1
|
Wang K, Sun M, Liu S, Wang R, Liu H, Qian F. Albumin-conjugated flumethasone for targeting and normalization of pancreatic stellate cells. J Control Release 2025; 380:994-1004. [PMID: 39983925 DOI: 10.1016/j.jconrel.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The tumor microenvironment (TME) plays a critical role in the poor clinical outlook for pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic stellate cells (PSC) drive the complex interactions within the TME, resulting in a microenvironment that is resistant to chemotherapy and tolerant to the immune system, thereby promoting tumor growth. Effective deactivation of PSC is vital in treating pancreatic cancer. However, previous studies have only focused on limited changes in PSC phenotype without comprehensively analysing their overall function. Our transcriptome analysis identified agents capable of modulating multiple biological functions of PSC, including fibrosis, extracellular matrix generation, and the secretion of cytokines and immune factors. Through this comprehensive assessment, we discovered that flumethasone (Flu) effectively deactivates PSC. This glucocorticoid analogue remodels the tumor microenvironment by regulating the secretomes of PSC and their interaction with tumor cells. Additionally, our research revealed that activated PSC exhibited heightened albumin endocytosis. As a result, we propose that albumin conjugation could serve as an effective targeted drug delivery approach for PSC. Our findings also demonstrate that albumin-conjugated Flu maintained reprogramming capabilities in stromal cells, and enhanced the efficacy of chemotherapy in orthotopic mouse models of PDAC and KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic tumor allograft mouse model. Our investigation into the mechanism of PSC deactivation by flumethasone has revealed its potential for clinical cancer treatment through its effects on the tumor microenvironment. Furthermore, the conjugation of flumethasone to albumin enhances its safety and targeted delivery, offering a promising approach for PSC-targeted drug application in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kaixin Wang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Mengnan Sun
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Shiyu Liu
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Rui Wang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Huiqin Liu
- Quaerite Biopharm Research, Beijing, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Li X, Ma W, Xu Z, Zhang N, Sharma S, Ramachandran T, Karthikeyan A, Thatoi DN, Ismail AI. Injectable anticancer biodegradable hydrogel-based nanocomposites: Synergistic pH-responsive paclitaxel/β-cyclodextrin nanocomplex delivery in polyvinyl alcohol hydrogel for targeted pancreatic ductal adenocarcinoma treatment. Int J Pharm 2025:125514. [PMID: 40221063 DOI: 10.1016/j.ijpharm.2025.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is highly aggressive and has a challenging tumor microenvironment, which restricts the efficacy of conventional medical treatments. This investigation aims to formulate a localized anticancer hydrogel that incorporates a Paclitaxel/β-cyclodextrin (β-CD) nanocomplex composed of polyvinyl alcohol (PVA). Enhancements in drug delivery, therapeutic efficacy, adverse effects, and the mitigation of multidrug resistance are the objectives of PDAC treatment. In silico analyses were performed to examine the interaction between paclitaxel (PTX) and β-CD, which revealed favorable binding and pH-dependent release characteristics. Via FTIR and XRD analyses, the PTX/β-CD inclusion complex was verified. A hydrogel based on PVA was subsequently formed by incorporating this complex. The hydrogel's physicochemical and structural characteristics were examined using SEM, FTIR, XRD, and rheological methods.. Hydrogel's physical characteristics were evaluated through biodegradation and water absorption experiments. The cytotoxic and anti-metastatic potential of the hydrogel nanocomposite was quantified by conducting MTT assays and invasion and migration assays to assess its anticancer efficacy. The estimated adsorption energy (Eads) of PTX within β-CD to form the PTX/β-CD complex was -1.133 × 10-3 kJ/mol. In the Monte Carlo (MC) method, van der Waals forces and electrostatic interactions were considered based on group-based interactions with a cutoff radius of 12.5 Å. The interaction energy of B and PVA on PTX/β-CD was -319.150 kJ/mol. The binding energy (Ebinding = Einteraction) for B/PVA/PTX/β-CD was found to be -60.977 at pH 3.4 and -69.312 at pH 7.4. In acidic conditions, the Paclitaxel/β-CD nanocomplex exhibited efficient drug release and strong binding interactions. Biodegradation (80 % weight loss within 28 days) and water absorption (up to 500 % of its dried weight) were both exceptional characteristics of the PVA hydrogel. According to anticancer assays, the nanocomposite exhibited substantial cytotoxic effects, which included the inhibition of cancer cell migration and invasion. Paclitaxel's solubility and biological activity were significantly improved by the injectable hydrogel, which confirmed its potential as a sophisticated local drug delivery system. CONCLUSIONS: For the localized treatment of PDAC, the PVA-based injectable hydrogel that has been developed, which includes a Paclitaxel/β-CD nanocomplex, is a promising approach. Its targeted delivery, enhanced solubility, and potent anticancer characteristics offer a valuable method for enhancing therapeutic outcomes while reducing systemic side effects and multidrug resistance.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Zhou Xu
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Ninggang Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Shubham Sharma
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India; Jadara University Research Center, Jadara University, Jordan.
| | - T Ramachandran
- Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - A Karthikeyan
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Dhirendra Nath Thatoi
- Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| | - A I Ismail
- Mechanical Engineering Department, College of Engineering and Architecture, UMM Alqura University, Saudi Arabia.
| |
Collapse
|
3
|
Cui R, Wang G, Hu R, Wang Y, Mu H, Song Y, Chen B, Jiang X. Prognostic and immunotherapeutic potential of disulfidptosis-associated signature in pancreatic cancer. Front Immunol 2025; 16:1568976. [PMID: 40207217 PMCID: PMC11979277 DOI: 10.3389/fimmu.2025.1568976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Disulfidptosis is a newly discovered formation of programmed cell death. However, the significance of disulfidptosis in pancreatic adenocarcinoma remains unclear. Our investigation aims to elucidate the significance of disulfidptosis in pancreatic ductal adenocarcinoma by integrating diverse datasets, including bulk RNA sequencing data, microarray profiles, single-cell transcriptome profiles, spatial transcriptome data, and biospecimens. Utilizing various bioinformatics tools, we screened disulfidptosis-related genes based on single-cell RNA sequencing profiles, subsequently validating them through enrichment analysis. An 8-gene disulfidptosis-related prognostic signature was established by constructing massive LASSO-Cox regression models and validated by multiple external PDAC cohorts. Evaluation methods, such as Kaplan-Meier curves, ROC curves, time-dependent ROC curves, and decision curve analysis, were employed to assess the prognostic signature's reliability. High disulfidptosis-related scores were associated with a poorer prognosis and diminished sensitivity to immune checkpoint blockade. Further investigation uncovered that the potential components of elevated DPS involve malignant tumor hallmarks, extensive interactions between myCAFs and tumor cells, and the exclusion of immune cells. Cell-cell communication analysis highlighted myCAFs' role in signaling, potentially influencing tumor cells towards increased malignancy through collagen, laminin, and FN1 signaling networks. Spatial transcriptome analysis confirmed the crosstalk between myCAFs and tumor cells. Biospecimens including 20 pairs of PDAC samples and adjacent normal tissues further demonstrated the robustness of DPS and its correlation with CAF markers. In conclusion, our study introduces a novel disulfidptosis-related signature with high efficacy in patient risk stratification, which has the ability to predict the sensitivity to immune checkpoint blockade.
