1
|
Wang W, Sun Y, Cao R, Luo W, Beng S, Zhang J, Wang X, Peng C. Illustrate the metabolic regulatory effects of Ganoderma Lucidum polysaccharides on cognitive dysfunction in formaldehyde-exposed mouse brain by mass spectrometry imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118060. [PMID: 40120485 DOI: 10.1016/j.ecoenv.2025.118060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Long-term formaldehyde (FA) exposure causes cognitive dysfunction, often associated with metabolic disorders. While some studies suggest Ganoderma lucidum polysaccharides (GLP) can improve cognitive function, such as Alzheimer's disease. However, the effects of GLP on FA-exposed cognitive dysfunction and the regulation of GLP on brain metabolic disturbances caused by FA remain unclear. In our study, we revealed that GLP significantly reversed FA-exposed spatial cognitive deficits in mice by using Morris Water Maze and Histological analysis. Furthermore, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) found that exposure of FA can caused dysregulated expression of 35 metabolites. Following GLP treatment, there was a significant restoration of the imbalance of choline and acetylcholine, carnitine and acetylcarnitine, and spermidine and spermine, which were all involved in choline metabolism, carnitine metabolism, and polyamine metabolism. Our results suggested that GLP alleviated FA-exposed cognitive dysfunction, likely through modulation of metabolic pathways, providing a potential therapeutic approach for FA-related cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yuanyuan Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Renting Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wenhui Luo
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shujuan Beng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jing Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Can Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Generic Technology Research center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Wu M, Du Y, Zhang C, Li Z, Li Q, Qi E, Ruan W, Feng S, Zhou H. Mendelian Randomization Study of Lipid Metabolites Reveals Causal Associations with Heel Bone Mineral Density. Nutrients 2023; 15:4160. [PMID: 37836445 PMCID: PMC10574167 DOI: 10.3390/nu15194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Osteoporosis, which is a bone disease, is characterized by low bone mineral density and an increased risk of fractures. The heel bone mineral density is often used as a representative measure of overall bone mineral density. Lipid metabolism, which includes processes such as fatty acid metabolism, glycerol metabolism, inositol metabolism, bile acid metabolism, carnitine metabolism, ketone body metabolism, sterol and steroid metabolism, etc., may have an impact on changes in bone mineral density. While some studies have reported correlations between lipid metabolism and heel bone mineral density, the overall causal relationship between metabolites and heel bone mineral density remains unclear. OBJECTIVE to investigate the causal relationship between lipid metabolites and heel bone mineral density using two-sample Mendelian randomization analysis. METHODS Summary-level data from large-scale genome-wide association studies were extracted to identify genetic variants linked to lipid metabolite levels. These genetic variants were subsequently employed as instrumental variables in Mendelian randomization analysis to estimate the causal effects of each lipid metabolite on heel bone mineral density. Furthermore, metabolites that could potentially be influenced by causal relationships with bone mineral density were extracted from the KEGG and WikiPathways databases. The causal associations between these downstream metabolites and heel bone mineral density were then examined. Lastly, a sensitivity analysis was conducted to evaluate the robustness of the results and address potential sources of bias. RESULTS A total of 130 lipid metabolites were analyzed, and it was found that acetylcarnitine, propionylcarnitine, hexadecanedioate, tetradecanedioate, myo-inositol, 1-arachidonoylglycerophosphorine, 1-linoleoylglycerophoethanolamine, and epiandrosterone sulfate had a causal relationship with heel bone mineral density (p < 0.05). Furthermore, our findings also indicate an absence of causal association between the downstream metabolites associated with the aforementioned metabolites identified in the KEGG and WikiPathways databases and heel bone mineral density. CONCLUSION This work supports the hypothesis that lipid metabolites have an impact on bone health through demonstrating a causal relationship between specific lipid metabolites and heel bone mineral density. This study has significant implications for the development of new strategies to osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Mingxin Wu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yufei Du
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Zhen Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Wendong Ruan
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Hengxing Zhou
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| |
Collapse
|
3
|
Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5634724. [PMID: 35498135 PMCID: PMC9045977 DOI: 10.1155/2022/5634724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
The mitochondrion is a very versatile organelle that participates in some important cancer-associated biological processes, including energy metabolism, oxidative stress, mitochondrial DNA (mtDNA) mutation, cell apoptosis, mitochondria-nuclear communication, dynamics, autophagy, calcium overload, immunity, and drug resistance in ovarian cancer. Multiomics studies have found that mitochondrial dysfunction, oxidative stress, and apoptosis signaling pathways act in human ovarian cancer, which demonstrates that mitochondria play critical roles in ovarian cancer. Many molecular targeted drugs have been developed against mitochondrial dysfunction pathways in ovarian cancer, including olive leaf extract, nilotinib, salinomycin, Sambucus nigra agglutinin, tigecycline, and eupatilin. This review article focuses on the underlying biological roles of mitochondrial dysfunction in ovarian cancer progression based on omics data, potential molecular relationship between mitochondrial dysfunction and oxidative stress, and future perspectives of promising biomarkers and therapeutic targets based on the mitochondrial dysfunction pathway for ovarian cancer.
Collapse
|
4
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Ramos-Campo DJ, Mielgo-Ayuso J, Nikolaidis PA, Belando N, Tornero-Aguilera JF. Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic. Physiol Behav 2022; 244:113667. [PMID: 34861297 PMCID: PMC8632361 DOI: 10.1016/j.physbeh.2021.113667] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has shocked world health authorities generating a global health crisis. The present study aimed to analyze the different factors associated with physical activity that could have an impact in the COVID-19, providing a practical recommendation based on actual scientific knowledge. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding physical activity and physical activity related factors during the COVID-19 pandemic. The main online database used in the present research were PubMed, SciELO, and Google Scholar. COVID-19 has negatively influenced motor behavior, levels of regular exercise practice, eating and nutritional patterns, and the psychological status of citizens. These factors feed into each other, worsening COVID-19 symptoms, the risk of death from SARS-CoV-2, and the symptoms and effectiveness of the vaccine. The characteristics and symptoms related with the actual COVID-19 pandemic made the physical activity interventions a valuable prevention and treatment factor. Physical activity improves body composition, the cardiorespiratory, metabolic, and mental health of patients and enhancing antibody responses in vaccination.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Universidad Europea de Madrid, Faculty of Sports Sciences, Tajo Street, s/n, Madrid, 28670 Spain; Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla,080002 Colombia; Department of Adapted Physical Activity, School of Physical Education, University of Campinas (UNICAMP). Av. Érico Veríssimo, 701. Cidade Universitária "Zeferino Vaz", Campinas - SP, Brazil.
