. This review explores the methodologies used for synthesizing CDs with enzyme mimicking capabilities, highlighting potential avenues such as doping and hybrid nanozymes to enhance their catalytic efficacy. Moreover, a comprehensive overview of CDs that mimick the activities of various oxidoreductases-like peroxidase, catalase, oxidase/laccase, and superoxide dismutase-like is provided. The focus is on the in-depth exploration of the mechanisms, advancements and practical applications of each oxidoreductase-like function exhibited by CD nanozymes. Drawing upon these exhaustive summaries and analyses, the review identifies the prevailing challenges that hinder the seamless integration of CDs into real-world applications and offers forward-looking perspectives for future directions.
Collapse
Affiliation(s)
- Chun-Mei Lai
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Shan Xiao
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Jing-Yi Chen
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Wen-Yun He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Si-Si Wang
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China.
| | - Shao-Hua He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China.
| |
Collapse
|
14
|
Ge S, Sun A, Zhou X, Niu P, Chen Y, Bao X, Yu M, Zhong Z, Sun J, Li G. Functionalized Nanozyme Microcapsules Targeting Deafness Prevention via Mitochondrial Homeostasis Remodeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413371. [PMID: 39663676 DOI: 10.1002/adma.202413371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Indexed: 12/13/2024]
Abstract
Mitochondrial dysfunction, which is the primary mechanism underlying cisplatin-induced hearing loss, can potentially be mitigated by modulating the redox balance and reprogramming the energy metabolism to remodel mitochondrial homeostasis. Herein, N-acetyl-l-cysteine-derived carbonized polymer dots (NAC CPDs) are embedded into manganese porphyrin-doped metal-organic frameworks and encapsulated using a polydopamine (PDA) coating and gelatin methacryloyl (GelMA) hydrogel to afford functionalized nanozyme microcapsules. Owing to their injectability and adhesion properties, these microcapsules exhibit the advantages of prolonged retention in the middle ear and sustained release in the inner ear. The synergy between the manganese porphyrin and polymer dots results in excellent antioxidant properties. The developed nanozymes activate the PI3K-AKT pathway, reprogramming the energy supply mechanism, and inhibiting the oligomerization of BAX in mitochondria to prevent the leakage of mitochondrial DNA and cytochrome c. Therapeutic efficacy and related mechanisms are validated in vivo. Thus, this study on mitochondrial homeostasis remodeling by nanozyme microcapsules opens a new chapter in the treatment of hearing loss.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Aidong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xinyu Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Ping Niu
- Department of Otolaryngology, Qingzhou People's Hospital, Qingzhou, 262500, China
| | - Yong Chen
- Department of Chemo-radiotherapy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xiaotao Bao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Meng Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Zhenhua Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Jingwu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, 230001, China
| | - Guang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
15
|
Hu Z, Zhou X, Zhang W, Zhang L, Li L, Gao Y, Wang C. Photothermal amplified multizyme activity for synergistic photothermal-catalytic tumor therapy. J Colloid Interface Sci 2025; 679:375-383. [PMID: 39366266 DOI: 10.1016/j.jcis.2024.09.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Nano-enzymatic catalytic therapy has been widely explored as a promising tumor therapeutic method with specific responsiveness to the tumor microenvironment (TME). However, the inherent lower and simplex catalytic efficiency impairs their anti-tumor efficacy. Therefore, developing novel nanozymes with relatively high and multiple catalytic characteristics, simultaneously enhancing the enzyme-like activity of nanozymes using the proper method, photothermal promoted catalytic property, is a reliable way. In this paper, we report a manganese oxide/nitrogen-doped carbon composite nanoparticles (MnO-N/C NPs) with multi-enzyme mimetic activity and photothermal conversional effect. The peroxidase (POD)-like/oxidase (OXD)-like/catalase (CAT)-like activity of MnO-N/C nanozymes was accelerated upon exposure to an 808 nm NIR laser. In vitro and in vivo results proved that the MnO-N/C NPs shown excellent magnetic resonance imaging (MRI) guided synergistic photothermal-enhanced catalytic treatment and photothermal therapy of liver cancer. The photothermal enhanced multi-enzyme activity maximizes the efficacy of catalytic and photothermal therapy while reducing harm to healthy cells, thereby offering valuable insights for the development of next-generation photothermal nanozymes to enhance tumor therapy.
Collapse
Affiliation(s)
- Zhichao Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Xue Zhou
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Wei Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China
| | - Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, PR China.
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China.
| |
Collapse
|
16
|
Gu Y, Jiao Y, Ruan Y, Yang J, Yang Y. Cu,Ce-containing phosphotungstates as laccase-like nanozyme for colorimetric detection of Cr(VI) and Fe(Ⅲ). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124948. [PMID: 39146630 DOI: 10.1016/j.saa.2024.124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 μg/mL and 0.033-33.33 μg/mL with a low detection limit of 0.135 μg/mL and 0.0288 μg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.
