1
|
Hua X, Jin L, Fang Z, Weng Y, Zhang Y, Zhang J, Xie D, Tang Y, Guo S, Huang Y, Dai Y, Li J, Huang Z, Zhang X. TIA1-Mediated Stress Granules Promote the Neuroinflammation and Demyelination in Experimental Autoimmune Encephalomyelitis through Upregulating IL-31RA Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409086. [PMID: 39804990 PMCID: PMC11984900 DOI: 10.1002/advs.202409086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice. Deletion of TIA1 in the CNS alleviates neuroinflammation, suppresses demyelination and axonal damage, and reduces neuronal loss in EAE mice. Furthermore, alleviation of autophagy dysfunction and reduction of chronic persistent SGs are observed in Tia1Nestin-CKO EAE mice. Mechanistically, IL-31RA levels are decreased in Tia1Nestin-CKO EAE mice, which inhibit the downstream PI3K/AKT signaling pathway associated with IL-31RA, thereby enhancing autophagy and suppressing the NF-κB signaling pathway, further alleviating EAE symptoms. Knockdown of TIA1 in primary neurons and N2a cells treated with sodium arsenite also reduces the formation of SGs. These findings reveal an unrecognized role of TIA1-mediated SGs in promoting neuroinflammation and demyelination, offering novel therapeutic targets for MS.
Collapse
Affiliation(s)
- Xin Hua
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of NeurologyXuanwu Hospital Capital Medical UniversityNational Center for Neurological DisordersBeijing100053China
| | - Lingting Jin
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zheyu Fang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yiyun Weng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jingjing Zhang
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dewei Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yang Tang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Siyu Guo
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Yingying Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yilin Dai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jia Li
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhihui Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Xu Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
2
|
Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Gabriel KA, Palomino S, Li Y, Uhelski ML, Shiers S, Franco-Enzástiga Ú, Wangzhou A, Lesnak JB, Bandaru S, Shrivastava A, Inturi N, Albrecht PJ, Dockum M, Cervantes AM, Horton P, Funk G, North RY, Tatsui CE, Corrales G, Yousuf MS, Curatolo M, Gereau RW, Patwardhan A, Dussor G, Dougherty PM, Rice FL, Price TJ. Expansion of OSMR expression and signaling in the human dorsal root ganglion links OSM to neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645611. [PMID: 40236060 PMCID: PMC11996445 DOI: 10.1101/2025.03.26.645611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
RNA sequencing studies on human dorsal root ganglion (hDRG) from patients suffering from neuropathic pain show upregulation of OSM, linking this IL-6 family cytokine to pain disorders. In mice, however, OSM signaling causes itch behaviors through a direct effect on its cognate receptor expressed uniquely by pruriceptive sensory neurons. We hypothesized that an expansion in function of OSM-OSM receptor (OSMR) in sensory disorders in humans could be explained by species differences in receptor expression and signaling. Our in situ hybridization and immunohistochemical findings demonstrate broad expression of OSMR in DRG nociceptors and afferent fibers innervating the superficial and deep skin of humans. In patch-clamp electrophysiology, OSM directly activates human sensory neurons engaging MAPK signaling to promote action potential firing. Using CRISPR editing we show that OSM activation of MAPK signaling is dependent on OSMR and not LIFR in hDRG. Bulk, single-nuclei, and single-cell RNA-seq of OSM-treated hDRG cultures reveal expansive similarities in the transcriptomic signature observed in pain DRGs from neuropathic patients, indicating that OSM alone can orchestrate transcriptomic signatures associated with pain. We conclude that OSM-OSMR signaling via MAPKs is a critical signaling factor for DRG plasticity that may underlie neuropathic pain in patients.
Collapse
|
3
|
Einstien D, G S, Vishali V M S, A P, M P, Pallekonda S. Histopathological Insights into Primary Localized Cutaneous Amyloidosis: A Case Series. Cureus 2025; 17:e79603. [PMID: 40151750 PMCID: PMC11947714 DOI: 10.7759/cureus.79603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background Primary Localized Cutaneous Amyloidosis (PLCA) is a rare disorder characterized by amyloid deposition in the skin without systemic involvement. It includes lichen amyloidosis (LA), macular amyloidosis (MA), and biphasic amyloidosis. The pathogenesis is linked to chronic friction, keratinocyte damage, and in some cases, genetic predisposition. Histopathological examination remains the gold standard for diagnosis. Here, we present a series of nine cases of PLCA. Objective This case series aims to establish a correlation between the clinical manifestations of PLCA and the histopathological findings, including special stains, to improve diagnostic accuracy. Identifying these correlations is vital for differentiating PLCA subtypes, guiding treatment strategies, and understanding the underlying pathogenic mechanisms. Methods A retrospective analysis was conducted at Panimalar Medical College and Hospital, Chennai, India, reviewing nine biopsy-confirmed PLCA cases from January 2023 to December 2024. Clinical data, histopathological features, and staining characteristics (hematoxylin & eosin, Congo red, and crystal violet) were analyzed. Results Out of nine cases, LA was the predominant subtype (seven cases), followed by MA (two cases). Female predominance was observed (male-to-female ratio was 1:2), with an age range of 39-65 years. The upper limbs were the most frequently affected site. Pruritus was exclusively seen in LA, while hyperpigmentation was present in all cases. Histopathological analysis revealed amyloid deposits in the papillary dermis, epidermal hyperplasia, and inflammatory infiltration in LA. Congo red staining demonstrated characteristic apple-green birefringence under polarized light, confirming amyloid deposition. Conclusion The study reinforces the clinical and histopathological distinctiveness of PLCA subtypes. LA is strongly associated with chronic friction and pruritus, whereas MA presents with asymptomatic hyperpigmentation. Congo red and crystal violet stains remain indispensable for diagnosis. Despite advances in histopathology, therapeutic options remain limited, necessitating further research into targeted molecular treatments and genetic predispositions.
Collapse
Affiliation(s)
- Dinisha Einstien
- Pathology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| | - Sarumathy G
- Pathology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| | - Shobini Vishali V M
- Pathology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| | - Prathiba A
- Pathology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| | - Perumal M
- Dermatology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| | - Sruthi Pallekonda
- Pathology, Panimalar Medical College Hospital & Research Institute, Chennai, IND
| |
Collapse
|
4
|
Garrigue A, Kermasson L, Susini S, Fert I, Mahony CB, Sadek H, Luce S, Chouteau M, Cavazzana M, Six E, Le Bousse-Kerdilès MC, Anginot A, Souraud JB, Cormier-Daire V, Willems M, Sirvent A, Russello J, Callebaut I, André I, Bertrand JY, Lagresle-Peyrou C, Revy P. Human oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome. J Clin Invest 2025; 135:e180981. [PMID: 39847438 PMCID: PMC11910226 DOI: 10.1172/jci180981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM. While monoallelic loss-of-function (LoF) mutations in OSMR underlie autosomal dominant familial primary localized cutaneous amyloidosis, the in vivo consequences of human OSM deficiency have never been reported so far. Here, we identified 3 young individuals from a consanguineous family presenting with inherited severe bone marrow failure syndromes (IBMFS) characterized by profound anemia, thrombocytopenia, and neutropenia. Genetic analysis revealed a homozygous 1 base-pair insertion in the sequence of OSM associated with the disease. Structural and functional analyses showed that this variant causes a frameshift that replaces the C-terminal portion of OSM, which contains the FxxK motif that interacts with both OSMR and LIFR, with a neopeptide. The lack of detection and signaling of the mutant OSM suggests a LoF mutation. Analysis of zebrafish models further supported the role of the OSM/OSMR signaling in erythroid progenitor proliferation and neutrophil differentiation. Our study provides the previously uncharacterized and unexpectedly limited in vivo consequence of OSM deficiency in humans.
