1
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
2
|
Torok D, Petschner P, Baksa D, Juhasz G. Improved polygenic risk prediction in migraine-first patients. J Headache Pain 2024; 25:161. [PMID: 39333847 PMCID: PMC11438044 DOI: 10.1186/s10194-024-01870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Recent meta-analyses estimated 14.6% and 11.2% SNP-based heritability of migraine, compared to twin-heritability estimates of 30-60%. This study aimed to investigate heritability estimates in "migraine-first" individuals, patients for whom G43 (migraine with or without aura) was their first medical diagnosis in their lifetime. FINDINGS Using data from the UK Biobank (N = 199,929), genome-wide association studies (GWAS) were conducted on 6,139 migraine-first patients and 193,790 healthy controls. SNP-based heritability was estimated using SumHer, yielding 19.37% (± 0.019) for all SNPs and 21.31% (± 0.019) for HapMap3 variants, substantially surpassing previous estimates. Key risk loci included PRDM16, FHL5, ASTN2, STAT6/LRP1, and SLC24A3, and pathway analyses highlighted retinol metabolism and steroid hormone biosynthesis as important pathways in these patients. CONCLUSIONS The findings underscore that excluding comorbidities at onset time can enhance heritability estimates and genetic signal detection, significantly reducing the extent of "missing heritability" in migraine.
Collapse
Affiliation(s)
- Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Nagyvarad ter 4., Budapest, 1096, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Nagyvarad ter 4., Budapest, 1096, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Nagyvarad ter 4., Budapest, 1096, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Nagyvarad ter 4., Budapest, 1096, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Khodursky S, Yuan S, Spin JM, Tsao PS, Levin MG, Damrauer SM. Plasma proteomics reveals the potential causal impact of extracellular matrix proteins on abdominal aortic aneurysm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314065. [PMID: 39398994 PMCID: PMC11469359 DOI: 10.1101/2024.09.20.24314065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Abdominal aortic aneurysm (AAA) is a common and life-threatening vascular disease. Genetic studies have identified numerous associated loci, many potentially encoding plasma proteins. However, the causal effects of plasma proteins on AAA have not been thoroughly studied. We used genetic causal inference approaches to identify plasma proteins that have a potential causal impact on AAA. Methods Causal inference was performed using two-sample Mendelian randomization (MR). For AAA, we utilized recently published summary statistics from a multi-population genome-wide association (GWAS) meta-analysis including 39,221 individuals with, and 1,086,107 individuals without AAA from 14 cohorts. We used protein quantitative trait loci (pQTLs) identified in two large-scale plasma-proteomics studies (deCODE and UKB-PPP) to generate genetic instruments. We tested 2,783 plasma proteins for possible causal effects on AAA using two-sample MR with inverse variance weighting and common sensitivity analyses to evaluate the MR assumptions. Bayesian colocalization and gene ontology (GO) enrichment analyses provided additional insights. Results MR identified 90 plasma proteins associated with AAA at FDR<0.05, with 25 supported by colocalization analysis. Among those supported by both MR and colocalization were previously experimentally validated proteins such as PCSK9 (OR 1.3; 95%CI 1.2-1.4; P<1e-10), LTBP4 (OR 3.4; 95%CI 2.6-4.6; P<1e-10) and COL6A3 (OR 0.6; 95%CI 0.5-0.7; P<1e-6). GO analysis revealed enrichment of proteins found in extracellular matrix (ECM, OR 7.8; P<1e-4), some with maximal mRNA levels in aortic tissue. Bi-directional MR suggested plasma level changes were not caused by liability to AAA itself. We then investigated whether variants responsible for expression changes in the aorta also influenced plasma levels and AAA risk. Colocalization analysis showed that an aortic expression quantitative trait locus (eQTL) for COL6A3, and a splicing quantitative trait locus (sQTL) for LTBP4 colocalized with their respective plasma pQTLs and AAA signals (posterior probabilities 0.84 and 0.89, respectively). Conclusions Our results highlight proteins and pathways with potential causal effects on AAA, providing a foundation for future functional experiments. These findings suggest a possible causal pathway whereby genetic variation affecting ECM proteins expressed in the aortic wall cause their levels to change in blood plasma, influencing development of AAA.
Collapse
Affiliation(s)
- Samuel Khodursky
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua M. Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M. Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Kelemen M, Danesh J, Di Angelantonio E, Inouye M, O'Sullivan J, Pennells L, Roychowdhury T, Sweeting MJ, Wood AM, Harrison S, Kim LG. Evaluating the cost-effectiveness of polygenic risk score-stratified screening for abdominal aortic aneurysm. Nat Commun 2024; 15:8063. [PMID: 39277617 PMCID: PMC11401842 DOI: 10.1038/s41467-024-52452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
As the heritability of abdominal aortic aneurysm (AAA) is high and AAA partially shares genetic architecture with other cardiovascular diseases, genetic information could help inform AAA screening strategies. Exploiting pleiotropy and meta-analysing summary data from large studies, we construct a polygenic risk score (PRS) for AAA. Leveraging related traits improves PRS performance (R2) by 22.7%, relative to using AAA alone. Compared with the low PRS tertile, intermediate and high tertiles have hazard ratios for AAA of 2.13 (95%CI 1.61, 2.82) and 3.70 (95%CI 2.86, 4.80) respectively, adjusted for clinical risk factors. Using simulation modelling, we compare PRS- and smoking-stratified screening with inviting men at age 65 and not inviting women (current UK strategy). In a futuristic scenario where genomic information is available, our modelling suggests inviting male current smokers with high PRS earlier than 65 and screening female smokers with high/intermediate PRS at 65 and 70 respectively, may improve cost-effectiveness.
Collapse
Affiliation(s)
- M Kelemen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - J Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - E Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - M Inouye
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Baker Heart & Diabetes Institute, Melbourne, Australia
| | - J O'Sullivan
- Division of Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - L Pennells
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - T Roychowdhury
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - M J Sweeting
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - A M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | | | - L G Kim
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Luo L, Haas AM, Bell CF, Baylis RA, Adkar SS, Fu C, Angelov I, Giordano SH, Klarin D, Leeper NJ, Nead KT. Cancer Incidence After Diagnosis of Abdominal Aortic Aneurysm-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1694-1701. [PMID: 38779853 PMCID: PMC11209781 DOI: 10.1161/atvbaha.123.320543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Epidemiological and mechanistic data support a potential causal link between cardiovascular disease (CVD) and cancer. Abdominal aortic aneurysms (AAAs) represent a common form of CVD with at least partially distinct genetic and biologic pathogenesis from other forms of CVD. The risk of cancer and how this risk differs compared with other forms of CVD, is unknown among AAA patients. We conducted a retrospective cohort study using the IBM MarketScan Research Database to test whether individuals with AAA have a higher cancer risk independent of traditional shared risk factors. METHODS All individuals ≥18 years of age with ≥36 months of continuous coverage between 2008 and 2020 were enrolled. Those with potential Mendelian etiologies of AAA, aortic aneurysm with nonspecific anatomic location, or a cancer diagnosis before the start of follow-up were excluded. A subgroup analysis was performed of individuals having the Health Risk Assessment records including tobacco use and body mass index. The following groups of individuals were compared: (1) with AAA, (2) with non-AAA CVD, and (3) without any CVD. RESULTS The propensity score-matched cohort included 58 993 individuals with AAA, 117 986 with non-AAA CVD, and 58 993 without CVD. The 5-year cumulative incidence of cancer was 13.1% (12.8%-13.5%) in participants with AAA, 10.1% (9.9%-10.3%) in participants with non-AAA CVD, and 9.6% (9.3%-9.9%) in participants without CVD. Multivariable-adjusted Cox proportional hazards regression models found that patients with AAA exhibited a higher cancer risk than either those with non-AAA CVD (hazard ratio, 1.28 [95% CI, 1.23-1.32]; P<0.001) or those without CVD (hazard ratio, 1.32 [95% CI, 1.26-1.38]; P<0.001). Results remained consistent after excluding common smoking-related cancers and when adjusting for tobacco use and body mass index. CONCLUSIONS Patients with AAA may have a unique risk of cancer requiring further mechanistic study and investigation of the role of enhanced cancer screening.
Collapse
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Allen M. Haas
- Department of Health Services Research, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlin F. Bell
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard A. Baylis
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Shaunak S. Adkar
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Changhao Fu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Ivan Angelov
- School of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sharon H. Giordano
- Department of Health Services Research, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Derek Klarin
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs (VA) Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin T. Nead
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Katz AE, Gupte T, Ganesh SK. From Atherosclerosis to Spontaneous Coronary Artery Dissection: Defining a Clinical and Genetic Risk Spectrum for Myocardial Infarction. Curr Atheroscler Rep 2024; 26:331-340. [PMID: 38761354 DOI: 10.1007/s11883-024-01208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE OF REVIEW Spontaneous coronary artery dissection (SCAD) has been increasingly recognized as a significant cause of acute myocardial infarction (AMI) in young and middle-aged women and arises through mechanisms independent of atherosclerosis. SCAD has a multifactorial etiology that includes environmental, individual, and genetic factors distinct from those typically associated with coronary artery disease. Here, we summarize the current understanding of the genetic factors contributing to the development of SCAD and highlight those factors which differentiate SCAD from atherosclerotic coronary artery disease. RECENT FINDINGS Recent studies have revealed several associated variants with varying effect sizes for SCAD, giving rise to a complex genetic architecture. Associated genes highlight an important role for arterial cells and their extracellular matrix in the pathogenesis of SCAD, as well as notable genetic overlap between SCAD and other systemic arteriopathies such as fibromuscular dysplasia and vascular connective tissue diseases. Further investigation of individual variants (including in the associated gene PHACTR1) along with polygenic score analysis have demonstrated an inverse genetic relationship between SCAD and atherosclerosis as distinct causes of AMI. SCAD represents an increasingly recognized cause of AMI with opposing clinical and genetic risk factors from that of AMI due to atherosclerosis, and it is often associated with complex underlying genetic conditions. Genetic study of SCAD on a larger scale and with more diverse cohorts will not only further our evolving understanding of a newly defined genetic spectrum for AMI, but it will also inform the clinical utility of integrating genetic testing in AMI prevention and management moving forward.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Trisha Gupte
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Liu D, Billington CJ, Raja N, Wong ZC, Levin MD, Resch W, Alba C, Hupalo DN, Biamino E, Bedeschi MF, Digilio MC, Squeo GM, Villa R, Parrish PCR, Knutsen RH, Osgood S, Freeman JA, Dalgard CL, Merla G, Pober BR, Mervis CB, Roberts AE, Morris CA, Osborne LR, Kozel BA. Matrisome and Immune Pathways Contribute to Extreme Vascular Outcomes in Williams-Beuren Syndrome. J Am Heart Assoc 2024; 13:e031377. [PMID: 38293922 PMCID: PMC11056152 DOI: 10.1161/jaha.123.031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.
