1
|
O'Brien Laramy M, Foley DA, Pak RH, Lewis JA, McKinney E, Egan PM, Yerabolu R, Dane E, Dirat O, Saunders Gorka L, Martinelli JR, Moussa EM, Barthuet J. Chemistry, manufacturing and controls strategies for using novel excipients in lipid nanoparticles. NATURE NANOTECHNOLOGY 2025; 20:331-344. [PMID: 39821140 DOI: 10.1038/s41565-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation. Despite the unique structural and functional role of lipid excipients in LNPs, there is limited specific global regulatory guidance, which adds uncertainty and risk to the development of LNPs. In this Perspective we provide an industry view on the chemistry, manufacturing and controls challenges that pharmaceutical companies face in the use of novel lipid excipients at each stage of development, and propose consensus recommendations on how to streamline and clarify development and regulatory expectations.
Collapse
Affiliation(s)
- Matthew O'Brien Laramy
- Synthetic Molecule Pharmaceutical Sciences, Genentech Early Research and Development, Genentech, Inc., South San Francisco, CA, USA.
| | - David A Foley
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Roger H Pak
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., Andover, MA, USA
| | - Jacob A Lewis
- Drug Product Technologies, Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Eric McKinney
- CMC Regulatory Affairs, Alnylam Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Patricia M Egan
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Eric Dane
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Olivier Dirat
- Global Regulatory Sciences CMC Advisory Office, Pfizer, Inc., Sandwich, UK
| | | | | | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, IL, USA
| | - Julie Barthuet
- Global Regulatory Affairs CMC, Sanofi, Marcy-l'Etoile, France
| |
Collapse
|
2
|
Uttreja P, Karnik I, Adel Ali Youssef A, Narala N, Elkanayati RM, Baisa S, Alshammari ND, Banda S, Vemula SK, Repka MA. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid-A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics 2025; 17:63. [PMID: 39861711 PMCID: PMC11768142 DOI: 10.3390/pharmaceutics17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers. Characterization techniques such as droplet size analysis, dissolution studies, and solid-state evaluations are detailed. Additionally, emerging trends, including 3D printing, hybrid systems, and supersaturable SEDDS (Su-SEDDS), are explored. Liquid SEDDS (L-SEDDS) enhance drug solubility and absorption by forming emulsions upon contact with gastrointestinal fluids. However, they suffer from stability and leakage issues. Transitioning to solid SEDDS (S-SEDDS) has resolved these limitations, offering enhanced stability, scalability, and patient compliance. Innovations such as personalized 3D-printed SEDDS, biologics delivery, and targeted systems demonstrate their potential for diverse therapeutic applications. Computational modeling and in silico approaches further accelerate formulation optimization. SEDDS have revolutionized drug delivery by improving bioavailability and enabling precise, patient-centric therapies. While challenges such as scalability and excipient toxicity persist, emerging technologies and multidisciplinary collaborations are paving the way for next-generation SEDDS. Their adaptability and potential for personalized medicine solidify their role as a cornerstone in modern pharmaceutical development.
Collapse
Affiliation(s)
- Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Indrajeet Karnik
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Rasha M. Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Srikanth Baisa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Nouf D. Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
3
|
Kendre PN, Kayande DR, Pote AK, Kanthale SB, Prajapati BG, Kendre Y, Jain S. Emerging Lipid-based Carriers for Systematic Utilization in the Pharmaceutical and Biomedical Sciences: A Review. Pharm Nanotechnol 2025; 13:2-21. [PMID: 38284709 DOI: 10.2174/0122117385268268231204061938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/30/2024]
Abstract
Emerging lipid-based carriers are revolutionizing drug delivery in the pharmaceutical and biomedical sciences. These innovative carriers harness the unique properties of lipids to improve the solubility, stability, and targeted delivery of therapeutic agents, ushering in a new era of precision medicine. Lipid- based carriers, such as liposomes, lipid nanoparticles, and solid lipid nanoparticles, offer several advantages. They can encapsulate both hydrophilic and hydrophobic drugs, enabling the delivery of a wide range of compounds. Additionally, lipids are biocompatible and biodegradable, minimizing the risk of toxicity. Their ability to mimic cell membranes allows for enhanced cellular uptake and controlled release, optimizing drug efficacy while minimizing side effects. Furthermore, lipid-based carriers are ideal for delivering drugs to specific sites within the body. By modifying the lipid composition, surface charge, and size, researchers can tailor these carriers to target tumours, inflamed tissues, or specific cells, improving therapeutic outcomes and reducing systemic toxicity. In summary, emerging lipid-based carriers are poised to transform pharmaceutical and biomedical sciences by addressing critical challenges in drug delivery. These carriers enhance drug stability, bioavailability, and targeted delivery, offering the potential to revolutionize the treatment of various diseases and improve patient outcomes. As research in this field continues to advance, we can expect even more sophisticated lipid-based carrier systems to emerge, further expanding the possibilities for precision medicine. This review focuses on the contribution of lipid carriers in the pharmaceutical and biomedical sciences.
Collapse
Affiliation(s)
- Prakash N Kendre
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| | - Dhiraj R Kayande
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| | - Ajinkya K Pote
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Khamgaon-Botha Road, Malvihir, Buldhana, 443001, India
| | | | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidya Nagar, Mehsana, 384012, Gujrat, India
| | - Yuvraj Kendre
- Podar International School, Buldhana, 443001, Maharashtra, India
| | - Shirish Jain
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| |
Collapse
|
4
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
5
|
Clogston JD, Foss W, Harris D, Oberoi H, Pan J, Pu E, Guzmán EAT, Walter K, Brown S, Soo PL. Current state of nanomedicine drug products: An industry perspective. J Pharm Sci 2024; 113:3395-3405. [PMID: 39276979 DOI: 10.1016/j.xphs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.
Collapse
Affiliation(s)
| | - Willard Foss
- Bristol Myers Squibb, Early Biologics Development, Redwood City, CA, USA
| | | | - Hardeep Oberoi
- AbbVie Inc., Drug Product Development, North Chicago, IL, USA
| | - Jiayi Pan
- Biogen, Technical Development, Cambridge, MA, USA
| | - Elaine Pu
- Bristol Myers Squibb, Drug Product Development, Summit, NJ, USA
| | | | - Katrin Walter
- AstraZeneca, Pharmaceutical Product Development, Gothenburg, Sweden
| | - Scott Brown
- GSK plc. Medicines Development and Supply, Drug Substance and Drug Product Analytical, Collegeville, PA 19426, USA
| | - Patrick Lim Soo
- Pfizer, Pharmaceutical Research & Development, Andover, MA, USA.