Collapse
Affiliation(s)
- Alexandrine Garrigue
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Équipe Labellisée LIGUE 2023, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Sandrine Susini
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Ingrid Fert
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Christopher B. Mahony
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hanem Sadek
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Sonia Luce
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Myriam Chouteau
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Marina Cavazzana
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
- Service de Biothérapie et d’Aphérèse, Hôpital Necker, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuelle Six
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | | | - Adrienne Anginot
- INSERM UMRS-MD 1197, Université de Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Jean-Baptiste Souraud
- Service Anatomo-Pathologie, Hôpital d’Instruction des Armées Begin, Saint-Mandé, France
| | - Valérie Cormier-Daire
- Paris Cité University, Imagine Institute, Paris, France
- Reference Center for Skeletal Dysplasia, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marjolaine Willems
- Medical Genetics Department, CHU de Montpellier, Montpellier, France
- Department of Pediatric Oncology and Haematology, Montpellier Hospital, Montpellier, France
| | - Anne Sirvent
- Medical Genetics Department, CHU de Montpellier, Montpellier, France
| | - Jennifer Russello
- Service d’Hématologie Biologique, CHU de Montpellier, Montpellier, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Isabelle André
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Julien Y. Bertrand
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chantal Lagresle-Peyrou
- Institut Imagine, Université Paris Cité, INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
- Centre d’Investigation Clinique Biothérapie, Groupe Hospitalier Universitaire Ouest, AP-HP, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Équipe Labellisée LIGUE 2023, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
5
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Stanescu LS, Ghemigian A, Ciobica ML, Nistor C, Ciuche A, Radu AM, Sandru F, Carsote M. Thyroid Malignancy and Cutaneous Lichen Amyloidosis: Key Points Amid RET Pathogenic Variants in Medullary Thyroid Cancer/Multiple Endocrine Neoplasia Type 2 (MEN2). Int J Mol Sci 2024; 25:9765. [PMID: 39337252 PMCID: PMC11431960 DOI: 10.3390/ijms25189765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
We aimed to provide an updated narrative review with respect to the RET pathogenic variants and their implications at the clinical and molecular level in the diagnosis of medullary thyroid cancer (MTC)/multiple endocrine neoplasia (MEN) type 2, particularly with respect to the presence of cutaneous lichen amyloidosis (CLA). We searched English-language, in extenso original articles with no timeline nor study design restriction that were published on PubMed. A traditional interplay stands for CLA and MTC in MEN2 (not MEN3) confirmation. While the connection has been reported for more than three decades, there is still a large gap in understanding and addressing it. The majority of patients with MEN2A-CLA have RET pathogenic variants at codon 634; hence, it suggests an involvement of this specific cysteine residue in both disorders (most data agree that one-third of C634-positive subjects have CLA, but the ranges are between 9% and 50%). Females seem more prone to MEN2-CLA than males. Non-C634 germline RET pathogenic variants included (at a low level of statistical evidence) the following: RET V804M mutation in exon 14 for MTC-CLA (CLA at upper back); RET S891A mutation in exon 15 binding OSMR variant G513D (familial MTC and CLA comprising the lower legs to thighs, upper back, shoulders, arms, and forearms); and C611Y (CLA at interscapular region), respectively. Typically, CLA is detected at an early age (from childhood until young adulthood) before the actual MTC identification unless RET screening protocols are already applied. The time frame between CLA diagnosis and the identification of RET pathogenic variants was between 5 and 60 years according to one study. The same RET mutation in one family is not necessarily associated with the same CLA presentation. In MTC/MEN2 subjects, the most affected CLA area was the scapular region of the upper back. Alternatively, another hypothesis highlighted the fact that CLA is secondary to long-term prurit/notalgia paresthetica (NP) in MTC/MEN2. OSMR p. G513D may play a role in modifying the evolutionary processes of CLA in subjects co-harboring RET mutations (further studies are necessary to sustain this aspect). Awareness in CLA-positive patients is essential, including the decision of RET testing in selected cases.
Collapse
Affiliation(s)
- Laura-Semonia Stanescu
- PhD Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Adina Ghemigian
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, "Dr. Carol Davila" Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Thoracic Surgery Department, "Dr. Carol Davila" Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Adrian Ciuche
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Thoracic Surgery Department, "Dr. Carol Davila" Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Andreea-Maria Radu
- Department of Dermatovenerology, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Department of Dermatovenerology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Department of Dermatovenerology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
7
|
Li X, Pu Z, Xu G, Yang Y, Cui Y, Zhou X, Wang C, Zhong Z, Zhou S, Yin J, Shan F, Yang C, Jiao L, Chen D, Huang J. Hypoxia-Induced Myocardial Hypertrophy Companies with Apoptosis Enhancement and p38-MAPK Pathway Activation. High Alt Med Biol 2024; 25:186-196. [PMID: 38647652 DOI: 10.1089/ham.2023.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Li, Xiaoxu, Zhijun Pu, Gang Xu, Yidong Yang, Yu Cui, Xiaoying Zhou, Chenyuan Wang, Zhifeng Zhong, Simin Zhou, Jun Yin, Fabo Shan, Chengzhong Yang, Li Jiao, Dewei Chen, and Jian Huang. Hypoxia-induced myocardial hypertrophy companies with apoptosis enhancement and p38-MAPK pathway activation. High Alt Med Biol. 25:186-196, 2024. Background: Right ventricular function and remodeling are closely associated with symptom severity and patient survival in hypoxic pulmonary hypertension. However, the detailed molecular mechanisms underlying hypoxia-induced myocardial hypertrophy remain unclear. Methods: In Sprague-Dawley rats, hemodynamics were assessed under both normoxia and hypobaric hypoxia at intervals of 7 (H7), 14 (H14), and 28 (H28) days. Morphological changes in myocardial tissue were examined using hematoxylin and eosin (HE) staining, while myocardial hypertrophy was evaluated with wheat germ agglutinin (WGA) staining. Apoptosis was determined through TUNEL assays. To further understand the mechanism of myocardial hypertrophy, RNA sequencing was conducted, with findings validated via Western blot analysis. Results: The study demonstrated increased hypoxic pulmonary hypertension and improved right ventricular diastolic and systolic function in the rat models. Significant elevations in pulmonary arterial systolic pressure (PASP), mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP), and the absolute value of +dp/dtmax were observed in the H14 and H28 groups compared with controls. In addition, right ventricular systolic pressure (RVSP), -dp/dtmax, and the mean dp/dt during isovolumetric relaxation period were notably higher in the H28 group. Heart rate increased in the H14 group, whereas the time constant of right ventricular isovolumic relaxation (tau) was reduced in both H14 and H28 groups. Both the right heart hypertrophy index and the heart weight/body weight ratio (HW/BW) were elevated in the H14 and H28 groups. Myocardial cell cross-sectional area also increased, as shown by HE and WGA staining. Western blot results revealed upregulated HIF-1α levels and enhanced HIF-2α expression in the H7 group. In addition, phosphorylation of p38 and c-fos was augmented in the H28 group. The H28 group showed elevated levels of Cytochrome C (Cyto C), whereas the H14 and H28 groups exhibited increased levels of Cleaved Caspase-3 and the Bax/Bcl-2 ratio. TUNEL analysis revealed a rise in apoptosis with the extension of hypoxia duration in the right ventricle. Conclusions: The study established a link between apoptosis and p38-MAPK pathway activation in hypoxia-induced myocardial hypertrophy, suggesting their significant roles in this pathological process.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhijun Pu
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Gang Xu
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yidong Yang
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Xiaoying Zhou
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Chenyuan Wang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhifeng Zhong
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Simin Zhou
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jun Yin
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Da-ping Hospital, Army Medical University, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| |
Collapse
|
8
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
9
|
Tirone B, Cazzato G, Ambrogio F, Foti C, Bellino M. Lichen Amyloidosis in an Atopic Patient Treated with Dupilumab: A New Therapeutic Option. Diseases 2024; 12:94. [PMID: 38785749 PMCID: PMC11119208 DOI: 10.3390/diseases12050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Lichen amyloidosis (LA) is a type of cutaneous amyloidosis characterized by brownish hyperkeratotic and itchy papules on the lower leg, back, forearm, or thigh. It is associated with itching and atopic dermatitis (AD) according to an etiopathogenetic mechanism that has not yet been fully elucidated. Currently, the available therapies for this condition include oral antihistamines, laser, cyclosporine, topical corticosteroids, and phototherapy, but, in light of the overlap with AD, Dupilumab may also be indicated. We report the case of a female, 52 years old, who had been suffering from AD and LA for about 27 years. She had lesions attributable to both diseases on the trunk and lower limbs associated with severe itching and had proved resistant to cyclosporine therapy. It was decided to opt for Dupilumab with the induction of 2 fl of 300 mg and maintenance with 1 fl every other week. The therapy proved to be effective, returning a total resolution of both diseases one year after the beginning of the treatment. Dupilumab demonstrated efficacy and safety in the LA related to AD and led to clinical and quality of life improvements in this patient. Therefore, Dupilumab should be considered when treating LA. Further studies should be conducted focusing on the efficacy of the drug on LA (whether or not related to AD), changes in the skin lesions after discontinuation, and the safety of long-term application.
Collapse
Affiliation(s)
- Benedetta Tirone
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (B.T.); (F.A.); (C.F.); (M.B.)
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (B.T.); (F.A.); (C.F.); (M.B.)
| | - Caterina Foti
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (B.T.); (F.A.); (C.F.); (M.B.)
| | - Marco Bellino
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (B.T.); (F.A.); (C.F.); (M.B.)
| |
Collapse
|
10
|
Wang Y, Wang R, Zhao Y, Cao S, Li C, Wu Y, Ma L, Liu Y, Yao Y, Jiao Y, Chen Y, Liu S, Zhang K, Wei M, Yang C, Yang G. Discovery of Selective and Potent ATR Degrader for Exploration its Kinase-Independent Functions in Acute Myeloid Leukemia Cells. Angew Chem Int Ed Engl 2024; 63:e202318568. [PMID: 38433368 DOI: 10.1002/anie.202318568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
ATR has emerged as a promising target for anti-cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase-independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis-targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i, exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1. Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53-mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti-proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti-AML activity is regulated by the kinase-independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.