| | | | | | - Juan Mielgo-Ayuso
- Department of health sciences. Faculty of health sciences, University of Burgos, Spain
| | | | - Noelia Belando
- Universidad Europea de Madrid, Faculty of Sports Sciences, Tajo Street, s/n, Madrid, 28670 Spain
| | - Jose Francisco Tornero-Aguilera
- Universidad Europea de Madrid, Faculty of Sports Sciences, Tajo Street, s/n, Madrid, 28670 Spain,Department of Adapted Physical Activity, School of Physical Education, University of Campinas (UNICAMP). Av. Érico Veríssimo, 701. Cidade Universitária "Zeferino Vaz", Campinas - SP, Brazil
| |
Collapse
|
5
|
Sahebnasagh A, Avan R, Monajati M, Hashemi J, Habtemariam S, Negintaji S, Saghafi F. L-carnitine: Searching for New Therapeutic Strategy for Sepsis Management. Curr Med Chem 2021; 29:3300-3323. [PMID: 34789120 DOI: 10.2174/0929867328666211117092345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
In this review, we discussed the biological targets of carnitine, its effects on immune function, and how L-carnitine supplementation may help critically ill patients. L-carnitine is a potent antioxidant. L-carnitine depletion has been observed in prolonged intensive care unit (ICU) stays, while L-carnitine supplementation has beneficial effects in health promotion and regulation of immunity. It is essential for the uptake of fatty acids into mitochondria. By inhibiting the ubiquitin-proteasome system, down-regulation of apelin receptor in cardiac tissue, and reducing β-oxidation of fatty acid, carnitine may decrease vasopressor requirement in septic shock and improve clinical outcomes of this group of patients. We also have an overview of animal and clinical studies that have been recruited for evaluating the beneficial effects of L-carnitine in the management of sepsis/ septic shock. Additional clinical data are required to evaluate the optimal daily dose and duration of L-carnitine supplementation.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand. Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan. Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB. United Kingdom
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| |
Collapse
|
6
|
Tang T, Zhang P, Li S, Xu D, Li W, Tian Y, Jiao Y, Zhang Z, Xu F. Absolute Quantification of Acylcarnitines Using Integrated Tmt-PP Derivatization-Based LC-MS/MS and Quantitative Analysis of Multi-Components by a Single Marker Strategy. Anal Chem 2021; 93:12973-12980. [PMID: 34529423 DOI: 10.1021/acs.analchem.1c02606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acylcarnitines (ACs) play important roles in the fatty acid β-oxidation and are considered as diagnostic markers for many diseases. Accurate determination of ACs remains challenging due to their low abundance, high structure diversity, and limited availability of standard compounds. In this study, microwave-assisted Tmt-PP (p-[3,5-(dimethylamino)-2,4,6-triazine] benzene-1-sulfonyl piperazine) derivatization was utilized to facilitate the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) determination of ACs. The result indicated that Tmt-PP labeling enables the prediction of the retention time and MS response of ACs and enhances their MS response up to 4 times. The introduction of the microwave during the derivatization procedure greatly improved the reaction efficiency, demonstrated by the shortened reaction time from 90 to 1 min. Furthermore, we applied a strategy named quantitative analysis of multi-components by a single marker (QAMS) for the assay of 26 ACs with only 5 AC standards, solving the standard availability issue to a large extent. The established workflow was applied to discover dysregulated ACs in xenograft colon cancer mice, and the quantification results were highly comparable with traditional methods where there were the corresponding standards for each AC. Our study demonstrated that chemical derivatization-based LC-MS/MS integrated with the QAMS strategy is robust for the identification and quantification of ACs and has great potential in targeted metabolomics study.
Collapse
Affiliation(s)
- Tian Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Doudou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Dimitriadi A, Papaefthimiou C, Genizegkini E, Sampsonidis I, Kalogiannis S, Feidantsis K, Bobori DC, Kastrinaki G, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Adverse effects polystyrene microplastics exert on zebrafish heart - Molecular to individual level. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125969. [PMID: 34492880 DOI: 10.1016/j.jhazmat.2021.125969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.
Collapse
Affiliation(s)
| | - Chrisovalantis Papaefthimiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Genizegkini
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
8
|
Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
The Axonal Glycolytic Pathway Contributes to Sensory Axon Extension and Growth Cone Dynamics. J Neurosci 2021; 41:6637-6651. [PMID: 34252036 DOI: 10.1523/jneurosci.0321-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding the bioenergetics of axon extension and maintenance has wide ranging implications for neurodevelopment and disease states. Glycolysis is a pathway consisting of 10 enzymes and separated into preparatory and payoff phases, the latter producing ATP. Using embryonic chicken sensory neurons, we report that glycolytic enzymes are found through the axon and the growth cone. Pharmacological inhibition of glycolysis in the presence of NGF impairs axon extension and growth cone dynamics within minutes without affecting axon maintenance. Experiments using microfluidic chambers show that the effect of inhibiting glycolysis on axon extension is local along distal axons and can be reversed by promoting mitochondrial respiration. Knockdown of GAPDH simplifies growth cone morphology and is rescued by shRNA-resistant GAPDH expression. Rescue of GAPDH using KillerRed fused to GAPDH followed by localized chromophore-assisted light inactivation of KillerRed-GAPDH in distal axons halts growth cone dynamics. Considering filament polymerization requires ATP, inhibition of glycolysis results in a paradoxical increase in axonal actin filament levels. The effect on actin filaments is because of enzymes before GAPDH, the first enzyme in the payoff phase. In the absence of NGF, inhibition of glycolysis along distal axons results in axon degeneration independent of cell death. These data indicate that the glycolytic pathway is operative in distal axons and contributes to the rate of axon extension and growth cone dynamics in the presence of NGF and that, in the absence of NGF, the axonal glycolytic pathway is required for axon maintenance.SIGNIFICANCE STATEMENT Elucidation of the sources of ATP required for axon extension and maintenance has implications for understanding the mechanism of neuronal development and diseases of the nervous system. While recent work has emphasized the importance of mitochondrial oxidative phosphorylation, the role of the glycolytic pathway in axon morphogenesis and maintenance remains minimally understood. The data reveal that the glycolytic pathway is required for normal sensory axon extension in the presence of NGF, while in the absence of NGF the glycolytic pathway is required for axon maintenance. The results have implications for the understanding of the bioenergetics of axon morphogenesis and plasticity and indicate that NGF has protective effects on sensory axon maintenance in hypoglycemic states.
Collapse
|
10
|
Yu J, Meng F, He F, Chen F, Bao W, Yu Y, Zhou J, Gao J, Li J, Yao Y, Ge WP, Luo B. Metabolic Abnormalities in Patients with Chronic Disorders of Consciousness. Aging Dis 2021; 12:386-403. [PMID: 33815872 PMCID: PMC7990357 DOI: 10.14336/ad.2020.0812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
The vegetative state (VS) and minimally conscious state (MCS) are two major types of chronic disorders of consciousness (DoC). The assessment of these two consciousness states generally relies on the Coma Recovery Scale-Revised (CRS-R) score, but a high misdiagnosis rate limits the generalized use of this score. To identify metabolites in human plasma that can accurately distinguish VS from MCS patients, comprehensive plasma metabolic profiles were obtained with targeted metabolomics analysis and untargeted and targeted lipidomics analysis. Univariate and multivariate analyses were used to assess the significance of differences. Compared with healthy controls (HCs), the DoC groups, Emerged from Minimally Conscious State (EMCS) group and Alzheimer’s disease (AD) group had significantly different metabolic profiles. Purine metabolism pathway differed the most between the DoC (MCS and VS) and HC groups. In this pathway, adenosine, ADP, and AMP, which are the derived products of ATP degradation, were decreased in the MCS and VS groups compared to healthy controls. More importantly, we identified certain lipids for which the levels were enriched in the VS or MCS groups. Specifically, phosphatidylcholine, (38:5)-H (PC(38:5)-H), and arachidonic acid (AA) differed substantially between the VS and MCS groups and may be used to distinguish these two groups of patients. Together, our findings suggest that metabolic profiling is significantly altered in patients with chronic DoC.