| |
Collapse
|
6
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
7
|
Mehrdadi S. Lipid-Based Nanoparticles as Oral Drug Delivery Systems: Overcoming Poor Gastrointestinal Absorption and Enhancing Bioavailability of Peptide and Protein Therapeutics. Adv Pharm Bull 2024; 14:48-66. [PMID: 38585451 PMCID: PMC10997935 DOI: 10.34172/apb.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Delivery and formulation of oral peptide and protein therapeutics have always been a challenge for the pharmaceutical industry. The oral bioavailability of peptide and protein therapeutics mainly relies on their gastrointestinal solubility and permeability which are affected by their poor membrane penetration, high molecular weight and proteolytic (chemical and enzymatic) degradation resulting in limited delivery and therapeutic efficacy. The present review article highlights the challenges and limitations of oral delivery of peptide and protein therapeutics focusing on the application, potential and importance of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as lipid-based drug delivery systems (LBDDSs) and their advantages and drawbacks. LBDDSs, due to their lipid-based matrix can encapsulate both lipophilic and hydrophilic drugs, and by reducing the first-pass effect and avoiding proteolytic degradation offer improved drug stability, dissolution rate, absorption, bioavailability and controlled drug release. Furthermore, their small size, high surface area and surface modification increase their mucosal adhesion, tissue-targeted distribution, physiological function and half-life. Properties such as simple preparation, high-scale manufacturing, biodegradability, biocompatibility, prolonged half-life, lower toxicity, lower adverse effects, lipid-based structure, higher drug encapsulation rate and various drug release profile compared to other similar carrier systems makes LBDDSs a promising drug delivery system (DDS). Nevertheless, undesired physicochemical features of peptide and protein drug development and discovery such as plasma stability, membrane permeability and circulation half-life remain a serious challenge which should be addressed in future.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
8
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
9
|
Subramaniam S, Elz A, Wignall A, Kamath S, Ariaee A, Hunter A, Newblack T, Wardill HR, Prestidge CA, Joyce P. Self-emulsifying drug delivery systems (SEDDS) disrupt the gut microbiota and trigger an intestinal inflammatory response in rats. Int J Pharm 2023; 648:123614. [PMID: 37979632 DOI: 10.1016/j.ijpharm.2023.123614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.
Collapse
Affiliation(s)
- Santhni Subramaniam
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Aurelia Elz
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Amin Ariaee
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Tahlia Newblack
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia.
| |
Collapse
|
10
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
11
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Jain S, Kumar N, Sharma R, Ghadi R, Date T, Bhargavi N, Chaudhari D, Katiyar SS. Self-nanoemulsifying formulation for oral delivery of sildenafil: effect on physicochemical attributes and in vivo pharmacokinetics. Drug Deliv Transl Res 2023; 13:839-851. [PMID: 36223029 DOI: 10.1007/s13346-022-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 02/04/2023]
Abstract
Sildenafil (SLD) is employed for the management of erectile dysfunction and pulmonary arterial hypertension. It exhibits meagre water solubility and is available in the form of citrate salt hydrate to improve the solubility. However, it still exhibits moderate solubility, high first-pass metabolism, resulting in very less oral bioavailability. The present study demonstrates the preparation of self-nanoemulsifying drug delivery system for augmenting the oral bioavailability of SLD. Oleic acid and Capmul MCM C8 blend (oil phase), Cremophor® RH40 (surfactant), and Labrafil® M1944 CS (cosurfactant) were selected as main constituents for making liquid preconcentrate based on the solubility and emulsification study. The preconcentrate upon dilution and emulsification showed droplet size 52.03 ± 13.03 nm, PDI 0.143 ± 0.028, and % transmittance was 99.77 ± 1.86% with SLD load of 40 mg/g of formulation. The prepared formulation was further assessed for stability, in vitro release, Caco-2 cell uptake, and in vivo pharmacokinetic performance. SLD-SNEDDS formulation was found to be robust in terms of stability against several folds dilution in the gastrointestinal tract (GIT), freeze-thaw cycles, and had a storage stability of 3 months at 4 °C and 25 °C. SLD-SNEDDS showed ~4.7-fold and ~5-fold increase in time- and concentration-dependent cellular uptake as against SLD cultured with Caco-2 cells. In vivo pharmacokinetic study revealed ~5.8- and ~2.5-fold increase in AUC0-∞ values in case of SLD-SNEDDS as against SLD suspension and SLD citrate solution, respectively.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| | - Narinder Kumar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| |
Collapse
|
13
|
Panchal K, Katke S, Dash SK, Gaur A, Shinde A, Saha N, Mehra NK, Chaurasiya A. An expanding horizon of complex injectable products: development and regulatory considerations. Drug Deliv Transl Res 2023; 13:433-472. [PMID: 35963928 PMCID: PMC9376055 DOI: 10.1007/s13346-022-01223-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
There has been a constant evolution in the pharmaceutical market concerning the new technologies imbibed in delivering drug substances for various indications. This is either market-driven or technology-driven to improve the overall therapeutic efficacy and patients' quality of life. The pharmaceutical industry has experienced rapid growth in the area of complex injectable products because of their effectiveness in the unmet market. These novel parenteral products, viz, the nanoparticles, liposomes, microspheres, suspensions, and emulsions, have proven their worth as "Safe and Effective" products. However, the underlying challenges involved in the development, scalability, and characterization of these injectable products are critical. Moreover, the guidelines available do not provide a clear understanding of these complex products, making it difficult to anticipate the regulatory requirements. Thus, it becomes imperative to comprehend the criticalities and develop an understanding of these products. This review discusses various complexities involved in the parenteral products such as complex drug substances, excipients, dosage forms, drug administration devices like pre-filled syringes and injector pens, and its different characterization tools and techniques. The review also provides a brief discussion on the regulatory aspects and associated hurdles with other parenteral products.
Collapse
Affiliation(s)
- Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sanat Kumar Dash
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Ankit Gaur
- Formulation Development, Par Formulations Pvt. Ltd, Navi Mumbai, Endo India, 400 708, India
| | - Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Nithun Saha
- Research & Development - Injectables, MSN Laboratories Pvt. Ltd, Pashamaylaram, Sangareddy, Telangana, 502307, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India.
| |
Collapse
|
14
|
Panigrahi KC, Patra CN, Rao MEB, Jena GK, Sahoo L. SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review. Pharm Nanotechnol 2022; 10:289-298. [PMID: 35980062 DOI: 10.2174/2211738510666220817124744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
In the present scenario, lipid-based novel drug delivery systems are the area of interest for the formulation scientist in order to improve the bioavailability of poorly water-soluble drugs. A selfemulsifying drug delivery system (SEDDS) upon contact with the gastrointestinal fluid, forms an o/w emulsion. SEDDS has gained popularity as a potential platform for improving the bioavailability of the lipophilic drug by overcoming several challenges. The various advantages like improved solubility, bypassing lymphatic transport, and improvement in bioavailability are associated with SMEDDS or SNEDDS. The extent of the formation of stable SEDDS depends on a specific combination of surfactant, co-surfactant, and oil. The present review highlighted the different aspects of formulation design along with optimization and characterization of SEDDS formulation. It also gives a brief description of the various aspects of the excipients used in SEDDS formulation. This review also includes the conflict between types of SEDDS based on droplet size. There is an extensive review of various research regarding different solidification techniques used for SEDDS in the last three years.
