1
|
Oh S, Chong D, Huang Y, Yeo WH. Empowering artificial muscles with intelligence: recent advancements in materials, designs, and manufacturing. MATERIALS HORIZONS 2025; 12:2764-2788. [PMID: 40208218 DOI: 10.1039/d5mh00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Drawing on foundational knowledge of the structure and function of biological muscles, artificial muscles have made remarkable strides over the past decade, achieving performance levels comparable to those of their natural counterparts. However, they still fall short in their lack of inherent intelligence to autonomously adapt to complex and dynamic environments. Consequently, the next frontier for artificial muscles lies in endowing them with advanced intelligence. Herein, recent works aimed at augmenting intelligence in artificial muscles are summarized, focusing on advancements in functional materials, structural designs, and manufacturing techniques. This review emphasizes memory-based intelligence, enabling artificial muscles to execute a range of pre-programmed movements and refresh stored actuation states in response to changing conditions, as well as sensory-based intelligence, which allows them to perceive and respond to environmental changes through sensory feedback. Furthermore, recent applications benefiting from intelligent artificial muscles, including adaptable robotics, biomedical devices, and wearables, are discussed. Finally, we address the remaining challenges in scalability, dynamic reprogramming, and the integration of multi-functional capabilities and discuss future perspectives of augmented intelligent artificial muscles to support further advancements in the field.
Collapse
Affiliation(s)
- Saewoong Oh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David Chong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yunuo Huang
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Design, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Wang X, Gao Y, Yuan Y, Wang Y, Liu A, Jia S, Yang W. Wearable Medical Devices: Application Status and Prospects. MICROMACHINES 2025; 16:394. [PMID: 40283271 PMCID: PMC12029246 DOI: 10.3390/mi16040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Electronic skin (E-skin) refers to a portable medical or health electronic device that can be worn directly on the human body and can carry out perception, recording, analysis, regulation, intervention and even treatment of diseases or maintenance of health status through software support. Its main features include wearability, real-time monitoring, convenience, etc. E-skin is convenient for users to wear for a long time and continuously monitors the user's physiological health data (such as heart rate, blood pressure, blood glucose, etc.) in real time. Health monitoring can be performed anytime and anywhere without frequent visits to hospitals or clinics. E-skin integrates multiple sensors and intelligent algorithms to automatically analyze data and provide health advice and early warning. It has broad application prospects in the medical field. With the increasing demand for E-skin, the development of multifunctional integrated E-skin with low power consumption and even autonomous energy has become a common goal of many researchers. This paper outlines the latest progress in the application of E-skin in physiological monitoring, disease treatment, human-computer interaction and other fields. The existing problems and development prospects in this field are presented.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yingnan Gao
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yueze Yuan
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yaping Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Sen Jia
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
4
|
Liang X, Meng S, Zhi C, Zhang S, Tan R, Xu X, Huang K, Lei L, Hu J. Thermal Transfer Printed Flexible and Wearable Bionic Skin with Bilayer Nanofiber for Comfortable Multimodal Health Management. Adv Healthc Mater 2025; 14:e2403780. [PMID: 39716836 DOI: 10.1002/adhm.202403780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Indexed: 12/25/2024]
Abstract
The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications. The bionic skin invention presented in this article addresses these issues by introducing a novel thermal transfer manufacturing process that is low-cost and easy to operate. This method is particularly suitable for the small-scale mass production required for bionic skin applications. Additionally, the innovative bilayer unidirectional moisture transport nanomembrane incorporated into the bionic skin offers high extensibility and breathability. This feature enhances the ability of the skin to absorb sweat, thereby facilitating comfortable real-time health monitoring. The specially designed bionic skin sensor embedded within this system can monitor various biomarkers in sweat, including glucose, lactic acid, uric acid, pH, temperature, and skin impedance. When combined with the CARE(Continuous Analyte Monitoring with Real-time Engagement) system, it enables real-time data transmission and processing, offering a comprehensive approach to health monitoring that is both comfortable and reliable.
Collapse
Affiliation(s)
- Xinshuo Liang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Renjie Tan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xingyuan Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Song HS, Rumon MMH, Rahman Khan MM, Jeong JH. Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices. Polymers (Basel) 2025; 17:542. [PMID: 40006203 PMCID: PMC11859541 DOI: 10.3390/polym17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Flexible sensors are revolutionizing wearable and implantable devices, with conductive hydrogels emerging as key materials due to their biomimetic structure, biocompatibility, tunable transparency, and stimuli-responsive electrical properties. However, their fragility and limited durability pose significant challenges for broader applications. Drawing inspiration from the self-healing capabilities of natural organisms like mussels, researchers are embedding self-repair mechanisms into hydrogels to improve their reliability and lifespan. This review highlights recent advances in self-healing (SH) conductive hydrogels, focusing on synthesis methods, healing mechanisms, and strategies to enhance multifunctionality. It also explores their wide-ranging applications, including in vivo signal monitoring, wearable biochemical sensors, supercapacitors, flexible displays, triboelectric nanogenerators, and implantable bioelectronics. While progress has been made, challenges remain in balancing self-healing efficiency, mechanical strength, and sensing performance. This review offers insights into overcoming these obstacles and discusses future research directions for advancing SH hydrogel-based bioelectronics, aiming to pave the way for durable, high-performance devices in next-generation wearable and implantable technologies.