Collapse
Affiliation(s)
- Delong Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Charles J. Billington
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of PediatricsUniversity of MinnesotaMinneapolisMN
| | - Neelam Raja
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Zoe C. Wong
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Mark D. Levin
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wulfgang Resch
- The High Performance Computing FacilityCenter for Information Technology, National Institutes of HealthBethesdaMD
| | - Camille Alba
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | - Daniel N. Hupalo
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | | | | | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
| | - Roberta Villa
- Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Medical Genetic UnitMilanItaly
| | - Pheobe C. R. Parrish
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of Genome SciencesUniversity of WashingtonSeattleWA
| | - Russell H. Knutsen
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Sharon Osgood
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Joy A. Freeman
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicinethe Uniformed Services University of the Health SciencesBethesdaMD
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Barbara R. Pober
- Section of Genetics, Department of PediatricsMassachusetts General HospitalBostonMA
| | - Carolyn B. Mervis
- Department of Psychological and Brain SciencesUniversity of LouisvilleLouisvilleKY
| | - Amy E. Roberts
- Department of Cardiology and Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMA
| | - Colleen A. Morris
- Department of PediatricsKirk Kerkorian School of Medicine at UNLVLas VegasNV
| | - Lucy R. Osborne
- Departments of Medicine and Molecular GeneticsUniversity of TorontoCanada
| | - Beth A. Kozel
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Spontaneous coronary artery dissection (SCAD) is a significant cause of acute myocardial infarction that is increasingly recognized in young and middle-aged women. The etiology of SCAD is likely multifactorial and may include the interaction of environmental and individual factors. Here, we summarize the current understanding of the genetic factors contributing to the development of SCAD. RECENT FINDINGS The molecular findings underlying SCAD have been demonstrated to include a combination of rare DNA sequence variants with large effects, common variants contributing to a complex genetic architecture, and variants with intermediate impact. The genes associated with SCAD highlight the role of arterial cells and their extracellular matrix in the pathogenesis of the disease and shed light on the relationship between SCAD and other disorders, including fibromuscular dysplasia and connective tissue diseases. While up to 10% of affected individuals may harbor a rare variant with large effect, SCAD most often presents as a complex genetic condition. Analyses of larger and more diverse cohorts will continue to improve our understanding of risk susceptibility loci and will also enable consideration of the clinical utility of genetic testing strategies in the management of SCAD.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, 7220, MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0644, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA.
- Department of Human Genetics, University of Michigan, 7220, MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
10
|
Roychowdhury T, Klarin D, Levin MG, Spin JM, Rhee YH, Deng A, Headley CA, Tsao NL, Gellatly C, Zuber V, Shen F, Hornsby WE, Laursen IH, Verma SS, Locke AE, Einarsson G, Thorleifsson G, Graham SE, Dikilitas O, Pattee JW, Judy RL, Pauls-Verges F, Nielsen JB, Wolford BN, Brumpton BM, Dilmé J, Peypoch O, Juscafresa LC, Edwards TL, Li D, Banasik K, Brunak S, Jacobsen RL, Garcia-Barrio MT, Zhang J, Rasmussen LM, Lee R, Handa A, Wanhainen A, Mani K, Lindholt JS, Obel LM, Strauss E, Oszkinis G, Nelson CP, Saxby KL, van Herwaarden JA, van der Laan SW, van Setten J, Camacho M, Davis FM, Wasikowski R, Tsoi LC, Gudjonsson JE, Eliason JL, Coleman DM, Henke PK, Ganesh SK, Chen YE, Guan W, Pankow JS, Pankratz N, Pedersen OB, Erikstrup C, Tang W, Hveem K, Gudbjartsson D, Gretarsdottir S, Thorsteinsdottir U, Holm H, Stefansson K, Ferreira MA, Baras A, Kullo IJ, Ritchie MD, Christensen AH, Iversen KK, Eldrup N, Sillesen H, Ostrowski SR, Bundgaard H, Ullum H, Burgess S, Gill D, Gallagher K, Sabater-Lleal M, Surakka I, Jones GT, Bown MJ, Tsao PS, Willer CJ, Damrauer SM. Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target. Nat Genet 2023; 55:1831-1842. [PMID: 37845353 PMCID: PMC10632148 DOI: 10.1038/s41588-023-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.
Collapse
Affiliation(s)
- Tanmoy Roychowdhury
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| | - Derek Klarin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yae Hyun Rhee
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alicia Deng
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Colwyn A Headley
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Corry Gellatly
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Fred Shen
- University of Michigan Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ina Holst Laursen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam E Locke
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | | | | | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, MN, USA
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
- Mayo Clinician Investigator Training Program, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Renae L Judy
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ferran Pauls-Verges
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jaume Dilmé
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Olga Peypoch
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dadong Li
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke L Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Lasse M Obel
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Vascular and General Surgery, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Katie L Saxby
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Joost A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mercedes Camacho
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Henke
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Aris Baras
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alex H Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper K Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sillesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| | - Katherine Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Philip S Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Al‐Sharshani D, Velayutham D, Samara M, Gazal R, Al Haj Zen A, Ismail MA, Ahmed M, Nasrallah G, Younes S, Rizk N, Hammuda S, Qoronfleh MW, Farrell T, Zayed H, Abdulrouf PV, AlDweik M, Silang JPB, Rahhal A, Al‐Jurf R, Mahfouz A, Salam A, Al Rifai H, Al‐Dewik NI. Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar. Mol Genet Genomic Med 2023; 11:e2178. [PMID: 37147786 PMCID: PMC10422074 DOI: 10.1002/mgg3.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Dyslipidemia is recognized as one of the risk factors of cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD). OBJECTIVE The study aimed to investigate the association between selected single nucleotide polymorphisms (SNPs) with dyslipidemia and increased susceptibility risks of CVD, NAFLD, and/or T2DM in dyslipidemia patients in comparison with healthy control individuals from the Qatar genome project. METHODS A community-based cross-sectional study was conducted among 2933 adults (859 dyslipidemia patients and 2074 healthy control individuals) from April to December 2021 to investigate the association between 331 selected SNPs with dyslipidemia and increased susceptibility risks of CVD, NAFLD and/or T2DM, and covariates. RESULTS The genotypic frequencies of six SNPs were found to be significantly different in dyslipidemia patients subjects compared to the control group among males and females. In males, three SNPs were found to be significant, the rs11172113 in over-dominant model, the rs646776 in recessive and over-dominant models, and the rs1111875 in dominant model. On the other hand, two SNPs were found to be significant in females, including rs2954029 in recessive model, and rs1801251 in dominant and recessive models. The rs17514846 SNP was found for dominant and over-dominant models among males and only the dominant model for females. We found that the six SNPs linked to gender type had an influence in relation to disease susceptibility. When controlling for the four covariates (gender, obesity, hypertension, and diabetes), the difference between dyslipidemia and the control group remained significant for the six variants. Finally, males were three times more likely to have dyslipidemia in comparison with females, hypertension was two times more likely to be present in the dyslipidemia group, and diabetes was six times more likely to be in the dyslipidemia group. CONCLUSION The current investigation provides evidence of association for a common SNP to coronary heart disease and suggests a sex-dependent effect and encourage potential therapeutic applications.
Collapse
Affiliation(s)
- Dalal Al‐Sharshani
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | - Dinesh Velayutham
- Liberal Arts and Science (LAS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | - Muthanna Samara
- Department of PsychologyKingston University LondonKingston upon ThamesLondonUK
| | - Reham Gazal
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Ayman Al Haj Zen
- College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
| | | | - Mahmoud Ahmed
- Department of Mathematics, Statistics and Physics, College of Arts and SciencesQatar University (QU)DohaQatar
| | - Gheyath Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Nasser Rizk
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Sara Hammuda
- Department of PsychologyKingston University LondonKingston upon ThamesLondonUK
| | - M. Walid Qoronfleh
- Research & Policy DivisionQ3CG Research Institute (QRI)7227 Rachel DriveYpsilantiMichiganUSA
- 21HealthStreet CompanyLondonUK
| | - Thomas Farrell
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Palli Valapila Abdulrouf
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Manar AlDweik
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - John Paul Ben Silang
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Alaa Rahhal
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
| | - Rana Al‐Jurf
- Department of Biomedical Science, College of Health Sciences, Member of QU HealthQatar University (QU)DohaQatar
| | - Ahmed Mahfouz
- Heart Hospital (HH)Hamad Medical Corporation (HMC)DohaQatar
| | - Amar Salam
- Department of Cardiology, Al Khor Hospital (AKH)Hamad Medical Corporation (HMC)DohaQatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| | - Nader I. Al‐Dewik
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS)Hamad Bin Khalifa University (HBKU)DohaQatar
- Department of Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
- Hamad Medical Corporation (HMC)DohaQatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
- Faculty of Health and Social Care Sciences, Kingston UniversitySt. George's University of LondonLondonUK
- Translational and Precision Medicine Research, Women's Wellness and Research Center (WWRC)Hamad Medical Corporation (HMC)DohaQatar
| |
Collapse
|
12
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
13
|
Gyftopoulos A, Ziganshin BA, Elefteriades JA, Ochoa Chaar CI. Comparison of Genes Associated with Thoracic and Abdominal Aortic Aneurysms. AORTA (STAMFORD, CONN.) 2023; 11:125-134. [PMID: 37279787 PMCID: PMC10449569 DOI: 10.1055/s-0043-57266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/09/2022] [Indexed: 06/08/2023]
Abstract
Aneurysms impacting the ascending thoracic aorta and the abdominal aorta affect patient populations with distinct clinical characteristics. Through a literature review, this paper compares the genetic associations of ascending thoracic aortic aneurysm (ATAA) with abdominal aortic aneurysms (AAA). Genes related to atherosclerosis, lipid metabolism, and tumor development are associated specifically with sporadic AAA, while genes controlling extracellular matrix (ECM) structure, ECM remodeling, and tumor growth factor β function are associated with both AAA and ATAA. Contractile element genes uniquely predispose to ATAA. Aside from known syndromic connective tissue disease and poly-aneurysmal syndromes (Marfan disease, Loeys-Dietz syndrome, and Ehlers-Danlos syndrome), there is only limited genetic overlap between AAA and ATAA. The rapid advances in genotyping and bioinformatics will elucidate further the various pathways associated with the development of aneurysms affecting various parts of the aorta.