Collapse
Affiliation(s)
- Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaoming Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhao Hu
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiling Mu
- Department of Biobank, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanxiang Song
- Department of Biobank, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Chen X, Zhang W, Yu B, Cen Y, Liu Q, Tang Y, Li S. A CXCR4-targeted immunomodulatory nanomedicine for photodynamic amplified immune checkpoint blockade therapy against breast cancer. Acta Biomater 2025:S1742-7061(25)00223-5. [PMID: 40154764 DOI: 10.1016/j.actbio.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The therapeutic efficacy of immune checkpoint blockade (ICB) is critically compromised by inadequate T lymphocyte infiltration, low T cell-induced pro-inflammatory responses, and the accumulation of immunosuppressive cells within the tumor microenvironment (TME). In this work, a chimeric peptide-engineered immunomodulatory nanomedicine (designated as CXNP-CeBM) is developed for photodynamic amplified ICB therapy against breast cancer. CXNP-CeBM is composed of a CXCR4-targeting peptide ((C16)2-KLGASWHRPDK) loaded with the photosensitizer of Ce6 and the PD-1/PD-L1 inhibitor of BMS8. CXNP-CeBM specifically recognizes CXCR4 on breast cancer, thus suppressing CXCR4-mediated signaling pathways and enhancing the intracellular delivery of therapeutic agents. The photodynamic therapy (PDT) of CXNP-CeBM damages primary tumor cells to initiate immunogenic cell death (ICD), leading to the release of high mobility group box 1 (HMGB1) and the exposure of calreticulin (CRT). Simultaneously, the interruption of CXCR4 signaling reduces tumor fibrosis, promotes T-cell infiltration, and decreases the number of immunosuppressive cells, thereby enhancing the immunotherapeutic effect of ICB. Treatment with CXNP-CeBM would activate systemic anti-tumor immunity, leading to effective inhibition of both primary and lung metastatic tumors, while maintaining low systemic toxicity. This work provides a reliable strategy for the delivery of multi-synergistic agents, effectively activating breast cancer immunity through a multifaceted mechanism. STATEMENT OF SIGNIFICANCE: Although immune checkpoint blockade (ICB) has shown great potential for malignant tumor therapy, its efficacy is compromised by immunosuppressive microenvironments. Herein, a CXCR4-targeted immunomodulatory nanomedicine (CXNP-CeBM) was constructed for photodynamic amplified ICB therapy of breast cancer. CXNP-CeBM could selectively deliver photosensitizers and PD-1/PD-L1 inhibitors to breast cancer cells that overexpressed the chemokine receptor CXCR4, while interrupting CXCR4 signaling to reduce tumor fibrosis, promote T-cell infiltration, and decrease the number of immunosuppressive cells. Moreover, CXNP-CeBM induced photodynamic therapy to trigger immunogenic cell death while downregulating the PD-L1 level to destroy immune evasion mechanisms, thus activating immunological cascades to treat both primary and lung metastatic tumors. This study provided a multi-synergistic strategy for breast cancer immunotherapy through a multifaceted mechanism.
Collapse
Affiliation(s)
- Yibin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiayun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Baixue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qianqian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Youzhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
5
|
Du J, Chen X, Xu X, Que Z, Zhai M, Xiang Q, Zhang Z, Zhang Z, Shao Y, Yang X, Miao F, Zhang J, Xie J, Ju S. Enhancing the tissue penetration to improve sonodynamic immunotherapy for pancreatic ductal adenocarcinoma using membrane-camouflaged nanoplatform. Eur J Nucl Med Mol Imaging 2025; 52:1119-1136. [PMID: 39422735 DOI: 10.1007/s00259-024-06952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Sonodynamic therapy (SDT) is a promising strategy as an "in situ vaccine" to enhance activation of antitumor immune responses in solid tumors. However, the dense extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) lead to hypoxia and limited penetration of most drugs, aggravating the immunosuppressive tumor microenvironment and limiting the efficacy of synergistic sonodynamic immunotherapy. Therefore, it is essential to regulate ECM in order to alleviate tumor hypoxia and enhance the efficacy of sonodynamic immunotherapy for PDAC. METHODS The CPIM nanoplatform, consisting of a macrophage membrane-coated oxygen and drug delivery system (CM@PFOB-ICG-α-Mangostin), was synthesized using ultrasound and extrusion methods. The in vivo homologous targeting and hypoxia alleviation capabilities of CPIM were evaluated through near-infrared (NIR) imaging and photoacoustic (PA) imaging. The tumor growth inhibition potential and ability to reprogram the tumor microenvironment by the CPIM nanoplatform were also investigated. RESULTS Co-delivery of α-Mangostin inhibits CAFs and enhances stromal depletion, thereby facilitating better infiltration of macromolecules. Additionally, the nanoemulsion containing perfluorocarbon (PFC) can target tumor cells and accumulate within them through homologous targeting. The US irradiation results in the rapid release of oxygen, serving as a potential source of sonodynamic therapy for hypoxic tumors. Moreover, CPIM reshapes the immunosuppressive microenvironment increasing the population of cytotoxic T lymphocytes (CTLs), and enhancing their anti-tumor immune response through the use of anti-PDL1 antibodies to block immune checkpoints. CONCLUSION The present study offers a potential strategy for the co-delivery of oxygen and α-Mangostin, aiming to enhance the penetration of tumors to improve SDT. This approach effectively addresses the existing limitations of immune checkpoint blockade (ICB) treatment in solid tumors, while simultaneously boosting the immune response through synergistic sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Xin Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, P.R. China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Ziting Que
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Qinyanqiu Xiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiwei Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Yong Shao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| |
Collapse
|
6
|