Collapse
Affiliation(s)
- Han-Seop Song
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | | | - Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Jae-Ho Jeong
- Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
6
|
Zarei M, Jeong AW, Lee SG. Whisker-Implanted Biomimetic Electronic Skin for Tactile Sensing and Blind Perception. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408162. [PMID: 39498864 PMCID: PMC11727259 DOI: 10.1002/advs.202408162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Indexed: 11/07/2024]
Abstract
Rodent whiskers are a distinct class of tactile sensors that work in conjunction with the biological skin to discern airstreams and obstacles with remarkable sensitivity, facilitating navigation around proximate objects. In this study, a flexible artificial skin is developed comprising sensory active units, including electronic skin (e-skin) and an artificial whisker, inspired by the sensory capabilities of rodent skin and whiskers. As a novel strategy, unique congruent air pockets are introduced within the e-skin to enhance the sensitivity. Mechanical stimuli applied to the artificial whisker are efficiently transmitted to the active e-skin, which generates a sensitive tactile perception response. The developed artificial skin exhibits high sensitivity, a wide sensing range, high flexibility, superior stability, and tensile strength. The artificial whisker facilitates the sensitive detection of a broad range of applied mechanical forces. Therefore, the artificial skin can sense subtle and vigorous tactile stimuli including airstreams and field obstacles. The ability to sense, discriminate, and decipher the airstreams and obstacles imparts outstanding tactile sensing and blind perception characteristics to the artificial skin. This artificial skin is a promising platform for the development of sensitive e-skins suitable for a broad range of applications, such as human-machine interfaces, robotics, and wearable electronics.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of ChemistryUniversity of UlsanUlsan44610South Korea
| | - An Woo Jeong
- Department of ChemistryUniversity of UlsanUlsan44610South Korea
| | - Seung Goo Lee
- Department of ChemistryUniversity of UlsanUlsan44610South Korea
| |
Collapse
|
7
|
Yao R, Liu X, Yu H, Hou Z, Chang S, Yang L. Electronic skin based on natural biodegradable polymers for human motion monitoring. Int J Biol Macromol 2024; 278:134694. [PMID: 39142476 DOI: 10.1016/j.ijbiomac.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The wearability of the flexible electronic skin (e-skin) allows it to attach to the skin for human motion monitoring, which is essential for studying human motion and especially for assessing how well patients are recovering from rehabilitation therapy. However, the use of non-degradable synthetic materials in e-skin may raise skin safety concerns. Natural biodegradable polymers with advantages such as biodegradability, biocompatibility, sustainability, natural abundance, and low cost have the potential to be alternative materials for constructing flexible e-skin and applying them to human motion monitoring. This review summarizes the applications of natural biodegradable polymers in e-skin for human motion monitoring over the past three years, focusing on the discussion of cellulose, chitosan, silk fibroin, gelatin, and sodium alginate. Finally, we summarize the opportunities and challenges of e-skin based on natural biodegradable polymers. It is hoped that this review will provide insights for the future development of flexible e-skin in the field of human motion monitoring.
Collapse
Affiliation(s)
- Ruiqin Yao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China; School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, P.R. China
| | - Honghao Yu
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, P.R. China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China.
| |
Collapse
|
8
|
Wang G, Xie Z, Yu W, Mao S, Wang S, Zheng SY, Yang J. A Double-Layer Polyurethane Electrospun Membrane with Directional Sweat Transport Ability for Use as a Soft Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49813-49822. [PMID: 39229668 DOI: 10.1021/acsami.4c10854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Wearable electronics for long-term monitoring of physiological signals should be capable of removing sweat generated during daily motion, which significantly impacts signal stability, human comfort, and safety of the electronics. In this study, we developed a double-layer polyurethane (PU) membrane with sweat-directional transport ability that can be applied for monitoring strain signals. The PU membrane was composed of a hydrophilic, conductive layer and a relatively hydrophobic layer. The double-layer PU composite membrane exhibited varied pore size and opposite hydrophilicity on its two sides, enabling the spontaneous pumping of sweat from the hydrophobic side to the hydrophilic side, i.e., the directional transport of sweat. The membrane can be used as a strain sensor to monitor motion strain over a broad working range of 0% to 250% with high sensitivity (GF = 4.11). The sensor can also detect simple human movements even under sweating conditions. We believe that the strategy demonstrated here will provide new insights into the design of next-generation strain sensors.
Collapse
Affiliation(s)
- Gaopeng Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenli Yu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shuaibing Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
9
|
Liu S, Wu Y, Jiang L, Xie W, Davis B, Wang M, Zhang L, Liu Y, Xing S, Dickey MD, Bai W. Highly Stretchable, Tissue-like Ag Nanowire-Enhanced Ionogel Nanocomposites as an Ionogel-Based Wearable Sensor for Body Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46538-46547. [PMID: 39087831 DOI: 10.1021/acsami.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yizhang Wu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Lai Jiang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Wanrong Xie
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Brayden Davis
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Lin Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yihan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Sicheng Xing
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wubin Bai
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
10
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Chen Z, Peng H, Zhang J. An integrated electronic skin with biaxial sensitivity from a layered biphasic liquid metal/polymer film. MATERIALS HORIZONS 2024; 11:4150-4158. [PMID: 38895822 DOI: 10.1039/d4mh00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Research on electronic skin (e-skin) is dedicated to simulating natural skin for the perception of external mechanical stimuli. Currently, e-skin is ineffective in analyzing a single stimulus from different directions. This work successfully fabricates an integrated electronic skin (IES) with biaxial sensing capability through the combination of a biphasic liquid metal and porous foam. Remarkably different from traditional e-skin, the IES can analyze the type, strength, and area of an external mechanical stimulus from vertical and horizontal dimensions with a dual response (capacitive and resistive change, respectively). As a multifunctional sensor, the IES simultaneously responds to compression via capacitive change and tension via resistive change. Furthermore, 1000 cyclic compressions were conducted to confirm the electrical stability of the IES. Very subtle stimuli (e.g. thawing ice and touch) can be detected by the IES via biaxial detection. This work provides a new protocol for the development of future intelligent flexible electronics.
Collapse
Affiliation(s)
- Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi, 214061, P. R. China.
| | - Hao Peng
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi, 214061, P. R. China.
| |
Collapse
|
12
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
13
|
Zhang F, Sun J, Liu F, Li J, Hu BL, Tang Q, Li RW. Intrinsically Elastic Semiconductors through Aldehyde-Amine Polycondensation and Its Application on Stretchable Transistor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38324-38333. [PMID: 38982664 DOI: 10.1021/acsami.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.