Collapse
Affiliation(s)
| | - Bulat A. Ziganshin
- Aortic Institute, Yale University School of Medicine, New Haven, Connecticut
| | | | - Cassius I. Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Tian Y, Li X, Bai C, Yang Z, Zhang L, Luo J, Zhang W. lncRNA MIR503HG Targets miR-191-5p/PLCD1 Axis and Negatively Modulates Apoptosis, Extracellular Matrix Disruption, and Inflammation in Abdominal Aortic Aneurysm. Mediators Inflamm 2023; 2023:4003618. [PMID: 37228901 PMCID: PMC10205412 DOI: 10.1155/2023/4003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
As the most prevalent subtype of aortic aneurysm, abdominal aortic aneurysm (AAA) features the apoptosis, extracellular matrix (ECM) disruption, and inflammation response of vascular smooth muscle cells (VSMCs). Noncoding RNAs (ncRNAs) are crucial factors in AAA progression, while the investigations have not been fully explained. miR-191-5p upregulation is found in aortic aneurysm. However, its role in AAA has not been addressed. This research purposed to excavate the possible and associated molecular axis of miR-191-5p in AAA. In our study, miR-191-5p level was detected to be high in the tissues from AAA patients in comparison with the control group. After miR-191-5p expression was enhanced, cell viability was repressed, cell apoptosis was boosted, and ECM disruption and the inflammation response were fortified. Furthermore, the relationship among MIR503HG, miR-191-5p, and phospholipase C delta 1 (PLCD1) in VSMCs was disclosed via mechanism assays. Decreased MIR503HG lacked the inhibition on miR-191-5p targeting PLCD1, resulting in downregulation of PLCD1, which facilitated the progression of AAA. Thus, targeting MIR503HG/miR-191-5p/PLCD1 pathway will provide an additional method for the cure of AAA patients.
Collapse
Affiliation(s)
- Ye Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Xinxi Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Chao Bai
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Zhenwei Yang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Jun Luo
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
15
|
Munshaw S, Redpath AN, Pike BT, Smart N. Thymosin β4 preserves vascular smooth muscle phenotype in atherosclerosis via regulation of low density lipoprotein related protein 1 (LRP1). Int Immunopharmacol 2023; 115:109702. [PMID: 37724952 PMCID: PMC10666903 DOI: 10.1016/j.intimp.2023.109702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a progressive, degenerative vascular disease and a leading cause of morbidity and mortality. In response to endothelial damage, platelet derived growth factor (PDGF)-BB induced phenotypic modulation of medial smooth muscle cells (VSMCs) promotes atherosclerotic lesion formation and destabilisation of the vessel wall. VSMC sensitivity to PDGF-BB is determined by endocytosis of Low density lipoprotein receptor related protein 1 (LRP1)-PDGFR β complexes to balance receptor recycling with lysosomal degradation. Consequently, LRP1 is implicated in various arterial diseases. Having identified Tβ4 as a regulator of LRP1-mediated endocytosis to protect against aortic aneurysm, we sought to determine whether Tβ4 may additionally function to protect against atherosclerosis, by regulating LRP1-mediated growth factor signalling. By single cell transcriptomic analysis, Tmsb4x, encoding Tβ4, strongly correlated with contractile gene expression and was significantly down-regulated in cells that adopted a modulated phenotype in atherosclerosis. We assessed susceptibility to atherosclerosis of global Tβ4 knockout mice using the ApoE-/- hypercholesterolaemia model. Inflammation, elastin integrity, VSMC phenotype and signalling were analysed in the aortic root and descending aorta. Tβ4KO; ApoE-/- mice develop larger atherosclerotic plaques than control mice, with medial layer degeneration characterised by accelerated VSMC phenotypic modulation. Defects in Tβ4KO; ApoE-/- mice phenocopied those in VSMC-specific LRP1 nulls and, moreover, were underpinned by hyperactivated LRP1-PDGFRβ signalling. We identify an atheroprotective role for endogenous Tβ4 in maintaining differentiated VSMC phenotype via LRP1-mediated PDGFRβ signalling.
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Andia N Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK
| | - Benjamin T Pike
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK.
| |
Collapse
|
16
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Bararu Bojan (Bararu) I, Pleșoianu CE, Badulescu OV, Vladeanu MC, Badescu MC, Iliescu D, Bojan A, Ciocoiu M. Molecular and Cellular Mechanisms Involved in Aortic Wall Aneurysm Development. Diagnostics (Basel) 2023; 13:diagnostics13020253. [PMID: 36673063 PMCID: PMC9858209 DOI: 10.3390/diagnostics13020253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
Aortic aneurysms represent a very common pathology that can affect any segment of the aorta. These types of aneurysms can be localized on the thoracic segment or on the abdominal portion, with the latter being more frequent. Though there are similarities between thoracic and abdominal aortic aneurysms, these pathologies are distinct entities. In this article, we undertook a review regarding the different mechanisms that can lead to the development of aortic aneurysm, and we tried to identify the different manners of treatment. For a long time, aortic wall aneurysms may evolve in an asymptomatic manner, but this progressive dilatation of the aneurysm can lead to a potentially fatal complication consisting in aortic rupture. Because there are limited therapies that may delay or prevent the development of acute aortic syndromes, surgical management remains the most common manner of treatment. Even though, surgical management has improved much in the last years, thus becoming less invasive and sophisticated, the morbi-mortality linked to these therapies remains increased. The identification of the cellular and molecular networks triggering the formation of aneurysm would permit the discovery of modern therapeutic targets. Molecular and cellular mechanisms are gaining a bigger importance in the complex pathogenesis of aortic aneurysms. Future studies must be developed to compare the findings seen in human tissue and animal models of aortic aneurysm, so that clinically relevant conclusions about the aortic aneurysm formation and the pharmacological possibility of pathogenic pathways blockage can be drawn.
Collapse
Affiliation(s)
- Iris Bararu Bojan (Bararu)
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| | - Carmen Elena Pleșoianu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Cardiology, ‘Prof. Dr. George I.M. Georgescu’ Institute of Cardiovascular Diseases, 700503 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
- Correspondence: (C.E.P.); (O.V.B.); (M.C.V.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dan Iliescu
- Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 16 Unirii Street, 700115 Iași, Romania
| |
Collapse
|
18
|
Hellwege JN, Dorn C, Irvin MR, Limdi NA, Cimino J, Beasley TM, Tsao PS, Damrauer SM, Roden DM, Velez Edwards DR, Wei WQ, Edwards TL. Predictive models for abdominal aortic aneurysms using polygenic scores and PheWAS-derived risk factors. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2023; 28:425-436. [PMID: 36540997 PMCID: PMC9782709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can grow larger until rupture, often leading to death. Detection of AAA is often by ultrasonography and screening recommendations are mostly directed at men over 65 with a smoking history. Recent large-scale genome-wide association studies have identified genetic loci associated with AAA risk. We combined known risk factors, polygenic risk scores (PRS) and precedent clinical diagnoses from electronic health records (EHR) to develop predictive models for AAA, and compared performance against screening recommendations. The PRS included genome-wide summary statistics from the Million Veteran Program and FinnGen (10,467 cases, 378,713 controls of European ancestry), with optimization in Vanderbilt's BioVU and validated in the eMERGE Network, separately across both White and Black participants. Candidate diagnoses were identified through a temporally-oriented Phenome-wide association study in independent EHR data from Vanderbilt, and features were selected via elastic net. We calculated C-statistics in eMERGE for models including PRS, phecodes, and covariates using regression weights from BioVU. The AUC for the full model in the test set was 0.883 (95% CI 0.873-0.892), 0.844 (0.836-0.851) for covariates only, 0.613 (95% CI 0.604-0.622) when using primary USPSTF screening criteria, and 0.632 (95% CI 0.623-0.642) using primary and secondary criteria. Brier scores were between 0.003 and 0.023 for our models indicating good calibration, and net reclassification improvement over combined primary and secondary USPSTF criteria was 0.36-0.60. We provide PRS for AAA which are strongly associated with AAA risk and add to predictive model performance. These models substantially improve identification of people at risk of a AAA diagnosis compared with existing guidelines, with evidence of potential applicability in minority populations.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute Vanderbilt University Medical Center 2525 West End Ave. Ste 700, Nashville, TN, 37203, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Katz AE, Yang ML, Levin MG, Tcheandjieu C, Mathis M, Hunker K, Blackburn S, Eliason JL, Coleman DM, Fendrikova-Mahlay N, Gornik HL, Karmakar M, Hill H, Xu C, Zawistowski M, Brummett CM, Zoellner S, Zhou X, O'Donnell CJ, Douglas JA, Assimes TL, Tsao PS, Li JZ, Damrauer SM, Stanley JC, Ganesh SK. Fibromuscular Dysplasia and Abdominal Aortic Aneurysms Are Dimorphic Sex-Specific Diseases With Shared Complex Genetic Architecture. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003496. [PMID: 36374587 PMCID: PMC9772208 DOI: 10.1161/circgen.121.003496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The risk of arterial diseases may be elevated among family members of individuals having multifocal fibromuscular dysplasia (FMD). We sought to investigate the risk of arterial diseases in families of individuals with FMD. METHODS Family histories for 73 probands with FMD were obtained, which included an analysis of 463 total first-degree relatives focusing on FMD and related arterial disorders. A polygenic risk score for FMD (PRSFMD) was constructed from prior genome-wide association findings of 584 FMD cases and 7139 controls and evaluated for association with an abdominal aortic aneurysm (AAA) in a cohort of 9693 AAA cases and 294 049 controls. A previously published PRSAAA was also assessed among the FMD cases and controls. RESULTS Of all first degree relatives of probands, 9.3% were diagnosed with FMD, aneurysms, and dissections. Aneurysmal disease occurred in 60.5% of affected relatives and 5.6% of all relatives. Among 227 female first-degree relatives of probands, 4.8% (11) had FMD, representing a relative risk (RR)FMD of 1.5 ([95% CI, 0.75-2.8]; P=0.19) compared with the estimated population prevalence of 3.3%, though not of statistical significance. Of all fathers of FMD probands, 11% had AAAs resulting in a RRAAA of 2.3 ([95% CI, 1.12-4.6]; P=0.014) compared with population estimates. The PRSFMD was found to be associated with an AAA (odds ratio, 1.03 [95% CI, 1.01-1.05]; P=2.6×10-3), and the PRSAAA was found to be associated with FMD (odds ratio, 1.53 [95% CI, 1.2-1.9]; P=9.0×10-5) as well. CONCLUSIONS FMD and AAAs seem to be sex-dimorphic manifestations of a heritable arterial disease with a partially shared complex genetic architecture. Excess risk of having an AAA according to a family history of FMD may justify screening in family members of individuals having FMD.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Medical Genomics & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (A.E.K.)