Collapse
Affiliation(s)
- K C Panigrahi
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - C N Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - M E B Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - G K Jena
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - L Sahoo
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| |
Collapse
|
15
|
Stalder T, Zaiter T, El-Basset W, Cornu R, Martin H, Diab-Assaf M, Béduneau A. Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology 2022; 481:153353. [DOI: 10.1016/j.tox.2022.153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
16
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
17
|
Nakmode D, Bhavana V, Thakor P, Madan J, Singh PK, Singh SB, Rosenholm JM, Bansal KK, Mehra NK. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022; 14:pharmaceutics14040831. [PMID: 35456665 PMCID: PMC9025782 DOI: 10.3390/pharmaceutics14040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Poor aqueous solubility of drugs is still a foremost challenge in pharmaceutical product development. The use of lipids in designing formulations provides an opportunity to enhance the aqueous solubility and consequently bioavailability of drugs. Pre-dissolution of drugs in lipids, surfactants, or mixtures of lipid excipients and surfactants eliminate the dissolution/dissolving step, which is likely to be the rate-limiting factor for oral absorption of poorly water-soluble drugs. In this review, we exhaustively summarize the lipids excipients in relation to their classification, absorption mechanisms, and lipid-based product development. Methodologies utilized for the preparation of solid and semi-solid lipid formulations, applications, phase behaviour, and regulatory perspective of lipid excipients are discussed.
Collapse
Affiliation(s)
- Deepa Nakmode
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pankaj Kumar Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (K.K.B.); (N.K.M.)
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
- Correspondence: (K.K.B.); (N.K.M.)
| |
Collapse
|
18
|
Zhu Y, Ye J, Zhang Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm Nanotechnol 2021; 8:290-301. [PMID: 32781978 DOI: 10.2174/2211738508666200811104240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Self-emulsifying drug delivery system (SEDDS) is a kind of solid or liquid formulation composed of drugs, oil, surfactant and cosurfactant. It could form a fine emulsion (micro/nano) in the gastrointestinal tract after oral administration. Later on, the formed emulsion is absorbed through the lymphatic pathway. The oral bioavailability of drugs in SEDDS would be improved for bypassing the first-pass effect of the liver. Therefore, SEDDS has become a vital strategy to increase the oral bioavailability of poor watersoluble drugs. In addition, there is no aqueous phase in SEDDS, thus SEDDS is a homogeneous system, consequently being suitable for large-scale production and more stable than conventional emulsion. However, the role of formulation aspects in the biological property of SEDDS is not fully clear. In order to prepare the satisfying SEDDS to improve oral drug bioavailability, we need to fully understand the various factors that affect the in vivo behavior of SEDDS. In this review, we would explore the role of ingredient (drugs, oils, surfactant and cosurfactant) of SEDDS in increasing oral drug bioavailability. We would also discuss the effect of physicochemical property (particle size and zeta potential) of SEDDS on the oral drug bioavailability enhancement. This review would provide an approach to develop a rational SEDDS to improving oral drug bioavailability. Lay Summary: Self-emulsifying drug-delivery system (SEDDS) has been proven to be promising in ameliorating the oral bioavailability of poor water-soluble drugs. This review highlighted the influence of excipients and physicochemical property of SEDDS on the formation of emulsion and the oral absorption of drugs in the body.
Collapse
Affiliation(s)
- Yujin Zhu
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jing Ye
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
19
|
Banik S, Halder S, Sato H, Onoue S. Self-emulsifying drug delivery system of (R)-α-lipoic acid to improve its stability and oral absorption. Biopharm Drug Dispos 2021; 42:226-233. [PMID: 33843079 DOI: 10.1002/bdd.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
The present study was designed to develop a self-emulsifying drug delivery system (SEDDS) of (R)-α-lipoic acid (RLA) to improve the physicochemical and nutraceutical properties of RLA. RLA/SEDDS was prepared using medium-chain triglycerides, Tween 80, and polyethylene glycol 400 as oil, surfactant, and co-surfactant, respectively. The preferable composition of SEDDS was selected according to a pseudo-ternary phase diagram for improved emulsification properties, and its physicochemical and pharmacokinetic properties were evaluated. RLA/SEDDS showed the immediate formation of fine micelles with a mean droplet size of approximately 260 nm when introduced into aqueous media. In simulated gastric fluid, this system could significantly improve the dissolution behavior of RLA and prevent the degradation of RLA, possibly due to the encapsulation of RLA into the emulsion structure. Following the oral administration of RLA/SEDDS (10 mg RLA/kg) in rats, systemic exposure to RLA and dihydrolipoic acid (DHLA), a reduced form of RLA, increased by 7- and 3-fold, respectively. The improved dissolution and gastric stability of RLA could contribute to enhancing systemic exposure to RLA and DHLA after oral administration. From these findings, RLA/SEDDS might be an efficacious dosage option for improving the oral bioavailability as well as nutraceutical properties of RLA.
Collapse
Affiliation(s)
- Sujan Banik
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shimul Halder
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
20
|
Singh D. Self-nanoemulsifying Drug Delivery System: A Versatile Carrier for Lipophilic Drugs. Pharm Nanotechnol 2021; 9:166-176. [PMID: 33888054 DOI: 10.2174/2211738509666210422124023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipid-based systems such as self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions and offer many useful drug delivery opportunities. In the modern drug discovery era, there is a constant increase in the number of poorly soluble new chemical entities that suffer from poor and erratic bioavailability problems. The oral route possesses some major disadvantages, such as lack of constant drug levels in plasma, firstpass metabolism, which results in poor bioavailability. To address these problems, various lipidbased therapeutic systems are available from which self-enanoemulsifying systems have the potential to increase the bioavailability of poorly soluble drugs. METHODS SNEDDS is the isotropic mixture of oils, surfactant, and co-surfactant having droplet size in the range of 100-200 nm, which spontaneously emulsifies when it contacts with aqueous media in gastrointestinal (G.I) fluid. Various preparative methods are available for SNEDDS, such as high-pressure homogenizer, microfluidization, sonication, phase inversion, and shear state methods. These methods show favorable benefits in drug delivery. Self-nanoemulsifying drug delivery system possesses some disadvantages like precipitation of drug in G.I fluid or possible drug leaving in the capsule dosage form due to incompatibility issues, which can be overcome by more advanced techniques like supersaturated SNEDDS containing a precipitation inhibitor or Solid SNEDDS. These areformulated either through spray drying or using a solid carrier. CONCLUSION The lipid-based nanocarrier (SNEDDS) plays a significant role in drug delivery to overcome the poor solubility and oral bioavailability. This review highlights the elaborative aspects of the diverse advantages of SNEDDS based formulations.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
21
|
Ammar HO, Ghorab MM, Saleh MS, Ghoneim AM. Olanzapine Mesoporous Nanostructured Lipid Carrier: Optimization, Characterization, In Vivo Assessment, and Physiologically Based Pharmacokinetic Modeling. IEEE Trans Nanobioscience 2021; 20:166-174. [PMID: 33493118 DOI: 10.1109/tnb.2021.3052080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A promising approach has been emerging to enhance dissolution of hydrophobicdrugsby encapsulation in mesoporous silica materials. Olanzapine is a practically insoluble antipsychotic drug which is subjected to excessive first pass effect and shows inadequate oral bioavailability. Therefore, mesoporous silica was used to improve bioavailability of olanzapine incorporated in nano-structured lipid carriers (NLCs). These systems were characterized for their particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE) and differential scanning calorimetry (DSC) as well asits release profile. The optimized mesoporous NLC system displayed nano-spherical particles (120.56 nm), possessed high entrapment efficiency (88.46%) and the highest percentage of drug released after six hours (75.13%). The biological performance of the optimized system was assessed in comparison with the drug suspension in healthy albino rabbits. The optimized system showed significantly (P < 0.05) prolonged MRT (8.47 h), higher Cmax (22.12± 0.40 ng/ml) and Tmax (2.0 h) values compared to drug suspension. Physiologically based pharmacokinetic (PBPK) model was simulated and verified. All the predicted results were within 0.6 and 1-fold of the reported data. To set a conclusion, in vitro results as well as in vivo pharmacokinetic study and PBPK data showed an enhancement in bioavailability of the optimized NLCs system over the plain drug suspension. These results proved the potentiality of incorporating olanzapine in mesoporous NLC for a significant improvement in oral bioavailability of olanzapine.