Collapse
Affiliation(s)
- Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Ruonan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yanli Zhao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Sheng Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Chen Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yanjie Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Lan Ma
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Ying Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhong Yao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jiao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yukun Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
11
|
Pálla S, Kuroli E, Tóth EA, Hidvégi B, Holló P, Medvecz M. Primary Localized Cutaneous Amyloidosis in Central Europe: A Retrospective Monocentric Study on Epidemiology and Therapy. J Clin Med 2023; 12:7672. [PMID: 38137741 PMCID: PMC10743860 DOI: 10.3390/jcm12247672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Amyloid deposits can be the cause of many chronic diseases. Primary localized cutaneous amyloidosis (PLCA) is a chronic dermatologic condition with amyloid deposits in the papillary dermis. The most common types of the keratinocyte-derived form of PLCA include macular (MA), lichen (LA), and biphasic (BA) amyloidosis. The estimated prevalence of PLCA in the Asian population is 0.98/10,000, which is higher than in the European population; thus, epidemiologic data on PLCA in the Caucasian population are limited. We performed a retrospective single-center study analyzing epidemiologic characteristics of a Central European PLCA population. Epidemiologic data regarding age, sex, skin phototype (Fitzpatrick scale I-VI), disease duration, comorbidities, history of atopy, and family history of PLCA were collected. Clinical characteristics, localization of PLCA lesions, applied therapies and treatment outcomes were also analyzed. Dermoscopic characteristics were also evaluated. A total of 41 patients diagnosed with PLCA were included, with 22 presenting with macular, 18 with lichen, and 1 with biphasic amyloidosis. The male/female ratio was 16/25, and mean age at diagnosis was 54.6 ± 15.2 years (range 27-87 years). The mean age at the onset of PLCA was 53 ± 16.1 years (range 19-79 years) in MA, 46.7 ± 18.2 years (range 14-73 years) in LA, and 26 years in BA. The interscapular region in MA and the extensor surface of the lower extremities in LA proved to be localization-related areas. In our center, a wide range of therapeutic options was applied, with the most prescribed being topical corticosteroids in all types of PLCA. We presented a retrospective, monocentric study on the epidemiology of PLCA in the Central European region. By examining the medical data of a significant number of PLCA patients, we compared our epidemiologic data with that of the Asian PLCA population. Due to the rarity of the condition, further randomized controlled trials and guidelines are needed to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Sára Pálla
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Alexa Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Bernadett Hidvégi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
12
|
Suehiro M, Numata T, Saito R, Yanagida N, Ishikawa C, Uchida K, Kawaguchi T, Yanase Y, Ishiuji Y, McGrath J, Tanaka A. Oncostatin M suppresses IL31RA expression in dorsal root ganglia and interleukin-31-induced itching. Front Immunol 2023; 14:1251031. [PMID: 38035099 PMCID: PMC10687395 DOI: 10.3389/fimmu.2023.1251031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Background Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by intermittent itchy rash. Type 2 inflammatory cytokines such as interleukin (IL)-4, IL-13, and IL-31 are strongly implicated in AD pathogenesis. Stimulation of IL-31 cognate receptors on C-fiber nerve endings is believed to activate neurons in the dorsal root ganglion (DRG), causing itch. The IL-31 receptor is a heterodimer of OSMRβ and IL31RA subunits, and OSMRβ can also bind oncostatin M (OSM), a pro-inflammatory cytokine released by monocytes/macrophages, dendritic cells, and T lymphocytes. Further, OSM expression is enhanced in the skin lesions of AD and psoriasis vulgaris patients. Objective The current study aimed to examine the contributions of OSM to AD pathogenesis and symptom expression. Methods The expression levels of the OSM gene (OSM) and various cytokine receptor genes were measured in human patient skin samples, isolated human monocytes, mouse skin samples, and mouse DRG by RT-qPCR. Itching responses to various pruritogens were measured in mice by counting scratching episodes. Results We confirmed overexpression of OSM in skin lesions of patients with AD and psoriasis vulgaris. Monocytes isolated from the blood of healthy subjects overexpressed OSM upon stimulation with IL-4 or GM-CSF. Systemic administration of OSM suppressed IL31RA expression in the mouse DRG and IL-31-stimulated scratching behavior. In contrast, systemic administration of OSM increased the expression of IL-4- and IL-13-related receptors in the DRG. Conclusion These results suggest that OSM is an important cytokine in the regulation of skin monocytes, promoting the actions of IL-4 and IL-13 in the DRG and suppressing the action of IL-31. It is speculated that OSM released from monocytes in skin modulates the sensitivity of DRG neurons to type 2 inflammatory cytokines and thereby the severity of AD-associated skin itch.
Collapse
Affiliation(s)
- Masataka Suehiro
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomofumi Numata
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Saito
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nozomi Yanagida
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chie Ishikawa
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazue Uchida
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawaguchi
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yozo Ishiuji
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - John McGrath
- St John’s Institute of Dermatology, King’s College London, London, United Kingdom
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Zheng Y, Zhang J, Guo T, Cao J, Wang L, Zhang J, Pang X, Gao F, Sun H, Xiao H. Canine interleukin-31 binds directly to OSMRβ with higher binding affinity than to IL-31RA. 3 Biotech 2023; 13:302. [PMID: 37588794 PMCID: PMC10425310 DOI: 10.1007/s13205-023-03724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Interleukin-31 (IL-31) is a pro-inflammatory cytokine involved in skin inflammation and tumor progression. The IL-31 signaling cascade is initiated by its binding to two receptors, IL-31 receptor alpha (IL-31RA) and oncostatin M receptor subunit beta (OSMRβ). The previous study suggested that human IL-31 (hIL-31) directly interacts with IL-31RA and OSMRβ, independently, but the binding ability of hIL-31 to IL-31RA is stronger than to OSMRβ. In different to its human ortholog, feline IL-31 (fIL-31) has a higher binding affinity for feline OSMRβ. However, the binding pattern of canine IL-31 to its receptors remains to be elucidated. In this study, we purified the recombinant canine IL-31 (rcIL-31) protein and revealed its secondary structure to be mainly composed of alpha-helices. Moreover, in vitro studies show that rcIL-31 has the ability to induce the phosphorylation of signal transducer activator of transcription 3 (STAT3) and STAT5 in DH-82 cells. In the following, the binding efficacies of bioactive rcIL-31 for its individual receptor components have been measured using a flow cytometry assay. The result demonstrates that correctly refolded rcIL-31 binds independently with cIL-31RA and cOSMRβ which were expressed on the cell surface. Of note, rcIL-31 has a greater than tenfold higher affinity to OSMRβ than to IL-31RA. Additionally, we demonstrated that D1-D4, especially D4 of cOSMRβ, is crucial for its binding to cIL-31. Furthermore, this study proved that rcIL-31 has a high binding affinity to the soluble cOSMRβ with a KD value of 3.59 × 10-8 M. The results presented in the current study will have a significant implication in the development of drugs or antibodies against diseases induced by cIL-31 signaling.
Collapse
Affiliation(s)
- Yuxin Zheng
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jing Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Tianling Guo
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jin Cao
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Lixian Wang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jie Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Hua Sun
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
14
|
Liu H, Qiu B, Yang H, Zheng W, Luo Y, Zhong Y, Lu P, Chen J, Luo Y, Liu J, Yang B. AHNAK, regulated by the OSM/OSMR signaling, involved in the development of primary localized cutaneous amyloidosis. J Dermatol Sci 2023:S0923-1811(23)00111-1. [PMID: 37100691 DOI: 10.1016/j.jdermsci.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Primary localized cutaneous amyloidosis (PLCA) is a chronic skin disease characterized by aberrant keratinocyte differentiation, epidermal hyperproliferation, and amyloid deposits. Previously, we demonstrated OSMR loss-function mutants enhanced basal keratinocyte differentiation through the OSMR/STAT5/KLF7 signaling in PLCA patients. OBJECTIVE To investigate the underlying mechanisms involved in basal keratinocyte proliferation in PLCA patients that remain unclear. METHODS Patients with pathologically confirmed PLCA visiting the dermatologic outpatient clinic were involved in the study. Laser capture microdissection and mass spectrometry analysis, gene-edited mice, 3D human epidermis culture, flow cytometry, western blot, qRT-PCR and RNA sequencing were used to explore the underlying molecular mechanisms. RESULTS In this study, we found that AHNAK peptide fragments were enriched in the lesions of PLCA patients, as detected by laser capture microdissection and mass spectrometry analysis. The upregulated expression of AHNAK was further confirmed using immunohistochemical staining. qRT-PCR and flow cytometry revealed that pre-treatment with OSM can inhibit AHNAK expression in HaCaT cells, NHEKs, and 3D human skin models, but OSMR knockout or OSMR mutations abolished this down-regulation trend. Similar results were obtained in wild-type and OSMR knockout mice. More importantly, EdU incorporation and FACS assays demonstrated the knockdown of AHNAK could induce G1 phase cell cycle arrest and inhibit keratinocyte proliferation. Furthermore, RNA sequencing revealed that AHNAK knockdown regulated keratinocyte differentiation. CONCLUSION Taken together, these data indicated that the elevated expression of AHNAK by OSMR mutations led to hyperproliferation and overdifferentiation of keratinocytes, and the discovered mechanism might provide insights into potential therapeutic targets for PLCA.
Collapse
Affiliation(s)
- Huiting Liu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Biying Qiu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Huan Yang
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Wen Zheng
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yingying Luo
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yadan Zhong
- Department of Dermatology, The First People's Hospital of Foshan, Foshan 528010, China
| | - Ping Lu
- Department of Science & Education, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Junyi Chen
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Ying Luo
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jun Liu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; Joint Laboratory of Dermatology Hospital, Southern Medical University and China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Guangzhou 510091, China.
