1
|
Chagas MDSDS, Moragas Tellis CJ, Silva AR, Brito MADSM, Teodoro AJ, de Barros Elias M, Ferrarini SR, Behrens MD, Gonçalves-de-Albuquerque CF. Luteolin: A novel approach to fight bacterial infection. Microb Pathog 2025; 204:107519. [PMID: 40164399 DOI: 10.1016/j.micpath.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Diseases caused by bacteria significantly impact public health, causing both acute and chronic issues, sequelae, and death. The problems get even more significant, considering the antimicrobial resistance. Bacterial resistance occurs when antibacterial drugs fail to kill the microbes, leading to the persistence of infection and pathogen spread in the host. Thus, the search for new molecules with antibacterial activity dramatically impacts human health. Natural products have proven to be a prosperous source of these agents. Among them, the flavonoids deserve to be highlighted. They are secondary metabolites, primarily involved in plant signaling and protection. Thus, they play an essential role in plant adaptation to the environment. Herein, we will focus on luteolin because it is commonly found in edible plants and has diverse pharmacological properties such as anti-inflammatory, anticancer, antioxidant, and antimicrobial. We will further explore the luteolin antibacterial activity, mechanisms of action, structure-activity relationship, and toxicity of luteolin. Thus, we have included reports of luteolin with antibacterial activity recently published, as well as focused on nanotechnology as a pivotal and helpful approach for the clinical use of luteolin. This review aims to foster future research on luteolin as a therapeutic agent for treating bacterial infection.
Collapse
Affiliation(s)
- Maria do Socorro Dos Santos Chagas
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil
| | | | - Adriana R Silva
- Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Maria Alice Dos Santos Mascarenhas Brito
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Monique de Barros Elias
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Stela Regina Ferrarini
- Laboratório de Nanotecnologia Farmacêutica, Universidade Federal do mato Grosso Campus Sinop - UFMT, Cuiabá, Brazil
| | - Maria Dutra Behrens
- Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil.
| | - Cassiano F Gonçalves-de-Albuquerque
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), UNIRIO, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil.
| |
Collapse
|
2
|
Shi ZD, Liu Y, Tao ZQ, Chao L, Zhang ZG, Sun F, Yuan FK, Ma QF, Li ZY, Chen ZS, Wu SY, Han CH. Apigenin inhibits recurrent bladder cancer progression by targeting VEGF-β. Cancer Lett 2025; 620:217676. [PMID: 40185304 DOI: 10.1016/j.canlet.2025.217676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Bladder cancer is a major global health concern with high incidence and mortality rates. Both muscle-invasive bladder cancer (MIBC) and recurrent non-muscle-invasive bladder cancer (NMIBC) present significant challenges in treatment. Apigenin, a naturally occurring flavonoid, has shown promise in inhibiting the growth of bladder cancer cells, however, its therapeutic mechanism remains unclear. Single-cell RNA sequencing (scRNA-seq) data analysis and drug target screening were performed. Differentially expressed genes (DEGs) and potential therapeutic targets of apigenin were identified. Molecular docking was utilized to evaluate the binding affinity between apigenin and VEGF-β. In vitro assays were conducted to evaluate the association of VEGF-β and apigenin. Drug target screening identified 51 common targets between apigenin and bladder cancer, with VEGF-β emerging as a dominant gene. Molecular docking confirmed a high binding affinity between apigenin and VEGF-β. VEGF-β was significantly upregulated in fibroblasts from recurrent bladder cancer, correlating with increased tumor malignancy. Enhanced cell communication in VEGF-β-positive fibroblasts contributed to tumor progression. In vitro experiments demonstrated that VEGF-β promotes tumor cell proliferation, migration, and invasion. Apigenin significantly inhibits bladder cancer progression by targeting VEGF-β. The upregulation of VEGF-β in fibroblasts from recurrent bladder cancer highlights its potential as a diagnostic marker and therapeutic target. This study underscores the promise of apigenin as a chemopreventive and therapeutic agent for recurrent bladder cancer.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Provincial Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Xuzhou City Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Jiangsu, China; Department of Urology, Peixian People's Hospital, Jiangsu, China
| | - Ying Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China; Jiangsu Provincial Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Xuzhou City Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Jiangsu, China
| | - Zi-Qi Tao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Liu Chao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zheng-Guo Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Fang Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Fu-Kang Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qing-Fang Ma
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zong-Yun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Shao-Yuan Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Cong-Hui Han
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Provincial Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Xuzhou City Engineering Research Center of Cancer Cell Therapy and Translational Medicine, Jiangsu, China.