Collapse
Affiliation(s)
- Yi Gu
- Qujing Hospital of Traditional Chinese Medicine, Qujing 655000, Yunnan, PR China
| | - Yang Jiao
- Yunnan Lunyang Technology Co., Ltd., Kunming 650000, Yunnan, PR China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Ya Ruan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Jing Yang
- Qujing Hospital of Traditional Chinese Medicine, Qujing 655000, Yunnan, PR China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
17
|
Wang Q, Jin L, Yang H, Yu L, Cao X, Mao Z. Bacteria/Nanozyme Composites: New Therapeutics for Disease Treatment. SMALL METHODS 2025; 9:e2400610. [PMID: 38923867 DOI: 10.1002/smtd.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.
Collapse
Affiliation(s)
- Qirui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinran Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China
| |
Collapse
|
18
|
Gayda G, Demkiv O, Stasyuk N, Boretsky Y, Gonchar M, Nisnevitch M. Peroxidase-like Nanoparticles of Noble Metals Stimulate Increasing Sensitivity of Flavocytochrome b2-Based L-Lactate Biosensors. BIOSENSORS 2024; 14:562. [PMID: 39590021 PMCID: PMC11591947 DOI: 10.3390/bios14110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O2), mimicking peroxidase (PO) activity. The most effective nanoPO (nPO) was selected for developing ABSs targeting L-lactate. Consequently, several Fcb2/nPO-based ABSs with enhanced sensitivity to L-lactate were developed, demonstrating mediated ET between Fcb2 and the GE surface. The positive effect of noble metal NPs on Fcb2-based sensor sensitivity may be explained by the synergy between their dual roles as both PO mimetics and electron transfer mediators. Furthermore, our findings provide preliminary data that may prompt a re-evaluation of the mechanism of L-lactate oxidation in Fcb2-mediated catalysis. Previously, it was believed that L-lactate oxidation via Fcb2 catalysis did not produce H2O2, unlike catalysis via L-lactate oxidase. Our initial research revealed that the inclusion of nPO in Fcb2-based ABSs significantly increased their sensitivity. Employing other PO mimetics in ABSs for L-lactate yielded similar results, reinforcing our hypothesis that trace amounts of H2O2 may be generated as a transient intermediate in this reaction. The presence of nPO enhances the L-lactate oxidation rate through H2O2 utilization, leading to signal amplification and heightened bioelectrode sensitivity. The proposed ABSs have been successfully tested on blood serum and fermented food samples, showing their promise for L-lactate monitoring in medicine and the food industry.
Collapse
Affiliation(s)
- Galina Gayda
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Olha Demkiv
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Nataliya Stasyuk
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Yuriy Boretsky
- Department of Biochemistry and Hygiene, Ivan Boberskyi Lviv State University of Physical Culture, 11 Kostiushko Str., 79000 Lviv, Ukraine;
| | - Mykhailo Gonchar
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
| |
Collapse
|
19
|
Niu X, Zhang J, Yuan M, Liu Y, Wang Y, Li H, Wang K. Chiral nanoenzymes: synthesis and applications. Mikrochim Acta 2024; 191:723. [PMID: 39495306 DOI: 10.1007/s00604-024-06803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Chiral nanoenzymes are a new type of material that possesses both chiral nanostructures and enzymatic catalytic activity. These materials exhibit selectivity in their catalytic activity towards organisms due to the introduction of chiral features in nanomaterials and have inherent chiral discrimination in organisms. As synthetic enzymes, chiral nanoenzymes offer significant advantages over natural enzymes. Due to their unique chiral structure and distinctive physicochemical properties, chiral nanoenzymes play an important role in various fields, including biology, medicine, and environmental protection. Their strong stereospecificity and biocompatibility make them useful in disease therapy, biosensing, and chiral catalysis, setting them apart from conventional and natural enzymes. In recent years, the design of synthetic methods and biological applications of chiral nanoenzymes has received significant attention and extensive research among scientists. This paper provides a systematic review of the research progress in the discovery, development, and application of chiral nanoenzymes in the last decade. Additionally, it presents various applications of chiral nanoenzymes, such as disease therapy, biosensing, and chiral catalysis. Finally, the challenges and future prospects of chiral nanoenzymes are discussed.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| |
Collapse
|
20
|
Qin Y, Zhong X, Liang C, Liang Z, Nong Y, Deng L, Guo Y, Li J, Zhang M, Tang S, Wei L, Yang Y, Liang Y, Wu J, Lam YM, Su Z. Nanozyme-based colorimetric sensor arrays coupling with smartphone for discrimination and "segmentation-extraction-regression" deep learning assisted quantification of flavonoids. Biosens Bioelectron 2024; 263:116604. [PMID: 39094293 DOI: 10.1016/j.bios.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.