Collapse
|
22
|
Thanki K, Date T, Jain S. Enabling Oral Amphotericin B Delivery by Merging the Benefits of Prodrug Approach and Nanocarrier-Mediated Drug Delivery. ACS Biomater Sci Eng 2021. [PMID: 33587853 DOI: 10.1021/acsbiomaterials.0c01505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is gold standard therapy for leishmaniasis and fungal infections. Considering the global disease burden, nearly 90% of cases occur in economically vulnerable countries, making the cost of AmB therapy a critical healthcare challenge in controlling disease burden. All currently marketed AmB products are administered through an intravenous (i.v.) route and involve high treatment costs. Designing an orally effective AmB formulation can substantially reduce the cost of therapy and improve patient compliance. However, it is a challenging task because of the distinctive physicochemical properties of AmB. Previously, we developed a lipid-based prodrug of AmB, AmB-oleyl conjugate (AmB-OA), which showcased remarkable stability in the gastrointestinal (GI) environment and improved intestinal permeation. Hereby, we have developed self-nanoemulsifiying drug delivery system (SNEDDS) of AmB-OA to further enhance the oral bioavailability of AmB and potentiate its therapeutic benefits. SNEDDS was developed by screening a wide range of oils, surfactants, and cosurfactants, and formulation composition was optimized using extreme vertices design. AmB-OA SNEDDS possessed the ability of quick self-nanoemulsification on dilution (droplet size ∼56 nm) along with remarkable stability in the GI environment. Accelerated stability (40 °C/75% relative humidity) studies and freeze-thaw cycling studies proved that the formulation was stable at tropical conditions as well as temperature cycling stress. Drug transport analysis in Caco-2 cells revealed a remarkable increase in drug transport for AmB-OA SNEDDS compared to AmB along with minimal cellular toxicities. AmB-OA SNEDDS showcased ∼8.9-fold higher AUCTot than AmB in in vivo pharmacokinetic study, proving the effectiveness of formulation to enhance oral bioavailability. In vivo toxicity analysis highlighted the ameliorated toxicity risk associated with SNEDDS formulation. Therefore, the AmB-OA SNEDDS formulation may provide a cost-friendly and effective strategy to resolve the oral AmB drug delivery challenge.
Collapse
Affiliation(s)
- Kaushik Thanki
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| |
Collapse
|
23
|
Sun C, Li W, Zhang H, Adu-Frimpong M, Ma P, Zhu Y, Deng W, Yu J, Xu X. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:45. [PMID: 33439366 DOI: 10.1208/s12249-020-01901-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the solubility, oral bioavailability, and hypolipidemic effects of syringic acid (SA), a bioactive and poorly-soluble polyphenol. Based on the response surface methodology-central composite design (RSM-CCD), an optimum formulation of SA-SMEDDS, consisting of ethyl oleate (oil, 12.30%), Cremophor-EL (surfactant, 66.25%), 1,2-propanediol (cosurfactant, 21.44%), and drug loading (50 mg/g), was obtained. The droplets of SA-SMEDDS were nanosized (16.38 ± 0.12 nm), spherically shaped, and homogeneously distributed (PDI = 0.058 ± 0.013) nanoparticles with high encapsulation efficiency (98.04 ± 1.39%) and stability. In vitro release study demonstrated a prolonged and controlled release of SA from SMEDDS. In vitro cell studies signified that SA-SMEDDS droplets substantially promoted cellular internalization. In comparison with the SA suspension, SA-SMEDDS showed significant prolonged Tmax, t1/2, and MRT after oral administration. Also, SA-SMEDDS exhibited a delayed in vivo elimination, increased bioavailability (2.1-fold), and enhanced liver accumulation. Furthermore, SA-SMEDDS demonstrated significant improvement in alleviating serum lipid profiles and hepatic steatosis in high-fat diet-induced hyperlipidemia in mice. Collectively, SMEDDS demonstrated potential as a nanosystem for the oral delivery of SA with enhanced bioavailability and hypolipidemic effects.
Collapse
|
24
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
25
|
Yu J, Yu D, Lane S, McConnachie L, Ho RJY. Controlled Solvent Removal from Antiviral Drugs and Excipients in Solution Enables the Formation of Novel Combination Multi-Drug-Motifs in Pharmaceutical Powders Composed of Lopinavir, Ritonavir and Tenofovir. J Pharm Sci 2020; 109:3480-3489. [PMID: 32791073 PMCID: PMC8986323 DOI: 10.1016/j.xphs.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Diverging physicochemical properties of HIV drug combinations are challenging to formulate as a single dosage form. We have found that 2-to-4 hydrophilic and hydrophobic HIV drugs in combination can be stabilized with lipid excipients under a controlled solvent removal process to form a novel pharmaceutical powder distinct from typical amorphous material. This discovery has enabled production of a drug combination nanoparticle (DcNP) powder composed of 3 HIV drugs-water-insoluble lopinavir (LogP = 4.7) and ritonavir (LogP = 5.6) and water-soluble tenofovir (LogP = -1.6). DcNP powder, exhibiting repeating units of multi-drug-motifs (referred to as MDM), is made by dissolving all constituents in ethanolic solution, followed by controlled solvent removal. The DcNP powder intersperses chemically diverse drug molecules with lipid excipients to form repeating MDM units. The proposed MDM structure is consistent with data collected with X-ray diffraction, differential calorimetry, and time-of-flight secondary ion mass spectrometry. The successful assembly of chemically diverse drugs in MDM structure is likely due to a novel process of making drug combination powders. The method described here has successfully extended to formulating other clinically prescribed antiviral drug combinations, and thus may serve as a platform technology for developing drug combination nanoparticles for treating a wide range of chronic diseases.