| |
Collapse
|
3
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Haque E, Georg GI. Medoxomil Prodrug Strategies. J Med Chem 2025; 68:9025-9036. [PMID: 40261681 DOI: 10.1021/acs.jmedchem.4c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Drug discovery campaigns often face biopharmaceutical challenges, some of which can be solved by a prodrug approach. Prodrugs are enzymatically or chemically transformed in vivo to produce active drugs. Among these, medoxomil promoieties have been judiciously employed in multiple drug discovery campaigns, leading to three prodrugs gaining FDA approval: azilsartan medoxomil (6), olmesartan medoxomil (20), and ceftobiprole medocaril (29), and one approval in Japan: prulifloxacin (35). The promoiety can be easily appended to mask carboxylic acids, amines, zwitterionic compounds, and other polar groups, imparting lipophilicity to the parent compound. The promoiety has the added advantage of rapid and complete conversion to the parent drug by multiple enzymatic pathways across different tissues. The approach has been used for drugs spanning multiple classes to improve oral bioavailability, solubility, tissue localization, efflux, and side effect profiles. This Perspective analyzes the history and application of medoxomil prodrugs and discusses their potential for drug development.
Collapse
Affiliation(s)
- Ehfazul Haque
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
5
|
Koppisetti H, Abdella S, Nakmode DD, Abid F, Afinjuomo F, Kim S, Song Y, Garg S. Unveiling the Future: Opportunities in Long-Acting Injectable Drug Development for Veterinary Care. Pharmaceutics 2025; 17:626. [PMID: 40430917 PMCID: PMC12114852 DOI: 10.3390/pharmaceutics17050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Long-acting injectable (LAI) formulations have revolutionized veterinary pharmaceuticals by improving patient compliance, minimizing dosage frequency, and improving therapeutic efficacy. These formulations utilize advanced drug delivery technologies, including microspheres, liposomes, oil solutions/suspensions, in situ-forming gels, and implants to achieve extended drug release. Biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been approved by the USFDA and are widely employed in the development of various LAIs, offering controlled drug release and minimizing the side effects. Various classes of veterinary medicines, including non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, and reproductive hormones, have been successfully formulated as LAIs. Some remarkable LAI products, such as ProHeart® (moxidectin), Excede® (ceftiofur), and POSILACTM (recombinant bovine somatotropin), show clinical relevance and commercial success. This review provides comprehensive information on the formulation strategies currently being used and the emerging technologies in LAIs for veterinary purposes. Additionally, challenges in characterization, in vitro testing, in vitro in vivo correlation (IVIVC), and safety concerns regarding biocompatibility are discussed, along with the prospects for next-generation LAIs. Continued advancement in the field of LAI in veterinary medicine is essential for improving animal health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.K.); (S.A.); (D.D.N.); (F.A.); (F.A.); (S.K.); (Y.S.)
| |
Collapse
|
6
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
7
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2025; 15:1156-1180. [PMID: 39661312 PMCID: PMC11870889 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
8
|
Alam A, Kalyani P, Khan A, Khandelwal M. Bacterial cellulose in transdermal drug delivery systems: Expanding horizons in multi-scale therapeutics and patient-centric approach. Int J Pharm 2025; 671:125254. [PMID: 39890087 DOI: 10.1016/j.ijpharm.2025.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
This review explores the transformative potential of Bacterial cellulose (BC) in an increasingly vital avenue of transdermal drug delivery systems (TDDS) for multi-scale therapeutic applications with patient-centric approach. In this review, we have not only highlighted the role of BC as the main matrix material for TDDS but emphasized the other possible role that BC can play in TDDS. For this purpose, we have delved into the avenues of the physico-chemical interactions that BC can offer in governing the incorporation of different length-scales of therapeutics as well as tuning their extent of loading. Furthermore, this review underscores BC's potential in developing need-specific drug release profiles and stimuli-responsive release platforms, enabling their application in TDDS for wound healing, pain management, and targeted delivery for chronic diseases. Apart from the existing literature, this review focuses on patient comfort, which is an often-overlooked aspect, and highlights how BC's unique physicochemical properties enhance user experience. Additionally, this review justifies the potential of BC in compliance with the other parameters of the TDDS, including shelf-life, design requirements, and evaluation strategies in ensuring their clinical translation and user acceptance. To harness BC's potential in the new era of personalized TDDS, this review also sheds light on the challenges of standardizing BC production processes with appropriate data disclosure, ensuring adhesion and anti-microbial actions, along with the integration of passive and active technologies.