Yao WQ, Song WF, Deng XC, Lin YT, Meng R, Wang JW, Chen WH, Zhang XZ. Harnessing the Engineered Probiotic-Nanosystem to Remodulate Tumor Extracellular Matrix and Regulate Tumor-Colonizing Bacteria for Improving Pancreatic Cancer Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406837. [PMID: 39580679 DOI: 10.1002/smll.202406837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Poor chemotherapy efficacy in pancreatic cancer is attributed to limited drug permeation caused by the dense extracellular matrix (ECM) and drug degradation induced by tumor-colonizing bacteria. Here, a tumor-targeting probiotic-nanosystem is elaborately designed to remodulate ECM and selectively regulate tumor-colonizing bacteria for improving chemo-immunotherapy against pancreatic cancer. Specifically, drug-loaded liposomes are conjugated with Clostridium Butyricum (CB) via matrix metalloproteinase-2 (MMP-2)-responsive peptide to construct a probiotic-nanosystem. Particularly, vactosertib (VAC, a transforming growth factor-β1 receptor inhibitor) is delivered by probiotic-nanosystem to silence the active pancreatic stellate cells (PSCs) for inhibiting the development of ECM, resulting in a loosened ECM and providing a golden opportunity for the deep penetration of chemotherapy drugs and immune cells. Subsequently, gemcitabine (GEM) is efficiently delivered into the core of tumors via probiotic-nanosystem, achieving an enhanced chemotherapy efficacy. Noteworthily, CB can alleviate γ-proteobacteria-mediated GEM degradation through competitively reducing the contents of γ-proteobacteria and promoting the amounts of tumor-inhibiting bacteria, thereby significantly potentiating the therapeutic effect of GEM. The engineered probiotic-nanosystem can not only enhance the GEM-induced immunogenic cell death (ICD) of a pancreatic tumor to activate antitumor immune responses but also markedly increase the tumor-infiltration of effector immune cells to heighten tumoricidal immunity, offering a promising strategy for chemo-immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Wei-Qin Yao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan, University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
7
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
8
|
Yang C, Liu W, Powell CA, Wang Q. Heterogeneity and therapeutic implications of cancer-associated fibroblasts in lung cancer: Recent advances and future perspectives. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:240-249. [PMID: 39834587 PMCID: PMC11742357 DOI: 10.1016/j.pccm.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 01/22/2025]
Abstract
Lung cancer is a leading cause of cancer-related mortality. The tumor microenvironment is a complex and heterogeneous cellular environment surrounding tumor cells, including cancer-associated fibroblasts (CAFs), blood vessels, immune cells, the extracellular matrix, and various cytokines secreted by cells. CAFs are highly heterogeneous and play crucial roles in lung cancer. This review highlights recent advances in the understanding of CAFs in lung cancer, focusing on their heterogeneity and functions in tumorigenesis, progression, angiogenesis, invasion, metastasis, therapy resistance, tumor immune suppression, and targeted therapy responses. Additionally, we explore the underlying mechanisms and the potential of CAFs as a target in the development of innovative therapies for lung cancer.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Wenwen Liu
- Translational Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Charles A. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qi Wang
- Translational Research Center for Lung Cancer, The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| |
Collapse
|
9
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
10
|
Gao B, Hu G, Sun B, Li W, Yang H. BNIP3+ fibroblasts associated with hypoxia and inflammation predict prognosis and immunotherapy response in pancreatic ductal adenocarcinoma. J Transl Med 2024; 22:937. [PMID: 39402590 PMCID: PMC11476087 DOI: 10.1186/s12967-024-05674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-associated target to improve treatment strategies in PDAC. METHODS The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the relationships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pancreatic cancer. RESULTS Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the proportion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic cancer, but this could be reversed by knocking out BNIP3. CONCLUSIONS This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict the immunotherapy response in PDAC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
11
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
12
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
14
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
15
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
16
|
Gu X, Majumder J, Taratula O, Kuzmov A, Garbuzenko O, Pogrebnyak N, Minko T. Nanotechnology-Based Strategy for Enhancing Therapeutic Efficacy in Pancreatic Cancer: Receptor-Targeted Drug Delivery by Somatostatin Analog. Int J Mol Sci 2024; 25:5545. [PMID: 38791582 PMCID: PMC11122428 DOI: 10.3390/ijms25105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Andriy Kuzmov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
18
|
Xing H, Li X. Engineered Nanomaterials for Tumor Immune Microenvironment Modulation in Cancer Immunotherapy. Chemistry 2024:e202400425. [PMID: 38576219 DOI: 10.1002/chem.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Tumor immunotherapy, represented by immune checkpoint blocking and chimeric antigen receptor (CAR) T cell therapy, has achieved promising results in clinical applications. However, it faces challenges that hinder its further development, such as limited response rates and poor tumor permeability. The efficiency of tumor immunotherapy is also closely linked to the structure and function of the immune microenvironment where the tumor resides. Recently, nanoparticle-based tumor immune microenvironment (TIME) modulation strategies have attracted a great deal of attention in cancer immunotherapy. This is primarily due to the distinctive physical characteristics of nanoparticles, which enable them to effectively infiltrate the TIME and selectively modulate its key constituents. This paper reviews recent advances in nanoparticle engineering to improve anti-cancer immunotherapy. Emerging nanoparticle-based approaches for modulating immune cells, tumor stroma, cytokines and immune checkpoints are discussed, aiming to overcome current challenges in the clinic. In addition, integrating immunotherapy with various treatment modalities such as chemotherapy and photodynamic therapy can be facilitated through the utilization of nanoparticles, thereby enhancing the efficacy of cancer treatment. The future challenges and opportunities of using nanomaterials to reeducate the suppressive immune microenvironment of tumors are also discussed, with the aim of anticipating further advancements in this growing field.