Collapse
Affiliation(s)
- Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Sarah Lane
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Lisa McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
26
|
Response surface optimization of self nano-emulsifying drug delivery system of rosuvastatin calcium for hepatocellular carcinoma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00497-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. A Self-Nanoemulsifying Drug Delivery System for Enhancing the Oral Bioavailability of Candesartan Cilexetil: Ex Vivo and In Vivo Evaluation. J Pharm Sci 2019; 108:3599-3608. [PMID: 31348934 DOI: 10.1016/j.xphs.2019.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023]
Abstract
The drug delivery of candesartan cilexetil encounters an obstacle of low absolute oral bioavailability which is attributed mainly to its low aqueous solubility and efflux by intestinal P-glycoprotein (P-gp) transporters. However, the extent of P-gp contribution in the reduced oral bioavailability of candesartan cilexetil is not clear. In this study, a previously developed candesartan cilexetil-loaded self-nanoemulsifying drug delivery system (SNEDDS) was evaluated for its ability to increase the drug oral bioavailability via the inhibition of intestinal P-gp transporters. Despite the developed SNEDDS showing P-gp inhibition activity, P-gp-mediated efflux was found to have a minor role in the reduced oral bioavailability of candesartan cilexetil. On the other hand, the high surfactant concentration used in SNEDDS formulation represents a major challenge toward their widespread application especially for chronically administered drugs. The designed acute and subacute toxicity studies revealed that the degree of intestinal mucosal damage decreases as the treatment period increases. The latter observation was attributed to the reversibility of surfactant-induced mucosal damage. Thus, the developed SNEDDS could be considered as a promising delivery system for enhancing the oral bioavailability of chronically administered drugs.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ayat A Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
28
|
Gonzalez-Obeso C, Girotti A, Rodriguez-Cabello JC. A transferrin receptor-binding mucoadhesive elastin-like recombinamer: In vitro and in vivo characterization. Acta Biomater 2019; 88:241-250. [PMID: 30794989 DOI: 10.1016/j.actbio.2019.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
The development of mucoadhesive materials is of great interest and is also a major challenge. Being adsorption sites, mucosae are suitable targets for drug delivery, but as defensive barriers they are complex biological surfaces to interact with, mainly due to their protective mucus layer. As such, first- and second-generation mucoadhesives focused on material-mucus interactions, whereas the third generation of mucoadhesives introduced structural motifs that are able to interact with the cells beneath the mucus layer. The combination of different prerequisites (water solubility, soft gel formation at body temperature and able to interact with the mucus) in a single molecule is easily achieved using elastin-like recombinamers (ELRs) given their multiple block design. Moreover, we have been able to introduce a short amino-acid sequence known as T7 that is able to bind to transferrin receptors in the epithelial cell layer. The T7 sequence enhances the cell-binding properties of the mucoadhesive ELR (MELR), as demonstrated using a Caco-2 epithelial cell model. In vivo experiments confirmed the mucoadhesive properties found in vitro. STATEMENT OF SIGNIFICANCE: The development of a mucoadhesive material is a major challenge. Mucosae are suitable targets for drug delivery, but as defense barriers, they are complex surfaces to interact with. In this work we report the first ELR that combines different functional blocks, in a single molecule, which provide it with the properties of soft-gel forming at body temperature and being able of efficiently adhering to the mucus layer of mucosas, as well as to the underlying epithelial cell layer, as demonstrated in vitro and in vivo. The rationally designed materials presented in this work sets the basis for developing ELR-based, mucosa-directed drug delivery systems, which could improve patient's compliance, enhancing drug retention at the mucosal site.
Collapse
|
29
|
Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv Drug Deliv Rev 2019; 142:128-140. [PMID: 30414496 DOI: 10.1016/j.addr.2018.10.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
Oral administration is the most accepted and favored route as various side effects such as fear, pain and risk of infections can be avoided resulting in a comparatively high patient compliance. However, from the industrial point of view the development of oral delivery systems is still challenging as various drugs are poorly soluble as well as slightly permeable leading to low bioavailability. As self-emulsifying drug delivery systems are able to incorporate both hydrophobic and hydrophilic drugs, these carrier systems have received more and more attention within the last years. Based on the broad range of currently available excipients, this review provides a kind of guideline for the selection of excipients useful to improve bioavailability of the drug on the one hand. As the regulatory status of potential excipients are highly important to introduce the formulation on the market, the review is focused on the other hand on excipients listed in the IIG database of the FDA by taking their corresponding maximum concentration into account. Furthermore, the issue of oral sensation and taste masking is discussed useful for the development of intraoral SEDDS.
Collapse
|
30
|
Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Singh D, Tiwary AK, Bedi N. Self-microemulsifying Drug Delivery System for Problematic Molecules: An Update. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:92-113. [PMID: 31215381 DOI: 10.2174/1872210513666190619102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The poor bioavailability of a problematic molecule is predominantly due to its high lipophilicity, low solubility in gastric fluids and/or high fist pass metabolism. Self microemulsifying drug delivery system (SMEDDS), a lipidic type IV nano-formulation has been of interest in the field of pharmaceutical research due to its potential for tailoring the physicochemical properties of pharmaceutical molecules. METHODS This review provides insights on various recent innovations and reports from the past seven years (2012-2019) of self-emulsifying formulations for the delivery of various types of poorly soluble drugs, phytoconstituents and high molecular peptides and gives exhaustive details of the outcome of the endeavors in this field. RESULTS Various types of innovative formulations have been molded from SMEDDS like selfemulsifying powders, granules, tablets, pellets, eutectic and cationic formulations. Till date, many research reports and patents have been filed on self-emulsifying dosage forms and many formulations have gained US-FDA approvals which are summarized in the review article. CONCLUSION This review content highlighted the increasing scope of SMEDDS in augmenting the physiochemical properties of an API, the variegated formulation types and the attributes of API that can be improved by SMEDD based formulations.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ashok K Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
32
|
Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-Based Oral Formulation Strategies for Lipophilic Drugs. AAPS PharmSciTech 2018; 19:3609-3630. [PMID: 30255474 DOI: 10.1208/s12249-018-1188-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
Partition coefficient (log P) is a key physicochemical characteristic of lipophilic drugs which plays a significant role in formulation development for oral administration. Lipid-based formulation strategies can increase lymphatic transport of these drugs and can enhance bioavailability many folds. The number of lipophilic drugs in pharmacopoeias and under discovery are continuously increasing and making the job of the formulation scientist difficult to develop suitable formulation of these drugs due to potent nature and water insolubility of these drugs. Recently, many natural and synthetic lipids are appearing in the market which are helpful in the development of lipid-based formulations of these types of drugs having enhanced solubility and bioavailability. One such reason for this enhanced bioavailability is the accessibility of the lymphatic transport as well as avoidance of first-pass effect. This review discusses the impact of lipophilicity in enhancing the intestinal lymphatic drug transport thereby reducing first-pass metabolism. The most appropriate strategy for developing a lipid-based formulation depending upon the degree of lipophilicity has been critically discussed and provides information on how to develop optimum formulation. Various formulation strategies are discussed in-depth by classifying lipid-based oral drug delivery systems with case studies of few marketed formulations with challenges and opportunities for the future of the formulations.