Collapse
Affiliation(s)
- Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Jing Sun
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Junming Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology Northeast Normal University, Ministry of Education, Changchun 130024, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
14
|
Wan Z, Ma P, Yu P, Wu J, Geng L, Peng X. Continuous dual-network alginate hydrogel fibers with superior mechanical and electrical performance for flexible multi-functional sensors. Int J Biol Macromol 2024; 273:133151. [PMID: 38880440 DOI: 10.1016/j.ijbiomac.2024.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Hydrogel fibers play a crucial role in the design and manufacturing of flexible electronic devices. However, continuous production of hydrogel fibers with high strength, toughness, and conductivity remains a significant challenge. In this study, ion-conductive sodium alginate/polyvinyl alcohol composite hydrogel fibers with an interlocked dual network structure were prepared through continuous wet spinning based on the pH-responsive dynamic borate ester bonds. Owing to the interlocked dual network structure, the resulting hydrogel fibers integrated superior performance of strength (4.31 MPa), elongation-at-break (>1500 %), ion conductivity (17.98 S m-1) and response sensitivity to strain (GF = 3.051). Benefiting from the excellent performance, the composite hydrogel fiber could be applied as motion-detecting sensors, including high-frequency, high-speed reciprocating mechanical motion, and human motion. Furthermore, the superior compatibility for human-computer interaction of the hydrogel fiber was also demonstrated, which a manipulator could be controlled to perform different actions, by a smart glove equipped with the hydrogel fiber sensors.
Collapse
Affiliation(s)
- Zhihao Wan
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Pinchuan Ma
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Peng Yu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianming Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
15
|
Li K, Jiang X. The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3069. [PMID: 38998152 PMCID: PMC11242839 DOI: 10.3390/ma17133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024]
Abstract
This text discusses the synthesis of copper nanoparticles via a liquid phase reduction method, using ascorbic acid as a reducing agent and CuSO4·5H2O as the copper source. The synthesized copper nanoparticles are small in size, uniformly distributed, are mostly between 100-200 nm with clear boundaries between particles, and exhibit excellent dispersibility, making them suitable for metal conductive inks. 1. The copper nanoparticles are analyzed for good antioxidation properties, because their surface is coated with PVP and ascorbic acid. This organic layer somewhat isolates the particle surface from contact with air, preventing oxidation, and accounts for about 9% of the total weight. 2. When the prepared copper nanoparticles are spread on a polyimide substrate and sintered at 250 °C for 120 min, the resistivity can be as low as 23.5 μΩ·cm, and at 350 °C for 30 min, the resistivity is only three times that of bulk copper. 3. The prepared conductive ink, printed on a polyimide substrate using a direct writing tool, shows good flexibility before and after sintering. After sintering at 300 °C for 30 min and connecting the pattern to a circuit with a diode lamp, the diode lamp is successfully lit. 4. This method produces copper nanoparticles with small size, good dispersion, and antioxidation capabilities, and the conductive ink prepared from them demonstrates good conductivity after sintering.
Collapse
Affiliation(s)
- Kai Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Wang X, Wang L, Peng S, Luo X, Zhang Z, Wu T, Jiang J, Zhang Y. Microsphere-Structured Protein Hydrogel Dielectrics for Capacitive Wearable Sensors. Biomacromolecules 2024; 25:3651-3660. [PMID: 38785044 DOI: 10.1021/acs.biomac.4c00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.
Collapse
Affiliation(s)
- Xiaoyou Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Simin Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Xin Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Zhenzhen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Tao Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yifan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
17
|
Wang Z, Li N, Yang X, Zhang Z, Zhang H, Cui X. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. MICROSYSTEMS & NANOENGINEERING 2024; 10:55. [PMID: 38680522 PMCID: PMC11055913 DOI: 10.1038/s41378-024-00693-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
Sensing of both temperature and strain is crucial for various diagnostic and therapeutic purposes. Here, we present a novel hydrogel-based electronic skin (e-skin) capable of dual-mode sensing of temperature and strain. The thermocouple ion selected for this study is the iodine/triiodide (I-/I3-) redox couple, which is a common component in everyday disinfectants. By leveraging the thermoelectric conversion in conjunction with the inherent piezoresistive effect of a gel electrolyte, self-powered sensing is achieved by utilizing the temperature difference between the human body and the external environment. The composite hydrogels synthesized from polyvinyl alcohol (PVA) monomers using a simple freeze‒thaw method exhibit remarkable flexibility, extensibility, and adaptability to human tissue. The incorporation of zwitterions further augments the resistance of the hydrogel to dehydration and low temperatures, allowing maintenance of more than 90% of its weight after 48 h in the air. Given its robust thermal current response, the hydrogel was encapsulated and then integrated onto various areas of the human body, including the cheeks, fingers, and elbows. Furthermore, the detection of the head-down state and the monitoring of foot movements demonstrate the promising application of the hydrogel in supervising the neck posture of sedentary office workers and the activity status. The successful demonstration of self-powered on-body temperature and strain sensing opens up new possibilities for wearable intelligent electronics and robotics.
Collapse
Affiliation(s)
- Zhaosu Wang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Ning Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Xinru Yang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Zhiyi Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Hulin Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Xiaojing Cui
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 030031 China
| |
Collapse
|
18
|
Li H, Li X, Zhou P, Zhang X, Wei C, Yao J. A Flexible Escape Skin Bioinspired by the Defensive Behavior of Shedding Scales. Soft Robot 2024; 11:296-307. [PMID: 37855814 DOI: 10.1089/soro.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Artificial skins with functions such as sensing, variable stiffness, actuation, self-healing, display, adhesion, and camouflage have been developed and widely used, but artificial skins with escape function are still a research gap. In nature, every species of animal can use its innate skills and functions to escape capture. Inspired by the behavior of fish-scale geckoes escaping predation by shedding scales when grasped or touched, we propose a flexible escape skin by attaching artificial scales to a flexible film. Experiments demonstrate that the escape skin has significant effects in reducing escape force, escaping from harmful force environments, and resisting mechanical damage. Furthermore, we enabled active control of escape force and skin hardness by changing temperature, increasing the adaptability of the escape skin to the surrounding. Our study helps lay the foundation for engineering systems that depend on escape skin to improve robustness.