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; Joint Laboratory of Dermatology Hospital, Southern Medical University and China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Guangzhou 510091, China; Guangdong-Hong Kong Joint Laboratory of Dermatology Research, Guangzhou 510091, China.
| |
Collapse
|
15
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
16
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
18
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
19
|
Chen YH, Spencer S, Laurence A, Thaventhiran JE, Uhlig HH. Inborn errors of IL-6 family cytokine responses. Curr Opin Immunol 2021; 72:135-145. [PMID: 34044328 PMCID: PMC8591178 DOI: 10.1016/j.coi.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023]
Abstract
The IL-6 family of cytokines mediates functions in host protective immunity, development of multiple organs, tissue regeneration and metabolism. Inborn errors in cytokines or cytokine receptor units highlight specific roles for IL-6, IL-11, LIF, OSM, and CLC signaling whereas incomplete loss-of-function variants in the common receptor chain GP130 encoded by IL6ST or the transcription factor STAT3, as well as genes that affect either GP130 glycosylation (PGM3) or STAT3 transcriptional control (ZNF341) lead to complex phenotypes including features of hyper-IgE syndrome. Gain-of-function variants in the GP130-STAT3 signaling pathway cause immune dysregulation disorders. Insights into IL-6 family cytokine signaling inform on therapeutic application in immune-mediated disorders and potential side effects such as infection susceptibility.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah Spencer
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Biomedical Research Center, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Amyloidosis cutis dyschromica cases caused by GPNMB mutations with different inheritance patterns. J Dermatol Sci 2021; 104:48-54. [PMID: 34551863 DOI: 10.1016/j.jdermsci.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/04/2021] [Accepted: 08/08/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Amyloidosis cutis dyschromica (ACD) is a rare form of primary cutaneous amyloidosis featured by reticulate dotted hypo- and hyperpigmentation. Recently, loss-of-function mutations in GPNMB, encoding glycoprotein (transmembrane) nonmetastatic melanoma protein B, were found in autosomal-recessive or semi-dominant ACD. OBJECTIVE This study aims to detect the genetic defect underlying ACD in nine separate cases and to investigate the functional consequences of the mutants. METHODS Nine ACD cases were collected including eight with autosomal-recessive pattern and one with autosomal-dominant pattern. Whole-exome sequencing or Sanger sequencing of the GPNMB gene was performed to detect the pathogenic mutations. Haplotype analysis was employed to determine the origin of mutation c.565C > T using adjacent highly polymorphic SNPs. Immunoblotting and subcellular localization assessments were performed to evaluate the expression of the mutants using HEK293 cells transfected with the GPNMB constructs. RESULTS We detected four recurrent mutations (c.393 T > G, p.Y131*; c.565C > T, p.R189*; c.1056delT, p.P353Lfs*20; c.1238 G > C, p.C413S) and two novel mutations (c.935delA, p.N312Tfs*4; c.969 T > A, p.C323*) in GPNMB. Mutation c.565C > T found in six separate ACD cases shared a common haplotype. The two novel mutations caused a decreased abundance of truncated proteins. The c.1238 G > C mutation, which was detected in the autosomal-dominant case, caused abnormal reticular subcellular localization of the protein. A major percentage of wildtype changed its expression pattern when co-expressed with this mutant. CONCLUSIONS Our findings proved that the recurrent mutation c.565C > T originated from a founder effect. The autosomal-dominant ACD associated mutation p.C413S played its pathogenic role through a dominant-negative effect on wild-type GPNMB. This study expands the genotype and inherited modes of ACD and improves our understanding of the pathogenesis of this disorder.
Collapse
|
21
|
Bourguiba R, Bachmeyer C, Moguelet P, Kaaki S, Ory C, Touchard G, Cattan E, Georgin-Lavialle S, Colombat M, Valleix S. LC-MS/MS and immuno-electron subtyping combined with genetics show that OSMR mutations cause amyloid deposition of keratins 5/14 in familial primary localized cutaneous amyloidosis. J Eur Acad Dermatol Venereol 2021; 36:e66-e68. [PMID: 34459039 DOI: 10.1111/jdv.17630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022]
Affiliation(s)
- R Bourguiba
- Service de Médecine Interne, Hôpital Tenon, AP-HP, Paris, France
| | - C Bachmeyer
- Service de Médecine Interne, Hôpital Tenon, AP-HP, Paris, France
| | - P Moguelet
- Service d'Anatomo-Pathologie, Hôpital Tenon, AP-HP, Paris, France
| | - S Kaaki
- Service d'Anatomie et Cytologie Pathologique, Unité de Pathologie Ultrastructurale, CHU Poitiers and Centre de Référence Amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, CHU Poitiers, Poitiers, France
| | - C Ory
- Service d'Anatomie et Cytologie Pathologique, Unité de Pathologie Ultrastructurale, CHU Poitiers and Centre de Référence Amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, CHU Poitiers, Poitiers, France
| | - G Touchard
- Service d'Anatomie et Cytologie Pathologique, Unité de Pathologie Ultrastructurale, CHU Poitiers and Centre de Référence Amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, CHU Poitiers, Poitiers, France
| | - E Cattan
- Cabinet de Dermatologie, Pantin, France
| | | | - M Colombat
- Service d'Anatomie et Cytologie Pathologique, Institut Universitaire du Cancer, CHU Toulouse, Université Paul Sabatier, Toulouse, France
| | - S Valleix
- Laboratoire de Biologie et Génétique Moléculaires, Hôpital Cochin, AP-HP.CUP, Université de Paris, Paris, France
| |
Collapse
|
22
|
Chen J, Yang H, Xu Z, Lu P, Yuan L, Xue Y, Xue R, Yang B. Diagnosis of Primary Cutaneous Amyloidosis by Rapid 4,6-Diamidino-2-Phenylindole Staining. Dermatology 2021; 238:368-376. [PMID: 34515096 PMCID: PMC8985017 DOI: 10.1159/000518082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Quick and accurate diagnosis of primary cutaneous amyloidosis (PCA) may be difficult because its symptoms are often subtle and nonspecific. OBJECTIVE We sought to review the literature on the roles of various staining methods in the diagnosis of amyloidosis and demonstrate added benefits of using rapid 4,6-diamidino-2-phenylindole (DAPI) staining in the diagnosis of PCA. METHODS Three groups of cases, namely, PCA, neurodermatitis, and prurigo nodularis, were retrieved from a computerized pathology database for study, and their paraffin-embedded tissue blocks were cut following standard procedures. The tissue sections were stained with three stains: hematoxylin-eosin (HE), Congo red, and DAPI stains, and examined under the microscope to compare the staining patterns of these three methods. We also performed amyloid keratin and apolipoprotein E (APOE) staining on the sections of PCA in order to further support our conclusion. The PCA sections were read by junior and senior dermatopathologists for comparison. RESULTS The sensitivity of DAPI staining for PCA was significantly higher than that of Congo red staining and HE staining (p < 0.001). This statement holds true whether the experiment was grouped in one sample or was divided into groups of junior and senior dermatopathologists (p < 0.001). The DAPI-positive staining areas, except for the nuclei, were consistent with the amyloid deposition areas. In this study, DAPI staining had a sensitivity of 98.6% and a specificity of 100%. CONCLUSION DAPI staining could serve as a useful technique to establish the diagnosis of PCA, and its high efficacy in diagnosing PCA makes it less dependent on the experience levels of the evaluators. Additionally, the binding of DAPI to the A-T-rich sequence of double-stranded DNA suggests that amyloid may contain DNA or a similarly structured nucleic acid.
Collapse
Affiliation(s)
- Junchen Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huan Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhijun Xu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China,
| | - Ping Lu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Liyan Yuan
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yaohua Xue
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ruzeng Xue
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
24
|
Di Salvo E, Allegra A, Casciaro M, Gangemi S. IL-31, itch and hematological malignancies. Clin Mol Allergy 2021; 19:8. [PMID: 34118946 PMCID: PMC8199420 DOI: 10.1186/s12948-021-00148-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Pruritus is one of the most common symptoms experienced by neoplastic patients. The pathogenesis of neoplastic itch is complex and multifactorial and could be due to an unbalanced production of humoral mediators by altered immune effector cells. IL-31 is a pro-inflammatory cytokine produced by CD4 + T helper cells. The aim of this review was to evaluate the role of this Th2 cytokine and its receptor IL-31RA, in the onset of neoplastic pruritus. We analysed scientific literature looking for the most relevant original articles linking IL-31to itch in oncologic diseases. Interleukin-31 seems to be a main itch mediator in several hematologic disease such as Cutaneous T cells lymphomas. In these patients IL-31 was positively linked to itch level, and IL-31 matched with disease stage. IL-31 seems to play an important role in the signalling pathway involved in pruritus, but it is also suggested to play a proinflammatory and immunomodulatory role which could play a part in the progression of the neoplastic disease. Further studies will be fundamental in facing pruritus in oncologic patients, since this problem compromise their quality of life worsening an already critic picture.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| |
Collapse
|
25
|
Schmidt-Arras D, Rose-John S. Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Front Cell Dev Biol 2021; 9:688314. [PMID: 34141712 PMCID: PMC8204807 DOI: 10.3389/fcell.2021.688314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor but we now know that the cytokine plays a pivotal role in the orchestration of inflammatory processes as well as in inflammation associated cancer. Moreover, IL-6 is involved in metabolic regulation and it has been shown to be involved in major neural activities such as neuroprotection, which can help to repair and to reduce brain damage. Receptor complexes of all members formed at the plasma membrane contain one or two molecules of the signaling receptor subunit GP130 and the mechanisms of signal transduction are well understood. IL-6 type cytokines can also signal from endomembranes, in particular the endosome, and situations have been reported in which endocytosis of receptor complexes are a prerequisite of intracellular signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial activation of downstream signals. We here summarize the molecular mechanisms underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance for pathogenic processes.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
26
|
Rahman OU, Kim J, Mahon C, Jelani M, Kang C. Two missense mutations in GPNMB cause autosomal recessive amyloidosis cutis dyschromica in the consanguineous pakistani families. Genes Genomics 2021; 43:471-478. [PMID: 33687658 DOI: 10.1007/s13258-021-01071-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Amyloidosis cutis dyschromica (ACD) is a rare variant of cutaneous amyloidosis. This disorder often clusters in families, and it has been suggested that genetic factors might be involved in its development. OBJECTIVE To identify the genetic causes of ACD, we recruited a consanguineous Pakistani family with multiple cases of ACD that display a recessive mode of inheritance. METHODS We performed whole-exome sequencing of samples from 7 members of this family, followed by bioinformatic and in silico analyses to identify the causative variant. For the replication study, we recruited a British family with Pakistani ancestry, and sequenced all exons of glycoprotein non-metastatic melanoma protein b (GPNMB) to identify mutations. We also investigated effects of the mutations on the stability of the GPNMB protein using the I-TASSER three-dimensional modeling tool. RESULTS We found a novel homozygous mutation, p.Gly363Val (c.1088 G>T), in GPNMB in all affected cases. In a replication study, another homozygous missense mutation in GPNMB, pIle174Met (c.522 C>G), was carried by the affected son. The two mutations were not observed in our in-house data set comprising 217 healthy Pakistani individuals or in The Genome Aggregation Database. Our structural modeling of GPNMB suggested that p.Gly363Val enhanced its stability, whereas p.Ile174Met caused instability. CONCLUSIONS This study reports two novel missense mutations in two Pakistani families that cause ACD. The mutations appear to influence GPNMB stability, as revealed by protein modeling.