Collapse
Affiliation(s)
- Hao Xing
- Department of General Surgery, Naval Medical Center, Naval Medical University, 200052, Shanghai, China
- The First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, College of Chemistry and Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, 200438, Shanghai, China
| |
Collapse
|
19
|
Song X, Nihashi Y, Imai Y, Mori N, Kagaya N, Suenaga H, Shin-ya K, Yamamoto M, Setoyama D, Kunisaki Y, Kida YS. Collagen Lattice Model, Populated with Heterogeneous Cancer-Associated Fibroblasts, Facilitates Advanced Reconstruction of Pancreatic Cancer Microenvironment. Int J Mol Sci 2024; 25:3740. [PMID: 38612551 PMCID: PMC11011612 DOI: 10.3390/ijms25073740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Yukiko Imai
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Noritaka Kagaya
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Kazuo Shin-ya
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Ki-shibe-Shimmachi, Suita 564-8565, Japan;
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
20
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
21
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
22
|
Erreni M, Fumagalli MR, Zanini D, Candiello E, Tiberi G, Parente R, D’Anna R, Magrini E, Marchesi F, Cappello P, Doni A. Multiplexed Imaging Mass Cytometry Analysis in Preclinical Models of Pancreatic Cancer. Int J Mol Sci 2024; 25:1389. [PMID: 38338669 PMCID: PMC10855072 DOI: 10.3390/ijms25031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. PDAC is characterized by a complex tumor microenvironment (TME), that plays a pivotal role in disease progression and resistance to therapy. Investigating the spatial distribution and interaction of TME cells with the tumor is the basis for understanding the mechanisms underlying disease progression and represents a current challenge in PDAC research. Imaging mass cytometry (IMC) is the major multiplex imaging technology for the spatial analysis of tumor heterogeneity. However, there is a dearth of reports of multiplexed IMC panels for different preclinical mouse models, including pancreatic cancer. We addressed this gap by utilizing two preclinical models of PDAC: the genetically engineered, bearing KRAS-TP53 mutations in pancreatic cells, and the orthotopic, and developed a 28-marker panel for single-cell IMC analysis to assess the abundance, distribution and phenotypes of cells involved in PDAC progression and their reciprocal functional interactions. Herein, we provide an unprecedented definition of the distribution of TME cells in PDAC and compare the diversity between transplanted and genetic disease models. The results obtained represent an important and customizable tool for unraveling the complexities of PDAC and deciphering the mechanisms behind therapy resistance.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ermes Candiello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Giorgia Tiberi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
23
|
Luo W, Wen T, Qu X. Tumor immune microenvironment-based therapies in pancreatic ductal adenocarcinoma: time to update the concept. J Exp Clin Cancer Res 2024; 43:8. [PMID: 38167055 PMCID: PMC10759657 DOI: 10.1186/s13046-023-02935-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. The tumor immune microenvironment (TIME) formed by interactions among cancer cells, immune cells, cancer-associated fibroblasts (CAF), and extracellular matrix (ECM) components drives PDAC in a more immunosuppressive direction: this is a major cause of therapy resistance and poor prognosis. In recent years, research has advanced our understanding of the signaling mechanism by which TIME components interact with the tumor and the evolution of immunophenotyping. Through revolutionary technologies such as single-cell sequencing, we have gone from simply classifying PDACs as "cold" and "hot" to a more comprehensive approach of immunophenotyping that considers all the cells and matrix components. This is key to improving the clinical efficacy of PDAC treatments. In this review, we elaborate on various TIME components in PDAC, the signaling mechanisms underlying their interactions, and the latest research into PDAC immunophenotyping. A deep understanding of these network interactions will contribute to the effective combination of TIME-based therapeutic approaches, such as immune checkpoint inhibitors (ICI), adoptive cell therapy, therapies targeting myeloid cells, CAF reprogramming, and stromal normalization. By selecting the appropriate integrated therapies based on precise immunophenotyping, significant advances in the future treatment of PDAC are possible.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
24
|
Yamashita Y, Ashida R, Kojima F, Okada KI, Kawai M, Yamazaki H, Tamura T, Kawaji Y, Tamura T, Hatamaru K, Itonaga M, Kitano M. Utility of contrast-enhanced harmonic endoscopic ultrasonography for prediction of pathological response after neoadjuvant chemotherapy in patients with pancreatic cancer. Pancreatology 2023; 23:1014-1019. [PMID: 37926599 DOI: 10.1016/j.pan.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) plays an important role in the diagnosis of pancreatic lesions. The aim of this study was to evaluate whether CH-EUS is useful for predicting the treatment efficacy of neoadjuvant chemotherapy (NAC) determined by pathological response. METHODS Patients who underwent CH-EUS before chemotherapy and surgical resection were divided into two groups according to poor (group-P) or rich tumor vascularity (group-R) determined by enhancement pattern on early- and late-phase CH-EUS. The pathological response to chemotherapy was categorized according to Evans' classification. Pathological analysis showing tumor cell destruction (>50 %) defined a good response. RESULTS Early-phase CH-EUS classified 44 patients into group-R and 50 into group-P, whereas late-phase CH-EUS classified 10 into group-R and 84 into group-P. Early-phase CH-EUS classification resulted in significantly higher numbers of patients with a good response in the rich group (n = 19) than in the poor group (n = 4; P = 0.0015). Multivariate analysis showed that assignment to the rich group was the strongest independent factor associated with chemosensitivity (P = 0.006, hazard ratio = 5.66, 95 % confidence interval: 1.17-19.27). In resectable patients, the enhancement pattern was the only independent factor associated with chemosensitivity (group-P vs. group-R, P = 0.003; HR [95 % CI], 14.59 [1.38-154.38]). Late-phase CH-EUS did not reveal a significant difference between group-P and group-R. CONCLUSIONS Evaluation of vascular pattern on CH-EUS could be useful for predicting the efficacy of NAC in patients with pancreatic cancer. The enhancement pattern on CH-EUS could be a one of the useful features for determining NAC indications in resectable pancreatic cancer patients.
Collapse
Affiliation(s)
- Yasunobu Yamashita
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hirofumi Yamazaki
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takaaki Tamura
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan; Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuki Kawaji
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Tamura
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keiichi Hatamaru
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Itonaga
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
25
|
Mascharak S, Guo JL, Foster DS, Khan A, Davitt MF, Nguyen AT, Burcham AR, Chinta MS, Guardino NJ, Griffin M, Lopez DM, Miller E, Januszyk M, Raghavan SS, Longacre TA, Delitto DJ, Norton JA, Longaker MT. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep Med 2023; 4:101248. [PMID: 37865092 PMCID: PMC10694604 DOI: 10.1016/j.xcrm.2023.101248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless, the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 specimens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status, tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibroblast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under the receiver operating characteristic curve (AUCs) of 0.872-0.903, differentiating survivorship by 655 days. Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer outcomes.
Collapse
Affiliation(s)
- Shamik Mascharak
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deshka S Foster
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Michael F Davitt
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin R Burcham
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malini S Chinta
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas J Guardino
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Lopez
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elisabeth Miller
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shyam S Raghavan
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel J Delitto
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
27
|
Guo D, Ji X, Xie H, Ma J, Xu C, Zhou Y, Chen N, Wang H, Fan C, Song H. Targeted Reprogramming of Vitamin B 3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301257. [PMID: 37262365 DOI: 10.1002/adma.202301257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Cancer-associated fibroblasts (CAFs) promote cancer stem cell (CSC)-mediated chemoresistance and immunosuppressive tumor microenvironment. However, direct depletion of CAFs may increase cancer invasiveness and metastasis. As a generalized strategy against chemoresistant cancers, Gemini-like homotypic targeting nanoparticles (NPs) are designed for two-pronged CAF transformation and cancer cell elimination. The CAF-targeted NPs couple vitamin B3 metabolic reprogramming to epigenetic modulation of secreted pro-stemness and immunosuppressive factors, thereby diminishing CSC and suppressive immune cell populations to enhance cancer cell drug susceptibility and cytotoxic T cell infiltration. In mouse models of breast, liver, pancreatic and colorectal cancers that are resistant to their respective first-line chemotherapeutics, a single dose of hydrogel co-delivering the Gemini-like NPs can rehabilitate chemosensitivity, induce immune activation, and achieve tumor regression. Moreover, it stimulates robust T cell memory for long-term protection against tumor rechallenge. This study thus represents an innovative approach with broad applicability for overcoming cancer chemoresistance.