Collapse
Affiliation(s)
- Aszad Alam
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India; Department of Chemistry and Biotechnology, School of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Peddapapannagari Kalyani
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Arif Khan
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mudrika Khandelwal
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| |
Collapse
|
9
|
Hu G, Zhou Z, Tang G, Liu Y, Zhang X, Huang Y, Yan G, Xiao J, Yan W, Li J, Cao Y. Prodrug Self-Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407480. [PMID: 39723694 DOI: 10.1002/smll.202407480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions. The results showed that pH of 7 and temperature of 35 °C are the optimal conditions for the formation of the prodrug self-assemblies with the highest self-assembly rates. The prepared prodrug self-assemblies are spherical nanoparticles with average particle sizes of 100-200 nm, almost no volatilization, and high surface activity and stability, and can respond to acidic and redox microenvironments to release PVAs. The prodrug self-assemblies showed synergistic antimicrobial activities against Sclerotinia sclerotiorum and Penicillium digitatum, and good biological safety to plants. Therefore, these findings have important implications for the efficient utilization of PVAs in agriculture, ensuring the safety of the ecological environment and realizing the sustainable development of agriculture.
Collapse
Affiliation(s)
- Gaohua Hu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianhua Xiao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
10
|
Zhou X, Xu Z, Dong Y, Cai M, Chen Z, Mu J, Yuan B, Hua X, Yuan X, Guo S. Subconjunctival injection of microcrystalline prodrug of dexamethasone for long-acting anti-inflammation after phacoemulsification surgery. J Control Release 2025; 377:399-412. [PMID: 39571655 DOI: 10.1016/j.jconrel.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Long-acting injectable formulations of dexamethasone with minimal invasiveness are highly desired to manage chronic ocular inflammatory conditions. Here, we applied microcrystals (MCs) of a hydrophobic acetone-based ketal-linked prodrug of dexamethasone (SKD) to treat postoperative ocular inflammation. We compared the efficacy and safety of SKD MCs through subconjunctival (SC) injection with that of Maxidex (a topical suspension of dexamethasone MCs) through SC injection and eye drops in the phacoemulsification combined with intraocular lens implantation (Phaco-IOL) rabbit model. In Phaco-IOL rabbit eyes, a single SC injection of SKD MCs (0.4 mg dexamethasone equiv.) showed anti-inflammatory effects comparable to Maxidex eye drops and completely alleviated the inflammation within 28 days, while an SC injection of Maxidex at the same dose only provided anti-inflammatory effects for 7 days. The study on the dose-dependent anti-inflammatory effects of SKD MCs showed no significant difference in anti-inflammatory effects for the high dosage (0.8 mg dexamethasone equiv.) and the low dosage (0.4 mg dexamethasone equiv.) in 28 days. Nevertheless, systematic drug distribution of SKD MCs and Maxidex in normal rabbits after SC injection demonstrates that the drug concentration in conjunctiva was higher for the high dosage and that a considerable amount of prodrug and dexamethasone could still be detected in the cornea and iris-ciliary body at least 84 days for SKD MCs at high dosage. Furthermore, no persistent elevated intraocular pressure and abnormality in retinal structure and thickness were observed, confirming the excellent safety of long-acting SKD MCs post-SC injection. Our findings provide valuable insights into using prodrug-based MCs for treating ocular postoperative inflammation, and the detailed drug distribution analysis would promote the clinical translation of these MCs in ocular diseases.