Collapse
|
33
|
Gurjar R, Chan CYS, Curley P, Sharp J, Chiong J, Rannard S, Siccardi M, Owen A. Inhibitory Effects of Commonly Used Excipients on P-Glycoprotein in Vitro. Mol Pharm 2018; 15:4835-4842. [PMID: 30350641 DOI: 10.1021/acs.molpharmaceut.8b00482] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pharmaceutical excipients are no longer considered inert and have been shown to influence the activity of metabolic enzymes and transporters, resulting in altered pharmacokinetics of substrate drugs. In this study, the effect of 25 excipients commonly used in drug formulations were investigated for their effect on P-glycoprotein (P-gp) activity. The effect of excipients on P-gp were assessed by measuring the change in the cellular accumulation of a P-gp substrate, digoxin, in MDCK-MDR1 (Madin Darby canine kidney transfected with multidrug resistance 1 gene) cells. The cells were exposed to low (10 μM) and high (200 μM) concentrations of excipient along with 10 μM digoxin. Excipient concentrations were chosen to span the range of concentrations previously used for investigating activities in vitro. At 10 μM of excipient, an increase in the intracellular digoxin concentration was seen with d-α-tocopherol poly-(ethylene glycol) succinate (Vit-E-PEG; p = 0.002), poly(ethylene oxide)20 sorbitan monooleate (Tween 80; p = 0.001), cetyltrimethylammonium bromide (CTAB; p = 0.021), poly(ethylene oxide)35 modified castor oil (Cremophor EL; p = 0.01), polyethylene glycol15-hydroxystearate (Solutol HS 15; p = 0.006), and poly(ethylene glycol) hexadecyl ether (Brij 58; p = 0.001). At 200 μM, Vit-E-PEG ( p < 0.0001), sodium 1,4-bis (2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate (AOT; p < 0.0001), Tween 80 ( p < 0.0001), CTAB ( p = 0.004), poly(ethylene oxide)20 sorbitan monolaurate (Tween 20; p < 0.0001), Cremophor EL ( p < 0.0001), Solutol HS 15 ( p < 0.0001), Brij 58 ( p < 0.0001), and sodium carboxymethyl cellulose (NaCMC; p = 0.006) increased intracellular digoxin significantly. Concentration-dependent inhibition of P-gp was then investigated for selected excipients giving an IC50 for Vit-E-PEG (12.48 μM), AOT (192.5 μM), Tween 80 (45.29 μM), CTAB (96.67 μM), Tween 20 (74.15 μM), Cremophor EL (11.92 μM), Solutol HS 15 (179.8 μM), Brij 58 (25.22 μM), and NaCMC (46.69 μM). These data add to the growing body of evidence demonstrating that not all excipients are inert and will aid excipient choice for rational formulation development.
Collapse
Affiliation(s)
- Rohan Gurjar
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Christina Y S Chan
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Joanne Sharp
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Justin Chiong
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Steve Rannard
- Department of Chemistry , University of Liverpool , Liverpool L69 7ZD , United Kingdom
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GF , United Kingdom
| |
Collapse
|
34
|
Ahmed OA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine 2018; 13:6325-6335. [PMID: 30349253 PMCID: PMC6188068 DOI: 10.2147/ijn.s181587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Raloxifene hydrochloride (RLX) is approved by the US Food and Drug Administration for the treatment and prevention of osteoporosis, in addition to reducing the risk of breast cancer in postmenopausal women. RLX has the disadvantages of low aqueous solubility, extensive presystemic intestinal glucuronidation, and first-pass metabolism, resulting in a limited bio-availability of only 2%. The aim of this work was to enhance the bioavailability of RLX via the formulation of an in situ nasal matrix (misemgel) comprising micelles made of vitamin E and D-α-tocopheryl polyethylene glycol 1000 succinate and nanosized self-emulsifying systems (NSEMS). MATERIALS AND METHODS Optimization of the RLX-loaded NSEMS was performed using a mixture design. The formulations were characterized by particle size and then incorporated into an in situ nasal gel. Transmission electron microscopy, bovine nasal mucosa ex vivo permeation, and visualization using a fluorescence laser microscope were carried out on the RLX in situ misemgel comparing with raw RLX in situ gel. In addition, the in vivo performance was studied in rats. RESULTS The results revealed improved permeation parameters for RLX misemgel compared with control gel, with an enhancement factor of 2.4. In vivo studies revealed a 4.79- and 13.42-fold increased bioavailability for RLX in situ misemgel compared with control RLX in situ gel and commercially available tablets, respectively. The obtained results highlighted the efficacy of combining two different formulations to enhance drug delivery and the benefits of utilizing different possible paths for drug absorption. CONCLUSION The developed in situ misemgel matrix could be considered as a promising multifunctional platform for nasal delivery which works based on a dual-absorption mechanism.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
35
|
Analytical considerations for measuring the globule size distribution of cyclosporine ophthalmic emulsions. Int J Pharm 2018; 550:229-239. [DOI: 10.1016/j.ijpharm.2018.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
|
36
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
37
|
Rahman MA, Mujahid M. Development of self-nanoemulsifying tablet (SNET) for bioavailability enhancement of sertraline. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS NANO 2018; 12:2106-2121. [PMID: 29462554 PMCID: PMC5878691 DOI: 10.1021/acsnano.7b07252] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The importance of medical imaging in the diagnosis and monitoring of cancer cannot be overstated. As personalized cancer treatments are gaining popularity, a need for more advanced imaging techniques has grown significantly. Nanoparticles are uniquely suited to fill this void, not only as imaging contrast agents but also as companion diagnostics. This review provides an overview of many ways nanoparticle imaging agents have contributed to cancer imaging, both preclinically and in the clinic, as well as charting future directions in companion diagnostics. We conclude that, while nanoparticle-based imaging agents are not without considerable scientific and developmental challenges, they enable enhanced imaging in nearly every modality, hold potential as in vivo companion diagnostics, and offer precise cancer treatment and maximize intervention efficacy.
Collapse
Affiliation(s)
- Emily B. Ehlerding
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Piotr Grodzinski
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christina H. Liu
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
39
|
Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. J Colloid Interface Sci 2017; 508:248-253. [DOI: 10.1016/j.jcis.2017.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/17/2023]
|
40
|
Chaurasia S, Patel RR, Vure P, Mishra B. Oral naringenin nanocarriers: Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy assessments. Nanomedicine (Lond) 2017; 12:1243-1260. [PMID: 28593828 DOI: 10.2217/nnm-2016-0436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM To enhance oral bioavailability and chemotherapeutic efficacy of naringenin (NG) by fabricating the NG-encapsulated Soluthin-maltodextrin-based nanocarrier (NC) system. MATERIALS & METHODS NG-encapsulated nanocarriers (NG/NCs) were developed, and in vitro physicochemically characterized. Furthermore, Wistar rats were used to evaluate the pharmacokinetic profile. Furthermore, in vitro and in vivo colorectal cancer efficacy was evaluated in BALB/c mice-bearing colon-26 cells. RESULTS The NG/NCs demonstrated favorable mean particle size (176 ± 2.35 nm) and percent entrapment efficiency (70.83 ± 4.55%), respectively. The oral bioavailability was found to be approximately 116-fold higher and in vitro cytotoxicity exhibited approximately 21-fold reduction as compared with pure NG. Moreover, optimized NG/NCs demonstrated significant tumor suppression compared with pure NG in vivo. CONCLUSION The NG/NCs would be an efficient formulation for enhancing oral bioavailability and chemotherapeutic efficacy of NG.
