1
|
Ma Y, Grootaert MOJ, Sewduth RN. Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective. J Xenobiot 2025; 15:9. [PMID: 39846541 PMCID: PMC11755476 DOI: 10.3390/jox15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Chemotherapy-induced cardiotoxicity is a critical issue in cardio-oncology, as cancer treatments often lead to severe cardiovascular complications. Approximately 10% of cancer patients succumb to cardiovascular problems, with lung cancer patients frequently experiencing arrhythmias, cardiac failure, tamponade, and cardiac metastasis. The cardiotoxic effects of anti-cancer treatments manifest at both cellular and tissue levels, causing deformation of cardiomyocytes, leading to contractility issues and fibrosis. Repeated irradiation and chemotherapy increase the risk of valvular, pericardial, or myocardial diseases. Multi-OMICs analyses reveal that targeting specific pathways as well as specific protein modifications, such as ubiquitination and phosphorylation, could offer potential therapeutic alternatives to current treatments, including Angiotensin converting enzymes (ACE) inhibitors and beta-blockers that mitigate symptoms but do not prevent cardiomyocyte death, highlighting the need for more effective therapies to manage cardiovascular defects in cancer survivors. This review explores the xenobiotic nature of chemotherapy agents and their impact on cardiovascular health, aiming to identify novel biomarkers and therapeutic targets to mitigate cardiotoxicity.
Collapse
Affiliation(s)
- Yan Ma
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium;
| | - Mandy O. J. Grootaert
- Faculty of Medicine and Dentistry, UC Louvain, Avenue Hippocrate 55, 1200 Woluwe-Saint-Lambert, Belgium;
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Raj N. Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium;
| |
Collapse
|
2
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
3
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
4
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
5
|
Genome-scale CRISPR-Cas9 knockout screening in nasopharyngeal carcinoma for radiosensitive and radioresistant genes. Transl Oncol 2023; 30:101625. [PMID: 36739730 PMCID: PMC9932185 DOI: 10.1016/j.tranon.2023.101625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome-scale CRISPR-Cas9 knockout screening may provide new insights into the mechanism underlying clinical radioresistance in nasopharyngeal carcinoma (NPC), which is remain largely unknown. Our objective was to screen the functional genes associated with radiosensitivity and radioresistance in NPC, laying a foundation for further research on its functional mechanismand. METHODS CRISPR-Cas9 library lentivirus screening in radiation-treated NPC cells was combined with second-generation sequence technology to identify functional genes, which were further validated in radioresistant NPC cells and patient tissues. RESULTS Eleven radiosensitive and radioresistant genes were screened. Among these genes, the expression of FBLN5, FAM3C, MUS81, and DNAJC17 were significantly lower and TOMM20, CDKN2AIP, SNX22, and SP1 were higher in the radioresistant NPC cells (C666-1R, 5-8FR) (p < 0.05). CALD1 was highly expressed in C666-1R. Furthermore, we found knockout of FBLN5, FAM3C, MUS81 and DNAJC17 promoted the proliferation of NPC cells, while CDKN2AIP and SP1 had the opposed results (p < 0.05). This result was verified in NPC patient tissues. Meanwhile, KEGG analysis showed that the Fanconi anemia pathway and the TGF-β signaling pathway possibly contributed to radiosensitivity or radioresistance in NPC. CONCLUSIONS Nine genes involved in the radiosensitivity or radioresistance of NPC: four genes for radiosensitivity (FBLN5, FAM3C, MUS81, and DNAJC17), two genes for radioresistance (CDKN2AIP, SP1), two potential radioresistant genes (TOMM20, SNX22), and a potential radiosensitive gene (CALD1). Genome-scale CRISPR-Cas9 knockout screening for radiosensitive and radioresistant genes in NPC may provide new insights into the mechanisms underlying clinical radioresistance to improve the efficacy of radiotherapy for NPC.
Collapse
|
6
|
Deshpande SS, Veeragoni D, Rachamalla HK, Misra S. Anticancer properties of ZnO-Curcumin nanocomposite against melanoma cancer and its genotoxicity profiling. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Zhang L, Xie Q, Li X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother Res 2021; 36:279-298. [PMID: 34808701 DOI: 10.1002/ptr.7311] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Esculetin is a natural dihydroxy coumarin; it is mainly extracted from twig skin and the trunk bark of the Chinese herbal medicine Fraxinus rhynchophylla Hance. Emerging evidence suggests that esculetin has a wide range of pharmacological activities. Based on its fundamental properties, including antioxidant, antiinflammatory, antiapoptotic, anticancer, antidiabetic, neuroprotective, and cardiovascular protective activities, as well as antibacterial activity, among others, esculetin is expected to be a therapeutic drug for specific disease indications, such as cancer, diabetes, atherosclerosis, Alzheimer's disease (AD), Parkinson's disease (PD), nonalcoholic fatty liver disease (NAFLD), and other diseases. The oral bioavailability of esculetin was shown by studies to be low. The extensive glucuronidation was described to be the main metabolic pathway of esculetin and C-7 phenolic hydroxyl to be its major metabolic site. With the development of scientific research technology, the pharmacological effects of esculetin are identified and its potential for the treatment of diseases is demonstrated. The underlining mechanisms of action and biological activities as well as the pharmacokinetic data of the analyzed compound reported so far are highlighted in this review with the aim of becoming a proven, and applicable insight and reference for further studies on the utilization of esculetin.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Yin BK, Wang ZQ. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int J Mol Sci 2021; 22:12445. [PMID: 34830324 PMCID: PMC8625110 DOI: 10.3390/ijms222212445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family play vital roles in multiple biological processes, including DNA damage response, metabolism, cell growth, mRNA decay, and transcription. TRRAP, as the only member lacking the enzymatic activity in this family, is an adaptor protein for several histone acetyltransferase (HAT) complexes and a scaffold protein for multiple transcription factors. TRRAP has been demonstrated to regulate various cellular functions in cell cycle progression, cell stemness maintenance and differentiation, as well as neural homeostasis. TRRAP is known to be an important orchestrator of many molecular machineries in gene transcription by modulating the activity of some key transcription factors, including E2F1, c-Myc, p53, and recently, Sp1. This review summarizes the biological and biochemical studies on the action mode of TRRAP together with the transcription factors, focusing on how TRRAP-HAT mediates the transactivation of Sp1-governing biological processes, including neurodegeneration.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
9
|
Akter R, Najda A, Rahman MH, Shah M, Wesołowska S, Hassan SSU, Mubin S, Bibi P, Saeeda S. Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives. Molecules 2021; 26:5997. [PMID: 34641542 PMCID: PMC8512367 DOI: 10.3390/molecules26195997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cells' response to RT. Therefore, radiobiological research is emphasizing chemical compounds 'radiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani Street, Dhaka 1213, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sylwia Wesołowska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego Street, 20-069 Lublin, Poland;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Parveen Bibi
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| | - Saeeda Saeeda
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| |
Collapse
|
10
|
Ni C, Yang S, Ji Y, Duan Y, Yang W, Yang X, Li M, Xie J, Zhang C, Lu Y, Lu H. Hsa_circ_0011385 knockdown represses cell proliferation in hepatocellular carcinoma. Cell Death Discov 2021; 7:270. [PMID: 34599150 PMCID: PMC8486831 DOI: 10.1038/s41420-021-00664-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs), continuous loops of single-stranded RNA, regulate gene expression during the development of various cancers. However, the function of circRNAs in hepatocellular carcinoma (HCC) is rarely discussed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA levels of circ_0011385, miR-361-3p, and STC2 in 96 pairs of HCC tissues (tumor tissues and adjacent normal tissues), HCC cell lines, and L02 (human normal liver cell line) cells. The relationships between circ_0011385 expression and clinical features of HCC were evaluated. Functional experiments in vitro or in vivo were used to evaluate the biological function of circ_0011385. Bioinformatics analysis was performed to predict miRNAs and mRNAs sponged by circ_0011385. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene assays were used to elucidate the interactions among circ_0011385, miR-361-3p, and STC2 (stanniocalcin 2). ChIP and dual-luciferase reporter gene assays were used to identify the upstream regulator of circ_0011385. High expression of circ_0011385 was observed in HCC tissues and cell lines and was significantly associated with tumor size, TNM stage, and prognosis. In addition, inhibition of circ_0011385 expression prevented the proliferation of HCC cells in vitro and in vivo. Circ_0011385 sponged miR-361-3p, thereby regulating the mRNA expression of STC2. In addition, the transcription of circ_0011385 was regulated by SP3. Circ_0011385 knockdown suppressed cell proliferation and tumor activity in HCC. Circ_0011385 may therefore serve as a new biomarker in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Chuangye Ni
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Yang Ji
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Yunfei Duan
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Wenjie Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Xinchen Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Min Li
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Jun Xie
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Chuanyong Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
| | - Yunjie Lu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China.