Collapse
Affiliation(s)
- Xueyan Zhou
- School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanliang Dong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Maoyu Cai
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; China Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Zhixia Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingqing Mu
- Aier Eye Institute, Changsha, Hunan 410009, China
| | - Bo Yuan
- School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia Hua
- Aier Eye Institute, Changsha, Hunan 410009, China; Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin 300110, China.
| | - Xiaoyong Yuan
- School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China; China Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Khaliq NU, Amin L, Khaliq SU, Amin A, Omer S, Khaliq IU, Kim Y, Kim J, Kim T, Seo D, Sung D, Kim H. Peptide-Based Prodrug Approaches for Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2024; 7:8163-8176. [PMID: 39601471 DOI: 10.1021/acsabm.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptide-based prodrugs, such as peptide-drug conjugates (PDCs), are currently being developed for cancer therapy. PDCs are considered single-component nanomedicines with various functionalities. The peptide moieties provide stability to the PDCs, which self-assemble into nanostructures in an aqueous medium. Several PDCs based on peptide moieties have been developed for targeted cancer therapy, prevention of multidrug resistance (MDR), and theranostic applications. Based on this information, next-level strategies have been developed to deliver therapeutics and diagnostics to tumor tissues. The induction of apoptosis-targeted therapy is a conceptual approach that has evolved. In this context, smart PDCs have been designed and explored to overcome tumor heterogeneity. This review highlights strategies for the targeted delivery of small molecules and theranostic applications. Moreover, a conceptual approach to induce apoptosis-targeted therapy was exploited through the delivery of smart PDC nanomedicines and their composites.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Laraib Amin
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Saad Ul Khaliq
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Anam Amin
- Northwest General Hospital and Research Center, Peshawar 25100, Pakistan
| | - Samreen Omer
- Riphah International University, Islamabad 44000, Pakistan
| | | | - Yejin Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Joohyeon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Taeho Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| | - Dongseong Seo
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic 5 Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic 5 Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Gyeongbuk Korea
| |
Collapse
|
12
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
13
|
Kong F, Liu H, Zhao C, Qin J. Targeted codelivery of doxorubicin and oleanolic acid by reduction responsive hyaluronic acid-based prodrug nano-micelles for enhanced antitumor activity and reduced toxicity. Int J Biol Macromol 2024; 277:134135. [PMID: 39069033 DOI: 10.1016/j.ijbiomac.2024.134135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Chemotherapy remains one of the most commonly used strategies in cancer treatment but suffers from damages to healthy tissues and organs. How to precisely co-deliver two or more drugs with different mechanisms of action to the tumors for synergistic function is a challenge for chemotherapy. Herein, Oleanolic acid (OA)-conjugated Hyaluronic acid self-assembled nano-micelles loaded with Doxorubicin (DOX) (HSO NPs/DOX) were constructed for CD44 positive cancer targeted codelivery of DOX and OA. HSO NPs/DOX exhibited reduction triggered drug release under high concentration of glutathione, more efficient uptake by 4T1 breast cancer cells than free DOX leading to higher cytotoxicity, pro-apoptotic, and migration inhibitory activities against 4T1 cells. The ex vivo biodistribution experiment demonstrated more HSO NPs/DOX were accumulated in the tumor tissues than free DOX and less in the non-tumor tissues after injections in 4T1 tumor bearing mice. More importantly, synergistic anti-tumor effects of DOX and OA were obtained using HSO NPs/DOX in 4T1 breast tumor-bearing mice and toxicity of DOX to liver and heart were circumvented through regulating the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Silent Information Regulator 1 (Sirt1) expressions. Taken together, HSO NPs/DOX may become a promising codelivery system for chemotherapeutics in cancer therapy.