Collapse
Affiliation(s)
- Jie Yu
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fanxia Meng
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fangping He
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fei Chen
- 2Children's Research Institute, Department of Neuroscience, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wangxiao Bao
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yamei Yu
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jintao Zhou
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Gao
- 3Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou 310051, China
| | - Jingqi Li
- 3Department of Rehabilitation, Hangzhou Hospital of Zhejiang Armed Police Corps, Hangzhou 310051, China
| | - Yao Yao
- 4Department of Pharmaceutical and Biomedical Sciences, University of Georgia, GA 30602, USA
| | - Woo-Ping Ge
- 5Chinese Institute for Brain Research, Beijing 102206, China
| | - Benyan Luo
- 1Department of Neurology and Brain Medical Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
11
|
Carnitine Serum Levels in Frail Older Subjects. Nutrients 2020; 12:nu12123887. [PMID: 33352627 PMCID: PMC7766818 DOI: 10.3390/nu12123887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Frailty is an expression that reconciles and condenses loss of autonomy, both physical and cognitive decline and a wide spectrum of adverse outcomes due to aging. The decrease in physical and cognitive activity is associated with altered mitochondrial function, and energy loss and consequently morbidity and mortality. In this cross-sectional study, we evaluated the carnitine levels in frailty status. The mean serum concentrations of total carnitine (TC) were lower in frail elderly subjects than in prefrail ones (p = 0.0006), higher in frail vs. robust subjects (p < 0.0001), and higher in prefrail vs. robust subjects (p < 0.0001). The mean serum concentrations of free carnitine (FC) were lower in frail elderly subjects than in prefrail ones (p < 0.0001), lower in frail vs. robust subjects (p < 0.0001) and lower in prefrail vs. robust subjects (p = 0.0009). The mean serum concentrations of acylcarnitine (AC) were higher in frail elderly subjects than in prefrail ones (p = 0.054) and were higher in pre-frail vs. robust subjects (p = 0.0022). The mean urine concentrations of TC were lower in frail elderly subjects than in prefrail ones (p < 0.05) and lower in frail vs. robust subjects (p < 0.0001). The mean urine concentrations of free carnitine were lower in frail elderly vs. robust subjects (p < 0.05). The mean urine concentrations of acyl carnitines were lower in frail elderly subjects than those in both prefrail (p < 0.0001) and robust subjects (p < 0.0001). Conclusion: high levels of carnitine may have a favorable effect on the functional status and may treat the frailty status in older subjects.
Collapse
|
12
|
Safarova TP, Gavrilova SI. [The use of neuroprotectors in the treatment of late depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:46-53. [PMID: 33205930 DOI: 10.17116/jnevro202012010246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Comparative evaluation of the effectiveness and safety of antidepressant monotherapy and combined antidepressant therapy with the inclusion of neuroprotectors in the treatment of depression in old and very old patients in a psychiatric hospital. MATERIALS AND METHODS The study included 2 groups of patients from the cohort of patients hospitalized in the gerontopsychiatric unit with mild and moderate depression (according to the ICD-10 classification) aged 60 years and older. The groups are comparable in their main demographic and clinical characteristics. Both groups received antidepressant monotherapy with venlafaxine (21 people) or combined therapy with the same antidepressant, but in combination with cerebrolysin or carnicetine (40 people) for 8 weeks. The efficacy of antidepressant therapy was evaluated with HAMD-17 and HARS; the effect of treatment on the level of cognitive activity of patients with MMSE and the 10-word memory test. RESULTS In the group of patients receiving combined antidepressant therapy, a significantly faster and more pronounced therapeutic response was observed compared to the group of patients treated with antidepressant monotherapy. In the group of combined therapy, an earlier (by 4 weeks) and significant (p<0.001) reduction of depressive and anxiety symptoms was established by the end of treatment, this group had a significantly higher number of respondents, as well as a better quality of therapeutic remission and a significant improvement in the cognitive functioning of patients compared to the monotherapy group. When comparing the effectiveness of different neuroprotectors (cerebrolysin or carnicetine), significant differences in the reduction of depressive and anxiety disorders in favor of carnicetine were established only at the end of the therapeutic course. CONCLUSION Combined antidepressant therapy with a combination of treatment with an antidepressant and a drug with neuroprotective properties can increase the effectiveness of antidepressant therapy in old and very old patients. Both cerebrolysin and carnicetine can be recommended for use in a psychiatric hospital to improve the quality of the therapeutic response and reduce the time of hospitalization.
Collapse
|
13
|
Liew G, Tse B, Ho IV, Joachim N, White A, Pickford R, Maltby D, Gopinath B, Mitchell P, Crossett B. Acylcarnitine Abnormalities Implicate Mitochondrial Dysfunction in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:32. [PMID: 38755790 PMCID: PMC7425723 DOI: 10.1167/iovs.61.8.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose Abnormalities in lipid metabolism are implicated in age-related macular degeneration (AMD), but the pathways involved remain unclear. We assessed whether acylcarnitine concentrations, a marker of lipid and mitochondrial metabolism, differed between patients with AMD and controls. Methods In this cross-sectional case-control study, cases (n = 81) had neovascular AMD and controls (n = 79) had cataract with no other ocular pathology. Participants were recruited from eye clinics in Western Sydney, Australia, between 2016 and 2018. Plasma blood samples were collected and liquid chromatography mass spectrometry analyses performed to identify acylcarnitine concentrations. Acylcarnitine levels were adjusted for age, gender and smoking in multivariable models. Confirmation of key acylcarnitine identities was conducted using high mass accuracy liquid chromatography-tandem mass spectrometry. Results After multivariable adjustment, C2-carnitine (acetylcarnitine) levels were significantly lower in patients with neovascular AMD compared to controls (0.810 ± 0.053 (standard error) compared to 1.060 ± 0.053), p = 0.002). C18:2-DC carnitine (a dicarboxylic acylcarnitine with a 18 carbon side chain and 2 double bonds), levels were significantly higher in patients with neovascular AMD compared to controls (1.244 ± 0.046 compared to 1.013 ± 0.046), p = 0.001). Other acylcarnitines examined were not significantly different between cases and controls. Conclusions Reduced plasma levels of C2-carnitine (acetylcarnitine) and increased plasma levels of C18:2-DC carnitine were observed in patients with neovascular AMD compared to controls. These findings suggest mitochondrial dysfunction could be involved in the pathogenesis of neovascular AMD.