Collapse
Affiliation(s)
- Obaid Ur Rahman
- Biochemistry Department, Swat Medical College, Swat, Pakistan
| | - Jeena Kim
- Department of Biotechnology, Sungshin Women's University, Seoul, Republic of Korea
| | - Caroline Mahon
- Department of Dermatology, Christchurch School of Medicine, Christchurch Hospital, University of Otago, Christchurch, New Zealand
| | - Musharraf Jelani
- Centre for Omic Sciences, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Changsoo Kang
- Department of Biotechnology, Sungshin Women's University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
28
|
Jie Y, Peng W, Li YY. Identification of novel candidate biomarkers for pancreatic adenocarcinoma based on TCGA cohort. Aging (Albany NY) 2021; 13:5698-5717. [PMID: 33591944 PMCID: PMC7950294 DOI: 10.18632/aging.202494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is the most serious solid tumor type throughout the world. The present study aimed to identify novel biomarkers and potential efficacious small drugs in PAAD using integrated bioinformatics analyses. A total of 4777 differentially expressed genes (DEGs) were filtered, 2536 upregulated DEGs and 2241 downregulated DEGs. Weighted gene co-expression network analysis was then used and identified 12 modules, of which, blue module with the most significant enrichment result was selected. KEGG and GO enrichment analyses showed that all DEGs of blue module were enriched in EMT and PI3K/Akt pathway. Three hub genes (ITGB1, ITGB5, and OSMR) were determined as key genes with higher expression levels, significant prognostic value and excellent diagnostic efficiency for PAAD. Additionally, some small molecule drugs that possess the potential to treat PAAD were screened out, including thapsigargin (TG). Functional in vitro experiments revealed that TG repressed cell viability via inactivating the PI3K/Akt pathway in PAAD cells. Totally, our findings identified three key genes implicated in PAAD and screened out several potential small drugs to treat PAAD.
Collapse
Affiliation(s)
- Yang Jie
- Department of Pharmacy, Shandong Provincial Hospital, Jinan 250022, Shandong, P.R. China
| | - Wang Peng
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, P.R. China
| | - Yuan-Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, P.R. China
| |
Collapse
|
29
|
Hashimoto T, Nattkemper LA, Kim HS, Kursewicz CD, Fowler E, Shah SM, Nanda S, Fayne RA, Paolini JF, Romanelli P, Yosipovitch G. Itch intensity in prurigo nodularis is closely related to dermal interleukin-31, oncostatin M, IL-31 receptor alpha and oncostatin M receptor beta. Exp Dermatol 2021; 30:804-810. [PMID: 33428793 DOI: 10.1111/exd.14279] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Prurigo nodularis (PN) is a chronic skin dermatosis with hyperkeratotic and intensely pruritic nodules. Managing PN-associated itch is difficult because its aetiology is still unknown. This study aimed to investigate the correlation between itch intensity in PN and the expression of a pruritogenic cytokine interleukin (IL)-31, its receptor complex components IL-31 receptor α (IL-31RA) and oncostatin M receptor β (OSMRβ), and oncostatin M (OSM), which is a ligand of OSMR β, through immunofluorescence staining examination. Itch intensity in PN was closely correlated with the number of dermal IL-31(+) cells (Spearman's r = 0.551, p < 0.05), dermal IL-31RA(+) cells (r = 0.475, p < 0.05) and dermal OSM(+) cells (r = 0.505, p < 0.05). In addition, the number of dermal OSMRβ (+) cells was increased in PN (t test, p < 0.05), despite not being correlated with itch intensity (Spearman's r = 0.375, p > 0.05). Major cellular sources of dermal IL-31 were T cells (27.0% of total IL-31-expressing cells) and macrophages (35.0%), while those of OSM were mainly T cells (49.8%) and mast cells (26.8%). IL-31RA-expressing dermal cells were mostly mast cells (49.3%) and macrophages (36.6%), and OSMRβ was mainly expressed by macrophages (51.8%) in the dermis. These findings indicate that IL-31 (mainly from macrophages and T cells) and OSM (principally from T cells and mast cells) stimulate dermal cells expressing IL-31RA and OSMRβ (e.g. macrophages), which may further promote itch and inflammation in PN. This complex dermal milieu of cell/cytokine/receptor network can be a therapeutic target for PN-associated itch.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Leigh A Nattkemper
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Hei Sung Kim
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Christina D Kursewicz
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Emilie Fowler
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Serena M Shah
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Sonali Nanda
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rachel A Fayne
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - Paolo Romanelli
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
30
|
Liu J, Chen J, Zhong Y, Yu X, Lu P, Feng J, Zhang X, Ma S, Yang C, Yang B, Rong Z. OSMRβ mutants enhance basal keratinocyte differentiation via inactivation of the STAT5/KLF7 axis in PLCA patients. Protein Cell 2021; 12:653-661. [PMID: 33502684 PMCID: PMC8310549 DOI: 10.1007/s13238-020-00818-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Junchen Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yadan Zhong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoling Yu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Ping Lu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chao Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China. .,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
31
|
Fourzali K, Yosipovitch G. Genodermatoses with itch as a prominent feature. J Eur Acad Dermatol Venereol 2020; 35:807-814. [PMID: 32977353 DOI: 10.1111/jdv.16963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
A number of inherited conditions cause chronic itch as a part of the recognized phenotype. Advances in the understanding of the genetic factors that cause these diseases elucidate the molecular underpinning of itch as a symptom. Our knowledge of the causes of chronic itch has also advanced, providing an opportunity to integrate the genetic pathophysiology with the molecular landscape of chronic itch mediators. This article reviews select genodermatoses that have itch as a predominant feature with a focus on the pathophysiology of the disease, how it may lead to itch and potential therapeutic targets.
Collapse
Affiliation(s)
- K Fourzali
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Fawzi MMT, Gawdat HI, Mahmoud SB, El-Hawary MS, Rashed LA, Esmat SM. Fractional Carbon Dioxide Laser is Effective in Amelioration of Pruritus in Primary Cutaneous Amyloidosis: A Clinical and Biochemical Study. Lasers Surg Med 2020; 53:482-487. [PMID: 32865828 DOI: 10.1002/lsm.23313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Primary cutaneous amyloidosis (PCA) is a pruritic disease characterized by amyloid deposition in the skin. Interleukin-31 (IL-31) is a pruritus-mediating cytokine. Fractional carbon dioxide (CO2 ) laser has shown efficacy in the treatment of PCA regarding the clinical appearance, histological pattern, and pruritus. The aim of this study is to assess the effect of fractional CO2 laser on pruritus associated with PCA, and analyze whether this effect is related to IL-31 and IL-31 receptor (R) expression. STUDY DESIGN/MATERIALS AND METHODS The study included 24 patients with PCA and 24 healthy controls. Each patient received four fractional CO2 laser sessions, 4 weeks apart, using the superficial ablative mode. Skin biopsies were taken from patients before and after treatment, as well as controls, for assessment of IL-31 and IL-31R by real-time polymerase chain reaction. RESULTS Treatment resulted in significant improvement of all clinical parameters, including pruritus (P < 0.001). Patients before treatment had significantly higher IL-31 and IL-31R than controls (P = 0.000 for both). In addition, there was a statistically significant decrease in IL-31 and IL-31R after treatment than their values before treatment (P = 0.000 for both). CONCLUSION This study confirms the therapeutic efficacy of fractional CO2 laser in treatment of PCA. Reduction of IL-31 and its receptor seems to be one of the involved mechanisms; however, its relation to improvement of pruritus is still not clear. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marwa M T Fawzi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba I Gawdat
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sara B Mahmoud
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa S El-Hawary
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samia M Esmat
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Sharanek A, Burban A, Laaper M, Heckel E, Joyal JS, Soleimani VD, Jahani-Asl A. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat Commun 2020; 11:4116. [PMID: 32807793 PMCID: PMC7431428 DOI: 10.1038/s41467-020-17885-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan. The suppression of the receptor for oncostatin M (OSMR) can prevent glioblastoma cell growth. Here, the authors demonstrate a role for OSMR in modulating glioma stem cell respiration and its impact on resistance to ionizing radiation.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Matthew Laaper
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Emilie Heckel
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada. .,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada. .,Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, 5100 Maisonneuve Blvd West, Suite 720, H4A3T2, Montréal, QC, Canada.