| | - Hao Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
| |
Collapse
|
11
|
Swift ML, Beishline K, Azizkhan-Clifford J. Sp1-dependent recruitment of the histone acetylase p300 to DSBs facilitates chromatin remodeling and recruitment of the NHEJ repair factor Ku70. DNA Repair (Amst) 2021; 105:103171. [PMID: 34252870 DOI: 10.1016/j.dnarep.2021.103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
In response to DNA damage, most factors involved in damage recognition and repair are tightly regulated to ensure proper repair pathway choice. Histone acetylation at DNA double strand breaks (DSBs) by p300 histone acetyltransferase (HAT) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that phosphorylation of Sp1 by ATM increases its interaction with p300 and that Sp1-dependent recruitment of p300 to DSBs is necessary to modify the histones associated with p300 activity and NHEJ repair factor recruitment and repair. p300 is known to acetylate multiple residues on histones H3 and H4 necessary for NHEJ. Acetylation of H3K18 by p300 is associated with the recruitment of the SWI/SNF chromatin remodeling complex and Ku70 to DSBs for NHEJ repair. Depletion of Sp1 results in decreased acetylation of lysines on histones H3 and H4. Specifically, cells depleted of Sp1 display defects in the acetylation of H3K18, resulting in defective SWI/SNF and Ku70 recruitment to DSBs. These results shed light on mechanisms by which chromatin remodelers are regulated to ensure activation of the appropriate DSB repair pathway.
Collapse
Affiliation(s)
- Michelle L Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SA, El-Seedi HR, Abdel-Daim MM. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54000, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shaden A.M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Lim S, Shparberg RA, Coorssen JR, O’Connor MD. Application of the RBBP9 Serine Hydrolase Inhibitor, ML114, Decouples Human Pluripotent Stem Cell Proliferation and Differentiation. Int J Mol Sci 2020; 21:ijms21238983. [PMID: 33256189 PMCID: PMC7730578 DOI: 10.3390/ijms21238983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma binding protein 9 (RBBP9) is required for maintaining the expression of both pluripotency and cell cycle genes in human pluripotent stem cells (hPSCs). An siRNA-based study from our group showed it does so by influencing cell cycle progression through the RB/E2F pathway. In non-pluripotent cells, RBBP9 is also known to have serine hydrolase (SH) activity, acting on currently undefined target proteins. The role of RBBP9 SH activity in hPSCs, and during normal development, is currently unknown. To begin assessing whether RBBP9 SH activity might contribute to hPSC maintenance, hPSCs were treated with ML114—a selective chemical inhibitor of RBBP9 SH activity. Stem cells treated with ML114 showed significantly reduced population growth rate, colony size and progression through the cell cycle, with no observable change in cell morphology or decrease in pluripotency antigen expression—suggesting no initiation of hPSC differentiation. Consistent with this, hPSCs treated with ML114 retained the capacity for tri-lineage differentiation, as seen through teratoma formation. Subsequent microarray and Western blot analyses of ML114-treated hPSCs suggest the nuclear transcription factor Y subunit A (NFYA) may be a candidate effector of RBBP9 SH activity in hPSCs. These data support a role for RBBP9 in regulating hPSC proliferation independent of differentiation, whereby inhibition of RBBP9 SH activity de-couples decreased hPSC proliferation from initiation of differentiation.
Collapse
Affiliation(s)
- Seakcheng Lim
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
| | - Rachel A. Shparberg
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
| | - Jens R. Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Michael D. O’Connor
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
- Molecular Medicine Research Group, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence:
| |
Collapse
|
15
|
Dawson WK, Lazniewski M, Plewczynski D. Free energy-based model of CTCF-mediated chromatin looping in the human genome. Methods 2020; 181-182:35-51. [PMID: 32645447 DOI: 10.1016/j.ymeth.2020.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 04/21/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, high-throughput techniques have revealed considerable structural organization of the human genome with diverse regions of the chromatin interacting with each other in the form of loops. Some of these loops are quite complex and may encompass regions comprised of many interacting chain segments around a central locus. Popular techniques for extracting this information are chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture (Hi-C). Here, we introduce a physics-based method to predict the three-dimensional structure of chromatin from population-averaged ChIA-PET data. The approach uses experimentally-validated data from human B-lymphoblastoid cells to generate 2D meta-structures of chromatin using a dynamic programming algorithm that explores the chromatin free energy landscape. By generating both optimal and suboptimal meta-structures we can calculate both the free energy and additionally the relative thermodynamic probability. A 3D structure prediction program with applied restraints then can be used to generate the tertiary structures. The main advantage of this approach for population-averaged experimental data is that it provides a way to distinguish between the principal and the spurious contacts. This study also finds that euchromatin appear to have rather precisely regulated 2D meta-structures compared to heterochromatin. The program source-code is available at https://github.com/plewczynski/looper.
Collapse
Affiliation(s)
- Wayne K Dawson
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan.
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
16
|
Gao J, Zhang Z, Su H, Zong L, Li Y. Long Noncoding RNA FGD5-AS1 Acts as a Competing Endogenous RNA on microRNA-383 to Enhance the Malignant Characteristics of Esophageal Squamous Cell Carcinoma by Increasing SP1 Expression. Cancer Manag Res 2020; 12:2265-2278. [PMID: 32273764 PMCID: PMC7105361 DOI: 10.2147/cmar.s236576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have identified the important roles of a long noncoding RNA called FGD5 antisense RNA 1 (FGD5-AS1) in several types of human cancer. Nonetheless, to our knowledge, the expression and functions of FGD5-AS1 in esophageal squamous cell carcinoma (ESCC) have not been clarified. In this study, we aimed to determine the expression status of long noncoding RNA FGD5-AS1 in ESCC, determine its participation in ESCC progression, and uncover the underlying mechanisms. Methods ESCC tissue samples and paired normal adjacent tissues were collected to quantify FGD5-AS1 expression by reverse-transcription quantitative PCR. The effects of FGD5-AS1 on ESCC cell proliferation, apoptosis, migration, and invasion in vitro as well as tumor growth in vivo were studied using a Cell Counting Kit-8 assay, flow cytometry, Transwell migration and invasion assays, and an in vivo tumor xenograft experiment. Results FGD5-AS1 was found to be aberrantly upregulated in both ESCC tumors and cell lines compared to the control groups. Increased FGD5-AS1 expression manifested a close association with tumor size, TNM stage, and lymph node metastasis in patients with ESCC. Overall survival of patients with ESCC was shorter in the FGD5-AS1 high-expression group than in the FGD5-AS1 low-expression group. An FGD5-AS1 knockdown markedly attenuated ESCC cell proliferation, migration, and invasion and promoted apoptosis in vitro as well as slowed tumor growth in vivo. Mechanism investigation revealed that FGD5-AS1 can increase SP1 expression by sponging microRNA-383 (miR-383), thus functioning as a competing endogenous RNA. An miR-383 knockdown and recovery of SP1 expression attenuated the inhibition of the malignant characteristics of ESCC cells by the FGD5-AS1 knockdown. Conclusion Thus, FGD5-AS1 enhances the aggressive phenotype of ESCC cells in vitro and in vivo via the miR-383–SP1 axis, which may represent a novel target for ESCC therapy.