Collapse
Affiliation(s)
- Gerald Liew
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
- Retina Associates, Sydney, Australia
| | - Benita Tse
- Charles Perkins Centre, University of Sydney, Sydney, Australia
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - I-Van Ho
- Retina Associates, Sydney, Australia
| | - Nichole Joachim
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Andrew White
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Kensington, Australia
| | - David Maltby
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Bamini Gopinath
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Li YY, Douillet C, Huang M, Beck R, Sumner SJ, Styblo M. Exposure to inorganic arsenic and its methylated metabolites alters metabolomics profiles in INS-1 832/13 insulinoma cells and isolated pancreatic islets. Arch Toxicol 2020; 94:1955-1972. [PMID: 32277266 PMCID: PMC8711643 DOI: 10.1007/s00204-020-02729-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Inorganic arsenic (iAs) is an environmental diabetogen, but mechanisms underlying its diabetogenic effects are poorly understood. Exposures to arsenite (iAsIII) and its methylated metabolites, methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), have been shown to inhibit glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells and isolated pancreatic islets. GSIS is regulated by complex mechanisms. Increase in ATP production through metabolism of glucose and other substrates is the ultimate trigger for GSIS in β-cells. In the present study, we used metabolomics to identify metabolites and pathways perturbed in cultured INS-1 832/13 rat insulinoma cells and isolated murine pancreatic islets by exposures to iAsIII, MAsIII and DMAsIII. We found that the exposures perturbed multiple metabolites, which were enriched primarily in the pathways of amino acid, carbohydrate, phospholipid and carnitine metabolism. However, the effects of arsenicals in INS-1 832/13 cells differed from those in the islets and were exposure specific with very few overlaps between the three arsenicals. In INS-1 832/13 cells, all three arsenicals decreased succinate, a metabolite of Krebs cycle, which provides substrates for ATP synthesis in mitochondria. Acetylcarnitine was decreased consistently by exposures to arsenicals in both the cells and the islets. Acetylcarnitine is usually found in equilibrium with acetyl-CoA, which is the central metabolite in the catabolism of macronutrients and the key substrate for Krebs cycle. It is also thought to play an antioxidant function in mitochondria. Thus, while each of the three trivalent arsenicals perturbed specific metabolic pathways, which may or may not be associated with GSIS, all three arsenicals appeared to impair mechanisms that support ATP production or antioxidant defense in mitochondria. These results suggest that impaired ATP production and/or mitochondrial dysfunction caused by oxidative stress may be the mechanisms underlying the inhibition of GSIS in β-cells exposed to trivalent arsenicals.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Nutrition, Nutrition Research Institute, CB# 74612, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC, 27599-7461, USA
- Department of Nutrition, CB# 74612, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599-7461, USA
| | - Christelle Douillet
- Department of Nutrition, CB# 74612, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599-7461, USA
| | - Madelyn Huang
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- National Toxicology Program, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| | - Rowan Beck
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Susan Jenkins Sumner
- Department of Nutrition, Nutrition Research Institute, CB# 74612, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC, 27599-7461, USA.
- Department of Nutrition, CB# 74612, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599-7461, USA.
| | - Miroslav Styblo
- Department of Nutrition, CB# 74612, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599-7461, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Wei J, Li X, Xiang L, Song Y, Liu Y, Jiang Y, Cai Z. Metabolomics and lipidomics study unveils the impact of polybrominated diphenyl ether-47 on breast cancer mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121451. [PMID: 31796364 DOI: 10.1016/j.jhazmat.2019.121451] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ether-47 (BDE-47) is a congener of polybrominated diphenyl ethers (PBDEs) and relates to different health risks. However, in vivo study of the association between BDE-47 and breast cancer was scarce. In this study, we performed in vivo exposure of BDE-47 to breast cancer nude mice and conducted mass spectrometry-based metabolomics and lipidomics analysis to investigate the metabolic changes in mice. Results showed that the tumor sizes were positively associated with the dosage of BDE-47. Metabolomics and lipidomics profiling analysis indicated that BDE-47 induced significant alterations of metabolic pathways in livers, including glutathione metabolism, ascorbate and aldarate metabolism, and lipids metabolism, etc. The upregulations of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) suggested the membrane remodeling, and the downregulations of Lyso-PCs and Lyso-PEs might be associated with the tumor growth. Targeted metabolomics analysis revealed that BDE-47 inhibited fatty acid β-oxidation (FAO) and induced incomplete FAO. The inhibition of FAO and downregulation of PPARγ would contribute to inflammation, which could promote tumor growth. In addition, BDE-47 elevated the expression of the cytokines TNFRSF12A, TNF-α, IL-1β and IL-6, and lowered the cytokines SOCS3 and the nuclear receptor PPARα. The changes of cytokines and receptor may contribute to the tumor growth of mice.
Collapse
Affiliation(s)
- Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Xiaona Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
| | - Yuanchen Liu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Liu Z, Zhang P, Kästner L, Volmer DA. A simple MALDI target plate with channel design to improve detection sensitivity and reproducibility for quantitative analysis of biomolecules. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:878-884. [PMID: 31652368 DOI: 10.1002/jms.4447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Overcoming the detrimental effects of sweet spots during crystallization is an important step to improve the quantitative abilities of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, we introduce MALDI targets, which exhibit a channel design to reduce sweet spot phenomena and improve reproducibility. The size of the channels was 3.0 mm in length, 0.35 mm in depth, and 0.40 mm in width, adjusted to the width of the implemented laser beam. For sample deposition, the matrix/sample mixture was homogenously deposited into the channels using capillary action. To demonstrate the proof-of-principle, the novel plates were used for the quantification of acetyl-L-carnitine in human blood plasma using a combined standard addition and isotope dilution method. The results showed that the reproducibility of acetyl-L-carnitine detection was highly improved over a conventional MALDI-MS assay, with RSD values of less than 5.9% in comparison with 15.6% using the regular MALDI method. The limits of quantification using the new plates were lowered approximately two-fold in comparison with a standard rastering approach on a smooth stainless-steel plate. Matrix effects were also assessed and shown to be negligible. The new assay was subsequently applied to the quantification of acetyl-L-carnitine in human plasma samples.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Bioanalytical Chemistry, Saarland University, Saarbrücken, Germany
| | - Peng Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guanghzou, China
| | - Lars Kästner
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
18
|
Anxiety and Brain Mitochondria: A Bidirectional Crosstalk. Trends Neurosci 2019; 42:573-588. [DOI: 10.1016/j.tins.2019.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
|
19
|
Safarova TP, Gavrilova SI, Yakovleva OB, Sheshenin VS, Kornilov VV, Shipilova ES. [Augmentation with carnicetine for late depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:65-75. [PMID: 31317892 DOI: 10.17116/jnevro201911905165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Comparative evaluation of the efficacy and safety of antidepressant monotherapy and complex antidepressant therapy in combination with carnicetine in the treatment of depression in elderly patients in a psychiatric hospital. MATERIAL AND METHODS Two groups of hospitalized patients, aged from 60 to 79 years, with mild or moderate depression (according to ICD-10), comparable in basic demographic and clinical characteristics, received mono- or complex (in combination with carnicetine) antidepressant therapy for 8 weeks. Treatment efficacy was assessed with HAM-D, HARS, CGI-S and CGI-I; the level of cognitive activity was assessed with MMSE, the 10-word memory test and clock drawing test. RESULTS It has been established that the use of complex antidepressants therapy with the inclusion of carnicetine allows to achieve a more rapid and pronounced therapeutic response compared to antidepressant monotherapy. This is confirmed by the earlier (by the 4th week) and significant reduction of depressive and anxiety symptoms (p<0.01), a greater number of responders and better quality of depressive outcomes to the end of treatment and a more rapid improvement in cognitive functioning. CONCLUSION The results allow us to recommend the inclusion of carnicetine for the augmentation of antidepressant therapy in elderly patients of the psychiatric hospital to achieve a more rapid and complete therapeutic response and reduce the duration of hospitalization.