Collapse
Affiliation(s)
- Haili Li
- Zhejiang Provincial Key Laboratory of Part Rolling Technology, Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, China
| | - Xingzhi Li
- Zhejiang Provincial Key Laboratory of Part Rolling Technology, Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, China
| | - Pan Zhou
- Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xuanhao Zhang
- Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Chunjie Wei
- Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Jiantao Yao
- Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
| |
Collapse
|
19
|
Khan SA, Ahmad H, Zhu G, Pang H, Zhang Y. Three-Dimensional Printing of Hydrogels for Flexible Sensors: A Review. Gels 2024; 10:187. [PMID: 38534605 DOI: 10.3390/gels10030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The remarkable flexibility and heightened sensitivity of flexible sensors have drawn significant attention, setting them apart from traditional sensor technology. Within this domain, hydrogels-3D crosslinked networks of hydrophilic polymers-emerge as a leading material for the new generation of flexible sensors, thanks to their unique material properties. These include structural versatility, which imparts traits like adhesiveness and self-healing capabilities. Traditional templating-based methods fall short of tailor-made applications in crafting flexible sensors. In contrast, 3D printing technology stands out with its superior fabrication precision, cost-effectiveness, and satisfactory production efficiency, making it a more suitable approach than templating-based strategies. This review spotlights the latest hydrogel-based flexible sensors developed through 3D printing. It begins by categorizing hydrogels and outlining various 3D-printing techniques. It then focuses on a range of flexible sensors-including those for strain, pressure, pH, temperature, and biosensors-detailing their fabrication methods and applications. Furthermore, it explores the sensing mechanisms and concludes with an analysis of existing challenges and prospects for future research breakthroughs in this field.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hamza Ahmad
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
20
|
Xu W, Ren Q, Li J, Xu J, Bai G, Zhu C, Li W. Triboelectric Contact Localization Electronics: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:449. [PMID: 38257543 PMCID: PMC10819133 DOI: 10.3390/s24020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The growing demand from the extended reality and wearable electronics market has led to an increased focus on the development of flexible human-machine interfaces (HMI). These interfaces require efficient user input acquisition modules that can realize touch operation, handwriting input, and motion sensing functions. In this paper, we present a systematic review of triboelectric-based contact localization electronics (TCLE) which play a crucial role in enabling the lightweight and long-endurance designs of flexible HMI. We begin by summarizing the mainstream working principles utilized in the design of TCLE, highlighting their respective strengths and weaknesses. Additionally, we discuss the implementation methods of TCLE in realizing advanced functions such as sliding motion detection, handwriting trajectory detection, and artificial intelligence-based user recognition. Furthermore, we review recent works on the applications of TCLE in HMI devices, which provide valuable insights for guiding the design of application scene-specified TCLE devices. Overall, this review aims to contribute to the advancement and understanding of TCLE, facilitating the development of next-generation HMI for various applications.
Collapse
Affiliation(s)
- Wei Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Qingying Ren
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Jinze Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Jie Xu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Gang Bai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Chen Zhu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Wei Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| |
Collapse
|
21
|
Mousavi A, Rahimnejad M, Azimzadeh M, Akbari M, Savoji H. Recent advances in smart wearable sensors as electronic skin. J Mater Chem B 2023; 11:10332-10354. [PMID: 37909384 DOI: 10.1039/d3tb01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Flexible and multifunctional electronic devices and soft robots inspired by human organs, such as skin, have many applications. However, the emergence of electronic skins (e-skins) or textiles in biomedical engineering has made a great revolution in a myriad of people's lives who suffer from different types of diseases and problems in which their skin and muscles lose their appropriate functions. In this review, recent advances in the sensory function of the e-skins are described. Furthermore, we have categorized them from the sensory function perspective and highlighted their advantages and limitations. The categories are tactile sensors (including capacitive, piezoresistive, piezoelectric, triboelectric, and optical), temperature, and multi-sensors. In addition, we summarized the most recent advancements in sensors and their particular features. The role of material selection and structure in sensory function and other features of the e-skins are also discussed. Finally, current challenges and future prospects of these systems towards advanced biomedical applications are elaborated.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mostafa Azimzadeh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
22
|
Wang G, Wang X, Liu W, Liu X, Song Z, Yu D, Li G, Ge S, Wang H. Establishing a Corrugated Carbon Network with a Crack Structure in a Hydrogel for Improving Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48462-48474. [PMID: 37812139 DOI: 10.1021/acsami.3c10949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electronic conductive hydrogels have prompted immense research interest as flexible sensing materials. However, establishing a continuous electronic conductive network within a hydrogel is still highly challenging. Herein, we develop a new strategy to establish a continuous corrugated carbon network within a hydrogel by embedding carbonized crepe paper into the hydrogel with its corrugations perpendicular to the stretching direction using a casting technique. The corrugated carbon network within the as-prepared composite hydrogel serves as a rigid conductive network to simultaneously improve the tensile strength and conductivity of the composite hydrogel. The composite hydrogel also generates a crack structure when it is stretched, enabling the composite hydrogel to show ultrahigh sensitivity (gauge factor = 59.7 and 114 at strain ranges of 0-60 and 60-100%, respectively). The composite hydrogel also shows an ultralow detection limit of 0.1%, an ultrafast response/recovery time of 75/95 ms, and good stability and durability (5000 cycles at 10% strain) when used as a resistive strain sensing material. Moreover, the good stretchability, adhesiveness, and self-healing ability of the hydrogel were also effectively retained after the corrugated carbon network was introduced into the hydrogel. Because of its outstanding sensing performance, the composite hydrogel has potential applications in sensing various human activities, including accurately recording subtle variations in wrist pulse waves and small-/large-scale complex human activities. Our work provides a new approach to develop economical, environmentally friendly, and reliable electronic conductive hydrogels with ultrahigh sensing performance for the future development of electronic skin and wearable devices.