Collapse
Affiliation(s)
- Jia Gao
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ziteng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Hong Su
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Yan Li
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| |
Collapse
|
17
|
Liu X, Zhang B, Jia Y, Fu M. SNHG17 enhances the malignant characteristics of tongue squamous cell carcinoma by acting as a competing endogenous RNA on microRNA-876 and thereby increasing specificity protein 1 expression. Cell Cycle 2020; 19:711-725. [PMID: 32089063 PMCID: PMC7145335 DOI: 10.1080/15384101.2020.1727399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
A long noncoding RNA called SNHG17 (small nucleolar RNA host gene 17) is aberrantly expressed and plays essential roles in multiple human cancer types. Nevertheless, its expression pattern and specific functions in tongue squamous cell carcinoma (TSCC) have not been well studied until now. Hence, in this study, we aimed to measure SNHG17 expression in TSCC and to examine the actions of SNHG17 on the malignant characteristics of TSCC cells. The regulatory mechanism that mediates the oncogenic effects of SNHG17 on TSCC cells was investigated too. In this study, SNHG17 was found to be upregulated in TSCC, and this overexpression closely correlated with adverse clinical parameters and shorter overall survival among the patients with TSCC. The SNHG17 knockdown significantly decreased TSCC cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanism investigation revealed that SNHG17 acts as a competing endogenous RNA on microRNA-876 (miR-876) in TSCC cells. In addition, specificity protein 1 (SP1) was validated as a direct target gene of miR-876 in TSCC cells. SP1 expression restoration in TSCC cells reversed miR-876 overexpression-induced anticancer effects. MiR-876 downregulation strongly attenuated the actions of the SNHG17 knockdown in TSCC cells. SNHG17 plays an oncogenic part in TSCC cells both in vitro and in vivo via sponging of miR-876 and thereby upregulating SP1, which could be regarded as a promising target for TSCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Baorong Zhang
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yue Jia
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Ming Fu
- Institute of Oral Diseases, Oral Medicine Center, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
18
|
Zhang M, Wei Y, Liu Y, Guan W, Zhang X, Kong J, Li H, Yang S, Wang H. Metastatic Phosphatase PRL-3 Induces Ovarian Cancer Stem Cell Sub-population through Phosphatase-Independent Deacetylation Modulations. iScience 2020; 23:100766. [PMID: 31887658 PMCID: PMC6941878 DOI: 10.1016/j.isci.2019.100766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/01/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, chemoresistance, metastasis, and relapse, but the underlying molecular origin of CSCs remains elusive. Here we identified that metastatic phosphatase of regenerating liver 3 (PRL-3) transcriptionally upregulates SOX2 in the expansion of CSC sub-population from normal cancer cells. Mechanistically, SOX2 upregulation is attributed to the binding of the acetylated myocyte enhancer factor 2A (MEF2A) to SOX2 promoter in tumor cells. In parallel, PRL-3 competitively binds to Class IIa histone deacetylase 4 (HDAC4) to facilitate HDAC4 translocation, leading to the disassociation of HDAC4 from MEF2A and histones. The released MEF2A and histones thus remain acetylated and render the subsequent accessibility of the acetylated MEF2A to SOX2 promoter region. Clinical relevance among PRL-3, SOX2, and HDAC4 is validated in ovary cancer samples. Therefore, this PRL-3-HDAC4-MEF2A/histones-SOX2 signaling axis would be a potential therapeutic target in inhibiting ovarian cancer metastasis and relapse.
Collapse
Affiliation(s)
- Mingming Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaomei Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Qiu H, Zhang G, Song B, Jia J. MicroRNA-548b inhibits proliferation and invasion of hepatocellular carcinoma cells by directly targeting specificity protein 1. Exp Ther Med 2019; 18:2332-2340. [PMID: 31452716 DOI: 10.3892/etm.2019.7812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have revealed that microRNAs (miRNAs) are aberrantly expressed in hepatocellular carcinoma (HCC), and the dysregulation of miRNAs exerts crucial roles in the carcinogenesis and development of HCC. Therefore, elucidating the relationship between miRNAs and HCC progression is of great importance to develop novel therapeutic techniques and to improve the prognosis of patients with this malignancy. Recently, miR-548b-3p (miR-548b) has been demonstrated to be a cancer-associated miRNA in tongue squamous cell carcinoma and glioma. However, the expression and function of miR-548b in HCC remain poorly understood. In the present study, it was found that miR-548b is expressed at low levels in HCC tissues and cell lines. Decreased miR-548b expression was found to be positively associated with the clinical features of HCC, including the TNM stage and lymph node metastasis. Functional experiments revealed that upregulation of miR-548b expression decreased proliferation and invasion of HCC cells. Specificity protein 1 (SP1) was verified to be a direct target of miR-548b in HCC cells; as Spearman's correlation analysis identified miR-548b expression to be negatively correlated with that of SP1 expression in HCC tissue specimens. In addition, SP1 inhibition exhibited similar effects as miR-548b overexpression in HCC cells. SP1 reintroduction significantly reversed the suppressive effects of miR-548b upregulation on the proliferation and invasion of HCC cells. In conclusion, the results presented in the present study demonstrated that miR-548b may serve as a tumor suppressive miRNA that inhibits the proliferation and invasion of HCC cells by directly targeting SP1. Consequently, miR-548b can be exploited as a novel therapeutic target for treating patients with HCC in the future, but this needs to be investigated further.
Collapse
Affiliation(s)
- Haile Qiu
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Gehong Zhang
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Song
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Junmei Jia
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
20
|
Li Y, Han B, Liu L, Zhao F, Liang W, Jiang J, Yang Y, Ma Z, Sun D. Genetic association of DDIT3, RPL23A, SESN2 and NR4A1 genes with milk yield and composition in dairy cattle. Anim Genet 2019; 50:123-135. [PMID: 30815908 DOI: 10.1111/age.12750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 01/15/2023]
Abstract
Previously, we identified by RNA sequencing that DDIT3, RPL23A, SESN2 and NR4A1 genes were significantly differentially expressed between the mammary glands of lactating Holstein cows with extremely high and low milk protein and fat percentages; thus, these four genes are considered as promising candidates potentially affecting milk yield and composition traits in dairy cattle. In the present study, we further verified whether these genes have genetic effects on milk traits in a Chinese Holstein population. By re-sequencing part of the non-coding and the entire coding regions of the DDIT3, RPL23A, SESN2 and NR4A1 genes, a total of 35 SNPs and three insertions/deletions were identified, of which three were found in DDIT3, 12 in RPL23A, 16 in SESN2 and seven in NR4A1. Moreover, two of the insertions/deletions-g.125714860_125714872del and g.125714806delinsCCCC in SESN2-were novel and have not been reported previously. Subsequent single SNP analyses revealed multiple significant association with all 35 SNPs and three indels regressed against the dairy production traits (P-value = <0.0001-0.0493). In addition, with a linkage disequilibrium analysis, we found one, one, three, and one haplotype blocks in the DDIT3, RPL23A, SESN2 and NR4A1 genes respectively. Haplotype-based association analyses revealed that some haplotypes were also significantly associated with milk production traits (P-value = <0.0001-0.0461). We also found that 12 SNPs and two indels (two in DDIT3, two in RPL23A, nine in SESN2 and one in NR4A1) altered the specific transcription factor binding sites in the promoter, thereby regulating promoter activity, suggesting that they might be promising potential functional variants for milk traits. In summary, our findings first determined the genetic associations of DDIT3, RPL23A, SESN2 and NR4A1 with milk yield and composition traits in dairy cattle and also suggested potentially causal variants, which require in-depth validation.
Collapse
Affiliation(s)
- Y Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100192, China
| | - B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - F Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - W Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Beijing, 100193, China
| | - J Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Beijing, 100193, China
| | - Y Yang
- Beijing Municipal Bureau of Agriculture, Beijing, 100101, China
| | - Z Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Beijing, 100193, China
| |
Collapse
|
21
|
Wang XX, Guo GC, Qian XK, Dou DW, Zhang Z, Xu XD, Duan X, Pei XH. miR-506 attenuates methylation of lncRNA MEG3 to inhibit migration and invasion of breast cancer cell lines via targeting SP1 and SP3. Cancer Cell Int 2018; 18:171. [PMID: 30386180 PMCID: PMC6203274 DOI: 10.1186/s12935-018-0642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer has been the first death cause of cancer in women all over the world. Metastasis is believed to be the most important process for treating breast cancer. There is evidence that lncRNA MEG3 functions as a tumor suppressor in breast cancer metastasis. However, upstream regulation of MEG3 in breast cancer remain elusive. Therefore, it is critical to elucidate the underlying mechanism upstream MEG3 to regulate breast cancer metastasis. Methods We employed RT-qPCR and Western blot to examine expression level of miR-506, DNMT1, SP1, SP3 and MEG3. Besides, methylation-specific PCR was used to determine the methylation level of MEG3 promoter. Wound healing assay and transwell invasion assay were utilized to measure migration and invasion ability of breast cancer cells, respectively. Results SP was upregulated while miR-506 and MEG3 were downregulated in breast tumor tissue compared to adjacent normal breast tissues. In addition, we found that miR-506 regulated DNMT1 expression in an SP1/SP3-dependent manner, which reduced methylation level of MEG3 promoter and upregulated MEG3 expression. SP3 knockdown or miR-506 mimic suppressed migration and invasion of MCF-7 and MDA-MB-231 cells whereas overexpression of SP3 compromised miR-506-inhibited migration and invasion. Conclusions Our data reveal a novel axis of miR-506/SP3/SP1/DNMT1/MEG3 in regulating migration and invasion of breast cancer cell lines, which provide rationales for developing effective therapies to treating metastatic breast cancers.