Collapse
Affiliation(s)
- Sundeep Chaurasia
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, UP, INDIA.,Formulation Research & Development, Complex Generics Division, Virchow Biotech Pvt. Ltd, Survey No. 172 Part, Gagillapur Village, Quthbullapur Mandal, Ranga Reddy 500 043, Hyderabad, Telangana, India
| | - Ravi R Patel
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, UP, INDIA
| | - Prasad Vure
- Formulation Research & Development, Complex Generics Division, Virchow Biotech Pvt. Ltd, Survey No. 172 Part, Gagillapur Village, Quthbullapur Mandal, Ranga Reddy 500 043, Hyderabad, Telangana, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, UP, INDIA
| |
Collapse
|
41
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil. Eur J Pharm Sci 2017; 109:503-513. [PMID: 28889028 DOI: 10.1016/j.ejps.2017.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/24/2017] [Accepted: 09/02/2017] [Indexed: 01/26/2023]
Abstract
Candesartan cilexetil is widely used in the management of hypertension and heart failure. The drug delivery encounters obstacles of poor aqueous solubility, efflux by intestinal P-glycoprotein and vulnerability to enzymatic degradation in small intestine. Self-nanoemulsifying drug delivery systems (SNEDDS) loaded with candesartan cilexetil were successfully developed to overcome such obstacles. Preliminary screening was carried out to select proper surfactant, co-surfactant and oil combination for successful SNEDDS formulation. All screened excipients were reported for their P-glycoprotein and cytochrome P450 3A4 (CYP3A4) modulation activity. Ternary and pseudo ternary diagrams were constructed to optimize the system. Peppermint oil and clove oil showed a high emulsification ability. The nature of obtained dispersions was identified to be nanoemulsions. Twenty-four formulations were evaluated for stability, robustness to dilution and self-emulsification efficiency. All formulations showed a very short emulsification time of <2min. The emulsification efficiency was significantly superior at pH6.8, at which the largest self-emulsifying region was also observed. Eight formulations were selected for further characterization according to cloud point measurement; mean droplet size, poly dispersity index (PDI) and zeta potential determination in addition to in vitro drug release study. All selected formulations showed very high cloud points (70-90°C), ultrafine mean droplet size (12±1.4 to 24.5±2.13nm), very low PDI values (0.015-0.1305) and almost a complete drug release after 12h. Formulation F15 (Peppermint oil 55% w/w: Cremophor RH40 25% w/w: Labrasol 20% w/w) was selected for further characterization. Its droplet size showed robustness to different dilution folds with different media and its TEM photograph showed spherical particles without any apparent aggregation even after 24h. Formulation F15 successfully controlled the systolic blood pressure of hypertensive rats for 24h with the maximum effect was observed after 2h. These results indicate that, SNEDDS could be promising delivery systems with a rapid onset of action and prolonged therapeutic effect of candesartan cilexetil.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Department of pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ayat A Allam
- Department of pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mahmoud El-Badry
- Department of pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ahmed M El-Sayed
- Department of pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
42
|
Yen CC, Chang CW, Hsu MC, Wu YT. Self-Nanoemulsifying Drug Delivery System for Resveratrol: Enhanced Oral Bioavailability and Reduced Physical Fatigue in Rats. Int J Mol Sci 2017; 18:E1853. [PMID: 28841149 PMCID: PMC5618502 DOI: 10.3390/ijms18091853] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Resveratrol (RES), a natural polyphenolic compound, exerts anti-fatigue activity, but its administration is complicated by its low water solubility. To improve RES bioavailability, this study developed a self-nanoemulsifying drug delivery system (SNEDDS) for RES and evaluated its anti-fatigue activity and rat exercise performance by measuring fatigue-related parameters, namely lactate, ammonia, plasma creatinine phosphokinase, and glucose levels and the swimming time to exhaustion. Through solubility and emulsification testing, the optimized SNEDDS composed of Capryol 90, Cremophor EL, and Tween 20 was developed; the average particle size in this formulation, which had favorable self-emulsification ability, was approximately 41.3 ± 4.1 nm. Pharmacokinetic studies revealed that the oral bioavailability of the optimized RES-SNEDDS increased by 3.2-fold compared with that of the unformulated RES-solution. Pretreatment using the RES-SNEDDS before exercise accelerated the recovery of lactate after exercise; compared with the vehicle group, the plasma ammonia level in the RES-SNEDDS group significantly decreased by 65.4%, whereas the glucose level significantly increased by approximately 1.8-fold. Moreover, the swimming time to exhaustion increased by 2.1- and 1.8-fold, respectively, compared with the vehicle and RES-solution pretreatment groups. Therefore, the developed RES-SNEDDS not only enhances the oral bioavailability of RES but may also exert anti-fatigue pharmacological effect.
Collapse
Affiliation(s)
- Ching-Chi Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
| | - Chih-Wei Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
- Department of Medical Research, College of Medicine, Kaohsiung Medical University Hospital, 100, Tzyou 1st Rd., Kaohsiung 80708, Taiwan.
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
- Department of Medical Research, College of Medicine, Kaohsiung Medical University Hospital, 100, Tzyou 1st Rd., Kaohsiung 80708, Taiwan.
| |
Collapse
|
43
|
Penjuri SCB, Damineni S, Ravouru N, Poreddy SR. Self-Emulsifying Formulation of Indomethacin with Improved Dissolution and Oral Absorption. Turk J Pharm Sci 2017; 14:108-119. [PMID: 32454601 DOI: 10.4274/tjps.60352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 12/01/2022]
Abstract
Objectives The objective of the present study was to enhance the solubility, dissolution and hence anti-inflammatory activity of poorly soluble drug indomethacin (IMN) by formulating into self emulsifying systems. Materials and Methods Self emulsifying formulations were prepared using capmul MCM as oil, tween 80 as surfactant, transcutol P as cosurfactant. Fourier transform infrared spectroscopy and differential scanning calorimetry studies were conducted to know the interaction between drug and excipients. Pseudo ternary phase diagrams were constructed using surfactant and cosurfactant in 1:1 to 1:4 and 2:1 to 4:1 to know the efficient self emulsification region. The formulations were evaluated for their particle size, zeta potential, refractive index, viscosity and cloud point. In vitro dissolution studies were conducted in one part of pH 7.2 phosphate buffer and four parts of water. The pharmacokinetic parameters were analysed by Win Nonlin software. Results The self emulsification was higher with the ratios 2:1, 3:1 and 1:2 of surfactant and co surfactant and the IMN formulations were prepared. The formulations were stable at different pH and dilutions. The globule size was in the range of 184.1 nm to 340.5 nm, as the ratio of oil, surfactant and cosurfactant mixture has varied effects on the size of globule. The negative charge on the globules of all formulations attributes their stability. The optimized formulation showed better release as compared to marketed product. The AUC of the optimised Self-Emulsifying Drug Delivery System was significantly higher than the marketed product. Conclusion Thus, from the present research, self emulsifying systems of IMN provide a useful alternative to enhance dissolution and hence anti inflammatory activity.