| | - Min-Lee Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Department of Computational Medicine and Bioinformatics (M.-L.Y.), University of Michigan, Ann Arbor
| | - Michael G Levin
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Division of Cardiovascular Medicine, Department of Medicine (M.G.L.)
| | - Catherine Tcheandjieu
- Gladstone Institute of data science and Biotechnology, Gladstone Institutes; and Department of epidemiology and biostatistics, University of California at San Francisco, CA. (C.T.)
| | - Michael Mathis
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Kristina Hunker
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Susan Blackburn
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | | | - Heather L Gornik
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (H.L.G.)
| | - Monita Karmakar
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Hannah Hill
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Chang Xu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Chad M Brummett
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Sebastian Zoellner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Christopher J O'Donnell
- VA Boston Healthcare System (C.O.)
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.O.)
| | - Julie A Douglas
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Themistocles L Assimes
- VA Palo Alto Health Care System (T.L.A., P.S.T.)
- Division of Cardiovascular Medicine, Department of Medicine (T.L.A.), Stanford University School of Medicine, CA
| | | | - Jun Z Li
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Scott M Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Department of Surgery and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.M.D.)
| | - James C Stanley
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| |
Collapse
|
20
|
Portilla-Fernandez E, Klarin D, Hwang SJ, Biggs ML, Bis JC, Weiss S, Rospleszcz S, Natarajan P, Hoffmann U, Rogers IS, Truong QA, Völker U, Dörr M, Bülow R, Criqui MH, Allison M, Ganesh SK, Yao J, Waldenberger M, Bamberg F, Rice KM, Essers J, Kapteijn DMC, van der Laan SW, de Knegt RJ, Ghanbari M, Felix JF, Ikram MA, Kavousi M, Uitterlinden AG, Roks AJM, Danser AHJ, Tsao PS, Damrauer SM, Guo X, Rotter JI, Psaty BM, Kathiresan S, Völzke H, Peters A, Johnson C, Strauch K, Meitinger T, O’Donnell CJ, Dehghan A. Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study. Hum Mol Genet 2022; 31:3566-3579. [PMID: 35234888 PMCID: PMC9558840 DOI: 10.1093/hmg/ddac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.
Collapse
Affiliation(s)
- Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI/NIH, Bethesda MD, USA
- National Heart Lung and Blood Institute's Intramural Research Program's Framingham Heart Study, Framingham, MA, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ian S Rogers
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Quynh A Truong
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael H Criqui
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Matthew Allison
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry & Hematology, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rob J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janine F Felix
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Philip S Tsao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Craig Johnson
- Collaborative Health Studies Coordinating Center, Department of Biostatistics in the School of Public Health, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Human Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Christopher J O’Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
21
|
Wang Y, Starovoytov A, Murad AM, Hunker KL, Brunham LR, Li JZ, Saw J, Ganesh SK. Burden of Rare Genetic Variants in Spontaneous Coronary Artery Dissection With High-risk Features. JAMA Cardiol 2022; 7:1045-1055. [PMID: 36103205 PMCID: PMC9475437 DOI: 10.1001/jamacardio.2022.2970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 07/28/2023]
Abstract
Importance The emerging genetic basis of spontaneous coronary artery dissection (SCAD) has been defined as both partially complex and monogenic in some patients, involving variants predominantly in genes known to underlie vascular connective tissue diseases (CTDs). The effect of these genetic influences has not been defined in high-risk SCAD phenotypes, and the identification of a high-risk subgroup of individuals may help to guide clinical genetic evaluations of SCAD. Objective To identify and quantify the burden of rare genetic variation in individuals with SCAD with high-risk clinical features. Design, Setting, and Participants Whole-exome sequencing (WES) was performed for subsequent case-control association analyses and individual variant annotation among individuals with high-risk SCAD. Genetic variants were annotated for pathogenicity by in-silico analysis of genes previously defined by sequencing for vascular CTDs and/or SCAD, as well as genes prioritized by genome-wide association study (GWAS) and colocalization of arterial expression quantitative trait loci. Unbiased genome-wide association analysis of the WES data was performed by comparing aggregated variants in individuals with SCAD to healthy matched controls or the Genome Aggregation Database (gnomAD). This study was conducted at a tertiary care center. Individuals in the Canadian SCAD Registry genetics study with a high-risk SCAD phenotype were selected and defined as peripartum SCAD, recurrent SCAD, or SCAD in an individual with family history of arteriopathy. Main Outcomes and Measures Burden of genetic variants defined by DNA sequencing in individuals with high-risk SCAD. Results This study included a total of 336 participants (mean [SD] age, 53.0 [9.5] years; 301 female participants [90%]). Variants in vascular CTD genes were identified in 17.0% of individuals (16 of 94) with high-risk SCAD and were enriched (OR, 2.6; 95% CI, 1.6-4.2; P = 7.8 × 10-4) as compared with gnomAD, with leading significant signals in COL3A1 (OR, 13.4; 95% CI, 4.9-36.2; P = 2.8 × 10-4) and Loeys-Dietz syndrome genes (OR, 7.9; 95% CI, 2.9-21.2; P = 2.0 × 10-3). Variants in GWAS-prioritized genes, observed in 6.4% of individuals (6 of 94) with high-risk SCAD, were also enriched (OR, 3.6; 95% CI, 1.6-8.2; P = 7.4 × 10-3). Variants annotated as likely pathogenic or pathogenic occurred in 4 individuals, in the COL3A1, TGFBR2, and ADAMTSL4 genes. Genome-wide aggregated variant testing identified novel associations with peripartum SCAD. Conclusions and Relevance In this genetic study, approximately 1 in 5 individuals with a high-risk SCAD phenotype harbored a rare genetic variant in genes currently implicated for SCAD. Genetic screening in this subgroup of individuals presenting with SCAD may be considered.
Collapse
Affiliation(s)
- Yu Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Andrew Starovoytov
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea M. Murad
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Liam R. Brunham
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Jacqueline Saw
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
22
|
The complex genetic basis of fibromuscular dysplasia, a systemic arteriopathy associated with multiple forms of cardiovascular disease. Clin Sci (Lond) 2022; 136:1241-1255. [PMID: 36043395 PMCID: PMC9434409 DOI: 10.1042/cs20210990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022]
Abstract
Artery stenosis is a common cause of hypertension and stroke and can be due to atherosclerosis accumulation in the majority of cases and in a small fraction of patients to arterial fibromuscular dysplasia (FMD). Artery stenosis due to atherosclerosis is widely studied with known risk factors (e.g. increasing age, male gender, and dyslipidemia) to influence its etiology, including genetic factors. However, the causes of noninflammatory and nonatherosclerotic stenosis in FMD are less understood. FMD occurs predominantly in early middle-age women, a fraction of the population where cardiovascular risk is different and understudied. FMD arteriopathies are often diagnosed in the context of hypertension and stroke and co-occur mainly with spontaneous coronary artery dissection, an atypical cause of acute myocardial infarction. In this review, we provide a comprehensive overview of the recent advances in the understanding of molecular origins of FMD. Data were obtained from genetic studies using complementary methodological approaches applied to familial, syndromic, and sporadic forms of this intriguing arteriopathy. Rare variation analyses point toward mechanisms related to impaired prostacyclin signaling and defaults in fibrillar collagens. The study of common variation, mainly through a recent genome-wide association study, describes a shared genetic link with blood pressure, in addition to point at potential risk genes involved in actin cytoskeleton and intracellular calcium homeostasis supporting impaired vascular contraction as a key mechanism. We conclude this review with future strategies and approaches needed to fully understand the genetic and molecular mechanisms related to FMD.