Collapse
Affiliation(s)
- T P Safarova
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| | - S I Gavrilova
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| | - O B Yakovleva
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| | - V S Sheshenin
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| | - V V Kornilov
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| | - E S Shipilova
- Mental Health Research Center, Ministry of Scienes and Higher Education Moscow, Russia
| |
Collapse
|
20
|
Abstract
BACKGROUND The integration of biological, psychological, and social factors in medicine has benefited from increasingly precise stress response biomarkers. Mitochondria, a subcellular organelle with its own genome, produce the energy required for life and generate signals that enable stress adaptation. An emerging concept proposes that mitochondria sense, integrate, and transduce psychosocial and behavioral factors into cellular and molecular modifications. Mitochondrial signaling might in turn contribute to the biological embedding of psychological states. METHODS A narrative literature review was conducted to evaluate evidence supporting this model implicating mitochondria in the stress response, and its implementation in behavioral and psychosomatic medicine. RESULTS Chronically, psychological stress induces metabolic and neuroendocrine mediators that cause structural and functional recalibrations of mitochondria, which constitutes mitochondrial allostatic load. Clinically, primary mitochondrial defects affect the brain, the endocrine system, and the immune systems that play a role in psychosomatic processes, suggesting a shared underlying mechanistic basis. Mitochondrial function and dysfunction also contribute to systemic physiological regulation through the release of mitokines and other metabolites. At the cellular level, mitochondrial signaling influences gene expression and epigenetic modifications, and modulates the rate of cellular aging. CONCLUSIONS This evidence suggests that mitochondrial allostatic load represents a potential subcellular mechanism for transducing psychosocial experiences and the resulting emotional responses-both adverse and positive-into clinically meaningful biological and physiological changes. The associated article in this issue of Psychosomatic Medicine presents a systematic review of the effects of psychological stress on mitochondria. Integrating mitochondria into biobehavioral and psychosomatic research opens new possibilities to investigate how psychosocial factors influence human health and well-being across the life-span.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Aging Center, Columbia University, New York, NY 10032, USA
| | - Bruce S. McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
21
|
Huang Z, Xu B, Huang X, Zhang Y, Yu M, Han X, Song L, Xia Y, Zhou Z, Wang X, Chen M, Lu C. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe 2O 3 NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology 2019; 13:204-220. [PMID: 30663479 DOI: 10.1080/17435390.2018.1537411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/22/2023]
Abstract
Iron oxides nanoparticles (FeOX NPs), including α-Fe2O3, γ-Fe2O3, and Fe3O4, are employed in many technological applications. However, very few studies have investigated the embryonic developmental toxicity of FeOX NPs. In this study, metabolomics analysis were used to uncover the potential mechanisms of FeOX NPs developmental toxicity on embryo-larval zebrafish and mice. Our results indicated that γ-Fe2O3 NP treatment could cause increased mortality, dropped hatching rate, etc., while α-Fe2O3 and Fe3O4 NPs showed no obvious effect. Through metabolomics analysis, a total of 42 metabolites were found to be significantly changed between the γ-Fe2O3 NP-treated group and the control group (p < 0.05). Pathway enrichment analysis indicated the impairment of mitochondria function. γ-Fe2O3 NP treatment caused abnormal mitochondrion structure and a decrease in mitochondrial membrane potential in zebrafish embryos. Meanwhile, ATP synthesis was decreased while oxidative stress levels were affected. It is noteworthy that acetyl-l-carnitine (ALCAR) (p = 6.79E - 04) and l-carnitine (p = 1.43E - 03) were identified with minimal p values, the relationship between the two counter-balance was regulated by acetyltransferase (crata). Subsequently, we performed rescue experiments with ALCAR on zebrafish embryos, and found that the mortality rates reduced and hatching rates raised significantly in the γ-Fe2O3 NP-treated group. Additionally, γ-Fe2O3 exposure could lead to increased absorbed fetus rate, decreased placental weight, lower expression of acetyltransferase (Crat), reduced ATP synthesis as well as increased oxidative stress (p < 0.05). Our findings demonstrated that γ-Fe2O3 NP might affect the mitochondrial membrane potential and ATP synthesis by affecting the metabolism of ALCAR, thereby stimulating oxidative stress, cell apoptosis, and causing embryonic development toxicity.
Collapse
Affiliation(s)
- Zhenyao Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Bo Xu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiaomin Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yuqing Zhang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Mingming Yu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiumei Han
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Ling Song
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yankai Xia
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Zhu Zhou
- c Thomas J. Long School of Pharmacy and Health Sciences , University of the Pacific , Stockton , CA , USA
| | - Xinru Wang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Minjian Chen
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Chuncheng Lu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China
- b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| |
Collapse
|
22
|
Shin S, Jeong HM, Chung SE, Kim TH, Thapa SK, Lee DY, Song CH, Lim JY, Cho SM, Nam KY, Kang WH, Choi YW, Shin BS. Simultaneous analysis of acetylcarnitine, proline, hydroxyproline, citrulline, and arginine as potential plasma biomarkers to evaluate NSAIDs-induced gastric injury by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2019; 165:101-111. [DOI: 10.1016/j.jpba.2018.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
|
23
|
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49:72-85. [PMID: 29339091 PMCID: PMC5964020 DOI: 10.1016/j.yfrne.2018.01.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Energy is required to sustain life and enable stress adaptation. At the cellular level, energy is largely derived from mitochondria - unique multifunctional organelles with their own genome. Four main elements connect mitochondria to stress: (1) Energy is required at the molecular, (epi)genetic, cellular, organellar, and systemic levels to sustain components of stress responses; (2) Glucocorticoids and other steroid hormones are produced and metabolized by mitochondria; (3) Reciprocally, mitochondria respond to neuroendocrine and metabolic stress mediators; and (4) Experimentally manipulating mitochondrial functions alters physiological and behavioral responses to psychological stress. Thus, mitochondria are endocrine organelles that provide both the energy and signals that enable and direct stress adaptation. Neural circuits regulating social behavior - as well as psychopathological processes - are also influenced by mitochondrial energetics. An integrative view of stress as an energy-driven process opens new opportunities to study mechanisms of adaptation and regulation across the lifespan.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University, Medical Center, New York, NY 10032, USA; Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA; Columbia Aging Center, Columbia University, New York, NY 10032, USA.
| | - Bruce S McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Res Rev 2017; 40:149-167. [PMID: 28986235 DOI: 10.1016/j.arr.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein.