Collapse
Affiliation(s)
- Xin-Xing Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Guang-Cheng Guo
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xue-Ke Qian
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Dong-Wei Dou
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Zhe Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xiao-Dong Xu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xin Duan
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| | - Xin-Hong Pei
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Erqi District, Zhengzhou, 450052 Henan People's Republic of China
| |
Collapse
|
22
|
Nadaf SJ, Killedar SG. Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Qian M, Gong H, Yang X, Zhao J, Yan W, Lou Y, Peng D, Li Z, Xiao J. MicroRNA-493 inhibits the proliferation and invasion of osteosarcoma cells through directly targeting specificity protein 1. Oncol Lett 2018; 15:8149-8156. [PMID: 29740498 PMCID: PMC5934716 DOI: 10.3892/ol.2018.8268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary bone tumor and accounts for ~60% of all malignant bone tumors in children and adolescents. A large number of studies have proposed that the dysregulated and dysfunctional microRNAs may serve important roles in the occurrence, progression and metastasis of various types of human cancer, including OS. MicroRNA-493 (miR-493) has been identified to act as a tumor suppressor in several types of human cancer. However, little is known regarding the expression pattern and clinical significance of miR-493 in OS. In the present study, reverse transcription-quantitative polymerase chain reaction analysis revealed that miR-493 was markedly downregulated in OS tissues and cell lines and a low miR-493 level were associated with distant metastasis and clinical stage. Furthermore, functional experiments demonstrated that enforced expression of miR-493 led to a significant decrease in OS cell proliferation and invasion in vitro. Furthermore, through bioinformatics analysis, specificity protein 1 (SP1) was identified as a direct target gene of miR-493 in OS. Its expression was upregulated in OS tissues and was negatively associated with miR-493 expression levels. Inhibition of SP1 expression also suppressed the proliferation and invasion of OS, exerting a similar effect to that induced by miR-493 overexpression. These results suggested that miR-493 inhibited OS cell proliferation and invasion through negative regulation of SP1. Therefore, miR-493/SP1 may represent a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Ming Qian
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Haiyi Gong
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Xinghai Yang
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Jian Zhao
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Wangjun Yan
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Yan Lou
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Dongyu Peng
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Zhenxi Li
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| | - Jianru Xiao
- Bone Tumor Center, Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai 200003, P.R. China
| |
Collapse
|
24
|
Han B, Liang W, Liu L, Li Y, Sun D. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle. Anim Genet 2018. [PMID: 29521460 DOI: 10.1111/age.12651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we re-sequenced the whole genomes of eight Holstein bulls with high or low milk protein and fat percentage, and we detected two indels in the ACACB (acetyl-CoA carboxylase beta) gene that were polymorphic between the two groups. Thus, we considered ACACB as a promising candidate gene potentially affecting milk composition traits. Herein, we verified the genetic effects of ACACB on five milk traits in a Chinese Holstein population. We identified six SNPs in the 5'-promoter region, five in the 5'- untranslated region (UTR), 11 in exons, four in the 3'-UTR and three in the 3'-flanking region by re-sequencing the entire coding and regulatory regions of ACACB. One of these SNPs (ss1987461005) is reported here for the first time, and three of the SNPs (rs109482081, rs110819816 and rs109281947) were predicted to result in amino acid replacements. Genotype-phenotype association analyses showed that all the identified SNPs, except for ss1987461005, rs208919019 and rs134447911, were significantly associated with milk yield, fat yield, fat percentage, protein yield or protein percentage (P < 0.0001 to 0.0484). Linkage disequilibrium analyses were conducted among the identified SNPs to confirm the genetic associations. Two SNPs-rs135874354 (g.66218726T>C) and rs210928430 (g.66218117G>A)-were predicted to alter transcription factor binding sites in the 5'-promoter region of ACACB. A luciferase activity assay showed that the promoter activity of haplotype TG was significantly higher than that of CG (P = 0.0002) and that the promoter activity of haplotype TA was remarkably higher than that of CA (P = 7.4285E-09), showing that the T allele of rs135874354 increased promoter activity. Thus, rs135874354 was considered to be a potentially functional mutation. Our findings have, for the first time, profiled the genetic effect of ACACB on milk production traits in dairy cattle and revealed a potentially causal mutation that requires further the in-depth validation.
Collapse
Affiliation(s)
- B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - W Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Y Li
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Bajpai R, Nagaraju GP. Specificity protein 1: Its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol 2017; 113:1-7. [PMID: 28427500 DOI: 10.1016/j.critrevonc.2017.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
Specificity protein 1 (Sp1) is a widely expressed transcription factor that plays an important role in the promotion of oncogenes required for tumor survival, progression and metastasis. Sp1 is highly expressed in several cancers including colorectal cancer (CRC) and is related to poor prognosis. Therefore, targeting Sp1 is a rational for CRC therapy. In this review, we will recapitulate the current understanding of Sp1 signaling, its molecular mechanisms, and its potential involvement in CRC growth, progression and metastasis. We will also discuss the current therapeutic drugs for CRC and their mechanism of action via Sp1.
Collapse
Affiliation(s)
- Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Wang J, Kang M, Wen Q, Qin YT, Wei ZX, Xiao JJ, Wang RS. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT. Oncol Rep 2017; 37:2425-2432. [PMID: 28350122 DOI: 10.3892/or.2017.5499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.
Collapse
Affiliation(s)
- Jun Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min Kang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu-Tao Qin
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jian Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Fauquenoy S, Robette G, Kula A, Vanhulle C, Bouchat S, Delacourt N, Rodari A, Marban C, Schwartz C, Burny A, Rohr O, Van Driessche B, Van Lint C. Repression of Human T-lymphotropic virus type 1 Long Terminal Repeat sense transcription by Sp1 recruitment to novel Sp1 binding sites. Sci Rep 2017; 7:43221. [PMID: 28256531 PMCID: PMC5335701 DOI: 10.1038/srep43221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Human T-lymphotropic Virus type 1 (HTLV-1) infection is characterized by viral latency in the majority of infected cells and by the absence of viremia. These features are thought to be due to the repression of viral sense transcription in vivo. Here, our in silico analysis of the HTLV-1 Long Terminal Repeat (LTR) promoter nucleotide sequence revealed, in addition to the four Sp1 binding sites previously identified, the presence of two additional potential Sp1 sites within the R region. We demonstrated that the Sp1 and Sp3 transcription factors bound in vitro to these two sites and compared the binding affinity for Sp1 of all six different HTLV-1 Sp1 sites. By chromatin immunoprecipitation experiments, we showed Sp1 recruitment in vivo to the newly identified Sp1 sites. We demonstrated in the nucleosomal context of an episomal reporter vector that the Sp1 sites interfered with both the sense and antisense LTR promoter activities. Interestingly, the Sp1 sites exhibited together a repressor effect on the LTR sense transcriptional activity but had no effect on the LTR antisense activity. Thus, our results demonstrate the presence of two new functional Sp1 binding sites in the HTLV-1 LTR, which act as negative cis-regulatory elements of sense viral transcription.
Collapse
Affiliation(s)
- Sylvain Fauquenoy
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Gwenaëlle Robette
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Anna Kula
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Nadège Delacourt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Céline Marban
- Biomaterials and Bioengineering, Inserm UMR 1121, Faculty of Dentistry, University of Strasbourg, France
| | - Christian Schwartz
- Institut Universitaire de Technologie Louis Pasteur, University of Strasbourg, Schiltigheim, France
- Laboratory of Dynamic of Host-Pathogen Interactions (DHPI), EA7292, University of Strasbourg, Strasbourg, France
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Rohr
- Institut Universitaire de Technologie Louis Pasteur, University of Strasbourg, Schiltigheim, France
- Laboratory of Dynamic of Host-Pathogen Interactions (DHPI), EA7292, University of Strasbourg, Strasbourg, France
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| |
Collapse
|
28
|
Cai Y, Yi M, Chen D, Liu J, Guleng B, Ren J, Shi H. Trefoil factor family 2 expression inhibits gastric cancer cell growth and invasion in vitro via interactions with the transcription factor Sp3. Int J Mol Med 2016; 38:1474-1480. [PMID: 27668303 PMCID: PMC5065293 DOI: 10.3892/ijmm.2016.2739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
The trefoil factor family (TFF) is a group of short secretory peptides of gastric mucous neck cells. The loss of TFF2 protein expression enhances gastric inflammation and occurs in gastric cancer. In this study, we examined the effect of TFF2 on gastric cancer cell lines in vitro and characterized the interaction between TFF2 and Sp3, including the mechanisms that mediate this interaction, using genomics and proteomics approaches, as well as genetics techniques, such as RNA interference and gene knockdown. Assays were performed to examine the role of TFF2 and Sp3 in cancer cell proliferation, invasion and migration. We found that TFF2 expression inhibited the proliferation and invasion capacity of gastric cancer cells, and induced apoptosis. TFF2 interacted with the Sp3 protein, as shown by immunofluorescence staining and immunoprecipitation with western blot analysis. Sp3 knockdown in gastric cancer cells antagonized TFF2 anti-tumor activity. Additionally, TFF2 upregulated the expression of pro-apoptotic proteins, such as Bid, but downregulated the expression of NF-κB and the anti-apoptotic proteins, Bcl-xL and Mcl-1. By contrast, Sp3 knockdown significantly blocked TFF2 activity, affecting the expression of these proteins. The data from our study demonstrate that the antitumor activity of TFF2 is mediated by an interaction with the Sp3 protein in gastric cancer cells. Additional in vivo and ex vivo warrned in order to fully characterize this interaction.