Collapse
Affiliation(s)
- Guixing Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xueyan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
23
|
Zhang C, Wu M, Cao S, Liu M, Guo D, Kang Z, Li M, Ye D, Yang Z, Wang X, Xie Z, Liu J. Bioinspired Environment-Adaptable and Ultrasensitive Multifunctional Electronic Skin for Human Healthcare and Robotic Sensations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304004. [PMID: 37300351 DOI: 10.1002/smll.202304004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Multifunctional electronic skins (e-skins) that can sense various stimuli have demonstrated increasing potential in many fields. However, most e-skins are human-oriented that cannot work in hash environments such as high temperature, underwater, and corrosive chemicals, impairing their applications, especially in human-machine interfaces, intelligent machines, robotics, and so on. Inspired by the crack-shaped sensory organs of spiders, an environmentally robust and ultrasensitive multifunctional e-skin is developed. By developing a polyimide-based metal crack-localization strategy, the device has excellent environment adaptability since polyimide has high thermal stability and chemical durability. The localized cracked part serves as an ultrasensitive strain sensing unit, while the non-cracked serpentine part is solely responsible for temperature. Since the two units are made of the same material and process, the signals are decoupled easily. The proposed device is the first multifunctional e-skin that can be used in harsh environments, therefore is of great potential for both human and robot-oriented applications.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Mengxi Wu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shuye Cao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Mengjing Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Di Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Ming Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuoqing Yang
- National Key Laboratory of Science and Technology on Micro and Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuewen Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhaoqian Xie
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Junshan Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
24
|
Gao Y, Zhang H, Song B, Zhao C, Lu Q. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. BIOSENSORS 2023; 13:787. [PMID: 37622873 PMCID: PMC10452760 DOI: 10.3390/bios13080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan Gao
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Hanchu Zhang
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Bowen Song
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| | - Chun Zhao
- School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang 215488, China; (Y.G.); (H.Z.); (B.S.)
| |
Collapse
|
25
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
26
|
Young PR, Hebert JS, Marasco PD, Carey JP, Schofield JS. Advances in the measurement of prosthetic socket interface mechanics: a review of technology, techniques, and a 20-year update. Expert Rev Med Devices 2023; 20:729-739. [PMID: 37537898 PMCID: PMC10581694 DOI: 10.1080/17434440.2023.2244418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION A key determinant of prosthesis use is the quality of fit of the prosthetic socket. The socket surrounds the residual limb and applies the appropriate force distribution to the soft tissues to maintain suspension, support, and stabilization as well as translate limb movement to prosthesis movement. The challenge in socket fabrication lays in achieving geometry that provides the appropriate force distribution at physiologically appropriate locations; a task dependent on the understanding of interface tissue-mechanics. AREAS COVERED In the last 20 years substantial advancements in sensor innovation and computational power have allowed researchers to quantify the socket-residual limb interface; this paper reviews prominent measurement and sensing techniques described in literature over this time frame. Advantages and short comings of each technique are discussed with a focus on translation to clinical environments. EXPERT OPINION Prosthetic sockets directly influence comfort, device use, user satisfaction, and tissue health. Advancements in instrumentation technology have unlocked the possibility of sophisticated measurement systems providing quantitative data that may work in tandem with a clinician's heuristic expertise during socket fabrication. If validated, many of the emerging sensing technologies could be implemented into a clinical setting to better characterize how patients interact with their device and help inform prosthesis fabrication and assessment techniques.
Collapse
Affiliation(s)
- Peyton R Young
- Department of Mechanical and Aerospace Engineering, UC Davis, One Shields Ave., Davis, CA 95616
| | - Jacqueline S. Hebert
- Faculty of Medicine & Dentistry, Division of Physical Medicine & Rehabilitation, University of Alberta, 5005 Katz building, Edmonton, Alberta, Canada, T5G 0B7
- Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue, Edmonton, Alberta, Canada, T5G 0B7
| | - Paul D. Marasco
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid, Avenue ND20, Cleveland, OH 44195
| | - Jason P. Carey
- Faculty of Engineering, Deans Office, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta, Canada, T6G 2G8
| | - Jonathon S. Schofield
- Department of Mechanical and Aerospace Engineering, UC Davis, One Shields Ave., Davis, CA 95616
| |
Collapse
|
27
|
Wang GY, Li GX, Tang YD, Zhao Z, Yu W, Meng CZ, Guo SJ. Flexible and Antifreezing Fiber-Shaped Solid-State Zinc-Ion Batteries with an Integrated Bonding Structure. J Phys Chem Lett 2023; 14:3512-3520. [PMID: 37014293 DOI: 10.1021/acs.jpclett.2c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fiber-shaped solid-state zinc-ion battery (FZIB) is a promising candidate for wearable electronic devices, but challenges remain in terms of mechanical stability and low temperature tolerance. Herein, we design and fabricate a FZIB with an integrated device structure through effective incorporation of the active electrode materials with a carbon fiber rope (CFR) and a gel polymer electrolyte. The gel polymer electrolyte incorporated with ethylene glycol (EG) and graphene oxide (GO) endows the FZIB with a high Zn stripping/plating efficiency under extreme low temperature conditions. A high power density of 1.25 mW cm-1 and large energy density of 0.1752 mWh cm-1 are obtained. In addition, a high capacity retention of 91% after 2000 continuous bending cycles is achieved. Furthermore, the discharge capacity is fairly retained at more than 22% even at the low temperature of -20 °C. Toward practical applications, the FZIB integrated into textiles to power electronic products is demonstrated.