Collapse
Affiliation(s)
- Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Ma
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
28
|
Yuan S, Mu W, Liu S, Liu M, Xia Z, Liang S, Gao T, Fu S, Liu J, Huang X, Liu Y, Zhang N. Transforming Cancer-Associated Fibroblast Barrier into Drug Depots to Boost Chemo-Immunotherapy in "Shooting Fish in a Barrel" Pattern. ACS NANO 2023; 17:13611-13626. [PMID: 37326384 DOI: 10.1021/acsnano.3c02272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The cancer-associated fibroblast (CAF) barrier in pancreatic ductal adenocarcinoma (PDAC) greatly restricts clinical outcomes. Major obstacles to PDAC treatment include restricted immune cell infiltration and drug penetration and the immunosuppressive microenvironment. Here, we reported a "shooting fish in a barrel" strategy by preparing a lipid-polymer hybrid drug delivery system (PI/JGC/L-A) that could overcome the CAF barrier by turning it into a "barrel" with antitumor drug depot properties to alleviate the immunosuppressive microenvironment and increase immune cell infiltration. PI/JGC/L-A is composed of a pIL-12-loaded polymeric core (PI) and a JQ1 and gemcitabine elaidate coloaded liposomal shell (JGC/L-A) that has the ability to stimulate exosome secretion. By normalizing the CAF barrier to create a CAF "barrel" with JQ1, stimulating the secretion of gemcitabine-loaded exosomes from the CAF "barrel" to the deep tumor site, and leveraging the CAF "barrel" to secrete IL-12, PI/JGC/L-A realized effective drug delivery to the deep tumor site, activated antitumor immunity at the tumor site, and produced significant antitumor effects. In summary, our strategy of transforming the CAF barrier into antitumor drug depots represents a promising strategy against PDAC and might benefit the treatment of any tumors facing a drug delivery barrier.
Collapse
Affiliation(s)
- Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shujun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meichen Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhenxing Xia
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyan Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
29
|
Shi J, Ma Q, Su W, Liu C, Zhang H, Liu Y, Li X, Jiang X, Ge C, Kong F, Chen Y, Qu D. Effervescent cannabidiol solid dispersion-doped dissolving microneedles for boosted melanoma therapy via the "TRPV1-NFATc1-ATF3" pathway and tumor microenvironment engineering. Biomater Res 2023; 27:48. [PMID: 37198657 DOI: 10.1186/s40824-023-00390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Conventional dissolving microneedles (DMNs) face significant challenges in anti-melanoma therapy due to the lack of active thrust to achieve efficient transdermal drug delivery and intra-tumoral penetration. METHODS In this study, the effervescent cannabidiol solid dispersion-doped dissolving microneedles (Ef/CBD-SD@DMNs) composed of the combined effervescent components (CaCO3 & NaHCO3) and CBD-based solid dispersion (CBD-SD) were facilely fabricated by the "one-step micro-molding" method for boosted transdermal and tumoral delivery of cannabidiol (CBD). RESULTS Upon pressing into the skin, Ef/CBD-SD@DMNs rapidly produce CO2 bubbles through proton elimination, significantly enhancing the skin permeation and tumoral penetration of CBD. Once reaching the tumors, Ef/CBD-SD@DMNs can activate transient receptor potential vanilloid 1 (TRPV1) to increase Ca2+ influx and inhibit the downstream NFATc1-ATF3 signal to induce cell apoptosis. Additionally, Ef/CBD-SD@DMNs raise intra-tumoral pH environment to trigger the engineering of the tumor microenvironment (TME), including the M1 polarization of tumor-associated macrophages (TAMs) and increase of T cells infiltration. The introduction of Ca2+ can not only amplify the effervescent effect but also provide sufficient Ca2+ with CBD to potentiate the anti-melanoma efficacy. Such a "one stone, two birds" strategy combines the advantages of effervescent effects on transdermal delivery and TME regulation, creating favorable therapeutic conditions for CBD to obtain stronger inhibition of melanoma growth in vitro and in vivo. CONCLUSIONS This study holds promising potential in the transdermal delivery of CBD for melanoma therapy and offers a facile tool for transdermal therapies of skin tumors.