Collapse
Affiliation(s)
- Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinfeng Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Meiling Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Siqi Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Liuyan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore; Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798, Singapore.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
21
|
Cao X, Liu T, Wang X, Yu Y, Li Y, Zhang L. Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6616. [PMID: 39460096 PMCID: PMC11511242 DOI: 10.3390/s24206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Antioxidants are substances that have the ability to resist or delay oxidative damage. Antioxidants can be used not only for the diagnosis and prevention of vascular diseases, but also for food preservation and industrial production. However, due to the excessive use of antioxidants, it can cause environmental pollution and endanger human health. It can be seen that the development of antioxidant detection technology is important for environment/health maintenance. It is found that traditional detection methods, including high performance liquid chromatography, gas chromatography, etc., have shortcomings such as cumbersome operation and high cost. In contrast, the nanozyme-based detection method features advantages of low cost, simple operation, and rapidity, which has been widely used in the detection of various substances such as glucose and antioxidants. This article focuses on the latest research progress of nanozymes for antioxidant detection. Nanozymes for antioxidant detection are classified according to enzyme-like types. Different types of nanozyme-based sensing strategies and detection devices are summarized. Based on the summary and analysis, one can find that the development of commercial nanozyme-based devices for the practical detection of antioxidants is still challenging. Some emerging technologies (such as artificial intelligence) should be fully utilized to improve the detection sensitivity and accuracy. This article aims to emphasize the application prospects of nanozymes in antioxidant detection and to provide new ideas and inspiration for the development of detection methods.
Collapse
Affiliation(s)
- Xin Cao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
- College of Intelligent Manufacturing and Modern Industry, Xinjiang University, Urumqi 830017, China
| | - Tianyu Liu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Xianping Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yueting Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yangguang Li
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832000, China
| | - Lu Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| |
Collapse
|
22
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
23
|
Jiang N, Liu X, Sui B, Wang J, Liu X, Zhang Z. Using Hybrid MnO 2-Au Nanoflowers to Accelerate ROS Scavenging and Wound Healing in Diabetes. Pharmaceutics 2024; 16:1244. [PMID: 39458576 PMCID: PMC11509962 DOI: 10.3390/pharmaceutics16101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Excessive reactive oxygen species (ROS) in diabetic wounds are major contributors to chronic wounds and impaired healing, posing significant challenges in regenerative medicine. Developing innovative drug delivery systems is crucial to address these issues by modifying the adverse microenvironment and promoting effective wound healing. Methods: Herein, we designed a novel drug delivery platform using manganese dioxide nanoflower hybridized gold nanoparticle composites (MnO2-Au) synthesized via a hydrothermal reaction, and investigated the potential of MnO2-Au nanoflowers to relieve the high oxidative stress microenvironment and regulate diabetic wound tissue healing. Results: This hybrid material demonstrated superior catalytic activity compared to MnO2 alone, enabling the rapid decomposition of hydrogen peroxide and a substantial reduction in ROS levels within dermal fibroblasts. The MnO2-Au nanoflowers also facilitated enhanced dermal fibroblast migration and Col-I expression, which are critical for tissue regeneration. Additionally, a hydrogel-based wound dressing incorporating MnO2-Au nanoflowers was developed, showing its potential as an intelligent drug delivery system. This dressing significantly reduced oxidative stress, accelerated wound closure, and improved the quality of neonatal epithelial tissue regeneration in a diabetic rat skin defect model. Conclusions: Our findings underscore the potential of MnO2-Au nanoflower-based drug delivery systems as a promising therapeutic approach for chronic wound healing, particularly in regenerative medicine.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Oral and Craniomaxillofacial Science, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Xinwei Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiale Wang
- College of Science, Donghua University, Shanghai 201620, China;
- Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai 201620, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
24
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
25
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
26
|
Meng L, Tang L, Gao F, Zhu L, Liu X, Zhang J, Chang Y, Ma X, Guo Y. Hollow CeO 2-Based Nanozyme with Self-Accelerated Cascade Reactions for Combined Tumor Therapy. Chemistry 2024; 30:e202401640. [PMID: 38935332 DOI: 10.1002/chem.202401640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Nanozymes have obvious advantages in improving the efficiency of cancer treatment. However, due to the lack of tissue specificity, low catalytic efficiency, and so on, their clinical applications are limited. Herein, the nanoplatform CeO2@ICG@GOx@HA (CIGH) with self-accelerated cascade reactions is constructed. The as-prepared nanozyme shows the superior oxidase (OXD)-like, superoxide dismutase (SOD)-like, catalase (CAT)-like and peroxidase (POD)-like activities. At the same time, under 808 nm near-infrared (NIR) irradiation, the photodynamic and photothermal capabilities are also significantly enhanced due to the presence of indocyanine green (ICG). We demonstrate that the nanozyme CIGH can efficiently accumulate in the tumor and exhibit amplified cascade antitumor effects with negligible systemic toxicity through the combination of photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT) and starvation therapy. The nanozyme prepared in this study provides a promising candidate for catalytic nanomedicines for efficient tumor therapy.