Collapse
|
25
|
Nicassio L, Fracasso F, Sirago G, Musicco C, Picca A, Marzetti E, Calvani R, Cantatore P, Gadaleta MN, Pesce V. Dietary supplementation with acetyl-l-carnitine counteracts age-related alterations of mitochondrial biogenesis, dynamics and antioxidant defenses in brain of old rats. Exp Gerontol 2017; 98:99-109. [PMID: 28807823 DOI: 10.1016/j.exger.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
We previously reported the ability of dietary supplementation with acetyl-l-carnitine (ALCAR) to prevent age-related decreases of mitochondrial biogenesis in skeletal muscle and liver of old rats. Here, we investigate the effects of ALCAR supplementation in cerebral hemispheres and cerebellum of old rats by analyzing several parameters linked to mitochondrial biogenesis, mitochondrial dynamics and antioxidant defenses. We measured the level of the coactivators PGC-1α and PGC-1β and of the factors regulating mitochondrial biogenesis, finding an age-related decrease of PGC-1β, whereas PGC-1α level was unvaried. Twenty eight-month old rats supplemented with ALCAR for one and two months showed increased levels of both factors. Accordingly, the expression of the two transcription factors NRF-1 and TFAM followed the same trend of PGC-1β. The level of mtDNA, ND1 and the activity of citrate synthase, were decreased with aging and increased following ALCAR treatment. Furthermore, ALCAR counteracted the age-related increase of deleted mtDNA. We also analyzed the content of proteins involved in mitochondrial dynamics (Drp1, Fis1, OPA1 and MNF2) and found an age-dependent increase of MFN2 and of the long form of OPA1. ALCAR treatment restored the content of the two proteins to the level of the young rats. No changes with aging and ALCAR were observed for Drp1 and Fis1. ALCAR reduced total cellular levels of oxidized PRXs and counteracted the age-related decrease of PRX3 and SOD2. Overall, our findings indicate a systemic positive effect of ALCAR dietary treatment and a tissue specific regulation of mitochondrial homeostasis in brain of old rats. Moreover, it appears that ALCAR acts as a nutrient since in most cases its effects were almost completely abolished one month after treatment suspension. Dietary supplementation of old rats with this compound seems a valuable approach to prevent age-related mitochondrial dysfunction and might ultimately represent a strategy to delay age-associated negative consequences in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Luigi Nicassio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Clara Musicco
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council of Italy (CNR), Bari, Italy
| | - Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Palmiro Cantatore
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Maria Nicola Gadaleta
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council of Italy (CNR), Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
26
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
27
|
Alzoubi KH, Rababa'h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 2017; 131:176-182. [PMID: 28433816 DOI: 10.1016/j.brainresbull.2017.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022]
Abstract
Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Amani Owaisi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan; Faculty of Applied Medical Sciences , Taibah University , Medina , Saudi Arabia
| |
Collapse
|
28
|
Fujisawa K, Takami T, Fukui Y, Quintanilha LF, Matsumoto T, Yamamoto N, Sakaida I. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells. Cell Tissue Res 2017; 368:301-310. [PMID: 28197778 DOI: 10.1007/s00441-017-2569-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Yumi Fukui
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Luiz Fernando Quintanilha
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
29
|
Mitochondrial Dysfunction in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:451-464. [PMID: 28551802 DOI: 10.1007/978-3-319-55330-6_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are the prime source of ATP in cardiomyocytes. Impairment of mitochondrial metabolism results in damage to existing proteins and DNA. Such deleterious effects are part and parcel of the aging process, reducing the ability of cardiomyocytes to counter stress, such as myocardial infarction and consequent reperfusion. In such conditions, mitochondria in the heart of aged individuals exhibit decreased oxidative phosphorylation, decreased ATP production, and increased net reactive oxygen species production; all of these effects are independent of the decrease in number of mitochondria that occurs in these situations. Rather than being associated with the mitochondrial population in toto, these defects are almost exclusively confined to those organelles positioned between myofibrils (interfibrillar mitochondria). It is in complex III and IV where these dysfunctional aspects are manifested. In an apparent effort to correct mitochondrial metabolic defects, affected organelles are to some extent eliminated by mitophagy; at the same time, new, unaffected organelles are generated by fission of mitochondria. Because these cardiac health issues are localized to specific mitochondria, these organelles offer potential targets for therapeutic approaches that could favorably affect the aging process in heart.
Collapse
|
30
|
Sainath R, Ketschek A, Grandi L, Gallo G. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Dev Neurobiol 2016; 77:454-473. [PMID: 27429169 DOI: 10.1002/dneu.22420] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin-dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria-dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl-l-carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Rajiv Sainath
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Andrea Ketschek
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Leah Grandi
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Gianluca Gallo
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
32
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
33
|
Carnitine and/or Acetylcarnitine Deficiency as a Cause of Higher Levels of Ammonia. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2920108. [PMID: 26998483 PMCID: PMC4779505 DOI: 10.1155/2016/2920108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/24/2022]
Abstract
Blood carnitine and/or acetylcarnitine deficiencies are postulated in the literature as possible causes of higher ammonia levels. The aim of this study was to investigate if the use of valproic acid, the age of the patients, or certain central nervous system pathologies can cause carnitine and/or acetylcarnitine deficiency leading to increased ammonia levels. Three groups of patients were studied: (A) epileptic under phenytoin monotherapy (n = 31); (B) with bipolar disorder under valproic acid treatment (n = 28); (C) elderly (n = 41). Plasma valproic acid and blood carnitine and acyl carnitine profiles were determined using a validated HPLC and LC-MS/MS method, respectively. Blood ammonia concentration was determined using an enzymatic automated assay. Higher ammonia levels were encountered in patients under valproic acid treatment and in the elderly. This may be due to the lower carnitine and/or acetylcarnitine found in these patients. Patients with controlled seizures had normal carnitine and acetylcarnitine levels. Further studies are necessary in order to conclude if the uncontrolled bipolar disorder could be the cause of higher carnitine and/or acetylcarnitine levels.
Collapse
|
34
|
Fišar Z, Hroudová J, Singh N, Kopřivová A, Macečková D. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration. Folia Biol (Praha) 2016; 62:53-66. [PMID: 27187037 DOI: 10.14712/fb2016062020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
Collapse
Affiliation(s)
- Z Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - J Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - N Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - A Kopřivová
- Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic
| | - D Macečková
- Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic
| |
Collapse
|
35
|
Elimrani I, Dionne S, Saragosti D, Qureshi I, Levy E, Delvin E, Seidman EG. Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells. Int J Oncol 2015; 47:755-63. [PMID: 26043725 DOI: 10.3892/ijo.2015.3029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
Butyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation. The aims of this study were to identify a colon cancer cell line capable of transporting carnitine. We evaluated the effect of carnitine and acetylcarnitine (ALCAR) on the response of colon carcinoma cells to butyrate. We explored the mechanisms underlying the anticarcinogenic benefit. SW480 cells were incubated with butyrate ± carnitine or ALCAR. Carnitine uptake was assessed using [3H]-carnitine. Apoptosis and cell viability were assessed using an ELISA kit and flow cytometry, respectively. Modulation of proteins implicated in carnitine transport, cell death and proliferation were assessed by western blotting. SW480 cells were found to transport carnitine primarily via the OCTN2 transporter. Butyrate induced SW480 cell death occurred at concentrations of 2 mM and higher. Cells treated with the combination of butyrate (3 mM) with ALCAR exhibited increased mortality. The addition of carnitine or ALCAR also increased butyrate-induced apoptosis. Butyrate increased levels of cyclin D1, p21 and PARP p86, but decreased Bcl-XL and survivin levels. Butyrate also downregulated dephospho-β-catenin and increased acetylated histone H4 levels. Butyrate and carnitine decreased survivin levels by ≥25%. ALCAR independently induced a 20% decrease in p21. These results demonstrate that butyrate and ALCAR are potentially beneficial anticarcinogenic nutrients that inhibit colon cancer cell survival in vitro. The combination of both agents may have superior anticarcinogenic properties than butyrate alone.