| |
Collapse
|
34
|
Béziat V, Tavernier SJ, Chen YH, Ma CS, Materna M, Laurence A, Staal J, Aschenbrenner D, Roels L, Worley L, Claes K, Gartner L, Kohn LA, De Bruyne M, Schmitz-Abe K, Charbonnier LM, Keles S, Nammour J, Vladikine N, Maglorius Renkilaraj MRL, Seeleuthner Y, Migaud M, Rosain J, Jeljeli M, Boisson B, Van Braeckel E, Rosenfeld JA, Dai H, Burrage LC, Murdock DR, Lambrecht BN, Avettand-Fenoel V, Vogel TP, Undiagnosed Diseases Network, Esther CR, Haskologlu S, Dogu F, Ciznar P, Boutboul D, Ouachée-Chardin M, Amourette J, Lebras MN, Gauvain C, Tcherakian C, Ikinciogullari A, Beyaert R, Abel L, Milner JD, Grimbacher B, Couderc LJ, Butte MJ, Freeman AF, Catherinot É, Fieschi C, Chatila TA, Tangye SG, Uhlig HH, Haerynck F, Casanova JL, Puel A. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 2020; 217:e20191804. [PMID: 32207811 PMCID: PMC7971136 DOI: 10.1084/jem.20191804] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Cindy S. Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Lisa Worley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lisa Gartner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Lisa A. Kohn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine and Neonatal Genomics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Louis-Marie Charbonnier
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Justine Nammour
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent Belgium
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Bart N. Lambrecht
- VIB-UGent Center for Inflammation Research, Unit of Immunoregulation and Mucosal Immunology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Véronique Avettand-Fenoel
- Laboratory of Clinical Microbiology, Virology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | | | - Charles R. Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sule Haskologlu
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Figen Dogu
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Peter Ciznar
- Department of Pediatrics, Faculty of Medicine Comenius University and Children's University Hospital, Bratislava, Slovakia
| | - David Boutboul
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology and Immunology, Robert Debré Hospital, AP-HP, Paris, France
| | - Jean Amourette
- Pulmonology Department, Centre Hospitalier d'Arras, Arras, France
| | - Marie-Noëlle Lebras
- Pediatric Pulmonology, Infectious Disease and Internal Medicine Department, AP-HP, Robert Debré Hospital, Paris, France
| | - Clément Gauvain
- Thoracic Oncology Department, Lille University Hospital, Lille, France
| | | | - Aydan Ikinciogullari
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua D. Milner
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies, Albert Ludwig University, Freiburg, Germany
- RESIST, Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Louis-Jean Couderc
- Hôpital Foch, Pulmonology Department, Suresnes, France
- Simone Veil Faculty of Life Sciences, Versailles-Paris Saclay University, UPRES EA-220, Suresnes, France
| | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | | | | | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France
- INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Talal A. Chatila
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Stuart G. Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
35
|
Corden B, Adami E, Sweeney M, Schafer S, Cook SA. IL-11 in cardiac and renal fibrosis: Late to the party but a central player. Br J Pharmacol 2020; 177:1695-1708. [PMID: 32022251 PMCID: PMC7070163 DOI: 10.1111/bph.15013] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathophysiological hallmark of cardiorenal disease. In the heart, fibrosis leads to contractile dysfunction and arrhythmias; in the kidney, it is the final common pathway for many diseases and predicts end-stage renal failure. Despite this, there are currently no specific anti-fibrotic treatments available for cardiac or renal disease. Recently and unexpectedly, IL-11 was found to be of major importance for cardiorenal fibroblast activation and fibrosis. In mouse models, IL-11 overexpression caused fibrosis of the heart and kidney while genetic deletion of Il11ra1 protected against fibrosis and preserved organ function. Neutralizing antibodies against IL-11 or IL-11RA have been developed that have anti-fibrotic activity in human fibroblasts and protect against fibrosis in murine models of disease. While IL-11 biology has been little studied and, we suggest, largely misunderstood, its autocrine activity in myofibroblasts appears non-redundant for fibrosis, which offers new opportunities to better understand and potentially target cardiorenal fibrosis.
Collapse
Affiliation(s)
- Benjamin Corden
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
| | - Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Sebastian Schafer
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
| | - Stuart A. Cook
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
36
|
Lindström S, Wang L, Smith EN, Gordon W, van Hylckama Vlieg A, de Andrade M, Brody JA, Pattee JW, Haessler J, Brumpton BM, Chasman DI, Suchon P, Chen MH, Turman C, Germain M, Wiggins KL, MacDonald J, Braekkan SK, Armasu SM, Pankratz N, Jackson RD, Nielsen JB, Giulianini F, Puurunen MK, Ibrahim M, Heckbert SR, Damrauer SM, Natarajan P, Klarin D, de Vries PS, Sabater-Lleal M, Huffman JE, Bammler TK, Frazer KA, McCauley BM, Taylor K, Pankow JS, Reiner AP, Gabrielsen ME, Deleuze JF, O'Donnell CJ, Kim J, McKnight B, Kraft P, Hansen JB, Rosendaal FR, Heit JA, Psaty BM, Tang W, Kooperberg C, Hveem K, Ridker PM, Morange PE, Johnson AD, Kabrhel C, Trégouët DA, Smith NL. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 2019; 134:1645-1657. [PMID: 31420334 PMCID: PMC6871304 DOI: 10.1182/blood.2019000435] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.
Collapse
Affiliation(s)
- Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
- K.G. Jebsen Thrombosis Research and Expertise Center, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - William Gordon
- Department of Epidemiology, University of Washington, Seattle, WA
| | | | | | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Jack W Pattee
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Pierre Suchon
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Center for CardioVascular and Nutrition research (C2VN), Universite Aix-Marseille, Institut National de la Recherche Agronomique (INRA), INSERM, Marseille, France
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marine Germain
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Sigrid K Braekkan
- K.G. Jebsen Thrombosis Research and Expertise Center, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | | | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus OH
| | - Jonas B Nielsen
- Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
| | | | - Manal Ibrahim
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA
- Department of Surgery, Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pradeep Natarajan
- Boston VA Healthcare System, Boston, MA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Derek Klarin
- Boston VA Healthcare System, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Institut de Recerca de l'Hospital de Sant Pau, IIB-Sant Pau, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jennifer E Huffman
- Center for Population Genomics, MAVERIC, VA Boston Healthcare System, Boston, MA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Kelly A Frazer
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
- K.G. Jebsen Thrombosis Research and Expertise Center, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA
| | - Bryan M McCauley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Kent Taylor
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-University of California Los Angeles Medical Center, Torrence CA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Direction de la Recherche Fondamentale, Le Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- The Centre d'Etude du Polymorphism Humain (CEPH), Fondation Jean Dausset, Paris, France
| | - Chris J O'Donnell
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
- Million Veteran Program, Veteran's Administration, Boston, MA
| | - Jihye Kim
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Barbara McKnight
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - John-Bjarne Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - John A Heit
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Bruce M Psaty
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Center for CardioVascular and Nutrition research (C2VN), Universite Aix-Marseille, Institut National de la Recherche Agronomique (INRA), INSERM, Marseille, France
- Centre de Ressources Biologiques Assistance Publique-Hôpitaux de Marseille, HemoVasc, Marseille, France
| | - Andrew D Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
| | - Christopher Kabrhel
- Center for Vascular Emergencies, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA; and
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA
| |
Collapse
|
37
|
Prokaryotic soluble overexpression and purification of oncostatin M using a fusion approach and genetically engineered E. coli strains. Sci Rep 2019; 9:13706. [PMID: 31548569 PMCID: PMC6757106 DOI: 10.1038/s41598-019-50110-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
Human Oncostatin M (OSM), initially discovered as a tumour inhibitory factor secreted from U-937 cells, is a gp130 (IL-6/LIF) cytokine family member that exhibits pleiotropic effects in inflammation, haematopoiesis, skeletal tissue alteration, liver regeneration, cardiovascular and metabolic diseases. Cytoplasmic expression of OSM in Escherichia coli results in inclusion bodies, and complex solubilisation, refolding and purification is required to prepare bioactive protein. Herein, eight N-terminal fusion variants of OSM with hexahistidine (His6) tag and seven solubility-enhancing tags, including thioredoxin (Trx), small ubiquitin-related modifier (Sumo), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilisation substance protein A (Nusa), human protein disulphide isomerase (PDI) and the b‘a’ domain of PDI (PDIb‘a’), were tested for soluble OSM expression in E. coli. The His6-OSM plasmid was also introduced into genetically engineered Origami 2 and SHuffle strains to test expression of the protein. At 18 °C, MBP-tagged OSM was highly expressed and solubility was dramatically enhanced. In addition, His6-OSM was more highly expressed and soluble in Origami 2 and SHuffle strains than in BL21(DE3). MBP-OSM and His6-OSM were purified more than 95% with yields of 11.02 mg and 3.27 mg from a 500 mL culture. Protein identity was confirmed by mass spectroscopy, and bioactivity was demonstrated by in vitro inhibition of Th17 cell differentiation.