Collapse
Affiliation(s)
- Lili Meng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lingxue Tang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Fangli Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Liang Zhu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xinhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Chang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
27
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self-Catalytic NO/O 2 Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403921. [PMID: 39101290 DOI: 10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Indexed: 08/06/2024]
Abstract
Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
28
|
Wang L, Ruan L, Zhang H, Sun Y, Shi W, Huang H, Li Y. A facile and on-site sensing strategy for phenolic compounds based on a novel nanozyme with high polyphenol oxidase-like activity. Talanta 2024; 277:126422. [PMID: 38897016 DOI: 10.1016/j.talanta.2024.126422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Phenolic compounds (PCs) are diverse in nature and undergo complex migration and transformations in the environment, making it challenging to use techniques such as chromatography and other traditional methods to determine the concentration of PCs by separation, individual monitoring and subsequent addition. To address this issue, a facile and on-site strategy was developed to measure the concentration of PCs using a novel nanozyme with polyphenol oxidase-like activity. First, the nanozyme was designed by coordinating the asymmetric ligand nicotinic acid with copper to mimic the structure of mononuclear and trinuclear copper clusters of natural laccases. Subsequently, by introducing 2-mercaptonicotinic acid to regulate the valence state of copper, the composite nanozyme CuNA10S was obtained with significantly enhanced activity. Interestingly, CuNA10S was shown to have a broad substrate spectrum capable of catalyzing common PCs. Building upon the superior performance of this nanozyme, a method was developed to determine the concentration of PCs. To enable rapid on-site sensing, we designed and prepared CuNA10S-based test strips and developed a tailored smartphone sensing platform. Using paper strip sensors combined with a smartphone sensing platform with RGB streamlined the sensing process, facilitating rapid on-site analysis of PCs within a range of 0-100 μM. Our method offers a solution for the quick screening of phenolic wastewater at contaminated sites, allowing sensitive and quick monitoring of PCs without the need for standard samples. This significantly simplifies the monitoring procedure compared to more cumbersome large-scale instrumental methods.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Ling Ruan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hao Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yue Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Wenqi Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
29
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self‐Catalytic NO/O 2 Gas‐Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS 2024. [DOI: doi:10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 04/16/2025]
Abstract
AbstractRadiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor‐targeted “prosthetic‐Arginine” coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO‐donating Fmoc‐protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu‐HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2‐transporting ability of heme, HRRu‐HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu‐HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu‐HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Henan 450001 China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS) CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS) CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
30
|
Fu Q, Wei C, Wang M. Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment. ACS NANO 2024; 18:12049-12095. [PMID: 38693611 DOI: 10.1021/acsnano.4c02265] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment. First, we comprehensively outline the preparation strategies involved in creating transition-metal-based nanozymes, including hydrothermal method, solvothermal method, chemical reduction method, biomimetic mineralization method, and sol-gel method. Subsequently, we elucidate the catalytic mechanisms (catalase (CAT)-like activities), peroxidase (POD)-like activities), oxidase (OXD)-like activities) and superoxide dismutase (SOD)-like activities) of transition-metal-based nanozymes along with their activity regulation strategies such as morphology control, size manipulation, modulation, composition adjustment and surface modification under environmental stimulation. Furthermore, we elaborate on the diverse applications of transition-metal-based nanozymes in anticancer therapies encompassing radiotherapy (RT), chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), immunotherapy, and synergistic therapy. Finally, the challenges faced by transition-metal-based nanozymes are discussed alongside future research directions. The purpose of this review is to offer scientific guidance that will enhance the clinical applications of nanozymes based on transition metals.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
31
|
Huang R, Qiu H, Pang C, Li L, Wang A, Ji S, Liang H, Shen XC, Jiang BP. Size-Switchable Ru Nanoaggregates for Enhancing Phototherapy: Hyaluronidase-Triggered Disassembly to Alleviate Deep Tumor Hypoxia. Chemistry 2024; 30:e202400115. [PMID: 38369622 DOI: 10.1002/chem.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.
Collapse
Affiliation(s)
- Rimei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Huimin Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Congcong Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Liqun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| |
Collapse
|
32
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
33
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
34
|
Li Y, Dong Y, Wang R, Lin Z, Lin J, Ji X, Ye BC. Biomimetic Electrochemical Sensor Based on Single-Atom Nickel Laccase Nanoenzyme for Quercetin Detection. Anal Chem 2024; 96:2610-2619. [PMID: 38306188 DOI: 10.1021/acs.analchem.3c05161] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Laccase, a member of the copper oxidase family, has been used as a green catalyst in the environmental and biochemical industries. However, laccase nanoenzymes are limited to materials with copper as the active site, and noncopper laccase nanoenzymes have been scarcely reported. In this study, inspired by the multiple copper active sites of natural laccase and the redox Cu2+/Cu+ electron transfer pathway, a novel nitrogen/nickel single-atom nanoenzyme (N/Ni SAE) with high laccase-like activity was prepared by inducing Ni and dopamine precipitation through a controllable water/ethanol interface reaction. Compared with that of laccase, the laccase activity simulated by N/Ni SAE exhibited excellent stability and reusability. The N/Ni SAE exhibited a higher efficiency toward the degradation of 2,4-dichlorophenol, hydroquinone, bisphenol A, and p-aminobenzene. In addition, a sensitive electrochemical biosensor was constructed by leveraging the laccase-like activity of N/Ni SAE; this sensor offered unique advantages in terms of catalytic activity, selectivity, stability, and repeatability. Its detection ranges for quercetin were 0.01-0.1 and 1.0-100 μM, and the detection limit was 3.4 nM. It was also successfully used for the quantitative detection of quercetin in fruit juices. Therefore, the single-atom biomimetic nanoenzymes prepared in this study promote the development of a new electrochemical strategy for the detection of various bioactive molecules and show great potential for practical applications.