Collapse
Affiliation(s)
- Guo-Yuan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu-Dong Tang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
28
|
Chen X, Zhang H, Cui J, Wang Y, Li M, Zhang J, Wang C, Liu Z, Wei Q. Enhancing Conductivity and Self-Healing Properties of PVA/GEL/OSA Composite Hydrogels by GO/SWNTs for Electronic Skin. Gels 2023; 9:gels9020155. [PMID: 36826325 PMCID: PMC9956163 DOI: 10.3390/gels9020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The use of flexible, self-healing conductive hydrogels as a type of typical electronic skin with the function of transmitting sensory signals has attracted wide attention in the field of biomaterials. In this study, composite hydrogels based on polyvinyl alcohol (PVA), gelatin (GEL), oxidized sodium alginate (OSA), graphene oxide (GO), and single-walled carbon nanotubes (SWNTs) were successfully prepared. The hydrogen and imine bonding of the composite hydrogels gives them excellent self-healing properties. Their self-healing properties restore 68% of their breaking strength and over 95% of their electrical conductivity. The addition of GO and SWNTs enables the PGO-GS hydrogels to achieve a compressive modulus and conductivity of 42.2 kPa and 29.6 mS/m, which is 8.2 times and 1.5 times that of pure PGO, respectively. Furthermore, the PGO-GS hydrogels can produce profound feedback signals in response to deformation caused by external forces and human movements such as finger flexion and speech. In addition, the PGO-GS hydrogels exhibit superior biocompatibility compared to PGO. All of these results indicate that the PGO-GS hydrogels have great potential with respect to future applications in the field of electronic skin.
Collapse
Affiliation(s)
- Xiaohu Chen
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haonan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiashu Cui
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (Y.W.); (Q.W.); Tel./Fax: +86-029-88493232 (Y.W.)
| | - Mingyang Li
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Juan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Changgeng Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhisheng Liu
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (Y.W.); (Q.W.); Tel./Fax: +86-029-88493232 (Y.W.)
| |
Collapse
|
29
|
Li N, Yu S, Zhao L, Zhang P, Wang Z, Wei Z, Chen W, Xu X. Recoverable Dual-Modal Responsive Sensing Materials Based on Mechanoluminescence and Thermally Stimulated Luminescence toward Noncontact Tactile Sensors. Inorg Chem 2023; 62:2024-2032. [PMID: 36689634 DOI: 10.1021/acs.inorgchem.2c03540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tactile sensing with stress and temperature sensing as core elements have shown promising prospects in intelligent robots and the human-machine interface. Mechanoluminescence (ML)-based stress sensing can realize the direct sensing of mechanical stimulation, whereas indirect temperature sensing based on luminescent sensing materials usually requires the stimulation of extra light or force. Herein, a trap-controlled material Sr2MgAl22O36:Mn2+ with bifunctional mechano/thermal sensing applications was developed and investigated in detail. Visualized bright green-emitting ML and thermally stimulated luminescence (TSL) directly and rapidly responded to mechano/thermal dual stimulation in the Sr2MgAl22O36:Mn2+/PDMS composite film. It is worth mentioning that this study proposed a new idea of direct temperature sensing by the initial intensity of TSL due to thermal-photo energy conversion, unlike previous temperature sensor technology. Based on this, we designed a flexible optical skin with a simple structure and verified its application prospect as a tactile sensing material with dual mechano/thermal response, establishing a unique imaging mode and providing a convenient, reliable, and sensitive way to remotely visualize the distribution of stress and temperature. This study paves a new way for the development of optical skins with simple structures and sensitive visibility in the application of intelligent robot tactile sensing.
Collapse
Affiliation(s)
- Na Li
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China
| | - Shuaishuai Yu
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China
| | - Lei Zhao
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China.,Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore487372, Singapore
| | - Pengfei Zhang
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China
| | - Ziqi Wang
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China
| | - Zhiting Wei
- School of Physics and Opto-Electronic Technology, Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji721016, Shaanxi, P. R. China
| | - Wenbo Chen
- Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing402160, P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming650093, P. R. China
| |
Collapse
|
30
|
Lam CM, Latif U, Sack A, Govindan S, Sanderson M, Vu DT, Smith G, Sayed D, Khan T. Advances in Spinal Cord Stimulation. Bioengineering (Basel) 2023; 10:185. [PMID: 36829678 PMCID: PMC9951889 DOI: 10.3390/bioengineering10020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Neuromodulation, specifically spinal cord stimulation (SCS), has become a staple of chronic pain management for various conditions including failed back syndrome, chronic regional pain syndrome, refractory radiculopathy, and chronic post operative pain. Since its conceptualization, it has undergone several advances to increase safety and convenience for patients and implanting physicians. Current research and efforts are aimed towards novel programming modalities and modifications of existing hardware. Here we review the recent advances and future directions in spinal cord stimulation including a brief review of the history of SCS, SCS waveforms, new materials for SCS electrodes (including artificial skins, new materials, and injectable electrodes), closed loop systems, and neurorestorative devices.
Collapse
Affiliation(s)
- Christopher M. Lam
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Usman Latif
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Andrew Sack
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Susheel Govindan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Miles Sanderson
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Dan T. Vu
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Gabriella Smith
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Talal Khan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Jiang Z, Shi X, Qiao F, Sun J, Hu Q. Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor. Biomacromolecules 2022; 23:5239-5252. [PMID: 36354756 DOI: 10.1021/acs.biomac.2c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multistimuli-responsive conductive hydrogels have been appealing candidates for multifunctional ionic skin. However, the fabrication of the multistimuli-responsive conductive hydrogels with satisfactory mechanical property to meet the practical applications is still a great challenge. In this study, a novel poly(N-isopropylacrylamide-co-sodium acrylate)/alginate/hectorite clay Laponite XLS (PNIPAM-SA/ALG/XLS) double cross-linked hydrogel with excellent mechanical property, self-recovery ability, temperature/pH-responsive ability, and strain/temperature-sensitive conductivity was fabricated. The PNSAX hydrogel possessed a moderate tensile strength of 290 kPa at a large elongation rate of 1120% and an excellent compression strength of 2.72 MPa at 90%. The hydrogel also possessed excellent mechanical repeatability and self-recovery ability. Thus, the hydrogel could withstand repetitive deformations for long time periods. Additionally, the hydrogel could change its transparency and volume once at a temperature of 44 °C and change its volume at different pHs. Thus, the visual temperature/pH-responsive ability allowed the hydrogel to qualitatively harvest environmental information. Moreover, the hydrogel possessed an excellent conductivity of 0.43 S/m, and the hydrogel could transform large/subtle deformation and temperature information into electrical signal change. Thus, the ultrafast strain/temperature-sensitive conductivity allowed the hydrogel to quantitatively detect large/small-scale human motions as well as environmental temperature. A cytotoxicity test confirmed the good cytocompatibility. Taken together, the hydrogel was suitable for human motion detecting and environmental information harvesting for long time periods. Therefore, the hydrogel has a great application potential as a multifunctional ionic skin and smart sensor.