Collapse
|
23
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|
24
|
Garcia-Arcos I, Park SS, Mai M, Alvarez-Buve R, Chow L, Cai H, Baumlin-Schmid N, Agudelo CW, Martinez J, Kim MD, Dabo AJ, Salathe M, Goldberg IJ, Foronjy RF. LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling. J Lipid Res 2022; 63:100185. [PMID: 35202607 PMCID: PMC8953659 DOI: 10.1016/j.jlr.2022.100185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA.
| | - Sangmi S Park
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michelle Mai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Roger Alvarez-Buve
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lillian Chow
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Huchong Cai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | | | - Christina W Agudelo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Jennifer Martinez
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michael D Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ira J Goldberg
- Department of Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| |
Collapse
|
25
|
Yeung MW, Wang S, van de Vegte YJ, Borisov O, van Setten J, Snieder H, Verweij N, Said MA, van der Harst P. Twenty-Five Novel Loci for Carotid Intima-Media Thickness: A Genome-Wide Association Study in >45 000 Individuals and Meta-Analysis of >100 000 Individuals. Arterioscler Thromb Vasc Biol 2022; 42:484-501. [PMID: 34852643 PMCID: PMC8939707 DOI: 10.1161/atvbaha.121.317007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carotid artery intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. Twenty susceptibility loci for cIMT were previously identified and the identification of additional susceptibility loci furthers our knowledge on the genetic architecture underlying atherosclerosis. APPROACH AND RESULTS We performed 3 genome-wide association studies in 45 185 participants from the UK Biobank study who underwent cIMT measurements and had data on minimum, mean, and maximum thickness. We replicated 15 known loci and identified 20 novel loci associated with cIMT at P<5×10-8. Seven novel loci (ZNF385D, ADAMTS9, EDNRA, HAND2, MYOCD, ITCH/EDEM2/MMP24, and MRTFA) were identified in all 3 phenotypes. An additional new locus (LOXL1) was identified in the meta-analysis of the 3 phenotypes. Sex interaction analysis revealed sex differences in 7 loci including a novel locus (SYNE3) in males. Meta-analysis of UK Biobank data with a previous meta-analysis led to identification of three novel loci (APOB, FIP1L1, and LOXL4). Transcriptome-wide association analyses implicated additional genes ARHGAP42, NDRG4, and KANK2. Gene set analysis showed an enrichment in extracellular organization and the PDGF (platelet-derived growth factor) signaling pathway. We found positive genetic correlations of cIMT with coronary artery disease rg=0.21 (P=1.4×10-7), peripheral artery disease rg=0.45 (P=5.3×10-5), and systolic blood pressure rg=0.30 (P=4.0×10-18). A negative genetic correlation between average of maximum cIMT and high-density lipoprotein was found rg=-0.12 (P=7.0×10-4). CONCLUSIONS Genome-wide association meta-analyses in >100 000 individuals identified 25 novel loci associated with cIMT providing insights into genes and tissue-specific regulatory mechanisms of proatherosclerotic processes. We found evidence for shared biological mechanisms with cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Wai Yeung
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Siqi Wang
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| | - Yordi J. van de Vegte
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany (O.B.)
| | - Jessica van Setten
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - M. Abdullah Said
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| |
Collapse
|
26
|
Daghals I, Sargurupremraj M, Danning R, Gormley P, Malik R, Amouyel P, Metso T, Pezzini A, Kurth T, Debette S, Chasman D. Migraine, Stroke, and Cervical Arterial Dissection: Shared Genetics for a Triad of Brain Disorders With Vascular Involvement. Neurol Genet 2022; 8:e653. [PMID: 35128049 PMCID: PMC8808356 DOI: 10.1212/nxg.0000000000000653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives Migraine, stroke, and cervical artery dissection (CeAD) represent a triad of cerebrovascular disorders with pairwise comorbid relationships and vascular involvement. Larger samples and recent advances in methodology invite systematic exploration of their shared genetics. Methods Genetic analyses leveraged summary statistics from genome-wide association studies of the largest available samples of each disorder, including subtypes of stroke (ischemic stroke, large artery stroke, small vessel stroke, and cardioembolic stroke) and migraine (with aura and without aura). For each pair of disorders, genetic correlation was assessed both on a genome-wide basis and within independent segments across the genome including known specific loci for each disorder. A cross-trait meta-analysis was used to identify novel candidate loci. Finally, potential causality of migraine susceptibility on stroke and CeAD was assessed by Mendelian randomization. Results Among all pairs of disorders, genome-wide genetic correlation was observed only between CeAD and migraine, particularly MO. Local genetic correlations were more extensive between migraine and CeAD than those between migraine and stroke or CeAD and stroke and revealed evidence for novel CeAD associations at rs6693567 (ADAMTSL4/ECM1), rs11187838 (PLCE1), and rs7940646 (MRVI1) while strengthening prior subthreshold evidence at rs9486725 (FHL5) and rs650724 (LRP1). At known migraine loci, novel associations with stroke had concordant risk alleles for small vessel stroke at rs191602009 (CARF) and for cardioembolic stroke at rs55884259 (NKX2-5). Known migraine loci also revealed novel associations but with opposite risk alleles for all stroke, ischemic stroke, and small vessel stroke at rs55928386 (HTRA1), for large artery stroke at rs11172113 (LRP1), and for all stroke and ischemic stroke at rs1535791 and rs4942561 (both LRCH1), respectively. rs182923402 (near PTCH1) was a novel concordant locus for migraine and cardioembolic stroke. Mendelian randomization supported potential causal influences of migraine on CeAD (odds ratio [95% confidence interval] per doubling migraine prevalence = 1.69 [1.24-2.3], p = 0.0009) with concordant risk, but with opposite risk on large artery stroke (0.86 [0.76-0.96], p = 0.0067). Discussion The findings emphasize shared genetic risk between migraine and CeAD while identifying loci with likely vascular function in migraine and shared but opposite genetic risk between migraine and stroke subtypes, and a central role of LRP1 in all 3 cerebrovascular disorders.
Collapse
Affiliation(s)
| | | | - Rebecca Danning
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Padhraig Gormley
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Rainer Malik
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Philippe Amouyel
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tiina Metso
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Alessandro Pezzini
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tobias Kurth
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | | | | |
Collapse
|
27
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|
28
|
Erhart P, Körfer D, Grond-Ginsbach C, Qiao JL, Bischoff MS, Hempel M, Schaaf CP, Grau A, Böckler D. Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. J Cardiovasc Dev Dis 2022; 9:jcdd9010014. [PMID: 35050224 PMCID: PMC8780592 DOI: 10.3390/jcdd9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variation in LRP1 (low-density lipoprotein receptor-related protein 1) was reported to be associated with thoracic aortic dissections and aneurysms. The aims of this study were to confirm this association in a prospective single-center patient cohort of patients with acute Stanford type B aortic dissections (STBAD) and to assess the impact of LRP1 variation on clinical outcome. The single nucleotide variation (SNV) rs11172113 within the LRP1 gene was genotyped in 113 STBAD patients and 768 healthy control subjects from the same population. The T-allele of rs11172113 was more common in STBAD patients as compared to the reference group (72.6% vs. 59.6%) and confirmed to be an independent risk factor for STBAD (p = 0.002) after sex and age adjustment in a logistic regression model analyzing diabetes, smoking and hypertension as additional risk factors. Analysis of clinical follow-up (median follow-up 2.0 years) revealed that patients with the T-allele were more likely to suffer aorta-related complications (T-allele 75.6% vs. 63.8%; p = 0.022). In this study sample of STBAD patients, variation in LRP1 was an independent risk factor for STBAD and affected clinical outcome.
Collapse
Affiliation(s)
- Philipp Erhart
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
- Correspondence: ; Tel.: +49-6221-56-6249
| | - Daniel Körfer
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Caspar Grond-Ginsbach
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Jia-Lu Qiao
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Moritz S. Bischoff
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Maja Hempel
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany; (M.H.); (C.P.S.)
| | - Christian P. Schaaf
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany; (M.H.); (C.P.S.)
| | - Armin Grau
- Department of Neurology, Community Hospital Klinikum der Stadt Ludwigshafen am Rhein, 67063 Ludwigshafen, Germany;
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| |
Collapse
|
29
|
Fibrates: A Possible Treatment Option for Patients with Abdominal Aortic Aneurysm? Biomolecules 2022; 12:biom12010074. [PMID: 35053222 PMCID: PMC8773940 DOI: 10.3390/biom12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease; however, there is no established treatment for patients with AAA. Fibrates are agonists of peroxisome proliferator-activated receptor alpha (PPARα) that are widely used as therapeutic agents to treat patients with hypertriglyceridemia. They can regulate the pathogenesis of AAA in multiple ways, for example, by exerting anti-inflammatory and anti-oxidative effects and suppressing the expression of matrix metalloproteinases. Previously, basic and clinical studies have evaluated the effects of fenofibrate on AAA. In this paper, we summarize the results of these studies and discuss the problems associated with using fenofibrate as a therapeutic agent for patients with AAA. In addition, we discuss a new perspective on the regulation of AAA by PPARα agonists.
Collapse
|
30
|
Mueller PA, Kojima Y, Huynh KT, Maldonado RA, Ye J, Tavori H, Pamir N, Leeper NJ, Fazio S. Macrophage LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Is Required for the Effect of CD47 Blockade on Efferocytosis and Atherogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:e1-e9. [PMID: 34758632 PMCID: PMC8702482 DOI: 10.1161/atvbaha.121.316854] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Antibody blockade of the "do not eat me" signal CD47 (cluster of differentiation 47) enhances efferocytosis and reduces lesion size and necrotic core formation in murine atherosclerosis. TNF (Tumor necrosis factor)-α expression directly enhances CD47 expression, and elevated TNF-α is observed in the absence of the proefferocytosis receptor LRP1 (low-density lipoprotein receptor-related protein 1), a regulator of atherogenesis and inflammation. Thus, we tested the hypothesis that CD47 blockade requires the presence of macrophage LRP1 to enhance efferocytosis, temper TNF-α-dependent inflammation, and limit atherosclerosis. Approach and Results: Mice lacking systemic apoE (apoE-/-), alone or in combination with the loss of macrophage LRP1 (double knockout), were fed a Western-type diet for 12 weeks while receiving anti-CD47 antibody (anti-CD47) or IgG every other day. In apoE-/- mice, treatment with anti-CD47 reduced lesion size by 25.4%, decreased necrotic core area by 34.5%, and decreased the ratio of free:macrophage-associated apoptotic bodies by 47.6% compared with IgG controls (P<0.05), confirming previous reports. Double knockout mice treated with anti-CD47 showed no differences in lesion size, necrotic core area, or the ratio of free:macrophage-associated apoptotic bodies compared with IgG controls. In vitro efferocytosis was 30% higher when apoE-/- phagocytes were incubated with anti-CD47 compared with IgG controls (P<0.05); however, anti-CD47 had no effect on efferocytosis in double knockout phagocytes. Analyses of mRNA and protein showed increased CD47 expression in anti-inflammatory IL (interleukin)-4 treated LRP1-/- macrophages compared with wild type, but no differences were observed in inflammatory lipopolysaccharide-treated macrophages. CONCLUSIONS The proefferocytosis receptor LRP1 in macrophages is necessary for anti-CD47 blockade to enhance efferocytosis, limit atherogenesis, and decrease necrotic core formation in the apoE-/- model of atherosclerosis.