Collapse
Affiliation(s)
- Yangguang Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuxin Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Rongjiang Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhenghao Lin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jiajun Lin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xinyi Ji
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Demkiv O, Nogala W, Stasyuk N, Klepach H, Danysh T, Gonchar M. Highly sensitive amperometric sensors based on laccase-mimetic nanozymes for the detection of dopamine. RSC Adv 2024; 14:5472-5478. [PMID: 38352675 PMCID: PMC10862099 DOI: 10.1039/d3ra07587g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The current research presents novel sensors based on laccase-like mimetics for the detection of dopamine (DA). The synthesized laccase-like nanozymes (nAuCu, nPtCu, nCuMnCo, and nCoCuCe) were prepared by a simple hydrothermal method and exhibited an attractive catalytic activity toward DA. The developed amperometric sensors based on laccase nanozymes (nAuCu and nPtCu) are more stable, selective, and revealed a higher sensitivity (6.5-fold than the biosensor based on the natural fungal laccase from Trametes zonata). The amperometric sensors were obtained by modification of the glassy carbon electrodes (GCEs) with AuPt nanoparticles. Functionalization of the electrode surface by AuPt NPs resulted in increased catalytic activity of the laccase-like layer and higher sensitivity. Among studied configurations, the sensor containing nAuCu and nAuPt possesses a wide linear range for dopamine detection (10-170 μM), the lowest limit of detection (20 nM), and the highest sensitivity (10 650 ± 8.3 A M-1 m-2) at a low applied potential (+0.2 V versus Ag/AgCl). The proposed simple and cost-effective sensor electrode was used for the determination of DA in pharmaceuticals.
Collapse
Affiliation(s)
- Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv 79005 Ukraine
- Institute of Physical Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv 79005 Ukraine
- Institute of Physical Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Halyna Klepach
- Drohobych Ivan Franko State Pedagogical University Drohobych 82100 Ukraine
| | - Taras Danysh
- Institute of Blood Pathology and Transfusion Medicine, National Academy of Medical Sciences of Ukraine Lviv 79044 Ukraine
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine Lviv 79005 Ukraine
- Drohobych Ivan Franko State Pedagogical University Drohobych 82100 Ukraine
| |
Collapse
|
36
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Farasati Far B, Maleki-Baladi R, Fathi-Karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: a review. J Mater Chem B 2024; 12:609-636. [PMID: 38126443 DOI: 10.1039/d3tb01786a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cerium vanadate nanoparticles (CeVO4 NPs), which are members of the rare earth orthovanadate nanomaterial family, have generated considerable interest due to their diverse properties and prospective biomedical applications. The current study, which provides a comprehensive overview of the synthesis and characterization techniques for CeVO4 NPs, emphasizes the sonochemical method as an efficient and straightforward technique for producing CeVO4 NPs with tunable size and shape. This paper investigates the toxicity and biocompatibility of CeVO4 NPs, as well as their antioxidant and catalytic properties, which allow them to modify the redox state of biological systems and degrade organic pollutants. In addition, the most recent developments in the medicinal applications of CeVO4 NPs, such as cancer treatment, antibacterial activity, biosensing, and drug or gene delivery, are emphasized. In addition, the disadvantages of CeVO4 NPs, such as stability, aggregation, biodistribution, and biodegradation, are outlined, and several potential solutions are suggested. The research concludes with data and recommendations for developing and enhancing CeVO4 NPs in the biomedical industry.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Reza Maleki-Baladi
- Department of Animal Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
- Young Researchers and Elite Club, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
- Universal Scientific Education and Research Network (USERN), Bojnourd, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, 9417694735, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
38
|
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, Tripathi RM. Nanozymes: A comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol 2024; 256:128272. [PMID: 38000568 DOI: 10.1016/j.ijbiomac.2023.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.
Collapse
Affiliation(s)
- Akanksha Deshwal
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajesh
- CSIR-National Physical Laboratory, New Delhi, India
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | | | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
39
|
Wang L, Sun Y, Zhang H, Shi W, Huang H, Li Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123003. [PMID: 37336190 DOI: 10.1016/j.saa.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Nanozymes, an unusual category of nanomaterials possessing enzymatic properties, and have generated considerable interest regarding their application feasibilities on several important fronts. In the present work, an innovative sensing device for catechol was established ground on a fluorescent nanozyme (Cu-BDC-NH2) that exhibited catechol oxidase activity. The fluorescent nanozyme combines both functions of catechol recognition and response signal output, and can realize the sensing of catechol without the addition of other chromogenic agents. In the existence of Cu-BDC-NH2, catechol can be oxidized efficiently to produce quinones or polymers with strong electron absorption capacity, which immediately results in efficient fluorescence quenching of Cu-BDC-NH2. However, other common phenolic compounds, such as phenol, the other two diphenols (hydroquinone and resorcinol), phloroglucinol, and chlorophenol, do not result in efficient fluorescence quenching of Cu-BDC-NH2. The method shows a nice linear relationship between catechol concentration prep the fluorescence intensity of Cu-BDC-NH2 in the scope of 0-10 μM, with a detection limit of 0.997 μM. The detection of catechol in actual water samples has also achieved the satisfactory consequences, which provides a new strategy for the convenient and selective detection of catechol.