Collapse
Affiliation(s)
- Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hengqing Liu
- School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Changhong Zhao
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Jingcan Qin
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| |
Collapse
|
14
|
Zhang B, Zhou S, Lu S, Xiang X, Yao X, Lei W, Pei Q, Xie Z, Chen X. Paclitaxel Prodrug Enables Glutathione Depletion to Boost Cancer Treatment. ACS NANO 2024; 18:26690-26703. [PMID: 39303096 DOI: 10.1021/acsnano.4c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Herein, we constructed a paclitaxel (PTX) prodrug (PA) by conjugating PTX with acrylic acid as a cysteine-depleting agent. The as-synthesized PA can assemble with diacylphosphatidylethanolamine-PEG2000 to form stable nanoparticles (PA NPs). After endocytosis into cells, PA NPs can specifically react with cysteine and trigger release of PTX for chemotherapy. On the other hand, the depletion of cysteine can greatly downregulate the intracellular content of glutathione and lead to oxidative stress outburst-provoking ferroptosis. The released PTX can elicit antitumor immune response by inducing immunogenic cell death, thus promoting dendritic cells maturation and cascaded cytotoxic T lymphocytes activation, which not only produces a robust immunotherapy effect but also synergizes the ferroptosis therapy by inhibiting cysteine transport via the release of interferon-γ in the activated immune system. As a result, PA NPs exhibit favorable in vitro and in vivo antitumor performance with reduced systemic toxicity. Our work highlights the potential of simple molecular design of prodrugs for enhancing the therapeutic efficacy toward malignant cancer.
Collapse
Affiliation(s)
- Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Zhou
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiumin Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wentao Lei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Romani C, Sponchioni M, Volonterio A. Fluorinated PAMAM-Arginine Carrier Prodrugs for pH-Sensitive Sustained Ibuprofen Delivery. Pharm Res 2024; 41:1725-1736. [PMID: 39048881 PMCID: PMC11362194 DOI: 10.1007/s11095-024-03747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The development of an efficient, multifunctional drug delivery system overcoming different obstacles generally associated with drug formulations, including the poor accumulation of the active principle in the target site and its sustained release for prolonged time. METHODS Our study proposes the development of a fluorinated poly(amidoamine) (PAMAM) carrier prodrug combining drug release boosted in alkaline environments with a possible implementation in 19F MRI applications. In particular, we functionalized the terminal primary amines of PAMAM G2 and G4 through an ad hoc designed fluorinated ibuprofen-arginine Michael acceptor to obtain multifunctional ibuprofen-PAMAM-Arg conjugates. RESULTS These carriers demonstrated pH-dependent and sustained ibuprofen release for more than 5 days. This advantage was observed in both weak alkaline and physiological buffer solutions, allowing to overcome the limits associated to the burst release from similar fluorinated Arg-PAMAM dendrimers with ibuprofen physically encapsulated. CONCLUSION These findings, coupled to the high biocompatibility of the system, suggest a potential synergistic biomedical application of our conjugates, serving as vehicles for drug delivery and as 19F magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Carola Romani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy.
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
16
|
Xue T, Li Y, Torre M, Shao R, Han Y, Chen S, Lee D, Kohane DS. Polymeric Prodrugs using Dynamic Covalent Chemistry for Prolonged Local Anesthesia. Angew Chem Int Ed Engl 2024; 63:e202406158. [PMID: 38885607 PMCID: PMC11337095 DOI: 10.1002/anie.202406158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 06/20/2024]
Abstract
Depot-type drug delivery systems are designed to deliver drugs at an effective rate over an extended period. Minimizing initial "burst" can also be important, especially with drugs causing systemic toxicity. Both goals are challenging with small hydrophilic molecules. The delivery of molecules such as the ultrapotent local anesthetic tetrodotoxin (TTX) exemplifies both challenges. Toxicity can be mitigated by conjugating TTX to polymers with ester bonds, but the slow ester hydrolysis can result in subtherapeutic TTX release. Here, we developed a prodrug strategy, based on dynamic covalent chemistry utilizing a reversible reaction between the diol TTX and phenylboronic acids. These polymeric prodrugs exhibited TTX encapsulation efficiencies exceeding 90 % and the resulting polymeric nanoparticles showed a range of TTX release rates. In vivo injection of the TTX polymeric prodrugs at the sciatic nerve reduced TTX systemic toxicity and produced nerve block lasting 9.7±2.0 h, in comparison to 1.6±0.6 h from free TTX. This approach could also be used to co-deliver the diol dexamethasone, which prolonged nerve block to 21.8±5.1 h. This work emphasized the usefulness of dynamic covalent chemistry for depot-type drug delivery systems with slow and effective drug release kinetics.