Collapse
Affiliation(s)
- Yiling Cai
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Mengting Yi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Dajun Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
29
|
Tzenov YR, Andrews P, Voisey K, Gai L, Carter B, Whelan K, Popadiuk C, Kao KR. Selective estrogen receptor modulators and betulinic acid act synergistically to target ERα and SP1 transcription factor dependent Pygopus expression in breast cancer. J Clin Pathol 2016; 69:518-26. [PMID: 26645832 DOI: 10.1136/jclinpath-2015-203395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
AIMS Estrogen and progesterone hormone receptor (ER and PR) expression in invasive breast cancer predicts response to hormone disruptive therapy. Pygopus2 (hPYGO2) encodes a chromatin remodelling protein important for breast cancer growth and cell cycle progression. The aims of this study were to determine the mechanism of expression of hPYGO2 in breast cancer and to examine how this expression is affected therapeutically. METHODS hPYGO2 and ER protein expression was examined in a breast tumour microarray by immunohistochemistry. hPYGO2 RNA and protein expression was examined in ER+ and ER- breast cancer cell lines in the presence of selective estrogen hormone receptor modulator drugs and the specificity protein-1 (SP1) inhibitor, betulinic acid (BA). The effects of these drugs on the ability for ER and SP1 to bind the hPYGO2 promoter and affect cell cycle progression were studied using chromatin immunoprecipitation assays. RESULTS hPYGO2 was expressed in seven of eight lines and in nuclei of 98% of 65 breast tumours, including 3 Ductal carcinoma in situ and 62 invasive specimens representing ER-negative (22%) and ER-positive (78%) cases. Treatment with either 4-Hydroxytamoxifen (OHT) or fulvestrant reduced hPYGO2 mRNA 10-fold and protein 5-10-fold within 4 h. Promoter analysis indicated an ER/SP1 binding site at nt -225 to -531 of hPYGO2. SP1 RNA interference and BA reduced hPYGO2 protein and RNA expression by fivefold in both ER- and ER+ cells. Further attenuation was achieved by combining BA and 4-OHT resulting in eightfold reduction in cell growth. CONCLUSIONS Our findings reveal a mechanistic link between hormone signalling and the growth transcriptional programme. The activation of its expression by ERα and/or SP1 suggests hPYGO2 as a theranostic target for hormone therapy responsive and refractory breast cancer.
Collapse
Affiliation(s)
- Youlian R Tzenov
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Phillip Andrews
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Kim Voisey
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Luis Gai
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Beverley Carter
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Kathryn Whelan
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | | | - Kenneth R Kao
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| |
Collapse
|
30
|
Rao M, Atay SM, Shukla V, Hong Y, Upham T, Ripley RT, Hong JA, Zhang M, Reardon E, Fetsch P, Miettinen M, Li X, Peer CJ, Sissung T, Figg WD, De Rienzo A, Bueno R, Schrump DS. Mithramycin Depletes Specificity Protein 1 and Activates p53 to Mediate Senescence and Apoptosis of Malignant Pleural Mesothelioma Cells. Clin Cancer Res 2016; 22:1197-210. [PMID: 26459178 PMCID: PMC4775437 DOI: 10.1158/1078-0432.ccr-14-3379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/27/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Specificity protein 1 (SP1) is an oncogenic transcription factor overexpressed in various human malignancies. This study sought to examine SP1 expression in malignant pleural mesotheliomas (MPM) and ascertain the potential efficacy of targeting SP1 in these neoplasms. EXPERIMENTAL DESIGN qRT-PCR, immunoblotting, and immunohistochemical techniques were used to evaluate SP1 expression in cultured MPM cells and MPM specimens and normal mesothelial cells/pleura. MTS, chemotaxis, soft agar, β-galactosidase, and Apo-BrdUrd techniques were used to assess proliferation, migration, clonogenicity, senescence, and apoptosis in MPM cells following SP1 knockdown, p53 overexpression, or mithramycin treatment. Murine subcutaneous and intraperitoneal xenograft models were used to examine effects of mithramycin on MPM growth in vivo. Microarray, qRT-PCR, immunoblotting, and chromatin immunoprecipitation techniques were used to examine gene expression profiles mediated by mithramycin and combined SP1 knockdown/p53 overexpression and correlate these changes with SP1 and p53 levels within target gene promoters. RESULTS MPM cells and tumors exhibited higher SP1 mRNA and protein levels relative to control cells/tissues. SP1 knockdown significantly inhibited proliferation, migration, and clonogenicity of MPM cells. Mithramycin depleted SP1 and activated p53, dramatically inhibiting proliferation and clonogenicity of MPM cells. Intraperitoneal mithramycin significantly inhibited growth of subcutaneous MPM xenografts and completely eradicated mesothelioma carcinomatosis in 75% of mice. Mithramycin modulated genes mediating oncogene signaling, cell-cycle regulation, senescence, and apoptosis in vitro and in vivo. The growth-inhibitory effects of mithramycin in MPM cells were recapitulated by combined SP1 knockdown/p53 overexpression. CONCLUSIONS These findings provide preclinical rationale for phase II evaluation of mithramycin in patients with mesothelioma.
Collapse
Affiliation(s)
- Mahadev Rao
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Scott M Atay
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Young Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Trevor Upham
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - R Taylor Ripley
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Emily Reardon
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Xinmin Li
- Clinical Micro-array Core, University of California, Los Angeles, California
| | - Cody J Peer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tristan Sissung
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Assunta De Rienzo
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
31
|
Kang M, Xiao J, Wang J, Zhou P, Wei T, Zhao T, Wang R. MiR-24 enhances radiosensitivity in nasopharyngeal carcinoma by targeting SP1. Cancer Med 2016; 5:1163-73. [PMID: 26922862 PMCID: PMC4924375 DOI: 10.1002/cam4.660] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Radioresistance remains a major problem in the treatment of patients suffering from nasopharyngeal carcinoma (NPC). A better understanding of the mechanisms of radioresistance may generate new strategies to improve NPC patients' responses to therapy. This study was designed to investigate the effect of microRNA on the radiosensitivity of NPC cells. A microRNA microarray indicated that miR‐24 was downregulated in NPC cell lines and tissues. Furthermore, cell proliferation was suppressed and radiosensitivity increased when miR‐24 was ectopically expressed in NPC cells. Specificity protein 1 (SP1) was additionally verified as a direct functional target of miR‐24, which was found to be involved in cell viability as well as the radiosensitivity of NPC cells. In conclusion, the results of this study suggest that the miR‐24/SP1 pathway contributed to the reduction in radioresistance in human NPC and that it may thus represent a therapeutic target.
Collapse
Affiliation(s)
- Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Jingjian Xiao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Jun Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Pingting Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Tingting Wei
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Tingting Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| |
Collapse
|
32
|
Zeng X, Xu Z, Gu J, Huang H, Gao G, Zhang X, Li J, Jin H, Jiang G, Sun H, Huang C. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol Cancer Ther 2016; 15:512-22. [PMID: 26832795 DOI: 10.1158/1535-7163.mct-15-0606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023]
Abstract
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer.