Collapse
|
38
|
Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol 2019. [PMID: 29524262 DOI: 10.1111/exd.13533] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atopic dermatitis (AD) is characterized by chronic, eczematous, severe pruritic skin lesions caused by skin barrier dysfunction and T helper (Th)2 cell-mediated immunity. Interleukin (IL)-31 is a potent pruritogenic cytokine primarily produced by Th2 cells. Both IL-31 transgenic mice and wild-type mice treated with IL-31 exhibit AD-like skin lesions and scratching behaviour. IL-31 receptor α-chain (IL-31RA) is also expressed in peripheral nerves and epidermal keratinocytes, and the roles of IL-31 on pruritus and skin barrier have been investigated. Recently, an anti-IL-31 receptor antibody was shown to significantly improve pruritus in AD patients. This review focuses on IL-31 and IL-31RA in AD.
Collapse
Affiliation(s)
- Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Translational Research Department for Skin and Brain Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN), Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore City, Singapore
| |
Collapse
|
39
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
40
|
Huang CM, Lam L, Gniadecki R. Macular cutaneous amyloidosis treated with methyl aminolevulinate and daylight photodynamic therapy: A case report. SAGE Open Med Case Rep 2019; 7:2050313X19829617. [PMID: 30800310 PMCID: PMC6378484 DOI: 10.1177/2050313x19829617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary cutaneous amyloidosis is characterized by polymerization of extracellular amyloid precursors in β-pleated sheet conformation into larger fibrillar aggregates. Observation in models of Alzheimer’s disease have noted that amyloid polymerization in the brain is blocked by reactive oxygen species. Singlet oxygen is formed in the skin during methyl aminolevulinate photodynamic therapy. Therefore, we speculate that type II photochemical reaction is responsible for the observed therapeutic activity of methyl aminolevulinate photodynamic therapy in our patient with primary cutaneous amyloidosis. Our case is the first report demonstrating the efficacy of daylight photodynamic therapy in primary cutaneous amyloidosis. Daylight photodynamic therapy may provide a convenient and cost-effective therapeutic option in primary cutaneous amyloidosis, and its efficacy should be further confirmed in prospective trials.
Collapse
Affiliation(s)
- Christina M Huang
- School of Medicine, Queen's University, Kingston, ON, Canada.,Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Lauren Lam
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Lu P, Wu FF, Rong ZL, Fang C, Deng CC, Bin LH, Yang B. Clinical and genetic features of Chinese patients with lichen and macular primary localized cutaneous amyloidosis. Clin Exp Dermatol 2019; 44:e110-e117. [PMID: 30734345 DOI: 10.1111/ced.13925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Primary localized cutaneous amyloidosis (PLCA) is a chronic pruritic skin disorder. The genetic basis of familial (f)PLCA involves mutations in the oncostatin M receptor (OSMR) and interleukin-31 receptor A (IL31RA) genes, but the disease pathophysiology is not fully understood. AIM To investigate the OSMR mutation spectrum in patients with sporadic (s)PLCA/fPLCA, lichen/macular PLCA in mainland China. METHODS This study was carried out on 64 patients with sPLCA, along with 36 with fPLCA and 10 unaffected individuals collected from 23 unrelated Chinese families. Genomic DNA was extracted from peripheral blood samples. Mutation screening of 17 OSMR exons was performed by Sanger sequencing. RESULTS PLCA lesions are typically localized to the shins, forearm and back. Sequence analysis of OSMR exons demonstrated that the OSMR missense mutation rate in patients with fPLCA (63.89%) was significantly higher than that in patients with sPLCA (34.38%). The male/female ratio of patients carrying a homozygous OSMR mutation (0.29) was significantly lower than that of patients carrying a heterozygous OSMR mutation (1.08; P < 0.05) and of patients with wildtype OSMR (1.75; P < 0.01). Age of onset of PLCA with OSMR homozygous mutation (median age 20 years) was earlier than that of PLCA with OSMR heterozygous mutation (median age 32 years; P < 0.01) or PLCA with wildtype genotype (median age 32 years; P < 0.01). CONCLUSION The present data indicate OSMR mutations as not only the main cause of fPLCA, but also the potential source of the pathogenesis of sPLCA, although the exact molecular mechanism remains unknown.
Collapse
Affiliation(s)
- P Lu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - F-F Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Z-L Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - C Fang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - C-C Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - L-H Bin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - B Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
43
|
Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice. Nat Biomed Eng 2018; 3:114-125. [DOI: 10.1038/s41551-018-0328-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
|
44
|
Gao JX, Li Y, Wang SN, Chen XC, Lin LL, Zhang H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson's disease. Int J Mol Med 2018; 43:209-220. [PMID: 30431059 PMCID: PMC6257840 DOI: 10.3892/ijmm.2018.3982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA-183 (miR-183) on substantia nigra neurons by targeting oncostatin M receptor (OSMR) in a mouse model of Parkinson’s disease (PD). The positive expression rates of OSMR and the apoptosis of substantia nigra neurons were detected by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, respectively. Substantia nigra neurons in normal and PD mice were cultured in vitro. The association between miR-183 and OSMR was verified using a dual luciferase reporter gene assay. The expression of miR-183 and the phosphoinositide 3-kinase-Akt signaling pathway-associated genes were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was detected by flow cytometry. OSMR is the target gene of miR-183. The number of OSMR-positive cells and the apoptotic rate of substantia nigra neurons were increased in the PD group. Neurons transfected with miR-183 mimic exhibited elevated expression levels of miR-183, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-9 and increased apoptotic rate, and reduced expression levels of OSMR, Akt, phosphorylated (p-)Akt, glycogen synthase kinase-3 (GSK-3β), p-GSK-3β, Bcl-2, insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin (mTOR) and p-mTOR. The miR-183 inhibitor decreased the expression levels of miR-183, Bax and caspase-9 and the apoptotic rate; however, increased the expression of OSMR, Akt, p-Akt, GSK-3β, p-GSK-3β, Bcl-2, IGF-1, mTOR and p-mTOR. The results of the present study provide evidence that the overexpression of miR-183 promotes the apoptosis of substantia nigra neurons by inhibiting the expression of OSMR.
Collapse
Affiliation(s)
- Jin-Xia Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Li
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sai-Nan Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xing-Chi Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lu-Lu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hui Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
45
|
Primary Localized Cutaneous Amyloidosis Affecting Female Individuals of a Pakistani Pedigree. Am J Dermatopathol 2018; 41:382-385. [PMID: 30308545 DOI: 10.1097/dad.0000000000001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Primary localized cutaneous amyloidosis is a group of rare conditions where amyloid deposition is limited to the skin without systemic manifestations. Most cases are sporadic; however, mutations in the oncostatin M receptor (OSMR) and interleukin-31 receptor A (IL31RA) genes can cause a familial form of the condition in up to 10% of cases. Here, we describe a family in which 8 female individuals are affected by either macular amyloidosis or amyloidosis cutis dyschromica. To the best of our knowledge, a sex-specific expression or the coexistence of 2 different phenotypes of primary localized cutaneous amyloidosis in 1 pedigree has not yet been reported.
Collapse
|
46
|
Qi XP, Peng JZ, Yang XW, Cao ZL, Yu XH, Fang XD, Zhang DH, Zhao JQ. The RET C611Y mutation causes MEN 2A and associated cutaneous. Endocr Connect 2018; 7:998-1005. [PMID: 30300539 PMCID: PMC6176283 DOI: 10.1530/ec-18-0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cutaneous lichen amyloidosis (CLA) has been reported in some multiple endocrine neoplasia type 2A (MEN 2A) families affected by specific germline RET mutations C634F/G/R/W/Y or V804M, as a characteristic of the clinical manifestation in ‘MEN 2A with CLA’, one of four variants of MEN 2A, which was strictly located in the scapular region of the upper back. PATIENT FINDINGS This study reports a large south-eastern Chinese pedigree with 17 individuals carrying the MEN 2A-harboring germline C611Y (c.1832G>A) RET mutation by Sanger sequencing. One individual presented MEN 2A-related clinical features, including typical CLA in the interscapular region; another individual exhibited neurological pruritus and scratching in the upper back but lacked CLA skin lesions. Both subjects presented with CLA or pruritic symptoms several years before the onset of medullary thyroid carcinoma (MTC) and/or pheochromocytoma. The remaining 15 RET mutation carriers did not exhibit CLA; of these, one presented with MTC and pheochromocytoma, nine with MTC only, two with elevated serum calcitonin and three younger subjects with normal serum calcitonin levels. This family’s clinical data revealed a later diagnosis of MTC (mean age, 45.9 (range: 23–73) years), a lower penetrance of pheochromocytoma (2/17, 11.8%) and CLA (1/17, 5.9%). However, no hyperparathyroidism and Hirschsprung disease were reported in this family. SUMMARY AND CONCLUSIONS This is the first description of a family with MEN 2A-related CLA due to a germline RET C611Y mutation, which might exhibit a novel and diversified genotype–phenotype spectrum in MEN 2A.