Collapse
Affiliation(s)
- Tianrui Xue
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Matthew Torre
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Yiyuan Han
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Shuanglong Chen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel Lee
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts, 02115, United States
| |
Collapse
|
17
|
Quintana J, Kang M, Hu H, Ng TSC, Wojtkiewicz GR, Scott E, Parangi S, Schuemann J, Weissleder R, Miller MA. Extended Pharmacokinetics Improve Site-Specific Prodrug Activation Using Radiation. ACS CENTRAL SCIENCE 2024; 10:1371-1382. [PMID: 39071065 PMCID: PMC11273447 DOI: 10.1021/acscentsci.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained in vivo and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.5-fold more efficient than a non albumin-bound prodrug, and showed no appreciable toxicity compared to free or cathepsin-activatable drugs. These data guided computational modeling of drug action, which indicated that extended pharmacokinetics can improve localized and cumulative drug activation, especially for payloads with low vascular permeability and diffusivity and particularly in patients receiving daily treatments of conventional radiotherapy for weeks. This work thus offers a quantitative PK/PD framework and proof-of-principle experimental demonstration of how extending prodrug circulation can improve its localized activity in vivo.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mikyung Kang
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R. Wojtkiewicz
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jan Schuemann
- Department
of Radiation Oncology, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
18
|
Jeong MY, Ho MJ, Park JS, Jeong H, Kim JH, Jang YJ, Shin DM, Yang IG, Kim HR, Song WH, Lee S, Song SH, Choi YS, Han YT, Kang MJ. Tricaprylin-based drug crystalline suspension for intramuscular long-acting delivery of entecavir with alleviated local inflammation. Bioeng Transl Med 2024; 9:e10649. [PMID: 39036080 PMCID: PMC11256175 DOI: 10.1002/btm2.10649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 07/23/2024] Open
Abstract
In order to ensure prolonged pharmacokinetic profile along with local tolerability at the injection site, tricaprylin-based drug crystalline suspension (TS) was designed and its local distribution, pharmacokinetics, and inflammatory response, were evaluated with conventional aqueous suspension (AS). As model drug particles, entecavir 3-palmitate (EV-P), an ester lipidic prodrug for entecavir (EV), was employed. The EV-P-loaded TS was prepared by ultra-sonication method. Prepared TS and conventional AS exhibited comparable morphology (rod or rectangular), median diameter (2.7 and 2.6 μm), crystallinity (melting point of 160-165°C), and in vitro dissolution profile. However, in vivo performances of drug microparticles were markedly different, depending on delivery vehicle. At AS-injected site, drug aggregates of up to 500 μm were formed upon intramuscular injection, and were surrounded with inflammatory cells and fibroblastic bands. In contrast, no distinct particle aggregation and adjacent granulation was observed at TS-injected site, with >4 weeks remaining of the oily vehicle in micro-computed tomographic observation. Surprisingly, TS exhibited markedly alleviated local inflammation compared to AS, endowing markedly lessened necrosis, fibrosis thickness, inflammatory area, and macrophage infiltration. The higher initial systemic exposure was observed with TS compared to AS, but TS provided prolonged delivery of EV for 3 weeks. Therefore, we suggest that the novel TS system can be a promising tool in designing parenteral long-acting delivery, with improved local tolerability.