Collapse
Affiliation(s)
- Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Department of Nephrology, Central Hospital of Wuhan, Wuhan, China
| | - Zhou Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York.
| |
Collapse
|
33
|
Cheng D, Zhao Y, Wang S, Jia W, Kang J, Zhu J. Human Telomerase Reverse Transcriptase (hTERT) Transcription Requires Sp1/Sp3 Binding to the Promoter and a Permissive Chromatin Environment. J Biol Chem 2015; 290:30193-203. [PMID: 26487723 DOI: 10.1074/jbc.m115.662221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
The transcription of human telomerase gene hTERT is regulated by transcription factors (TFs), including Sp1 family proteins, and its chromatin environment. To understand its regulation in a relevant chromatin context, we employed bacterial artificial chromosome reporters containing 160 kb of human genomic sequence containing the hTERT gene. Upon chromosomal integration, the bacterial artificial chromosomes recapitulated endogenous hTERT expression, contrary to transient reporters. Sp1/Sp3 expression did not correlate with hTERT promoter activity, and these TFs bound to the hTERT promoters in both telomerase-positive and telomerase-negative cells. Mutation of the proximal GC-box resulted in a dramatic decrease of hTERT promoter activity, and mutations of all five GC-boxes eliminated its transcriptional activity. Neither mutations of GC-boxes nor knockdown of endogenous Sp1 impacted promoter binding by other TFs, including E-box-binding proteins, and histone acetylation and trimethylation of histone H3K9 at the hTERT promoter in telomerase-positive and -negative cells. The result indicated that promoter binding by Sp1/Sp3 was essential, but not a limiting step, for hTERT transcription. hTERT transcription required a permissive chromatin environment. Importantly, our data also revealed different functions of GC-boxes and E-boxes in hTERT regulation; although GC-boxes were essential for promoter activity, factors bound to the E-boxes functioned to de-repress hTERT promoter.
Collapse
Affiliation(s)
- De Cheng
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Yuanjun Zhao
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Shuwen Wang
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Wenwen Jia
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiyue Zhu
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210, the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| |
Collapse
|
34
|
Sen S, Kawahara B, Gupta D, Tsai R, Khachatryan M, Roy-Chowdhuri S, Bose S, Yoon A, Faull K, Farias-Eisner R, Chaudhuri G. Role of cystathionine β-synthase in human breast Cancer. Free Radic Biol Med 2015; 86:228-38. [PMID: 26051168 DOI: 10.1016/j.freeradbiomed.2015.05.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/06/2023]
Abstract
Cystathionine β-synthase (CBS) is an enzyme in the transulfuration pathway that can catalyze the condensation of homocysteine (Hcy) and cysteine (Cys) to hydrogen sulfide (H2S) and cystathionine (CTH). CBS-derived H2S is important in angiogenesis and drug resistance in colon and ovarian cancers, respectively. However, the mechanisms by which cancer cell-derived H2S is utilized by cancer cells as a protective agent against host-derived activated macrophages are not yet investigated. This study investigated the mechanistic role of CBS-derived H2S in the protection of human breast cancer (HBC) cells against activated macrophages. HBC patient-derived tissue arrays and immunoblot analysis of HBC cells exhibited significantly increased levels of CBS when compared with their normal counterparts. This was associated with increased levels of H2S and CTH. Silencing of CBS in HBC cells caused a significant decrease in the levels of H2S and CTH but did not affect the growth of these cells per se, in in vitro cultures. However CBS-silenced cells exhibited significantly reduced growth in the presence of activated macrophages and in xenograft models. This was associated with an increase in the steady state levels of reactive aldehyde-derived protein adducts. Exogenous addition of H2S countered the effects of CBS silencing in the presence of macrophages. Conversely overexpression of CBS in human breast epithelial (HBE) cells (which do not naturally express CBS) protected them from activated macrophages, which were otherwise susceptible to the latter.
Collapse
Affiliation(s)
- Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA; The Jonsson Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Brian Kawahara
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Divya Gupta
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Tsai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Marine Khachatryan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Shikha Bose
- Pathology and Laboratory Medicine at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Yoon
- Semel Institute for Neuroscience and Human Behavior at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kym Faull
- The Jonsson Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA; The Jonsson Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy. Mol Cell Biochem 2015; 410:101-10. [PMID: 26318312 DOI: 10.1007/s11010-015-2542-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Dysregulated MAPK/ERK signaling is implicated in one-third of human tumors and represents an attractive target for the development of anticancer drugs. Similarly, elevated protein O-GlcNAcylation and O-GlcNAc transferase (OGT) are detected in various cancers and serve as attractive novel cancer-specific therapeutic targets. However, the potential connection between them remains unexplored. Here, a positive correlation was found between the activated MAPK/ERK signaling and hyper-O-GlcNAcylation in various cancer types and inhibition of the MAPK/ERK signaling by 10 µM U0126 significantly decreased the expression of OGT and O-GlcNAcylation in H1299, BPH-1 and DU145 cells; then, the pathway analysis of the potential regulators of OGT obtained from the UCSC Genome Browser was done, and ten downstream targets of ERK pathway were uncovered; the following results showed that ELK1, one of the ten targets of ERK pathway, mediated ERK signaling-induced OGT upregulation; finally, the MTT assay and the soft agar assay showed that the inhibition of MAPK/ERK signaling reduced the promotion effect of hyper-O-GlcNAcylation on cancer cell proliferation and anchorage-independent growth. Taken together, our data originally provided evidence for the regulatory mechanism of hyper-O-GlcNAcylation in tumors, which will be helpful for the development of anticancer drugs targeting to hyper-O-GlcNAcylation. This study also provided a new mechanism by which MAPK/ERK signaling-enhanced cancer malignancy. Altogether, the recently discovered oncogenic factor O-GlcNAc was linked to the classical MAPK/ERK signaling which is essential for the maintenance of malignant phenotype of cancers.
Collapse
|
36
|
Jeon YJ, Jang JY, Shim JH, Myung PK, Chae JI. Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma. J Cancer Prev 2015; 20:106-12. [PMID: 26151043 PMCID: PMC4492354 DOI: 10.15430/jcp.2015.20.2.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Although esculetin, a coumarin compound, is known to induce apoptosis in human cancer cells, the effects and molecular mechanisms on the apoptosis in human malignant melanoma (HMM) cells are not well understood yet. In this study, we investigated the anti-proliferative effects of esculetin on the G361 HMM cells. METHODS We analyzed the anti-proliferative effects and molecular mechanisms of esculetin on G361 cells by a 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, 4',6-diamidino-2-phenylindole staining and Western blotting. RESULTS Esculetin exhibited significant anti-proliferative effects on the HMM cells in a dose-dependent manner. Interestingly, we found that esculetin induced nuclear shrinkage and fragmentation, typical apoptosis markers, by suppression of Sp1 transcription factor (Sp1). Notably, esculetin modulated Sp1 downstream target genes including p27, p21 and cyclin D1, resulted in activation of apoptosis signaling molecules such as caspase-3 and PARP in G361 HMM cells. CONCLUSIONS Our results clearly demonstrated that esculetin induced apoptosis in the HMM cells by downregulating Sp1 protein levels. Thus, we suggest that esculetin may be a potential anti-proliferative agent that induces apoptotic cell death in G361 HMM cells.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Chungnam National University, Daejeon, Korea
| | - Jeong-Yun Jang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Chungnam National University, Daejeon, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Chungnam National University, Daejeon, Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Chungnam National University, Daejeon, Korea
| |
Collapse
|
37
|
Cho JH, Lee RH, Jeon YJ, Shin JC, Park SM, Choi NJ, Seo KS, Yoon G, Cho SS, Kim KH, Cho JJ, Cho YS, Kim DH, Hong JT, Lee TH, Park HJ, Jung S, Seo JM, Chen H, Dong Z, Chae JI, Shim JH. Role of transcription factor Sp1 in the 4-O-methylhonokiol-mediated apoptotic effect on oral squamous cancer cells and xenograft. Int J Biochem Cell Biol 2015; 64:287-97. [PMID: 25982202 DOI: 10.1016/j.biocel.2015.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
Abstract
Recently, biphenolic components derived from the Magnolia family have been studied for anti-cancer, anti-stress, and anti-inflammatory pharmacological effects. However, the pharmacological mechanism of action of 4-O-methylhonokiol (MH) is not clear in oral cancer. The aim of this study was to investigate the role of MH in apoptosis and its molecular mechanism in oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, as well as tumor xenografts. Here, we demonstrated that MH decreased cell growth and induced apoptosis in HN22 and HSC4 cells through the regulation of specificity protein 1 (Sp1). We employed several experimental techniques such as MTS assay, DAPI staining, PI staining, Annexin-V/7-ADD staining, RT-PCR, western blot analysis, immunocytochemistry, immunohistochemistry, TUNEL assay and in vivo xenograft model analysis. MH inhibited Sp1 protein expression and reduced Sp1 protein levels via both proteasome-dependent protein degradation and inhibition of protein synthesis in HN22 and HSC4 cells; MH did not alter Sp1 mRNA levels. We found that MH directly binds Sp1 by Sepharose 4B pull-down assay and molecular modeling. In addition, treatment with MH or knocking down Sp1 expression suppressed oral cancer cell colony formation. Moreover, MH treatment effectively inhibited tumor growth and Sp1 levels in BALB/c nude mice bearing HN22 cell xenografts. These results indicated that MH inhibited cell growth, colony formation and also induced apoptosis via Sp1 suppression in OSCC cells and xenograft tumors. Thus, MH is a potent anti-cancer drug candidate for oral cancer.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Ra Ham Lee
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Ka Hwi Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jung Jae Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy, Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Tae Hong
- Department of Oral Biochemistry, Dental Science Research Institute and the BK21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute and the BK21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hong Ju Park
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Seunggon Jung
- Department of Oral and Maxillofacial Surgery, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Jae-Min Seo
- Department of Prosthodontics, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Hanyong Chen
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju, Republic of Korea.