Collapse
Affiliation(s)
- Paul A. Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA
| | - Katherine T. Huynh
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Richard A. Maldonado
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Jianqin Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA
| | - Hagai Tavori
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
31
|
Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S, Zheng XL. PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Triggers Vascular Smooth Muscle Cell Senescence and Apoptosis: Implication of Its Direct Role in Degenerative Vascular Disease. Arterioscler Thromb Vasc Biol 2021; 42:67-86. [PMID: 34809446 DOI: 10.1161/atvbaha.121.316902] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.
Collapse
Affiliation(s)
- Yanan Guo
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Zhihan Tang
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Binjie Yan
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Hao Yin
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Now with Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada (H.Y.)
| | - Shi Tai
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yuting Cui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Darrell Belke
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| |
Collapse
|
32
|
Georges A, Yang ML, Berrandou TE, Bakker MK, Dikilitas O, Kiando SR, Ma L, Satterfield BA, Sengupta S, Yu M, Deleuze JF, Dupré D, Hunker KL, Kyryachenko S, Liu L, Sayoud-Sadeg I, Amar L, Brummett CM, Coleman DM, d’Escamard V, de Leeuw P, Fendrikova-Mahlay N, Kadian-Dodov D, Li JZ, Lorthioir A, Pappaccogli M, Prejbisz A, Smigielski W, Stanley JC, Zawistowski M, Zhou X, Zöllner S, Amouyel P, De Buyzere ML, Debette S, Dobrowolski P, Drygas W, Gornik HL, Olin JW, Piwonski J, Rietzschel ER, Ruigrok YM, Vikkula M, Warchol Celinska E, Januszewicz A, Kullo IJ, Azizi M, Jeunemaitre X, Persu A, Kovacic JC, Ganesh SK, Bouatia-Naji N. Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases. Nat Commun 2021; 12:6031. [PMID: 34654805 PMCID: PMC8521585 DOI: 10.1038/s41467-021-26174-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fibromuscular dysplasia (FMD) is an arteriopathy associated with hypertension, stroke and myocardial infarction, affecting mostly women. We report results from the first genome-wide association meta-analysis of six studies including 1556 FMD cases and 7100 controls. We find an estimate of SNP-based heritability compatible with FMD having a polygenic basis, and report four robustly associated loci (PHACTR1, LRP1, ATP2B1, and LIMA1). Transcriptome-wide association analysis in arteries identifies one additional locus (SLC24A3). We characterize open chromatin in arterial primary cells and find that FMD associated variants are located in arterial-specific regulatory elements. Target genes are broadly involved in mechanisms related to actin cytoskeleton and intracellular calcium homeostasis, central to vascular contraction. We find significant genetic overlap between FMD and more common cardiovascular diseases and traits including blood pressure, migraine, intracranial aneurysm, and coronary artery disease.
Collapse
Affiliation(s)
- Adrien Georges
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Min-Lee Yang
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Takiy-Eddine Berrandou
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Mark K. Bakker
- grid.5477.10000000120346234Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ozan Dikilitas
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Soto Romuald Kiando
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Lijiang Ma
- grid.59734.3c0000 0001 0670 2351Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Benjamin A. Satterfield
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Sebanti Sengupta
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
| | - Mengyao Yu
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Jean-François Deleuze
- grid.418135.a0000 0004 0641 3404Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA and Fondation Jean Dausset-CEPH, Evry, France
| | - Delia Dupré
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Kristina L. Hunker
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Sergiy Kyryachenko
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Lu Liu
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Ines Sayoud-Sadeg
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| | - Laurence Amar
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Chad M. Brummett
- grid.214458.e0000000086837370Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI USA
| | - Dawn M. Coleman
- grid.214458.e0000000086837370Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Valentina d’Escamard
- grid.59734.3c0000 0001 0670 2351Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peter de Leeuw
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, Division of General Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands ,grid.5012.60000 0001 0481 6099CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | - Natalia Fendrikova-Mahlay
- grid.239578.20000 0001 0675 4725Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Daniella Kadian-Dodov
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jun Z. Li
- grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Aurélien Lorthioir
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Marco Pappaccogli
- grid.7942.80000 0001 2294 713XDivision of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium ,grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Aleksander Prejbisz
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Witold Smigielski
- grid.10789.370000 0000 9730 2769Department of Demography, University of Lodz, Lodz, Poland
| | - James C. Stanley
- grid.214458.e0000000086837370Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew Zawistowski
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Xiang Zhou
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Sebastian Zöllner
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | | | | | | | - Philippe Amouyel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Labex DISTALZ - Risk factors and molecular determinants of aging-related disease, F-59000 Lille, France
| | - Marc L. De Buyzere
- grid.5342.00000 0001 2069 7798Department of Cardiovascular Diseases, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stéphanie Debette
- grid.42399.350000 0004 0593 7118Department of Neurology, Bordeaux University Hospital, Inserm U1219, Bordeaux, France
| | - Piotr Dobrowolski
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Wojciech Drygas
- grid.418887.aDepartment of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Heather L. Gornik
- grid.239578.20000 0001 0675 4725Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Jeffrey W. Olin
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jerzy Piwonski
- grid.418887.aDepartment of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Ernst R. Rietzschel
- grid.5342.00000 0001 2069 7798Department of Cardiovascular Diseases, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ynte M. Ruigrok
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Miikka Vikkula
- grid.7942.80000 0001 2294 713XHuman Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Ewa Warchol Celinska
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- grid.418887.aDepartment of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Iftikhar J. Kullo
- grid.66875.3a0000 0004 0459 167XDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902 USA ,grid.66875.3a0000 0004 0459 167XGonda Vascular Center, Mayo Clinic, Rochester, MN 55902 USA
| | - Michel Azizi
- grid.414093.b0000 0001 2183 5849Hypertension Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France ,grid.512950.aUniversité de Paris, Inserm, Centre d’Investigation Clinique 1418, F-75006 Paris, France
| | | | - Xavier Jeunemaitre
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France ,grid.414093.b0000 0001 2183 5849Department of Genetics, Assistance-Publiques-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Alexandre Persu
- grid.7942.80000 0001 2294 713XDivision of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium ,grid.7942.80000 0001 2294 713XPole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jason C. Kovacic
- grid.59734.3c0000 0001 0670 2351Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.1057.30000 0000 9472 3971Victor Chang Cardiac Research Institute, Darlinghurst, NSW Australia ,grid.1005.40000 0004 4902 0432St. Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Santhi K. Ganesh
- grid.214458.e0000000086837370Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Nabila Bouatia-Naji
- grid.508487.60000 0004 7885 7602PARCC, INSERM, Université de Paris, F-750015 Paris, France
| |
Collapse
|
33
|
Qu J, Fourman S, Fitzgerald M, Liu M, Nair S, Oses-Prieto J, Burlingame A, Morris JH, Davidson WS, Tso P, Bhargava A. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep 2021; 11:13289. [PMID: 34168225 PMCID: PMC8225859 DOI: 10.1038/s41598-021-92711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Sarah Fourman
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Maureen Fitzgerald
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Supna Nair
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Juan Oses-Prieto
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - John H Morris
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue, Rm HSE1636, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
34
|
Kim ESH, Saw J, Kadian-Dodov D, Wood M, Ganesh SK. FMD and SCAD: Sex-Biased Arterial Diseases With Clinical and Genetic Pleiotropy. Circ Res 2021; 128:1958-1972. [PMID: 34110898 DOI: 10.1161/circresaha.121.318300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multifocal fibromuscular dysplasia (FMD) and spontaneous coronary artery dissection are both sex-biased diseases disproportionately affecting women over men in a 9:1 ratio. Traditionally known in the context of renovascular hypertension, recent advances in knowledge about FMD have demonstrated that FMD is a systemic arteriopathy presenting as arterial stenosis, aneurysm, and dissection in virtually any arterial bed. FMD is also characterized by major cardiovascular presentations including hypertension, stroke, and myocardial infarction. Similar to FMD, spontaneous coronary artery dissection is associated with a high prevalence of extracoronary vascular abnormalities, including FMD, aneurysm, and extracoronary dissection, and recent studies have also found genetic associations between the two diseases. This review will summarize the relationship between FMD and spontaneous coronary artery dissection with a focus on common clinical associations, histopathologic mechanisms, genetic susceptibilities, and the biology of these diseases. The current status of disease models and critical future research directions will also be addressed.
Collapse
Affiliation(s)
- Esther S H Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (E.S.H.K.)
| | - Jacqueline Saw
- Division of Cardiology, Vancouver General Hospital, University of British Columbia Canada (J.S.)
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Joseé and Henry R. Kravis Center for Cardiovascular Health, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (D.K.-D.)
| | - Malissa Wood
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston (M.W.)
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine (S.K.G.), University of Michigan Medical School, Ann Arbor.,Department of Human Genetics (S.K.G.), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
35
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Munshaw S, Bruche S, Redpath AN, Jones A, Patel J, Dubé KN, Lee R, Hester SS, Davies R, Neal G, Handa A, Sattler M, Fischer R, Channon KM, Smart N. Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling. J Clin Invest 2021; 131:127884. [PMID: 33784254 PMCID: PMC8121525 DOI: 10.1172/jci127884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tβ4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFR-β. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFR-β antagonist Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression.
Collapse
MESH Headings
- Angiotensin II/adverse effects
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Becaplermin/genetics
- Becaplermin/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Thymosin/genetics
- Thymosin/metabolism
- Thymosin/pharmacology
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Susann Bruche
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Andia N. Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Alisha Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Jyoti Patel
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Svenja S. Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Davies
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Giles Neal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| |
Collapse
|
37
|
Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021; 327:39-48. [PMID: 34038762 DOI: 10.1016/j.atherosclerosis.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is an important cause of death worldwide and has an estimated heritability between 70 and 77%. Genome-wide association studies (GWAS) are an established way to discover genetic risk variants. The aim of this study was to systematically review the findings and quality of previous AAA GWAS. METHODS The Medline, PubMed, Web of Science and relevant genetic databases were searched to identify previous AAA GWAS. A framework was developed to grade the methodological quality of the GWAS. Data from included studies were extracted to assess methods and findings. RESULTS Eight case-control studies were included. Thirty-three of the 38 total single nucleotide polymorphisms (SNPs) previously reported were associated with AAA diagnosis at genome-wide significance (p < 5.0 × 10-8). The CDKN2B antisense RNA-1 gene had the most significant association with AAA diagnosis (p = 6.94 × 10-29 and p = 1.54 × 10-33 for rs4007642 and rs10757274 respectively). Age, sex and smoking history were not reported for the complete cohort in any of the included studies, although five of the eight studies adjusted or matched for at least two confounding variables. All included studies had important design limitations including lack of sample size estimation, inconsistent case and control ascertainment and limited phenotyping of the AAAs. AAA growth was assessed in one GWAS, however, no significant associations with the reported SNPs were found. CONCLUSIONS This systematic review identified 33 SNPs associated with AAA diagnosis at genome-wide significance previously validated in multiple cohorts. The association between SNPs and AAA growth was not adequately examined. Previous GWAS have a number of design limitations.