Collapse
Affiliation(s)
- Min Young Jeong
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Joon Soo Park
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Hoetaek Jeong
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Jin Hee Kim
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Yong Jin Jang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Doe Myung Shin
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Hye Rim Kim
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Woo Heon Song
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung UniversityBusanRepublic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook UniversityCheonanChungnamRepublic of Korea
| |
Collapse
|
19
|
Li Y, Cao Y, Ma K, Ma R, Zhang M, Guo Y, Song H, Sun N, Zhang Z, Yang W. A Triple-Responsive Polymeric Prodrug Nanoplatform with Extracellular ROS Consumption and Intracellular H 2O 2 Self-Generation for Imaging-Guided Tumor Chemo-Ferroptosis-Immunotherapy. Adv Healthc Mater 2024; 13:e2303568. [PMID: 38319010 DOI: 10.1002/adhm.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Indexed: 02/07/2024]
Abstract
High reactive oxygen species (ROS) levels in tumor microenvironment (TME) impair both immunogenic cell death (ICD) efficacy and T cell activity. Furthermore, tumor escapes immunosurveillance via programmed death-1/programmed death ligand-1 (PD-L1) signal, and the insufficient intracellular hydrogen peroxide weakens ferroptosis efficacy. To tackle the above issues, a glutathione (GSH)/ROS/pH triple-responsive prodrug nanomedicine that encapsulates Fe2O3 nanoparticle via electrostatic interaction is constructed for magnetic resonance imaging (MRI)-guided multi-mode theranostics with chemotherapy/ferroptosis/immunotherapy. The diselenide bond consumes ROS in TME to increase T cells and ICD efficacy, the cleavage of which facilitates PD-L1 antagonist D peptide release to block immune checkpoint. After intracellular internalization, Fe2O3 nanoparticle is released in the acidic endosome for MRI simultaneously with lipid peroxides generation for tumor ferroptosis. Doxorubicin is cleaved from polymers in the condition of high intracellular GSH level accompanied by tumor ICD, which simultaneously potentiates ferroptosis by NADPH oxidase mediated H2O2 self-generation. In vivo results indicate that the nanoplatform strengthens tumor ICD, induces cytotoxic T lymphocytes proliferation, inhibits 4T1 tumor regression and metastasis, and prolongs survival median. In all, a new strategy is proposed in strengthening ICD and T cells activity cascade with ferroptosis as well as immune checkpoint blockade for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kunru Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673
| | - Nannan Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| |
Collapse
|
20
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
21
|
Xu Z, Liu X, Pang Y, Chen Z, Jiang Y, Liu T, Zhang J, Xiong H, Gao X, Liu J, Liu S, Ning G, Feng S, Yao X, Guo S. Long-Acting Heterodimeric Paclitaxel-Idebenone Prodrug-Based Nanomedicine Promotes Functional Recovery after Spinal Cord Injury. NANO LETTERS 2024; 24:3548-3556. [PMID: 38457277 DOI: 10.1021/acs.nanolett.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
After spinal cord injury (SCI), successive systemic administration of microtubule-stabilizing agents has been shown to promote axon regeneration. However, this approach is limited by poor drug bioavailability, especially given the rapid restoration of the blood-spinal cord barrier. There is a pressing need for long-acting formulations of microtubule-stabilizing agents in treating SCI. Here, we conjugated the antioxidant idebenone with microtubule-stabilizing paclitaxel to create a heterodimeric paclitaxel-idebenone prodrug via an acid-activatable, self-immolative ketal linker and then fabricated it into chondroitin sulfate proteoglycan-binding nanomedicine, enabling drug retention within the spinal cord for at least 2 weeks and notable enhancement in hindlimb motor function and axon regeneration after a single intraspinal administration. Additional investigations uncovered that idebenone can suppress the activation of microglia and neuronal ferroptosis, thereby amplifying the therapeutic effect of paclitaxel. This prodrug-based nanomedicine simultaneously accomplishes neuroprotection and axon regeneration, offering a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinjie Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yilin Pang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhixia Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiawei Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Haoning Xiong
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xiang Gao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Shen Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
23
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
24
|
Zhang R, Zhao X, Jia A, Wang C, Jiang H. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. Int J Biol Macromol 2023; 249:125993. [PMID: 37506794 DOI: 10.1016/j.ijbiomac.2023.125993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hyaluronic acid (HA) represents a natural polysaccharide which has attracted significant attention owing to its improved tumor targeting capacity, enzyme degradation capacity, and excellent biocompatibility. Its receptors, such as CD44, are overexpressed in diverse cancer cells and are closely related with tumor progress and metastasis. Accordingly, numerous researchers have designed various kinds of HA-based drug delivery platforms for CD44-mediated tumor targeting. Specifically, the HA-based nanoprodrugs possess distinct advantages such as good bioavailability, long circulation time, and controlled drug release and retention ability and have been extensively studied during the past years. In this review, the potential strategies and applications of HA-modified nanoprodrugs for drug molecule delivery in anti-tumor therapy are summarized.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China
| | - Xiaohua Zhao
- Department of Thoracic surgery, Affiliated Hospital of Weifang Medical University, No.2428, Yuhe road, Kuiwen district, Weifang 261000, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|