Collapse
Affiliation(s)
| | - Saritha Damineni
- Sultan-Ul-Uloom College Of Pharmacy, Department Of Pharmaceutics, Telangana, India
| | - Nagaraju Ravouru
- Sri Padmavathi Mahila Visvavidyalayam (Women'S University), Institute Of Pharmaceutical Technology, Andhra Pradesh, India
| | | |
Collapse
|
44
|
Gamal W, Fahmy RH, Mohamed MI. Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability. Drug Dev Ind Pharm 2017; 43:1530-1538. [DOI: 10.1080/03639045.2017.1322607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wael Gamal
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Rania H. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magdy I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Szostak K, Czogalla A, Przybyło M, Langner M. New lipid formulation of octenidine dihydrochloride. J Liposome Res 2017; 28:106-111. [DOI: 10.1080/08982104.2016.1275678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kamila Szostak
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Magdalena Przybyło
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| | - Marek Langner
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| |
Collapse
|
46
|
Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release 2017; 248:71-95. [PMID: 28088572 DOI: 10.1016/j.jconrel.2017.01.014] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
Abstract
BCS class IV drugs (e.g., amphotericin B, furosemide, acetazolamide, ritonavir, paclitaxel) exhibit many characteristics that are problematic for effective oral and per oral delivery. Some of the problems associated include low aqueous solubility, poor permeability, erratic and poor absorption, inter and intra subject variability and significant positive food effect which leads to low and variable bioavailability. Also, most of the class IV drugs are substrate for P-glycoprotein (low permeability) and substrate for CYP3A4 (extensive pre systemic metabolism) which further potentiates the problem of poor therapeutic potential of these drugs. A decade back, extreme examples of class IV compounds were an exception rather than the rule, yet today many drug candidates under development pipeline fall into this category. Formulation and development of an efficacious delivery system for BCS class IV drugs are herculean tasks for any formulator. The inherent hurdles posed by these drugs hamper their translation to actual market. The importance of the formulation composition and design to successful drug development is especially illustrated by the BCS class IV case. To be clinically effective these drugs require the development of a proper delivery system for both oral and per oral delivery. Ideal oral dosage forms should produce both a reasonably high bioavailability and low inter and intra subject variability in absorption. Also, ideal systems for BCS class IV should produce a therapeutic concentration of the drug at reasonable dose volumes for intravenous administration. This article highlights the various techniques and upcoming strategies which can be employed for the development of highly notorious BCS class IV drugs. Some of the techniques employed are lipid based delivery systems, polymer based nanocarriers, crystal engineering (nanocrystals and co-crystals), liquisolid technology, self-emulsifying solid dispersions and miscellaneous techniques addressing the P-gp efflux problem. The review also focuses on the roadblocks in the clinical development of the aforementioned strategies such as problems in scale up, manufacturing under cGMP guidelines, appropriate quality control tests, validation of various processes and variable therein etc. It also brings to forefront the current lack of regulatory guidelines which poses difficulties during preclinical and clinical testing for submission of NDA and subsequent marketing. Today, the pharmaceutical industry has as its disposal a series of reliable and scalable formulation strategies for BCS Class IV drugs. However, due to lack of understanding of the basic physical chemistry behind these strategies formulation development is still driven by trial and error.
Collapse
Affiliation(s)
- Rohan Ghadi
- IPDO, Innovation Plaza, Dr Reddy's Laboratories Ltd., Bachupally, Hyderabad, 500090, India.
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai, 400064, India
| |
Collapse
|
47
|
Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:337-354. [PMID: 27080735 DOI: 10.1016/j.addr.2016.04.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/23/2022]
Abstract
This article is aimed to overview the lipid-based nanostructures designed so far for the oral administration of peptides and proteins, and to analyze the influence of their composition and physicochemical (particle size, zeta potential) and pharmaceutical (drug loading and release) properties, on their interaction with the gastro-intestinal environment, and the subsequent PK/PD profile of the associated drugs. The ultimate goal has been to highlight and comparatively analyze the key factors that may be determinant of the success of these nanocarriers for oral peptide delivery. The article ends with some prospects on the challenges to be addressed for the intended commercial success of these delivery vehicles.
Collapse
|
48
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
49
|
Zeng L, Zhang Y. Development, optimization and in vitro evaluation of norcantharidin loadedself-nanoemulsifying drug delivery systems (NCTD-SNEDDS). Pharm Dev Technol 2016; 22:399-408. [PMID: 27487261 DOI: 10.1080/10837450.2016.1219915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study focused on developing a self-nanoemulsifying drug delivery system (SNEDDS) containing bioactive surfactants under an efficient screening approach for overcoming problems associated with the delivery of norcantharidin (NCTD), a high dose chemotherapy agent having pH dependent solubility. Preliminary screening was implemented to select proper components combination. Besides the solubility of NCTD in the oil phase, emulsifying efficiency, droplet size and size distribution were also employed to select components of the SNEDDS. Moreover, the influence of surfactant and co-surfactant on the interfacial tension and droplets of nanoemulsions were investigated to further understand the mechanism of spontaneous emulsification. Co-surfactant addition promoted the emulsification via reducing the water/oil interfacial tension and viscosity. Ternary phase diagrams were constructed to investigate the phase behavior and designate the optimum systems. The alternative formulations were characterized for cloud point, dilution robustness, droplet size, polydispersity index (PDI) and transmission electron microscopy (TEM). In vitro dissolution study showed that the dissolution rate of optimized formulation (NCTD 10 mg/g, EO 50 wt.%, Cremophor EL 35 wt.%, ethylene glycol 15 wt.%) was slower than drug suspension under the same conditions, confirming that the developed SNEDDS formulation would exhibit sustained release potential.
Collapse
Affiliation(s)
- Liya Zeng
- a Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education , College of Plant Protection, Northwest A&F University , Yangling , China
| | - Yalin Zhang
- a Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education , College of Plant Protection, Northwest A&F University , Yangling , China
| |
Collapse
|
50
|
Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv 2016; 23:3639-3652. [DOI: 10.1080/10717544.2016.1214990] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | | | - Uttam Kumar Mandal
- Pharmaceutical Technology, Kulliyyah of Pharmacy, IIUM, Kuantan, Malaysia
| | - Pinaki Sengupta
- Pharmaceutical Technology, Kulliyyah of Pharmacy, IIUM, Kuantan, Malaysia
| |
Collapse
|