Collapse
Affiliation(s)
- Zhiqi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xuanyu Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Fenghui Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
32
|
García-Ávila J, Torres Serrato DDJ, Rodriguez CA, Martínez AV, Cedillo ER, Martínez-López JI. Predictive Modeling of Soft Stretchable Nanocomposites Using Recurrent Neural Networks. Polymers (Basel) 2022; 14:polym14235290. [PMID: 36501684 PMCID: PMC9740639 DOI: 10.3390/polym14235290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Human skin is characterized by rough, elastic, and uneven features that are difficult to recreate using conventional manufacturing technologies and rigid materials. The use of soft materials is a promising alternative to produce devices that mimic the tactile capabilities of biological tissues. Although previous studies have revealed the potential of fillers to modify the properties of composite materials, there is still a gap in modeling the conductivity and mechanical properties of these types of materials. While traditional Finite Element approximations can be used, these methodologies tend to be highly demanding of time and processing power. Instead of this approach, a data-driven learning-based approximation strategy can be used to generate prediction models via neural networks. This paper explores the fabrication of flexible nanocomposites using polydimethylsiloxane (PDMS) with different single-walled carbon nanotubes (SWCNTs) loadings (0.5, 1, and 1.5 wt.%). Simple Recurrent Neural Networks (SRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) models were formulated, trained, and tested to obtain the predictive sequence data of out-of-plane quasistatic mechanical tests. Finally, the model learned is applied to a dynamic system using the Kelvin-Voight model and the phenomenon known as the bouncing ball. The best predictive results were achieved using a nonlinear activation function in the SRNN model implementing two units and 4000 epochs. These results suggest the feasibility of a hybrid approach of analogy-based learning and data-driven learning for the design and computational analysis of soft and stretchable nanocomposite materials.
Collapse
Affiliation(s)
- Josué García-Ávila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-2004, USA
| | - Diego de Jesus Torres Serrato
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ciro A. Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, Mexico
| | - Adriana Vargas Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, Mexico
| | - Erick Ramírez Cedillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, Mexico
- 3D Factory, Ramon Treviño 1109, Monterrey 64580, Mexico
- Correspondence: (E.R.C.); (J.I.M.-L.)
| | - J. Israel Martínez-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 66629, Mexico
- 3D Factory, Ramon Treviño 1109, Monterrey 64580, Mexico
- Centro de Investigación Numericalc, 5 de mayo 912 Oriente, Monterrey 64000, Mexico
- Correspondence: (E.R.C.); (J.I.M.-L.)
| |
Collapse
|
33
|
Kim T, Kalhori AH, Kim TH, Bao C, Kim WS. 3D designed battery-free wireless origami pressure sensor. MICROSYSTEMS & NANOENGINEERING 2022; 8:120. [PMID: 36465158 PMCID: PMC9708697 DOI: 10.1038/s41378-022-00465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
A pressure monitoring structure is a very useful element for a wearable device for health monitoring and sports biomechanics. While pressure sensors have been studied extensively, battery-free functions working in wireless detection have not been studied much. Here, we report a 3D-structured origami-based architecture sensor for wireless pressure monitoring. We developed an architectured platform for wireless pressure sensing through inductor-capacitor (LC) sensors and a monopole antenna. A personalized smart insole with Miura-ori origami designs has been 3D printed together with conductive 3D printed sensors seamlessly. Wireless monitoring of resonant frequency and intensity changes of LC sensors have been demonstrated to monitor foot pressure for different postures. The sensitivity of the wireless pressure sensor is tunable from 15.7 to 2.1 MHz/kPa in the pressure ranges from 0 to 9 kPa and from 10 to 40 kPa, respectively. The proposed wireless pressure-sensing platform can be utilized for various applications such as orthotics, prosthetics, and sports gear.
Collapse
Affiliation(s)
- Taeil Kim
- Additive Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, V3T 0A3 BC Canada
| | - Amirhossein Hassanpoor Kalhori
- Additive Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, V3T 0A3 BC Canada
| | - Tae-Ho Kim
- Additive Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, V3T 0A3 BC Canada
| | - Chao Bao
- Additive Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, V3T 0A3 BC Canada
| | - Woo Soo Kim
- Additive Manufacturing Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, V3T 0A3 BC Canada
| |
Collapse
|
34
|
Yap TF, Liu Z, Rajappan A, Shimokusu TJ, Preston DJ. Necrobotics: Biotic Materials as Ready-to-Use Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201174. [PMID: 35875913 PMCID: PMC9561765 DOI: 10.1002/advs.202201174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Designs perfected through evolution have informed bioinspired animal-like robots that mimic the locomotion of cheetahs and the compliance of jellyfish; biohybrid robots go a step further by incorporating living materials directly into engineered systems. Bioinspiration and biohybridization have led to new, exciting research, but humans have relied on biotic materials-non-living materials derived from living organisms-since their early ancestors wore animal hides as clothing and used bones for tools. In this work, an inanimate spider is repurposed as a ready-to-use actuator requiring only a single facile fabrication step, initiating the area of "necrobotics" in which biotic materials are used as robotic components. The unique walking mechanism of spiders-relying on hydraulic pressure rather than antagonistic muscle pairs to extend their legs-results in a necrobotic gripper that naturally resides in its closed state and can be opened by applying pressure. The necrobotic gripper is capable of grasping objects with irregular geometries and up to 130% of its own mass. Furthermore, the gripper can serve as a handheld device and innately camouflages in outdoor environments. Necrobotics can be further extended to incorporate biotic materials derived from other creatures with similar hydraulic mechanisms for locomotion and articulation.