Collapse
|
38
|
Marsman J, Gimenez G, Day RC, Horsfield JA, Jones GT. A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Hum Mol Genet 2021; 29:554-565. [PMID: 31691800 PMCID: PMC7068029 DOI: 10.1093/hmg/ddz256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a major cause of sudden death in the elderly. While AAA has some overlapping genetic and environmental risk factors with atherosclerosis, there are substantial differences, and AAA-specific medication is lacking. A recent meta-analysis of genome-wide association studies has identified four novel single-nucleotide polymorphisms (SNPs) specifically associated with AAA. Here, we investigated the gene regulatory function for one of four non-coding SNPs associated with AAA, rs2836411, which is located in an intron of the ERG gene. Rs2836411 resides within a >70 kb super-enhancer that has high levels of H3K27ac and H3K4me1 in vascular endothelial and haematopoietic cell types. Enhancer luciferase assays in cell lines showed that the risk allele significantly alters enhancer activity. The risk allele also correlates with reduced ERG expression in aortic and other vascular tissues. To identify whether rs2836411 directly contacts the promoters of ERG and/or of genes further away, we performed allele-specific circular chromosome conformation capture sequencing. In vascular endothelial cells, which express ERG, the SNP region interacts highly within the super-enhancer, while in vascular smooth muscle cells, which do not express ERG, the interactions are distributed across a wider region that includes neighbouring genes. Furthermore, the risk allele has fewer interactions within the super-enhancer compared to the protective allele. In conclusion, our results indicate that rs2836411 likely affects ERG expression by altering enhancer activity and changing local chromatin interactions. ERG is involved in vascular development, angiogenesis, and inflammation in atherosclerosis; therefore mechanistically, rs2836411 could contribute to AAA by modulating ERG levels.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
39
|
Nichols CE, House JS, Li H, Ward JM, Wyss A, Williams JG, Deterding LJ, Bradbury JA, Miller L, Zeldin DC, London SJ. Lrp1 Regulation of Pulmonary Function. Follow-Up of Human GWAS in Mice. Am J Respir Cell Mol Biol 2021; 64:368-378. [PMID: 33290178 DOI: 10.1165/rcmb.2019-0444oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human genome-wide association studies (GWASs) have identified more than 270 loci associated with pulmonary function; however, follow-up studies to determine causal genes at these loci are few. SNPs in low-density lipoprotein receptor-related protein 1 (LRP1) are associated with human pulmonary function in GWASs. Using murine models, we investigated the effect of genetic disruption of the Lrp1 gene in smooth muscle cells on pulmonary function in naive animals and after exposure to bacterial LPS or house dust mite extract. Disruption of Lrp1 in smooth muscle cells leads to an increase in tissue resistance, elastance, and tissue elastance at baseline. Furthermore, disruption of Lrp1 in smooth muscle increases airway responsiveness as measured by increased total lung resistance and airway resistance after methacholine. Immune cell counts in BAL fluid were increased in animals with Lrp1 disruption. The difference in airway responsiveness by genotype observed in naive animals was not observed after LPS or house dust mite extract exposure. To further explore the mechanisms contributing to changes in pulmonary function, we identified several ligands dysregulated with Lrp1 disruption in smooth muscle cells. These data suggest that dysregulation of LRP1 in smooth muscle cells affects baseline pulmonary function and airway responsiveness and helps establish LRP1 as the causal gene at this GWAS locus.
Collapse
Affiliation(s)
| | | | - Huiling Li
- Immunity, Inflammation, and Disease Laboratory
| | | | | | - Jason G Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | | | | | | | - Stephanie J London
- Immunity, Inflammation, and Disease Laboratory.,Epidemiology Branch, and
| |
Collapse
|
40
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
41
|
FRZB as a key molecule in abdominal aortic aneurysm progression affecting vascular integrity. Biosci Rep 2021; 41:227068. [PMID: 33245093 PMCID: PMC7789806 DOI: 10.1042/bsr20203204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), when ruptured, results in high mortality. The identification of molecular pathways involved in AAA progression is required to improve AAA prognosis. The aim of the present study was to assess the key genes for the progression of AAA and their functional role. Genomic and clinical data of three independent cohorts were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (GSE57691, GSE7084, and GSE98278). To develop AAA diagnosis and progression-related differentially expressed genes (DEGs), we used a significance analysis of microarray (SAM). Spearman correlation test and gene set analysis were performed to identify potential enriched pathways for DEGs. Only the Frizzled-related protein (FRZB) gene and chromosome 1 open reading frame 24 (C1orf24) exhibited significant down-regulation in all analyses. With FRZB, the pathways were associated with RHO GTPase and elastin fiber formation. With C1orf24, the pathways were elastic fiber formation, extracellular matrix organization, and cell–cell communication. Since only FRZB was evolutionally conserved in the vertebrates, function of FRZB was validated using zebrafish embryos. Knockdown of frzb remarkably reduced vascular integrity in zebrafish embryos. We believe that FRZB is a key gene involved in AAA initiation and progression affecting vascular integrity.
Collapse
|
42
|
Greenway J, Gilreath N, Patel S, Horimatsu T, Moses M, Kim D, Reid L, Ogbi M, Shi Y, Lu XY, Shukla M, Lee R, Huo Y, Young L, Kim HW, Weintraub NL. Profiling of Histone Modifications Reveals Epigenomic Dynamics During Abdominal Aortic Aneurysm Formation in Mouse Models. Front Cardiovasc Med 2020; 7:595011. [PMID: 33195484 PMCID: PMC7662126 DOI: 10.3389/fcvm.2020.595011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction: Abdominal aortic aneurysms (AAA) are characterized by localized inflammation, extracellular matrix degradation, and apoptosis of smooth muscle cells, which together lead to progressive and irreversible aortic dilation. Major risk factors for AAA include smoking and aging, both of which prominently alter gene expression via epigenetic mechanisms, including histone methylation (me) and acetylation (ac).However, little is known about epigenomic dynamics during AAA formation. Here, we profiled histone modification patterns in aortic tissues during AAA formation in two distinct mouse models; (1) angiotensin II (AngII) infusion in low density lipoprotein receptor (LDLR) knockout (KO) mice, and (2) calcium chloride (CaCl2) application in wild type mice. Methods and Results: AAA formed in both models, in conjunction with enhanced macrophage infiltration, elastin degradation and matrix metalloproteinases expression as evaluated by immunohistochemistry. To investigate the histone modification patterns during AAA formation, total histone proteins were extracted from AAA tissues, and histone H3 modifications were quantified using profiling kits. Intriguingly, we observed dynamic changes in histone H3 modifications of lysine (K) residues at different time points during AAA formation. In mature aneurysmal tissues at 3 weeks after AngII infusion, we detected reduced K4/K27/K36 monomethylation, K9 trimethylation K9, and K9/K56 acetylation (<70%), and increased K4 trimethylation (>130%). Conversely, in CaCl2-induced AAA, K4/K9/K27/K36/K79 monomethylation and K9/K18/K56 acetylation were reduced in AAA tissues, whereas K27 di-/tri-methylation and K14 acetylation were upregulated. Interestingly, K4/K27/K36 monomethylation, K9 trimethylation, and K9/K56 acetylation were commonly downregulated in both animal models, while no H3 modifications were uniformly upregulated. Western blot of AAA tissues confirmed markedly reduced levels of key H3 modifications, including H3K4me1, H3K9me3, and H3K56ac. Furthermore, pathway enrichment analysis using an integrative bioinformatics approach identified specific molecular pathways, including endocytosis, exon guidance and focal adhesion signaling, that may potentially be linked to these histone H3 modifications during AAA formation. Conclusions: Dynamic modifications of histone H3 occur during AAA formation in both animal models. We identified 6 discreet H3 modifications that are consistently downregulated in both models, suggesting a possible role in AAA pathobiology. Identifying the functional mechanisms may facilitate development of novel strategies for AAA prevention or treatment.