Collapse
Affiliation(s)
- Jiachen Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Qiuling Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Chang Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
30
|
Novruzov E, Giesel FL, Mori Y, Choyke PL, Dabir M, Mamlins E, Schmitt D, Antke C, Pinto C, Soza-Ried C, Fernandez R, Amaral H, Kramer V, Badinez L. Head-to-Head Intra-Individual Comparison of Biodistribution and Tumor Uptake of [ 18F]FAPI-74 with [ 18F]FDG in Patients with PDAC: A Prospective Exploratory Study. Cancers (Basel) 2023; 15:2798. [PMID: 37345133 DOI: 10.3390/cancers15102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Radiolabeled fibroblast activation protein (FAP) ligands, a novel class of tracers for PET/CT imaging, have demonstrated very promising results in various oncological, as well as in some benign, diseases with long-term potential to supplant the current pan-cancer agent [18F]FDG in some cancer types. Pancreatic ductal carcinoma (PDAC) belongs to the group of epithelial malignancies with a strong so-called "desmoplastic reaction", leading to a prominent tumor stroma with cancer-associated fibroblasts that exhibit a marked overexpression of fibroblast activation protein (FAP). The first clinical experiences in PDAC with 68Ga-labeled FAP ligands suggested superior sensitivity to [18F]FDG. However, there is limited data with 18F-labeled FAP derivatives, i.e. [18F]FAPI-74, yet prospective single- and multicenter trials are already ongoing. In this proof-of-concept study, we sought to evaluate the biodistribution, tumor uptake, and lesion detectability in patients with PDAC using [18F]FAPI-74 PET/CT as compared to [18F]FDG PET/CT scans for staging. METHODS This study includes 7 patients (median age 69) who underwent both [18F]FDG PET/CT with contrast-enhancement and [18F]FAPI-74 PET with low-dose CT for primary staging (n = 3) and therapy response control after neoadjuvant (n = 1) or re-staging after palliative therapy (n = 3). The mean interval between PET scans was 11 ± 4 days (range 1-15 days). The [18F]FDG and [18F]FAPI-74 PET/CT scans were acquired at 64 ± 4.1 min (range 61-91 min) and 66.4 ± 6.3 min (range 60-76 min), respectively, after administration of 200 ± 94 MBq (range 79-318 MBq) and 235 ± 88 MBq (range 90-321 MBq), respectively. Quantification of tracer uptake was determined with SUVmax and SUVmean. Furthermore, the tumor-to-background ratio (TBR) was derived by dividing the SUVmax of tumor lesions by the SUVmax of adipose tissue, skeletal muscle, and blood pool. RESULTS Overall, 32 lesions were detected in 7 patients including primary (n = 7), lung (n = 7), bone (n = 3), lymph node (n = 13), and peritoneal metastases (n = 2). [18F]FAPI-74 detected 22% more lesions compared with [18F]FDG with a better TBR and visual lesion delineation. In one patient the primary lesion could be detected unequivocally with [18F]FAPI-74 but was missed by [18F]FDG imaging. Altogether, most of the lesions demonstrated markedly elevated uptake of [18F]FAPI-74 with a simultaneous lower uptake in the background, providing a very high visual contrast. CONCLUSION To the best of our knowledge, this is the first, prospective, intra-individual investigation comparing [18F]FAPI-74 with [18F]FDG imaging in PDAC with encouraging results. These pivotalresults supporta larger, multicentric, prospective study to determine the value of [18F]FAPI-74 in detecting and staging PDAC in comparison with current standard of care imaging.
Collapse
Affiliation(s)
- Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD 20814, USA
| | - Mardjan Dabir
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schmitt
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Claudio Pinto
- Departamento Anatomia Patologica, Hospital Sotero del Rio, Santiago 8207257, Chile
| | - Cristian Soza-Ried
- Center for Nuclear Medicine and PET/CT Positronmed, Santiago 7501068, Chile
- Positronpharma SA, Santiago 7501068, Chile
| | - Rene Fernandez
- Center for Nuclear Medicine and PET/CT Positronmed, Santiago 7501068, Chile
| | - Horacio Amaral
- Center for Nuclear Medicine and PET/CT Positronmed, Santiago 7501068, Chile
- Positronpharma SA, Santiago 7501068, Chile
| | - Vasko Kramer
- Center for Nuclear Medicine and PET/CT Positronmed, Santiago 7501068, Chile
- Positronpharma SA, Santiago 7501068, Chile
| | - Leonardo Badinez
- Instituto Radiooncológico Santiago INRAD, Santiago 7750000, Chile
| |
Collapse
|
31
|
Li T, Jiang S, Zhang Y, Luo J, Li M, Ke H, Deng Y, Yang T, Sun X, Chen H. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nat Commun 2023; 14:2498. [PMID: 37120615 PMCID: PMC10148815 DOI: 10.1038/s41467-023-38128-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The survival of malignant tumors is highly dependent on their intrinsic self-defense pathways such as heat shock protein (HSP) during cancer therapy. However, precisely dismantling self-defenses to amplify antitumor potency remains unexplored. Herein, we demonstrate that nanoparticle-mediated transient receptor potential vanilloid member 1 (TRPV1) channel blockade potentiates thermo-immunotherapy via suppressing heat shock factor 1 (HSF1)-mediated dual self-defense pathways. TRPV1 blockade inhibits hyperthermia-induced calcium influx and subsequent nuclear translocation of HSF1, which selectively suppresses stressfully overexpressed HSP70 for enhancing thermotherapeutic efficacy against a variety of primary, metastatic and recurrent tumor models. Particularly, the suppression of HSF1 translocation further restrains the transforming growth factor β (TGFβ) pathway to degrade the tumor stroma, which improves the infiltration of antitumor therapeutics (e.g. anti-PD-L1 antibody) and immune cells into highly fibrotic and immunosuppressive pancreatic cancers. As a result, TRPV1 blockade retrieves thermo-immunotherapy with tumor-eradicable and immune memory effects. The nanoparticle-mediated TRPV1 blockade represents as an effective approach to dismantle self-defenses for potent cancer therapy.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuhui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jie Luo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Xiaohui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
32
|
Peng M, Ying Y, Zhang Z, Liu L, Wang W. Reshaping the Pancreatic Cancer Microenvironment at Different Stages with Chemotherapy. Cancers (Basel) 2023; 15:cancers15092448. [PMID: 37173915 PMCID: PMC10177210 DOI: 10.3390/cancers15092448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The dynamic tumor microenvironment, especially the immune microenvironment, during the natural progression and/or chemotherapy treatment is a critical frontier in understanding the effects of chemotherapy on pancreatic cancer. Non-stratified pancreatic cancer patients always receive chemotherapeutic strategies, including neoadjuvant chemotherapy and adjuvant chemotherapy, predominantly according to their physical conditions and different disease stages. An increasing number of studies demonstrate that the pancreatic cancer tumor microenvironment could be reshaped by chemotherapy, an outcome caused by immunogenic cell death, selection and/or education of preponderant tumor clones, adaptive gene mutations, and induction of cytokines/chemokines. These outcomes could in turn impact the efficacy of chemotherapy, making it range from synergetic to resistant and even tumor-promoting. Under chemotherapeutic impact, the metastatic micro-structures in the primary tumor may be built to leak tumor cells into the lymph or blood vasculature, and micro-metastatic/recurrent niches rich in immunosuppressive cells may be recruited by cytokines and chemokines, which provide housing conditions for these circling tumor cells. An in-depth understanding of how chemotherapy reshapes the tumor microenvironment may lead to new therapeutic strategies to block its adverse tumor-promoting effects and prolong survival. In this review, reshaped pancreatic cancer tumor microenvironments due to chemotherapy were reflected mainly in immune cells, pancreatic cancer cells, and cancer-associated fibroblast cells, quantitatively, functionally, and spatially. Additionally, small molecule kinases and immune checkpoints participating in this remodeling process caused by chemotherapy are suggested to be blocked reasonably to synergize with chemotherapy.
Collapse
Affiliation(s)
- Maozhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Lett 2023; 555:216040. [PMID: 36565920 DOI: 10.1016/j.canlet.2022.216040] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of β-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered β-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/β-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.