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea.
| |
Collapse
|
38
|
Lee RH, Shin JC, Kim KH, Choi YH, Chae JI, Shim JH. Apoptotic effects of 7,8-dihydroxyflavone in human oral squamous cancer cells through suppression of Sp1. Oncol Rep 2015; 33:631-8. [PMID: 25434704 DOI: 10.3892/or.2014.3632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a member of the flavonoid family and has recently been identified as a brain-derived neurotrophic factor mimetic that selectively activates tropomyosin-receptor kinase B with high affinity. The antioxidant and anticancer effects of 7,8-DHF have been reported. However, the pharmacological mechanisms of 7,8-DHF in oral cancer are unclear. Thus, we investigated the mechanisms of the antiproliferative action of 7,8-DHF on HN22 and HSC4 oral squamous cell carcinoma cell lines. We demonstrated that 7,8-DHF decreased cell growth and induced apoptosis in the HN22 and HSC4 cells through regulation of specificity protein 1 (Sp1) using the MTS assay, DAPI staining, Annexin V, propidium iodide staining, reverse transcription-polymerase chain reaction, immunocytochemistry, pull-down assay and western blot analysis. The results showed that the Sp1 protein bound with 7,8-DHF in the HN22 and HSC4 cells. Taken together, the results suggest that 7,8-DHF could modulate Sp1 transactivation and induce apoptotic cell death by regulating the cell cycle and suppressing antiapoptotic proteins. Furthermore, 7,8-DHF may be valuable for cancer prevention and better clinical outcomes.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark, Jigok-dong, Pohang, Gyeongbuk 790-834, Republic of Korea
| | - Ka-Hwi Kim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
39
|
Lee RH, Cho JH, Jeon YJ, Bang W, Cho JJ, Choi NJ, Seo KS, Shim JH, Chae JI. Quercetin Induces Antiproliferative Activity Against Human Hepatocellular Carcinoma (HepG2) Cells by Suppressing Specificity Protein 1 (Sp1). Drug Dev Res 2015; 76:9-16. [PMID: 25619802 DOI: 10.1002/ddr.21235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022]
Abstract
Preclinical Research Quercetin, found in red onions and red apple skin can induce apoptosis insome malignant cells. However, the apoptotic effect of quercetin in hepatocellular carcinoma HepG2 cells via regulation of specificity protein 1 (Sp1) has not been studied. Here, we demonstrated that quercetin decreased cell growth and induce apoptosis in HepG2 cells via suppression of Sp1 using 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V, and Western blot analysis, an effect that was dose- and time-dependent manner. Treatment of HepG2 cells with quercetin reduced cell growth and induced apoptosis, followed by regulation of Sp1 and Sp1 regulatory protein. Taken together, the results suggest that quercetin can induce apoptotic cell death by regulating cell cycle and suppressing antiapoptotic proteins. Therefore, quercetin may be useful for cancer prevention. Drug Dev Res 76 : 9-16, 2015.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Woong Bang
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Jung-Jae Cho
- Department of Pharmacy, Natural Medicine Research Institute, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, 651-756
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, Natural Medicine Research Institute, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| |
Collapse
|
40
|
Sp1 sites in the noncoding control region of BK polyomavirus are key regulators of bidirectional viral early and late gene expression. J Virol 2015; 89:3396-411. [PMID: 25589646 DOI: 10.1128/jvi.03625-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED In kidney transplant patients with BK polyomavirus (BKPyV) nephropathy, viral variants arise bearing rearranged noncoding control regions (rr-NCCRs) that increase viral early gene expression, replicative fitness, and cytopathology. rr-NCCRs result from various deletions and duplications of archetype NCCR (ww-NCCR) sequences, which alter transcription factor binding sites (TFBS). However, the role of specific TFBS is unclear. We inactivated 28 TFBS in the archetype NCCR by selective point mutations and examined viral gene expression in bidirectional reporter constructs. Compared to the archetype, group 1 mutations increased viral early gene expression similar to rr-NCCR and resulted from inactivating one Sp1 or one Ets1 TFBS near the late transcription start site (TSS). Group 2 mutations conferred intermediate early gene activation and affected NF1, YY1, and p53 sites between early and late TSS. Group 3 mutations decreased early and late gene expression and included two other Sp1 sites near the early TSS. Recombinant viruses bearing group 1 NCCRs showed increased replication in human renal epithelial cells similar to clinical rr-NCCR variants. Group 2 and 3 viruses showed intermediate or no replication, respectively. A literature search revealed unnoticed group 1 mutations in BKPyV nephropathy, hemorrhagic cystitis, and disseminated disease. IMPORTANCE The NCCRs of polyomaviruses mediate silent persistence of the viral genome as well as the appropriately timed (re)activation of the viral life cycle. This study indicates that the basal BKPyV NCCR is critically controlled by a hierarchy of single TFBS in the archetype NCCR that direct, modulate, and execute the bidirectional early and late viral gene expression. The results provide new insights into how BKPyV NCCR functions as a viral sensor of host cell signals and shed new light on how transcription factors like Sp1 control bidirectional viral gene expression and contribute to replication and pathology.
Collapse
|
41
|
CHO JINHYOUNG, SHIN JAECHEON, CHO JUNGJAE, CHOI YUNGHYUN, SHIM JUNGHYUN, CHAE JUNGIL. Esculetin (6,7-dihydroxycoumarin): A potential cancer chemopreventive agent through suppression of Sp1 in oral squamous cancer cells. Int J Oncol 2014; 46:265-71. [DOI: 10.3892/ijo.2014.2700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/10/2014] [Indexed: 11/05/2022] Open
|
42
|
Meng XW, Koh BD, Zhang JS, Flatten KS, Schneider PA, Billadeau DD, Hess AD, Smith BD, Karp JE, Kaufmann SH. Poly(ADP-ribose) polymerase inhibitors sensitize cancer cells to death receptor-mediated apoptosis by enhancing death receptor expression. J Biol Chem 2014; 289:20543-58. [PMID: 24895135 PMCID: PMC4110268 DOI: 10.1074/jbc.m114.549220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.