Collapse
Affiliation(s)
- Le Wang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hao Zhang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenqi Shi
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
40
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
41
|
Sun M, Huang S, Jiang S, Su G, Lu Z, Wu C, Ye Q, Feng B, Zhuo Y, Jiang X, Xu S, Wu D, Liu D, Song X, Song C, Yan X, Rao H. The mechanism of nanozyme activity of ZnO-Co 3O 4-v: Oxygen vacancy dynamic change and bilayer electron transfer pathway for wound healing and virtual reality revealing. J Colloid Interface Sci 2023; 650:1786-1800. [PMID: 37506419 DOI: 10.1016/j.jcis.2023.06.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Since the catalyst's surface was the major active location, the inner structure's contribution to catalytic activity was typically overlooked. Here, ZnO-Co3O4-v nanozymes with several surfaces and bulk oxygen vacancies were created. The O atoms of H2O2 moved inward to preferentially fill the oxygen vacancies in the interior and form new "lattice oxygen" by the X-ray photoelectron spectroscopy depth analysis and X-ray absorption fine structure. The internal Co2+ continually transferred electrons to the surface for a continuous catalytic reaction, which generated a significant amount of reactive oxygen species. Inner and outer double-layer electron cycles accompanied this process. A three-dimensional model of ZnO-Co3O4-v was constructed using virtual reality interactive modelling technology to illustrate nanozyme catalysis. Moreover, the bactericidal rate of ZnO-Co3O4-v for Methionine-resistant Staphylococcus aureus and Multiple drug resistant Escherichia coli was as high as 99%. ZnO-Co3O4-v was biocompatible and might be utilized to heal wounds following Methionine-resistant Staphylococcus aureus infection. This work offered a new idea for nanozymes to replace of conventional antibacterial medications.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shu Huang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shaojuan Jiang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Danni Liu
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xianyang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaorong Yan
- Ya'an People's Hospital, City Back Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
42
|
Dai X, Liu H, Cai B, Liu Y, Song K, Chen J, Ni SQ, Kong L, Zhan J. A Bioinspired Atomically Thin Nanodot Supported Single-Atom Nanozyme for Antibacterial Textile Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303901. [PMID: 37490519 DOI: 10.1002/smll.202303901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Surface antibacterial coatings with outstanding antibacterial efficiency have attracted increasing attention in medical protective clothing and cotton surgical clothing. Although nanozymes, as a new generation of antibiotics, are used to combat bacteria, their catalytic performance remains far from satisfactory as alternatives to natural enzymes. Single-atom nanodots provide a solution to the low catalytic activity bottleneck of nanozymes. Here, atomically thin C3 N4 nanodots supported single Cu atom nanozymes (Cu-CNNDs) are developed by a self-tailoring approach, which exhibits catalytic efficiency of 8.09 × 105 M-1 s-1 , similar to that of natural enzyme. Experimental and theoretical calculations show that excellent peroxidase-like activity stems from the size effect of carrier optimizing the coordination structure, leading to full exposure of Cu-N3 active site, which improves the ability of H2 O2 to generate hydroxyl radicals (•OH). Notably, Cu-CNNDs exhibit over 99% superior antibacterial efficacy and are successfully grafted onto cotton fabrics. Thus, Cu-CNNDs blaze an avenue for exquisite biomimetic nanozyme design and have great potential applications in antibacterial textiles.
Collapse
Affiliation(s)
- Xiaohui Dai
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Huan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Cai
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yang Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Kepeng Song
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jing Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shou-Qing Ni
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Lingshuai Kong
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jinhua Zhan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
43
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
44
|
Sarathkumar E, Anjana RS, Jayasree RS. Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:988-1003. [PMID: 37822722 PMCID: PMC10562646 DOI: 10.3762/bjnano.14.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Lateral flow assays (LFAs) are currently the most widely used point-of-care testing technique with remarkable advantages such as simple operation, rapid analysis, portability, and low cost. Traditionally, gold nanoparticles are employed as tracer element in LFAs due to their strong localised surface plasmon resonance. However, this conventional LFA technique based on colorimetric analysis is neither useful to determine critical analytes with desired sensitivity, nor can it quantify the analytes. Various signal amplification strategies have been proposed to improve the sensitivity and the quantitative determination of analytes using LFAs. One of the promising strategies is to enhance the photothermal properties of nanomaterials to generate heat after light irradiation, followed by a temperature measurement to detect and quantify the analyte concentration. Recently, it has been observed that the nanoscale architecture of materials, including size, shape, and nanoscale composition, plays a significant role in enhancing the photothermal properties of nanomaterials. In this review, we discuss the nanoarchitectonics of nanomaterials regarding enhanced photothermal properties and their application in LFAs. Initially, we discuss various important photothermal materials and their classification along with their working principle. Then, we highlight important aspects of the nanoscale architecture (i.e., size, shape, and composition) to enable maximum light-to-heat conversion efficiency. Finally, we discuss some of the recent advances in photothermal LFAs and their application in detecting analytes.