Collapse
|
34
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
35
|
Liu X, Iovanna J, Santofimia-Castaño P. Stroma-targeting strategies in pancreatic cancer: a double-edged sword. J Physiol Biochem 2023; 79:213-222. [PMID: 36580230 DOI: 10.1007/s13105-022-00941-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer with limited treatment options and terrible long-term survival, and it is expected to become the second leading cause of cancer-related death by 2030. One reason why this cancer is so aggressive and resistant is the formation of dense stroma that surrounds the neoplastic epithelium, which promotes tumor progression, invasion, metastasis, and resistance. The three major components of PDAC stroma are extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), and vasculature. The dense ECM acts as a natural physical barrier, impeding drug penetration to PDAC tumor cells. Consequently, the method that combines stroma-targeting with anticancer therapy may be a viable alternative for increasing drug penetration. Additionally, blood vessels are key entities of the tumor stroma, serving as a pathway for nutrition as well as the only way for chemical medicines and immune cells to act. Finally, PDAC CAFs and tumor cells have crosstalk effects in the tumor microenvironment, where they are responsible for enhanced matrix deposition. In this review, we aim to provide an overview of our current comprehension of the three key components of PDAC stroma and the new promising therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
36
|
Lin Z, He Y, Qiu C, Yu Q, Huang H, Yiwen Zhang, Li W, Qiu T, Xiaoping Li. A multi-omics signature to predict the prognosis of invasive ductal carcinoma of the breast. Comput Biol Med 2022; 151:106291. [PMID: 36395590 DOI: 10.1016/j.compbiomed.2022.106291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Precisely evaluating the prognosis of invasive ductal carcinoma (IDC) of the breast is challenging as most prognostic signatures use single-omics data based on gene or clinical information. METHODS Whole-slide images (WSIs), transcriptome, and clinical data of breast IDC were collected from the Cancer Genome Atlas Database. The cancer-associated fibroblast (CAF) gene sets were downloaded from the Molecular Signatures Database. The WSI feature was extracted by artificial feature engineering. The CAF prognostic genes were determined by the Gene Set Enrichment Analysis, the Wilcoxon test, and univariate Cox regression. The IDC patients were divided into the training and test sets. The prognostic signatures based on WSIs, IDC-CAFs, bi-omics, and tri-omics were constructed using multivariate Cox regression. The samples were divided into low- and high-risk groups according to the median risk score. The Kaplan-Meier survival and receiver operating characteristic curves were applied to validate the prediction performance of the four signatures. RESULTS In total, 508 IDC patients with complete data were included. The area under the curve (AUC) of single-omics signature based on WSI characteristics and CAFs was 0.765 and 0.775, whereas the AUC of bi-omics was 0.823. The tri-omics signature based on WSIs, CAFs, and lymph node status demonstrated the best predictive value with an AUC of 0.897. CONCLUSION The multi-omics signature based on WSIs, CAFs, and clinical characteristics showed excellent prediction ability in breast IDC patients, whose risk factors can also provide a valuable diagnostic reference for the clinical course.
Collapse
Affiliation(s)
- Zhiquan Lin
- Wuyi University, 99 Yinbin Avenue, Jiangmen, Guangdong, China
| | - Yu He
- National Drug Clinical Trial Institution, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Chaoran Qiu
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Qihe Yu
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hui Huang
- Department of Breast Surgery, Jiangmen Maternity & Child Health Care Hospital, Jiangmen, Guangdong, China
| | - Yiwen Zhang
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Tian Qiu
- Wuyi University, 99 Yinbin Avenue, Jiangmen, Guangdong, China.
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| |
Collapse
|
37
|
He J, Liu Z, Zhu X, Xia H, Gao H, Lu J. Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy. Pharmaceutics 2022; 14:1642. [PMID: 36015267 PMCID: PMC9414228 DOI: 10.3390/pharmaceutics14081642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy has an essential role not only in advanced solid tumor therapy intervention but also in society's health at large. Chemoresistance, however, seriously restricts the efficiency and sensitivity of chemotherapeutic agents, representing a significant threat to patients' quality of life and life expectancy. How to reverse chemoresistance, improve efficacy sensitization response, and reduce adverse side effects need to be tackled urgently. Recently, studies on the effect of ultrasonic microbubble cavitation on enhanced tissue permeability and retention (EPR) have attracted the attention of researchers. Compared with the traditional targeted drug delivery regimen, the microbubble cavitation effect, which can be used to enhance the EPR effect, has the advantages of less trauma, low cost, and good sensitization effect, and has significant application prospects. This article reviews the research progress of ultrasound-mediated microbubble cavitation in the treatment of solid tumors and discusses its mechanism of action to provide new ideas for better treatment strategies.
Collapse
Affiliation(s)
- Jide He
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zenan Liu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuehua Zhu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Haizhui Xia
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
38
|
Liu J, Wang Y, Mu C, Li M, Li K, Li S, Wu W, Du L, Zhang X, Li C, Peng W, Shen J, Liu Y, Yang D, Zhang K, Ning Q, Fu X, Zeng Y, Ni Y, Zhou Z, Liu Y, Hu Y, Zheng X, Wen T, Li Z, Liu Y. Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T lymphocytes engagement. Nat Commun 2022; 13:4308. [PMID: 35879297 PMCID: PMC9314377 DOI: 10.1038/s41467-022-31928-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer associated fibroblasts (CAFs) support tumors via multiple mechanisms, including maintaining the immunosuppressive tumor microenvironment and limiting infiltration of immune cells. The prolyl isomerase Pin1, whose overexpression in CAFs has not been fully profiled yet, plays critical roles in tumor initiation and progression. To decipher effects of selective Pin1 inhibition in CAFs on pancreatic cancer, here we formulate a DNA-barcoded micellular system (DMS) encapsulating the Pin1 inhibitor AG17724. DMS functionalized with CAF-targeting anti-FAP-α antibodies (antiCAFs-DMS) can selectively inhibit Pin1 in CAFs, leading to efficacious but transient tumor growth inhibition. We further integrate DNA aptamers (AptT), which can engage CD8+ T lymphocytes, to obtain a bispecific antiCAFs-DMS-AptT system. AntiCAFs-DMS-AptT inhibits tumor growth in subcutaneous and orthotopic pancreatic cancer models. Pharmacological inhibition of the prolyl isomerase PIN1, highly expressed in cancer cells and cancer associated fibroblasts (CAF), has been proposed for cancer therapy. Here the authors report the design of a DNA-barcoded micellular system functionalized with antibodies targeting CAFs and a T cell recruiting aptamer to deliver the PIN1 inhibitor AG17724, showing antitumor response in preclinical models of pancreatic cancer.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.,Respiratory Health Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Chunyang Mu
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Bioland Laboratory, Guangzhou, China
| | - Kewei Li
- Department of Pediatric Department, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Zhang
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Li
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Peng
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dujiang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiang Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyang Ning
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Fu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yinyun Ni
- Respiratory Health Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Tianfu Wen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China. .,Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Yong Liu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
40
|
Tarannum M, Vivero-Escoto JL. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Adv Drug Deliv Rev 2022; 187:114357. [PMID: 35605679 DOI: 10.1016/j.addr.2022.114357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to its aggressiveness and the challenges for early diagnosis and treatment. Recently, nanotechnology has demonstrated relevant strategies to overcome some of the major clinical issues in the treatment of PDAC. This review is focused on the pathological hallmarks of PDAC and the impact of nanotechnology to find solutions. It describes the use of nanoparticle-based systems designed for the delivery of chemotherapeutic agents and combinatorial alternatives that address the chemoresistance associated with PDAC, the development of combination therapies targeting the molecular heterogeneity in PDAC, the investigation of novel therapies dealing with the improvement of immunotherapy and handling the desmoplastic stroma in PDAC by remodeling the tumor microenvironment. A special section is dedicated to the design of nanoparticles for unique non-traditional modalities that could be promising in the future for the improvement in the dismal prognosis of PDAC.