Collapse
Affiliation(s)
- Te Faye Yap
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | - Zhen Liu
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | - Anoop Rajappan
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | | | - Daniel J. Preston
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
35
|
Brooks AK, Wulff HE, Broitman JM, Zhang N, Yadavalli VK. Stretchable and Electroactive Crosslinked Gelatin for Biodevice and Cell Culture Applications. ACS APPLIED BIO MATERIALS 2022; 5:4922-4931. [PMID: 36179055 DOI: 10.1021/acsabm.2c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomimetic substrates that incorporate functionality such as electroactivity and mechanical flexibility, find utility in a variety of biomedical applications. Toward these uses, nature-derived materials such as gelatin offer inherent biocompatibility and sustainable sourcing. However, issues such as high swelling, poor mechanical properties, and lack of stability at biological temperatures limit their use. The enzymatic crosslinking of gelatin via microbial transglutaminase (mTG) yields flexible and robust large area substrates that are stable under physiological conditions. Here, we demonstrate the fabrication and characterization of strong, stretchable, conductive mTG crosslinked gelatin thin films. Incorporation of the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate in the gel matrix with a bioinspired polydopamine surface coating is used to enable conductivity with enhanced mechanical properties such as extensibility and flexibility, in comparison to plain gelatin or crosslinked gelatin films. The electroconductive substrates are conducive to cell growth, supporting myoblast cell adhesion, viability, and proliferation and could find use in creating active cell culture systems incorporating electrical stimulation. The substrates are responsive to motion such as stretching and bending while being extremely handleable and elastic, making them useful for applications such as electronic skin and flexible bioelectronics. Overall, this work presents facile, yet effective development of bioinspired conductive composites as substrates for bio-integrated devices and functional tissue engineering.
Collapse
Affiliation(s)
- Anne K Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Halle E Wulff
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Jacob M Broitman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
36
|
Lei M, Feng K, Ding S, Wang M, Dai Z, Liu R, Gao Y, Zhou Y, Xu Q, Zhou B. Breathable and Waterproof Electronic Skin with Three-Dimensional Architecture for Pressure and Strain Sensing in Nonoverlapping Mode. ACS NANO 2022; 16:12620-12634. [PMID: 35856940 DOI: 10.1021/acsnano.2c04188] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wearable sensors have recently attracted extensive interest not only in the field of healthcare monitoring but also for convenient and intelligent human-machine interactions. However, challenges such as wearable comfort, multiple applicable conditions, and differentiation of mechanical stimuli are yet to be fully addressed. Herein, we developed a breathable and waterproof electronic skin (E-skin) that can perceive pressure/strain with nonoverlapping signals. The synergistic effect from magnetic attraction and nanoscaled aggregation renders the E-skin with microscaled pores for breathability and three-dimensional microcilia for superhydrophobicity. Upon applied pressure, the bending of conductive microcilia enables sufficient contacts for resistance decrease, while the stretching causes increased resistance due to the separation of conductive materials. The optimized E-skin exhibits a high gauge factor of 7.747 for small strain (0-80%) and a detection limit down to 0.04%. The three-dimensional microcilia also exhibit a sensitivity of -0.0198 kPa-1 (0-3 kPa) and a broad detection range up to 200 kPa with robustness. The E-skin can reliably and precisely distinguish kinds of the human joint motions, covering a broad spectrum including bending, stretching, and pressure. With the nonoverlapping readouts, ternary inputs "1", "0", and "-1" could be produced with different stimuli, which expands the command capacity for logic outputs such as effective Morse code and intuitive robotic control. Owing to the rapid response, long-term stability (10 000 cycles), breathability, and superhydrophobicity, we believe that the E-skin can be widely applied as wearable devices from body motion monitoring to human-machine interactions toward a more convenient and intelligent future.
Collapse
Affiliation(s)
- Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Kai Feng
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Mingrui Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ruolin Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen 518000, Guangdong, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
37
|
Affiliation(s)
- Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, United States.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Simpson Querrey Institute, Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
38
|
Park W, Yiu C, Liu Y, Wong TH, Huang X, Zhou J, Li J, Yao K, Huang Y, Li H, Li J, Jiao Y, Shi R, Yu X. High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis. BIOSENSORS 2021; 11:bios11110435. [PMID: 34821651 PMCID: PMC8615861 DOI: 10.3390/bios11110435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Hemodynamic status has been perceived as an important diagnostic value as fundamental physiological health conditions, including decisive signs of fatal diseases like arteriosclerosis, can be diagnosed by monitoring it. Currently, the conventional hemodynamic monitoring methods highly rely on imaging techniques requiring inconveniently large numbers of operation procedures and equipment for mapping and with a high risk of radiation exposure. Herein, an ultra-thin, noninvasive, and flexible electronic skin (e-skin) hemodynamic monitoring system based on the thermal properties of blood vessels underneath the epidermis that can be portably attached to the skin for operation is introduced. Through a series of thermal sensors, the temperatures of each subsection of the arrayed sensors are observed in real-time, and the measurements are transmitted and displayed on the screen of an external device wirelessly through a Bluetooth module using a graphical user interface (GUI). The degrees of the thermal property of subsections are indicated with a spectrum of colors that specify the hemodynamic status of the target vessel. In addition, as the sensors are installed on a soft substrate, they can operate under twisting and bending without any malfunction. These characteristics of e-skin sensors exhibit great potential in wearable and portable diagnostics including point-of-care (POC) devices.
Collapse
Affiliation(s)
- Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Chunki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
39
|
Oh HS, Lee CH, Kim NK, An T, Kim GH. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers (Basel) 2021; 13:2478. [PMID: 34372081 PMCID: PMC8347500 DOI: 10.3390/polym13152478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients' quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.
Collapse
Affiliation(s)
- Hyeon Seok Oh
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Chung Hyeon Lee
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Na Kyoung Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Taechang An
- Department of Mechanical & Robotics Engineering, Andong National University (ANU), 1375, Gyeong-dong-ro, Andong-si 36729, Gyeongsangbuk-do, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| |
Collapse
|