Collapse
Affiliation(s)
- X. Wei Meng
- From the Division of Oncology Research and
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905 and
| | | | | | | | | | | | - Allan D. Hess
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - B. Douglas Smith
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - Judith E. Karp
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - Scott H. Kaufmann
- From the Division of Oncology Research and
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
43
|
Xu F, Zhu X, Han T, You X, Liu F, Ye L, Zhang X, Wang X, Yao Y. The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. Int J Oncol 2014; 45:255-63. [PMID: 24788380 DOI: 10.3892/ijo.2014.2411] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. We have previously reported that HBXIP promotes the proliferation and migration of breast cancer cells. S-phase kinase-associated protein 2 (Skp2) is another oncoprotein which is important for migration. In this study, we investigated whether Skp2 is involved in the migration enhanced by HBXIP in ovarian cancer. The expression of HBXIP and Skp2 in ovarian cancer tissues was examined by immunohistochemistry using tissue microarrays. The role of HBXIP and Skp2 in the migration of ovarian cancer cells was investigated by wound-healing assay and Transwell migration assay. The effect of HBXIP on Skp2 was assessed by reverse transcription polymerase chain reaction (RT-PCR), western blot analysis, luciferase reporter gene assays and chromatin immunoprecipitation in ovarian cancer cells (SKOV3 and CAOV3). We found that both HBXIP and Skp2 were highly expressed in ovarian cancer tissues. We observed that the overexpression of HBXIP enhanced the migration of ovarian cancer cells, while Skp2 siRNAs decreased the cell migration enhanced by HBXIP. The HBXIP siRNAs inhibited ovarian cancer cell migration and Skp2 rescued the migration inhibition induced by HBXIP siRNA. HBXIP could upregulate Skp2 at the levels of mRNA and protein in ovarian cancer cells. Moreover, HBXIP increased the activity of Skp2 promoter via binding to the transcription factor Sp1. HBXIP is highly expressed in ovarian cancer tissues. HBXIP enhances the migration of ovarian cancer cells. HBXIP was able to stimulate the activity of Skp2 promoter via transcription factor Sp1 thus promoting the migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| | - Xiaoming Zhu
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Xiaona You
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Fabao Liu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lihong Ye
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xiaodong Zhang
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yuanqing Yao
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
44
|
Thériault BL, Basavarajappa HD, Lim H, Pajovic S, Gallie BL, Corson TW. Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer. PLoS One 2014; 9:e91540. [PMID: 24626475 PMCID: PMC3953446 DOI: 10.1371/journal.pone.0091540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 02/06/2023] Open
Abstract
KIF14 (kinesin family member 14) is a mitotic kinesin and an important oncogene in several cancers. Tumor KIF14 expression levels are independently predictive of poor outcome, and in cancer cells KIF14 can modulate metastatic behavior by maintaining appropriate levels of cell adhesion and migration proteins at the cell membrane. Thus KIF14 is an exciting potential therapeutic target. Understanding KIF14's regulation in cancer cells is crucial to the development of effective and selective therapies to block its tumorigenic function(s). We previously determined that close to 30% of serous ovarian cancers (OvCa tumors) exhibit low-level genomic gain, indicating one mechanism of KIF14 overexpression in tumors. We now report on transcriptional and epigenetic regulation of KIF14. Through promoter deletion analyses, we identified one cis-regulatory region containing binding sites for Sp1, HSF1 and YY1. siRNA-mediated knockdown of these transcription factors demonstrated endogenous regulation of KIF14 overexpression by Sp1 and YY1, but not HSF1. ChIP experiments confirmed an enrichment of both Sp1 and YY1 binding to the endogenous KIF14 promoter in OvCa cell lines with high KIF14 expression. A strong correlation was seen in primary serous OvCa tumors between Sp1, YY1 and KIF14 expression, further evidence that these transcription factors are important players in KIF14 overexpression. Hypomethylation patterns were observed in primary serous OvCa tumors, suggesting a minor role for promoter methylation in the control of KIF14 gene expression. miRNA expression analysis determined that miR-93, miR-144 and miR-382 had significantly lower levels of expression in primary serous OvCa tumors than normal tissues; treatment of an OvCa cell line with miRNA mimics and inhibitors specifically modulated KIF14 mRNA levels, pointing to potential novel mechanisms of KIF14 overexpression in primary tumors. Our findings reveal multiple mechanisms of KIF14 upregulation in cancer cells, offering new targets for therapeutic interventions to reduce KIF14 in tumors, aiming at improved prognosis.
Collapse
Affiliation(s)
- Brigitte L. Thériault
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Halesha D. Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Harvey Lim
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Brenda L. Gallie
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Visual Science, Toronto Western Hospital Research Institute, Toronto, Ontario, Canada
- Departments of Molecular Genetics and Ophthalmology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| |
Collapse
|
45
|
Chae JI, Lee R, Cho J, Hong J, Shim JH. Specificity protein 1 is a novel target of 2,4-bis (p-hydroxyphenyl)-2-butenal for the suppression of human oral squamous cell carcinoma cell growth. J Biomed Sci 2014; 21:4. [PMID: 24423061 PMCID: PMC3928619 DOI: 10.1186/1423-0127-21-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023] Open
Abstract
Background The Maillard reaction is a chemical reaction occurring between a reducing sugar and an amino acid, generally requiring thermal processing. Maillard reaction products (MRPs) have antioxidant, antimutagenic, and antibacterial effects though 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242), a fructose-tyrosine MRP, appears to inhibit proliferation of cancer cells, its mechanism of action has not been studied in detail. The purpose of this study was to investigate the anti-proliferative effects of 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242) on two oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, through regulation of specificity protein 1 (Sp1). Results HPB242 treatment dramatically reduced the cell growth rate and apoptotic cell morphologies. Sp1 was significantly inhibited by HPB242 in a dose-dependent manner. Furthermore, cell cycle regulating proteins and anti-apoptotic proteins, which are known as Sp1 target genes, were altered at the molecular levels. The key important regulators in the cell cycle such as p27 were increased, whereas cell proliferation- and survival-related proteins such as cyclin D1, myeloid leukemia sequence 1 (Mcl-1) and survivin were significantly decreased by HPB242 or suppressed Sp1 levels, however pro-apoptotic proteins caspase3 and PARP were cleaved in HN22 and HSC4. Conclusions HPB242 may be useful as a chemotherapeutic agent for OSCC for the purpose of treatment and prevention of oral cancer and for the improvement of clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Republic of Korea.
| |
Collapse
|
46
|
Lee WS, Kwon J, Yun DH, Lee YN, Woo EY, Park MJ, Lee JS, Han YH, Bae IH. Specificity protein 1 expression contributes to Bcl-w-induced aggressiveness in glioblastoma multiforme. Mol Cells 2014; 37:17-23. [PMID: 24552705 PMCID: PMC3907011 DOI: 10.14348/molcells.2014.2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/11/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or β-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.
Collapse
Affiliation(s)
- Woo Sang Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | | | - Dong Ho Yun
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young Nam Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Eun Young Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Jae-Seon Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - In Hwa Bae
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| |
Collapse
|
47
|
Lee HE, Choi ES, Jung JY, You MJ, Kim LH, Cho SD. Inhibition of specificity protein 1 by dibenzylideneacetone, a curcumin analogue, induces apoptosis in mucoepidermoid carcinomas and tumor xenografts through Bim and truncated Bid. Oral Oncol 2013; 50:189-95. [PMID: 24309154 DOI: 10.1016/j.oraloncology.2013.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Dibenzylideneacetone (DBA), a curcumin analogue that has anti-cancer activity in a variety of tumor cells. In this study, we investigated the apoptotic effects of DBA and its molecular mechanism in human mucoepidermoid carcinoma (MEC) cell lines and tumor xenografts. MATERIAL AND METHODS The apoptotic effects and related molecular mechanisms of DBA on MEC cell lines were evaluated using cell viability assay, DAPI staining, Western blot analysis, reverse transcriptase-polymerase chain reaction (RT-PCR) and Dual-luciferase Reporter Assay. The anti-tumor activity using in vivo were determined by Nude mouse xenograft assay and histopathological examination. RESULTS DBA decreased cell viability and induced apoptosis in MEC cells. These events were accompanied by inhibition of specificity protein 1 (Sp1). DBA did not induce major changes in Sp1 mRNA and promoter activity. Furthermore, inhibition of protein synthesis by cycloheximide demonstrated that DBA decreased Sp1 protein stability, but DBA did not attenuate phosphorylation of eIF4E. DBA also increased Bim and truncated Bid (t-Bid) via Sp1. Finally, DBA exhibited significant anti-tumor activity in athymic nude mice xenografts bearing MC-3 cells by regulating Sp1, Bim and t-Bid without any systemic toxicity. CONCLUSION These results elucidate a crucial apoptotic mechanism of DBA and suggest that DBA may be a potent anticancer drug candidate for MEC.
Collapse
Affiliation(s)
- Heang-Eun Lee
- Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, JeonJu 561-756, Republic of Korea
| | - Eun-Sun Choi
- Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, JeonJu 561-756, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 314-701, Republic of Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Lee-Han Kim
- Division of Life Sciences, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, JeonJu 561-756, Republic of Korea.
| |
Collapse
|
48
|
Lee KA, Lee SH, Lee YJ, Baeg SM, Shim JH. Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells. Biomol Ther (Seoul) 2013; 20:273-9. [PMID: 24130923 PMCID: PMC3794523 DOI: 10.4062/biomolther.2012.20.3.273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/07/2012] [Accepted: 04/10/2012] [Indexed: 12/30/2022] Open
Abstract
Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The IC50 value of hesperidin was determined to be 152.3 μM in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 μM) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-G1 population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-xl in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Kyung-Ae Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University
| | | | | | | | | |
Collapse
|
49
|
KIM DONGWOOK, KO SEONMI, JEON YOUNGJOO, NOH YOUNGWOOCK, CHOI NAGJIN, CHO SUNGDAE, MOON HONGSEOP, CHO YOUNGSIK, SHIN JAECHEN, PARK SEONMIN, SEO KANGSEOK, CHOI JIYOUNG, CHAE JUNGIL, SHIM JUNGHYUN. Anti-proliferative effect of honokiol in oral squamous cancer through the regulation of specificity protein 1. Int J Oncol 2013; 43:1103-10. [DOI: 10.3892/ijo.2013.2028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/16/2013] [Indexed: 11/06/2022] Open
|
50
|
Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:541695. [PMID: 23970932 PMCID: PMC3736531 DOI: 10.1155/2013/541695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells.
Collapse
|