Collapse
|
41
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
42
|
Ahmed I, Asgher M, Sher F, Hussain SM, Nazish N, Joshi N, Sharma A, Parra-Saldívar R, Bilal M, Iqbal HMN. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar Drugs 2022; 20:208. [PMID: 35323507 PMCID: PMC8948685 DOI: 10.3390/md20030208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
This review highlights the underexplored potential and promises of marine bioactive peptides (MBPs) with unique structural, physicochemical, and biological activities to fight against the current and future human pathologies. A particular focus is given to the marine environment as a significant source to obtain or extract high-value MBPs from touched/untouched sources. For instance, marine microorganisms, including microalgae, bacteria, fungi, and marine polysaccharides, are considered prolific sources of amino acids at large, and peptides/polypeptides in particular, with fundamental structural sequence and functional entities of a carboxyl group, amine, hydrogen, and a variety of R groups. Thus, MBPs with tunable features, both structural and functional entities, along with bioactive traits of clinical and therapeutic value, are of ultimate interest to reinforce biomedical settings in the 21st century. On the other front, as the largest biome globally, the marine biome is the so-called "epitome of untouched or underexploited natural resources" and a considerable source with significant potentialities. Therefore, considering their biological and biomedical importance, researchers around the globe are redirecting and/or regaining their interests in valorizing the marine biome-based MBPs. This review focuses on the widespread bioactivities of MBPs, FDA-approved MBPs in the market, sustainable development goals (SDGs), and legislation to valorize marine biome to underlying the impact role of bioactive elements with the related pathways. Finally, a detailed overview of current challenges, conclusions, and future perspectives is also given to satisfy the stimulating demands of the pharmaceutical sector of the modern world.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia;
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, Flora Hill, VIC 3690, Australia
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot 51040, Punjab, Pakistan;
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India;
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro 76130, Mexico;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| |
Collapse
|
43
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
44
|
Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021; 16:6313-6328. [PMID: 34552327 PMCID: PMC8450289 DOI: 10.2147/ijn.s279192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with one of the worst survival rates due to its insidious onset and resistance to therapies. Most therapeutics show a desired anticancer effect in vitro; however, very poor efficacy in vivo because of the limited drug delivery and penetration into pancreatic tumors attributed to the abundance of the tumor stroma, ie, the fibrotic tumor microenvironment surrounding the cancer cells. For a better understanding of the challenges posed by the pancreatic tumor stroma, we outline the key features of the tumor microenvironment. Then we highlight major strategies used to tackle the challenges to improve drug penetration into the tumor and achieve enhanced efficacy (pre)clinically. Furthermore, we describe nanomedicine strategies to modulate the tumor stroma, degrade the extracellular matrix, and co-deliver multi-functional drugs, to improve the chemotherapeutics delivery and penetration into pancreatic tumors.
Collapse
Affiliation(s)
- Tao Lu
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics Group, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
45
|
Chen X, Tao Y, He M, Deng M, Guo R, Sheng Q, Wang X, Ren K, Li T, He X, Zang S, Zhang Z, Li M, He Q. Co-delivery of autophagy inhibitor and gemcitabine using a pH-activatable core-shell nanobomb inhibits pancreatic cancer progression and metastasis. Theranostics 2021; 11:8692-8705. [PMID: 34522207 PMCID: PMC8419034 DOI: 10.7150/thno.60437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Metastasis is one of the main reasons for the high mortality associated with pancreatic ductal adenocarcinoma (PDAC), and autophagy regulates the metastatic migration of tumor cells, their invasion of tissues, and their formation of focal adhesions. Inhibiting autophagy may suppress tumor growth and metastasis, but the abundant extracellular matrix hinders the deep penetration of therapeutic agents. Methods: To enhance the penetration of drugs that can inhibit metastasis of pancreatic cancer, a pH-responsive drug delivery system was formulated. Gemcitabine (GEM), a first-line chemotherapeutic drug against PDAC, was loaded in 6PA-modified DGL (PDGL) nanoparticles to afford PDGL-GEM. Then PDGL-GEM was co-precipitated with the autophagy inhibitor chloroquine phosphate (CQ) and calcium phosphate to formulate PDGL-GEM@CAP/CQ. The size and morphology of the resulting "nanobomb" PDGL-GEM@CAP/CQ were characterized, and their uptake into cells, cytotoxicity and ability to inhibit autophagy were analyzed at pH 6.5 and 7.4. The anti-tumor and anti-metastasis effects of the nanobomb were explored on mice carrying Pan 02 pancreatic tumor xenografts or orthotopic tumors. Results: The pH-induced dissolution of calcium phosphate facilitated the release of CQ from the nanobomb and deep penetration of PDGL-GEM. The internalization of PDGL-GEM and subsequent intracellular release of GEM inhibited tumor growth, while CQ downregulated autophagy in tumor cells and fibroblasts. In fact, inhibition of xenograft and orthotopic tumor growth was greater with the complete PDGL-GEM@CAP/CQ than with subassemblies lacking GEM or CQ. More importantly, mechanistic studies in vitro and in vivo suggested that the nanobomb inhibits metastasis by downregulating MMP-2 and paxillin, as well as reducing fibrosis. Conclusion: The pH-sensitive PDGL-GEM@CAP/CQ shows potential for inhibiting proliferation and metastasis of pancreatic cancer through an autophagy-dependent pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
46
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|