Collapse
Affiliation(s)
- Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Rajasekharan S Anjana
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| |
Collapse
|
45
|
Pota G, Silvestri B, Vitiello G, Gallucci N, Di Girolamo R, Scialla S, Raucci MG, Ambrosio L, Di Napoli M, Zanfardino A, Varcamonti M, Pezzella A, Luciani G. Towards nanostructured red-ox active bio-interfaces: Bioinspired antibacterial hybrid melanin-CeO 2 nanoparticles for radical homeostasis. BIOMATERIALS ADVANCES 2023; 153:213558. [PMID: 37467646 DOI: 10.1016/j.bioadv.2023.213558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/29/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing to the reversible Ce+3/Ce+4 surface oxidation state. Moreover, surface functionalization leads to higher catalytic activity and selectivity, as well as more tunable enzyme-mimicking performances. Conjugation with melanin is an adequate strategy to boost and enrich CeO2 NPs biological features, because of melanin redox properties accounting for intrinsic antioxidant, antimicrobial and anti-inflammatory power. Herein, hybrid Melanin/CeO2 nanostructures were designed by simply coating the metal-oxide nanoparticles with melanin chains, obtained in-situ through ligand-to-metal charge transfer mechanism, according to a bioinspired approach. Obtained hybrid nanostructures underwent detailed physico-chemical characterization. Morphological and textural features were investigated through TEM, XRD and N2 physisorption. The nature of nanoparticle-melanin interaction was analyzed through FTIR, UV-vis and EPR spectroscopy. Melanin-coated hybrid nanostructures exhibited a relevant antioxidant activity, confirmed by a powerful quenching effect for DPPH radical, reaching 81 % inhibition at 33 μg/mL. A promising anti-inflammatory efficacy of the melanin-coated hybrid nanostructures was validated through a significant inhibition of BSA denaturation after 3 h. Meanwhile, the enzyme-mimicking activity was corroborated by a prolonged peroxidase activity after 8 h at 100 μg/mL and a relevant catalase-like action, by halving the H2O2 level in 30 min at 50 μg/mL. Antimicrobial assays attested that conjugation with melanin dramatically boosted CeO2 biocide activity against both Gram (-) and Gram (+) strains. Cytocompatibility tests demonstrated that the melanin coating not only enhanced the CeO2 nanostructures biomimicry, resulting in improved cell viability for human dermal fibroblast cells (HDFs), but mostly they proved that Melanin-CeO2 NPs were able to control the oxidative stress, modulating the production of nitrite and reactive oxygen species (ROS) levels in HDFs, under physiological conditions. Such remarkable outcomes make hybrid melanin-CeO2 nanozymes, promising redox-active interfaces for regenerative medicine.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Stefania Scialla
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Maria Grazia Raucci
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Luigi Ambrosio
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy; Department of Physics "Ettore Pancini", University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Florence, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
46
|
P. N. N, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, Plebanski M, Bhargava SK. Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology. Adv Healthc Mater 2023; 12:e2300768. [PMID: 37392379 PMCID: PMC11481082 DOI: 10.1002/adhm.202300768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Nanomaterials that mimic the catalytic activity of natural enzymes in the complex biological environment of the human body are called nanozymes. Recently, nanozyme systems have been reported with diagnostic, imaging, and/or therapeutic capabilities. Smart nanozymes strategically exploit the tumor microenvironment (TME) by the in situ generation of reactive species or by the modulation of the TME itself to result in effective cancer therapy. This topical review focuses on such smart nanozymes for cancer diagnosis, and therapy modalities with enhanced therapeutic effects. The dominant factors that guide the rational design and synthesis of nanozymes for cancer therapy include an understanding of the dynamic TME, structure-activity relationships, surface chemistry for imparting selectivity, and site-specific therapy, and stimulus-responsive modulation of nanozyme activity. This article presents a comprehensive analysis of the subject including the diverse catalytic mechanisms of different types of nanozyme systems, an overview of the TME, cancer diagnosis, and synergistic cancer therapies. The strategic application of nanozymes in cancer treatment can well be a game changer in future oncology. Moreover, recent developments may pave the way for the deployment of nanozyme therapy into other complex healthcare challenges, such as genetic diseases, immune disorders, and ageing.
Collapse
Affiliation(s)
- Navya P. N.