Collapse
Affiliation(s)
- Ihsan Elimrani
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Serge Dionne
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dan Saragosti
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ijaz Qureshi
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Emile Levy
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Edgar Delvin
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Ernest G Seidman
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS One 2015; 10:e0127172. [PMID: 25993470 PMCID: PMC4437781 DOI: 10.1371/journal.pone.0127172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
Background Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3. Objective Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacological manipulation of Sirtuin3 confers protection. Study Design Parental and GLUT4-myc L6 rat skeletal muscle cells exposed to angiotensin II are used as in vitro models of insulin resistance. GLUT4 translocation, glucose uptake, intracellular molecular signals such as mitochondrial reactive oxygen species, Sirtuin3 protein expression and activity, along with its downstream targets and upstream regulators, are analyzed both in the absence and presence of acetyl-L-carnitine. The role of Sirtuin3 in GLUT4 translocation and intracellular molecular signaling is also studied in Sirtuin3-silenced as well as over-expressing cells. Results Angiotensin II promotes insulin resistance in skeletal muscle cells via mitochondrial oxidative stress, resulting in a two-fold increase in superoxide generation. In this context, reactive oxygen species open the mitochondrial permeability transition pore and significantly lower Sirtuin3 levels and activity impairing the cell antioxidant defense. Angiotensin II-induced Sirtuin3 dysfunction leads to the impairment of AMP-activated protein kinase/nicotinamide phosphoribosyltransferase signaling. Acetyl-L-carnitine, by lowering angiotensin II-induced mitochondrial superoxide formation, prevents Sirtuin3 dysfunction. This phenomenon implies the restoration of manganese superoxide dismutase antioxidant activity and AMP-activated protein kinase activation. Acetyl-L-carnitine protection is abrogated by specific Sirtuin3 siRNA. Conclusions Our data demonstrate that angiotensin II-induced insulin resistance fosters mitochondrial superoxide generation, in turn leading to Sirtuin3 dysfunction. The present results also highlight Sirtuin3 as a therapeutic target for the insulin-sensitizing effects of acetyl-L-carnitine.
Collapse
|
37
|
Aydin A, Halici Z, Albayrak A, Polat B, Karakus E, Yildirim OS, Bayir Y, Cadirci E, Ayan AK, Aksakal AM. Treatment with Carnitine Enhances Bone Fracture Healing under Osteoporotic and/or Inflammatory Conditions. Basic Clin Pharmacol Toxicol 2015; 117:173-9. [PMID: 25625309 DOI: 10.1111/bcpt.12384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 01/20/2023]
Abstract
The aim of this study was to examine the effects of carnitine on bone healing in ovariectomy (OVX) and inflammation (INF)-induced osteoporotic rats. The rats were randomly divided into nine groups (n = 8 animals per group): sham-operated (Group 1: SHAM); sham + magnesium silicate (Mg-silicate) (Group 2: SHAM + INF); ovariectomy (Group 3: OVX); ovariectomy + femoral fracture (Group 4: OVX + FRC); ovariectomy + femoral fracture + Mg-silicate (Group 5: OVX + FRC + INF); ovariectomy + femoral fracture + carnitine 50 mg/kg (Group 6: OVX + FRC + CAR50); ovariectomy + femoral fracture + carnitine 100 mg/kg (Group 7: OVX + FRC + CAR100); ovariectomy + femoral fracture + Mg-silicate + carnitine 50 mg/kg (Group 8: OVX + FRC + INF + CAR50); and ovariectomy + femoral fracture + Mg-silicate + carnitine 100 mg/kg (Group 9: OVX + FRC + INF + CAR100). Eight weeks after OVX, which allowed for osteoporosis to develop, INF was induced with subcutaneous Mg-silicate. On day 80, all of the rats in groups 4-9 underwent fracture operation on the right femur. Bone mineral density (BMD) showed statistically significant improvements in the treatment groups. The serum markers of bone turnover (osteocalcin and osteopontin) and pro-inflammatory cytokines (tumour necrosis factor α, interleukin 1β and interleukin 6) were decreased in the treatment group. The X-ray images showed significantly increased callus formation and fracture healing in the groups treated with carnitine. The present results show that in a rat model with osteoporosis induced by ovariectomy and Mg-silicate, treatment with carnitine improves the healing of femur fractures.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Beyzagul Polat
- Department of Pharmacology, Ataturk University Faculty of Pharmacy, Erzurum, Turkey
| | - Emre Karakus
- Department of Pharmacology, Ataturk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Omer Selim Yildirim
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Ataturk University Faculty of Pharmacy, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Arif Kursad Ayan
- Department of Nuclear Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Ahmet Murat Aksakal
- Department of Orthopedics and Traumatology, Sevket Yilmaz Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
38
|
Gavrilova SI, Kalyn YB, Safarova TP, Yakovleva OB, Sheshenin VS, Kornilov VV, Shipilova ES. Optimization of the efficacy and safety of antidepressant therapy in patients of a geriatric psychiatric unit. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:24-32. [DOI: 10.17116/jnevro20151156124-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials. Int J Mol Sci 2014; 15:20169-208. [PMID: 25380523 PMCID: PMC4264162 DOI: 10.3390/ijms151120169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Annarita Aiello Talamanca
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Giuseppe Castello
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Mario D Cordero
- Research Laboratory, Dental School, Universidad de Sevilla, Sevilla 41009, Spain.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Naples I-80126, Italy.
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari I-70126, Italy.
| | - Federico V Pallardó
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), University of Valencia-INCLIVA, Valencia 46010, Spain.
| | - Sandra Petrović
- Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia.
| | - Luca Tiano
- Biochemistry Unit, Department of Clinical and Dental Sciences, Polytechnical University of Marche, Ancona I-60131, Italy.
| | - Adriana Zatterale
- Genetics Unit, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples I-80136, Italy.