Collapse
Affiliation(s)
- Xiao-Ping Qi
- Department of Oncologic and Urologic SurgeryThe 117th PLA Hospital, Wenzhou Medical University, Hangzhou, Zhejiang Province, China
- Correspondence should be addressed to Xiao-Ping Qi or Jian-Qiang Zhao or Da-Hong Zhang: or or
| | - Jian-Zhong Peng
- Department of DermatologyHangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Xiao-Wei Yang
- Department of PediatricsThe First People’s Hospital of Wenling City, Wenling, Zhejiang Province, China
| | - Zhi-Lie Cao
- Department of Oncologic and Urologic SurgeryThe 117th PLA Hospital, Wenzhou Medical University, Hangzhou, Zhejiang Province, China
| | - Xiu-Hua Yu
- Department of Oncologic and Urologic SurgeryThe 117th PLA Hospital, Wenzhou Medical University, Hangzhou, Zhejiang Province, China
| | - Xu-Dong Fang
- Department of Oncologic and Urologic SurgeryThe 117th PLA Hospital, Wenzhou Medical University, Hangzhou, Zhejiang Province, China
| | - Da-Hong Zhang
- Department of Urologic SurgeryZhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- Correspondence should be addressed to Xiao-Ping Qi or Jian-Qiang Zhao or Da-Hong Zhang: or or
| | - Jian-Qiang Zhao
- Department of Head and Neck SurgeryZhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
- Correspondence should be addressed to Xiao-Ping Qi or Jian-Qiang Zhao or Da-Hong Zhang: or or
| |
Collapse
|
47
|
Luo XY, Liu Q, Yang H, Tan Q, Gan LQ, Ren FL, Wang H. OSMR gene effect on the pathogenesis of chronic autoimmune Urticaria via the JAK/STAT3 pathway. Mol Med 2018; 24:28. [PMID: 30134804 PMCID: PMC6016876 DOI: 10.1186/s10020-018-0025-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/06/2018] [Indexed: 11/18/2022] Open
Abstract
Background Chronic autoimmune urticaria (CAU) is a common skin disease and remains unclear understanding of pathogenesis in the vast majority of cases. In order to explore a new therapy for CAU, the current study was performed to investigate the possible functioning of the Oncostatin M receptor (OSMR) gene in the autoimmunity of CAU via regulation of the JAK/STAT3 signaling pathway. Methods CAU skin tissues from 24 CAU patients and normal skin tissues from normal subjects were collected. Hematoxylin-eosin (HE) staining was conducted to count eosinophils, and immunohistochemistry was carried out to detect the positive rate of OSMR expression in two kinds of skin tissues. A total of 72 Kunming (KM) mice were selected, and 60 mice were used for establishing CAU models and later transfected with different plasmids. The expression of inflammatory factors was evaluated by enzyme-linked immunosorbent assays (ELISA). Expressions of janus kinase (JAK), signal transducer and activator of transcription 3 (STAT3), interferon-stimulated gene 15 (ISG15), CT10-regulated kinase (CRK), and interferon regulatory factor 9 (IRF9) were identified using Western blot assay and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Epithelial cell proliferation was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, and cell cycle distribution and cell apoptosis were assessed using flow cytometry. Results The findings confirm that OSMR protein expression and histamine release rate are highly elevated in human CAU skin tissues, and the expression of the JAK/STAT3 signaling pathway-related genes (OSMR, JAK2, STAT3, ISG15, CRK and IRF9) was up-regulated. OSMR gene silencing in CAU mice significantly decreases the content of inflammatory factors (IL-1, IL-6, IFN-γ, and IgE), the number of eosinophils, and reduces the expression of the JAK/STAT3 signaling pathway related genes, and further enhances cell proliferation, promotes cell cycle entry and inhibits apoptosis of epithelial cells. Conclusion All aforementioned results indicate that OSMR gene silencing inhibits the activation of the JAK/STAT3 signaling pathway, thereby suppressing the development of CAU.
Collapse
Affiliation(s)
- Xiao-Yan Luo
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Qun Liu
- The Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Huan Yang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Qi Tan
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, No.136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Li-Qiang Gan
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, No.136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Fa-Liang Ren
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hua Wang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China. .,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, No.136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
48
|
Qi XP, Zhao JQ, Cao ZL, Fu E, Li F, Zhao YH, Wang GP, Li PF, Ma WL, Guo J, Jia H. The Clinical Spectrum of Multiple Endocrine Neoplasia Type 2A with Cutaneous Lichen Amyloidosis in Ethnic Han Chinese. Cancer Invest 2018; 36:141-151. [PMID: 29420094 DOI: 10.1080/07357907.2018.1430813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study systematically reviewed previous literatures and analyzed the genotype-phenotype relationship between the multiple endocrine neoplasia type 2A (MEN 2A)-cutaneous lichen amyloidosis (CLA) and RET/OSMR/IL31RA mutations. RET/OSMR/IL31RA screening was performed on 8 RET-carriers from 3 independent Chinese MEN 2A families. Besides, 51 MEN 2A-CLA patients in 116 RET carriers from literatures were clustered and analyzed. Our results indicated that almost all MEN 2A-CLA patients exhibited CLA which was located in the scapular region and carried RET mutation at codon 634. Meanwhile, we firstly described MEN 2A-CLA here in Chinese Han patient with RET p.C634F mutation.
Collapse
Affiliation(s)
- Xiao-Ping Qi
- a Department of Oncologic and Urologic Surgery, Nanjing Military Command Hospital Center for Endocrine & Metabolic Diseases , the 117th PLA Hospital, Wenzhou Medical University , Hangzhou , Zhejiang , China
| | - Jian-Qiang Zhao
- b Department of Head and Neck Surgery , Zhejiang Cancer Hospital , Hangzhou , Zhejiang , China
| | - Zhi-Lie Cao
- a Department of Oncologic and Urologic Surgery, Nanjing Military Command Hospital Center for Endocrine & Metabolic Diseases , the 117th PLA Hospital, Wenzhou Medical University , Hangzhou , Zhejiang , China
| | - Er Fu
- a Department of Oncologic and Urologic Surgery, Nanjing Military Command Hospital Center for Endocrine & Metabolic Diseases , the 117th PLA Hospital, Wenzhou Medical University , Hangzhou , Zhejiang , China
| | - Feng Li
- a Department of Oncologic and Urologic Surgery, Nanjing Military Command Hospital Center for Endocrine & Metabolic Diseases , the 117th PLA Hospital, Wenzhou Medical University , Hangzhou , Zhejiang , China
| | - Yi-Hua Zhao
- c Department of Urologic Surgery , Yueqing People's Hospital, Wenzhou Medical University , Yueqing , Zhejiang , China
| | - Guang-Ping Wang
- d Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College , Nanjing , Jiangsu , China
| | - Peng-Fei Li
- e XY Biotechnology Co. Ltd. , Hangzhou , Zhejiang , China
| | - Wo-Long Ma
- e XY Biotechnology Co. Ltd. , Hangzhou , Zhejiang , China
| | - Jian Guo
- a Department of Oncologic and Urologic Surgery, Nanjing Military Command Hospital Center for Endocrine & Metabolic Diseases , the 117th PLA Hospital, Wenzhou Medical University , Hangzhou , Zhejiang , China
| | - Hong Jia
- d Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College , Nanjing , Jiangsu , China
| |
Collapse
|
49
|
Yang CF, Lin SP, Chiang CP, Wu YH, H'ng WS, Chang CP, Chen YT, Wu JY. Loss of GPNMB Causes Autosomal-Recessive Amyloidosis Cutis Dyschromica in Humans. Am J Hum Genet 2018; 102:219-232. [PMID: 29336782 DOI: 10.1016/j.ajhg.2017.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Amyloidosis cutis dyschromica (ACD) is a distinct form of primary cutaneous amyloidosis characterized by generalized hyperpigmentation mottled with small hypopigmented macules on the trunks and limbs. Affected families and sporadic case subjects have been reported predominantly in East and Southeast Asian ethnicities; however, the genetic cause has not been elucidated. We report here that the compound heterozygosity or homozygosity of GPNMB truncating alleles is the cause of autosomal-recessive ACD. Six nonsense or frameshift mutations were identified in nine individuals diagnosed with ACD. Immunofluorescence analysis of skin biopsies showed that GPNMB is expressed in all epidermal cells, with the highest staining observed in melanocytes. GPNMB staining is significantly reduced in the lesional skin of affected individuals. Hyperpigmented lesions exhibited significantly increased amounts of DNA/keratin-positive amyloid deposits in the papillary dermis and infiltrating macrophages compared with hypo- or depigmented macules. Depigmentation of the lesions was attributable to loss of melanocytes. Intracytoplasmic fibrillary aggregates were observed in keratinocytes scattered in the lesional epidermis. Thus, our analysis indicates that loss of GPNMB, which has been implicated in melanosome formation, autophagy, phagocytosis, tissue repair, and negative regulation of inflammation, underlies autosomal-recessive ACD and provides insights into the etiology of amyloidosis and pigment dyschromia.
Collapse
Affiliation(s)
- Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chien-Ping Chiang
- Departments of Dermatology, Tri-Service General Hospital, Taipei 114, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Hung Wu
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Weng Siong H'ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
50
|
Bağci IS, Ruzicka T. IL-31: A new key player in dermatology and beyond. J Allergy Clin Immunol 2018; 141:858-866. [PMID: 29366565 DOI: 10.1016/j.jaci.2017.10.045] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/05/2017] [Accepted: 10/25/2017] [Indexed: 11/27/2022]
Abstract
IL-31 is a novel cytokine expressed in many human tissues and involved mainly in TH2-weighted inflammation. IL-31 signals through a receptor complex consisting of IL-31 receptor α and oncostatin M receptor β. The available data show that IL-31 is strongly linked with chronic pruritic skin disorders, such as atopic eczema, and represents a novel target for directed drug therapy. Regulation of immune responses and cellular differentiation and proliferation are recently elucidated effects of IL-31, suggesting a more complex and diverse area of effect for this novel cytokine. This review summarizes the current knowledge on IL-31 and its receptors and the involvement of IL-31 in diseases both in human subjects and mouse models.
Collapse
Affiliation(s)
- Işın Sinem Bağci
- Department of Dermatology and Allergology, Ludwig-Maximilians Universität, Munich, Germany.
| | - Thomas Ruzicka
- Department of Dermatology and Allergology, Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|