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Amrin Begum
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | | | - Ruchika Ojha
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Christian Hartinger
- School of Chemical SciencesThe University of AucklandAuckland 1142Private Bag92019New Zealand
| | - Magdalena Plebanski
- Cancer, Ageing and Vaccines Research GroupSchool of Health and Biomedical SciencesSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| |
Collapse
|
47
|
Liu C, Wang Q, Wu YL. Recent Advances in Nanozyme-Based Materials for Inflammatory Bowel Disease. Macromol Biosci 2023; 23:e2300157. [PMID: 37262405 DOI: 10.1002/mabi.202300157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.
Collapse
Affiliation(s)
- Chuyi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
48
|
Singh S, Rai N, Tiwari H, Gupta P, Verma A, Kumar R, Kailashiya V, Salvi P, Gautam V. Recent Advancements in the Formulation of Nanomaterials-Based Nanozymes, Their Catalytic Activity, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3577-3599. [PMID: 37590090 DOI: 10.1021/acsabm.3c00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nanozymes are nanoparticles with intrinsic enzyme-mimicking properties that have become more prevalent because of their ability to outperform conventional enzymes by overcoming their drawbacks related to stability, cost, and storage. Nanozymes have the potential to manipulate active sites of natural enzymes, which is why they are considered promising candidates to function as enzyme mimetics. Several microscopy- and spectroscopy-based techniques have been used for the characterization of nanozymes. To date, a wide range of nanozymes, including catalase, oxidase, peroxidase, and superoxide dismutase, have been designed to effectively mimic natural enzymes. The activity of nanozymes can be controlled by regulating the structural and morphological aspects of the nanozymes. Nanozymes have multifaceted benefits, which is why they are exploited on a large scale for their application in the biomedical sector. The versatility of nanozymes aids in monitoring and treating cancer, other neurodegenerative diseases, and metabolic disorders. Due to the compelling advantages of nanozymes, significant research advancements have been made in this area. Although a wide range of nanozymes act as potent mimetics of natural enzymes, their activity and specificities are suboptimal, and there is still room for their diversification for analytical purposes. Designing diverse nanozyme systems that are sensitive to one or more substrates through specialized techniques has been the subject of an in-depth study. Hence, we believe that stimuli-responsive nanozymes may open avenues for diagnosis and treatment by fusing the catalytic activity and intrinsic nanomaterial properties of nanozyme systems.
Collapse
Affiliation(s)
- Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
49
|
Li S, Liang L, Tian L, Wu J, Zhu Y, Qin Y, Zhao S, Ye F. Enhanced peroxidase-like activity of MOF nanozymes by co-catalysis for colorimetric detection of cholesterol. J Mater Chem B 2023; 11:7913-7919. [PMID: 37431242 DOI: 10.1039/d3tb00958k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely used as nanozymes with a great development prospect due to their unique advantages. It is known that the current Fe-based or Cu-based MOF, etc., exhibits the catalytic activity of nanozymes through the Fenton catalytic reaction. And the conversion efficiency of the Fe3+/Fe2+ or Cu2+/Cu+ cycle is key to the catalytic activity. Therefore, we proposed a novel co-catalytic method to promote the reaction rate of the rate-limiting step of Cu2+/Cu+ conversion in the Fenton reaction of Cu2+/H2O2 to enhance the catalytic activity of the nanozymes. As a proof of concept, the MoCu-2MI nanozyme with high catalytic activity was successfully synthesized using Mo-doped Cu-2MI (2-methylimidazole). By using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate, MoCu-2MI exhibited higher peroxidase-like activity than pure Cu-2MI. Then, it was confirmed that the newly introduced Mo played a crucial co-catalytic role by characterizing the possible catalytic mechanism. Specifically, Mo acted as a co-catalyst to accelerate the electron transfer in the system, and then promote the Cu2+/Cu+ cycle in the Cu-Fenton reaction, which was conducive to accelerating the production of a large number of reactive oxygen species (ROS) from H2O2, and finally improve the activity. Ultimately, a biosensor platform combined with MoCu-2MI and cholesterol oxidase realized the one-step colorimetric detection of cholesterol in the range of 2-140 μM with the detection limit as low as 1.2 μM. This study provides a new strategy for regulating the activity of MOF nanozymes.
Collapse
Affiliation(s)
- Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Longfei Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Jia Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yuhui Zhu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yuan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
50
|
Abstract
With the rapid development of nanotechnology, nanozymes are regarded as excellent substitutes for natural enzymes due to their high activity, convenient preparation, low cost, robust stability and other unique properties of nanomaterials. In biomedical applications, the always-on activity of nanozymes is undesirable as it poses a potential threat to normal tissues. Stimuli-responsive nanozymes were designed to manipulate the activities of nanozymes. This review introduces two types of stimuli-responsive nanozymes. One is smart responsive nanozymes with stimuli-switchable activities, further divided into those with on/off switchable activity and one/another switchable activity. Another is nanozymes exhibiting responsive release from specific carriers. Additionally, the biomedical applications of stimuli-responsive nanozymes in cancer therapy, antibacterial therapy, biosensing and anti-inflammatory therapy are briefly reviewed. Finally, we address the challenges and prospects in this field.
Collapse
Affiliation(s)
- Mengli Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|