| |
Collapse
|
40
|
Papanicolaou KN, O'Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 2014; 5:301. [PMID: 25228883 PMCID: PMC4151196 DOI: 10.3389/fphys.2014.00301] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
41
|
El-Ashmawy NE, Khalil RM. A review on the role of L-carnitine in the management of tamoxifen side effects in treated women with breast cancer. Tumour Biol 2013; 35:2845-55. [PMID: 24338689 DOI: 10.1007/s13277-013-1477-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022] Open
Abstract
L-carnitine is an antioxidant and is found to be a protective agent against many diseases including cancer. This review illustrates the possible role of L-carnitine as an add-on therapy to breast cancer patients maintained on tamoxifen. The objectives of carnitine treatment are diverse: improving tamoxifen-related side effects, offering better cancer prognosis by reducing the risk of developing cancer recurrence or metastasis, and modulating the growth factors which may be, in part, a prospective illustration to overcome tamoxifen resistance. So, it could be recommended to supplement L-carnitine to breast cancer patients starting tamoxifen treatment.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | |
Collapse
|
42
|
Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2013; 533:469-76. [PMID: 24148561 DOI: 10.1016/j.gene.2013.10.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 01/11/2023]
Abstract
In recent years increasing evidence has emerged suggesting that oxidative stress is involved in the pathophysiology of a number of inherited metabolic disorders. However the clinical use of classical antioxidants in these diseases has been poorly evaluated and so far no benefit has been demonstrated. l-Carnitine is an endogenous substance that acts as a carrier for fatty acids across the inner mitochondrial membrane necessary for subsequent beta-oxidation and ATP production. Besides its important role in the metabolism of lipids, l-carnitine is also a potent antioxidant (free radical scavenger) and thus may protect tissues from oxidative damage. This review addresses recent findings obtained from patients with some inherited neurometabolic diseases showing that l-carnitine may be involved in the reduction of oxidative damage observed in these disorders. For some of these diseases, reduced concentrations of l-carnitine may occur due to the combination of this compound to the accumulating toxic metabolites, especially organic acids, or as a result of protein restricted diets. Thus, l-carnitine supplementation may be useful not only to prevent tissue deficiency of this element, but also to avoid oxidative damage secondary to increased production of reactive species in these diseases. Considering the ability of l-carnitine to easily cross the blood-brain barrier, l-carnitine supplementation may also be beneficial in preventing neurological damage derived from oxidative injury. However further studies are required to better explore this potential.
Collapse
Affiliation(s)
- Graziela S Ribas
- Federal University of Rio Grande do Sul, Brazil; Serviço de Genética Médica, HCPA, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | | |
Collapse
|
43
|
L-Acetylcarnitine in dysthymic disorder in elderly patients: a double-blind, multicenter, controlled randomized study vs. fluoxetine. Eur Neuropsychopharmacol 2013; 23:1219-25. [PMID: 23428336 DOI: 10.1016/j.euroneuro.2012.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION L-Acetylcarnitine (LAC), the acetyl ester of carnitine naturally present in the central nervous system and involved in several neural pathways, has been demonstrated to be active in various animal experimental models resembling some features of human depression. The aim of the study is to verify whether LAC can have an antidepressant action in a population of elderly patients with dysthymic disorder in comparison with a traditional antidepressant such as fluoxetine. METHODS Multicentric, double-blind, double-dummy, controlled, randomized study based on a observation period of 7 weeks. 80 patients with DSM-IV diagnosis of dysthymic disorder were enrolled in the study and subdivided into 2 groups. Group A patients received LAC plus placebo; group B patients received fluoxetine 20 mg/die plus placebo. Clinical assessment was performed through several psychometric scales at 6 different moments. RESULTS Group A patients showed a statistically significant improvement in the following scales: HAM-D, HAM-A, BDI and Touluse Pieron Test. Comparison between the two groups, A and B, generally showed very similar clinical progression. DISCUSSION The results obtained with LAC and fluoxetine were equivalent. As the subjects in this study were of senile age, it is possible to hypothesize that the LAC positive effect on mood could be associated with improvement in subjective cognitive symptomatology. The difference in the latency time of clinical response (1 week of LAC treatment, compared with the 2 weeks' latency time with fluoxetine) suggests the existence of different mechanisms of action possibly in relation to the activation of rapid support processes of neuronal activity.
Collapse
|
44
|
Villa R, Ferrari F, Gorini A. ATP-ases of synaptic plasma membranes in striatum: Enzymatic systems for synapses functionality by in vivo administration of l-acetylcarnitine in relation to Parkinson’s Disease. Neuroscience 2013; 248:414-26. [DOI: 10.1016/j.neuroscience.2013.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022]
|
45
|
Lu Q, Zhang Y, Elisseeff JH. Carnitine and acetylcarnitine modulate mesenchymal differentiation of adult stem cells. J Tissue Eng Regen Med 2013; 9:1352-62. [DOI: 10.1002/term.1747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 03/16/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Qiaozhi Lu
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Department of Materials Science and Engineering; Johns Hopkins University; Baltimore MD USA
| | - Yuanfan Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Cellular and Molecular Medicine; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Department of Biomedical Engineering; Johns Hopkins School of Medicine; Baltimore MD USA
| |
Collapse
|
46
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 PMCID: PMC3625904 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
47
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
48
|
Pacilli A, Calienni M, Margarucci S, D'Apolito M, Petillo O, Rocchi L, Pasquinelli G, Nicolai R, Koverech A, Calvani M, Peluso G, Montanaro L. Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. J Natl Cancer Inst 2013; 105:489-98. [PMID: 23486551 DOI: 10.1093/jnci/djt030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria. METHODS ST1326 was tested on in vitro and in vivo models of Burkitt's lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed. We performed assays to evaluate the effect of ST1326 on proliferation, FA oxidation, and FA mitochondrial channeling in Raji cells. The therapeutic efficacy of ST1326 was tested by treating Eµ-myc mice (control: n = 29; treatment: n = 24 per group), an established model of c-myc-mediated lymphomagenesis. Experiments were performed on spleen-derived c-myc-overexpressing B cells to clarify the role of c-myc in conferring sensitivity to ST1326. Survival was evaluated with Kaplan-Meier analyses. All statistical tests were two-sided. RESULTS ST1326 blocked both long- and short-chain FA oxidation and showed a strong cytotoxic effect on Burkitt's lymphoma cells (on Raji cells at 72 hours: half maximal inhibitory concentration = 8.6 μM). ST1326 treatment induced massive cytoplasmic lipid accumulation, impairment of proper mitochondrial FA channeling, and reduced availability of cytosolic acetyl coenzyme A, a fundamental substrate for de novo lipogenesis. Moreover, treatment with ST1326 in Eµ-myc transgenic mice prevented tumor formation (P = .01), by selectively impairing the growth of spleen-derived primary B cells overexpressing c-myc (wild-type cells + ST1326 vs. Eµ-myc cells + ST1326: 99.75% vs. 57.5%, difference = 42.25, 95% confidence interval of difference = 14% to 70%; P = .01). CONCLUSIONS Our data indicate that it is possible to tackle c-myc-driven tumorigenesis by altering lipid metabolism and exploiting the neoplastic cell addiction to FA oxidation.
Collapse
Affiliation(s)
- Annalisa Pacilli
- Dipartimento di Patologia Sperimentale, Università di Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Marcovina SM, Sirtori C, Peracino A, Gheorghiade M, Borum P, Remuzzi G, Ardehali H. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. Transl Res 2013; 161:73-84. [PMID: 23138103 PMCID: PMC3590819 DOI: 10.1016/j.trsl.2012.10.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/07/2023]
Abstract
Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential.
Collapse
|
50
|
Lesnefsky EJ, Hoppel CL. Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury. Health (London) 2013. [DOI: 10.4236/health.2013.51001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|