Collapse
Affiliation(s)
- Jacob Greenway
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Nicole Gilreath
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Sagar Patel
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Tetsuo Horimatsu
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Mary Moses
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - David Kim
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Lauren Reid
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Mourad Ogbi
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Yang Shi
- Department of Population Health Sciences, College of Nursing at Augusta University, Augusta, GA, United States.,Department of Neuroscience and Regenerative Medicine, College of Nursing at Augusta University, Augusta, GA, United States
| | - Xin-Yun Lu
- Department of Neuroscience and Regenerative Medicine, College of Nursing at Augusta University, Augusta, GA, United States
| | - Mrinal Shukla
- Department of Surgery, College of Nursing at Augusta University, Augusta, GA, United States
| | - Richard Lee
- Department of Surgery, College of Nursing at Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States.,Department of Cell Biology and Anatomy, College of Nursing at Augusta University, Augusta, GA, United States
| | - Lufei Young
- Department of Physiological and Technological Nursing, College of Nursing at Augusta University, Augusta, GA, United States
| | - Ha Won Kim
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| | - Neal L Weintraub
- Departments of Medicine, College of Nursing at Augusta University, Augusta, GA, United States.,Vascular Biology Center, Medical College of Georgia, College of Nursing at Augusta University, Augusta, GA, United States
| |
Collapse
|
43
|
Miner GH, Renton AE, Taubenfeld E, Tadros RO, Marcora E, Lookstein RA, Faries PL, Marin ML. Whole genome sequencing identifies loci specifically associated with thoracic aortic wall defects and abdominal aortic aneurysms in patients with European ancestry. JVS Vasc Sci 2020; 1:233-245. [PMID: 34617051 PMCID: PMC8489199 DOI: 10.1016/j.jvssci.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to better understand the pathophysiology and underlying genetic mechanisms behind two abdominal aortic aneurysm (AAA) subtypes using computed tomographic imaging in combination with whole genome sequencing. METHODS Patients with a known AAA and European ancestry were included in this investigation and underwent genetic and image analysis. Patients with AAAs and indications of descending thoracic aortic pathology (aortic dissection, penetrating aortic ulcers, intramural hematoma, atheromas, ulcerative plaque, and intramural ulceration, and intimal flaps/tears) were classified as having thoracic aortic disease, grouped together, and compared with patients with an AAA and a normal descending thoracic aorta. Whole genome sequencing was then performed on the 93 patients who had imaging features consistent with thoracic aortic disease and the 126 patients with a normal descending thoracic aorta. RESULTS The results of this study suggest one variant-level, four gene-level, and one gene set-level associations in patients with thoracic aortic disease who also had an AAA. The variant rs79508780 located in TSEN54 achieved study-wide significance (P = 1.71E-06). BATF3 and SMLR1 were significantly associated and EFCAB3 and TAF4 were reached suggestive assocation with a diseased descending thoracic aorta (P = 5.23E-26, P = 1.86E-25, P = 1.54E-05, and P = 8.31E-05, respectively). Gene sets were also compiled using MSigDB and trait-based index single nucleotide variation from major genome-wide association studies. GO_DNA_DOUBLE_STRAND_BREAK_PROCESSING, a gene set related to double-stranded DNA break repair, was significantly associated with thoracic aortic disease in AAA patients (P = 1.80E-06). CONCLUSIONS This pilot study provides further evidence that an AAA may be the end result of multiple degenerative pathways. Genetic variations in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair pathways were associated with European patients who had an AAA and thoracic aortic disease. Additionally, this study provides support for the application of a radiogenomic approach for the investigation of other potential pathologies that could lead to the development of an AAA or influence future management decisions. (JVS-Vascular Science.). CLINICAL RELEVANCE In this study, we provide evidence that abdominal aortic aneurysms (AAAs) may be a result of multiple pathophysiologies rather than a single disease. We have identified genetic variants involved in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair associated with structural defects in the aortic wall in patients with AAAs who are of European descent. Patients with AAAs and structural defects in the thoracic aorta have been previously linked to differential behavior after endovascular aneurysm repair. These patients with wall defects exhibited greater sac regression, a marker of surgical success, after endovascular aneurysm repair. Our study demonstrates the usefulness of a radiogenomic approach for elucidating mechanisms behind the formation and future behavior of AAAs that could aid surgeons in making future procedural and management decisions.
Collapse
|
44
|
Klarin D, Verma SS, Judy R, Dikilitas O, Wolford BN, Paranjpe I, Levin MG, Pan C, Tcheandjieu C, Spin JM, Lynch J, Assimes TL, Åldstedt Nyrønning L, Mattsson E, Edwards TL, Denny J, Larson E, Lee MTM, Carrell D, Zhang Y, Jarvik GP, Gharavi AG, Harley J, Mentch F, Pacheco JA, Hakonarson H, Skogholt AH, Thomas L, Gabrielsen ME, Hveem K, Nielsen JB, Zhou W, Fritsche L, Huang J, Natarajan P, Sun YV, DuVall SL, Rader DJ, Cho K, Chang KM, Wilson PWF, O'Donnell CJ, Kathiresan S, Scali ST, Berceli SA, Willer C, Jones GT, Bown MJ, Nadkarni G, Kullo IJ, Ritchie M, Damrauer SM, Tsao PS. Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation 2020; 142:1633-1646. [PMID: 32981348 PMCID: PMC7580856 DOI: 10.1161/circulationaha.120.047544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplemental Digital Content is available in the text. Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability.
Collapse
Affiliation(s)
- Derek Klarin
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.).,Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Program in Medical and Population Genetics (D.K.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Shefali Setia Verma
- Department of Genetics (S.S.V., M.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Renae Judy
- Department of Surgery (R.J., S.M.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (O.D., I.J.K.)
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics (B.N.W., C.W.), University of Michigan Medical School, Ann Arbor
| | - Ishan Paranjpe
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (I.P., G.N.)
| | - Michael G Levin
- Division of Cardiovascular Medicine (M.G.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics (C.P.), CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA.,Department of Pediatric Cardiology (C.T.), Stanford University School of Medicine, CA
| | - Joshua M Spin
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | - Julie Lynch
- Edith Nourse VA Medical Center, Bedford, MA (J.L.).,VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT (J.L., S.L.D.)
| | - Themistocles L Assimes
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | - Linn Åldstedt Nyrønning
- Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway (L.Å.N., E.M.).,Department of Circulation and Medical Imaging (L.Å.N., E.M.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Erney Mattsson
- Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway (L.Å.N., E.M.).,Department of Circulation and Medical Imaging (L.Å.N., E.M.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center (T.L.E.), Vanderbilt University Medical Center, Nashville, TN.,Vanderbilt Genetics Institute (T.L.E., J.D.), Vanderbilt University Medical Center, Nashville, TN
| | - Josh Denny
- Vanderbilt Genetics Institute (T.L.E., J.D.), Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.)
| | - Eric Larson
- Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.).,Departments of Medicine and Health Services (E.L.), University of Washington, Seattle
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA (M.T.M.L., Y.Z.)
| | - David Carrell
- Department of Biomedical Informatics (J.D., E.L., D.C.), Vanderbilt University Medical Center, Nashville, TN.,Kaiser Permanente Washington Health Research Institute, Seattle (J.D., E.L., D.C.)
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA (M.T.M.L., Y.Z.)
| | - Gail P Jarvik
- Division of Medical Genetics, Departments of Medicine and Genome Sciences (G.P.J.), University of Washington, Seattle
| | - Ali G Gharavi
- Division of Nephrology and Center for Precision Medicine and Genomics, Columbia University, New York, NY (A.G.G.)
| | - John Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, OH (J.H.).,Department of Pediatrics, University of Cincinnati College of Medicine, OH (J.H.).,US Department of Veterans Affairs, Cincinnati, OH (J.H.)
| | - Frank Mentch
- Center for Applied Genomics, The Children's Hospital of Philadelphia, PA (F.M., H.H.)
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (J.A.P.)
| | - Hakon Hakonarson
- Department of Pediatrics (H.H.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Center for Applied Genomics, The Children's Hospital of Philadelphia, PA (F.M., H.H.)
| | - Anne Heidi Skogholt
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent Thomas
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine (L.T.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Bille Nielsen
- Faculty of Medicine and Health Sciences (A.H.S., L.T., M.E.G., K.H., J.B.N.), Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark (J.B.N.)
| | - Wei Zhou
- Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Stanley Center for Psychiatric Research (W.Z.), Broad Institute of MIT and Harvard, Cambridge, MA.,Analytic and Translational Genetics Unit (W.Z.), Massachusetts General Hospital, Boston
| | - Lars Fritsche
- Department of Biostatistics (L.F.), University of Michigan Medical School, Ann Arbor
| | - Jie Huang
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Pradeep Natarajan
- Center for Genomic Medicine (D.K., W.Z., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Medicine (P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.,Cardiovascular Research Center (P.N.), Massachusetts General Hospital, Boston.,Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA (Y.V.S.).,Atlanta VA Health Care System, Decatur, GA (Y.V.S., P.W.F.W.)
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT (J.L., S.L.D.).,Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (S.L.D.)
| | - Daniel J Rader
- Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kelly Cho
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.)
| | - Kyong-Mi Chang
- Department of Medicine (M.G.L., D.J.R., K.-M.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA (Y.V.S., P.W.F.W.).,Emory Clinical Cardiovascular Research Institute, Atlanta, GA (P.W.F.W.)
| | - Christopher J O'Donnell
- Boston VA Healthcare System, MA (J.H., P.N., K.C., C.J.O.).,Cardiovascular Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.J.O.)
| | | | - Salvatore T Scali
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.)
| | - Scott A Berceli
- Malcolm Randall VA Medical Center, Gainesville, FL (D.K., S.T.S., S.A.B.).,Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville (D.K., S.T.S., S.A.B.)
| | - Cristen Willer
- Department of Computational Medicine and Bioinformatics (B.N.W., C.W.), University of Michigan Medical School, Ann Arbor.,Department of Internal Medicine, Division of Cardiology (C.W.), University of Michigan Medical School, Ann Arbor.,Department of Human Genetics (C.W.), University of Michigan Medical School, Ann Arbor
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Matthew J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, United Kingdom (M.J.B.)
| | - Girish Nadkarni
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (I.P., G.N.)
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (O.D., I.J.K.)
| | - Marylyn Ritchie
- Department of Genetics (S.S.V., M.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Scott M Damrauer
- Department of Surgery (R.J., S.M.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (R.J., M.G.L., K.-M.C., S.M.D.)
| | - Philip S Tsao
- VA Palo Alto Health Care System (C.T., J.M.S., T.L.A., P.S.T.), CA.,Division of Cardiovascular Medicine, Department of Medicine (C.T., J.M.S., T.L.A., P.S.T.), Stanford University School of Medicine, CA
| | | |
Collapse
|
45
|
Chromosome 1q21.2 and additional loci influence risk of spontaneous coronary artery dissection and myocardial infarction. Nat Commun 2020; 11:4432. [PMID: 32887874 PMCID: PMC7474092 DOI: 10.1038/s41467-020-17558-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Spontaneous coronary artery dissection (SCAD) is a non-atherosclerotic cause of myocardial infarction (MI), typically in young women. We undertook a genome-wide association study of SCAD (Ncases = 270/Ncontrols = 5,263) and identified and replicated an association of rs12740679 at chromosome 1q21.2 (Pdiscovery+replication = 2.19 × 10−12, OR = 1.8) influencing ADAMTSL4 expression. Meta-analysis of discovery and replication samples identified associations with P < 5 × 10−8 at chromosome 6p24.1 in PHACTR1, chromosome 12q13.3 in LRP1, and in females-only, at chromosome 21q22.11 near LINC00310. A polygenic risk score for SCAD was associated with (1) higher risk of SCAD in individuals with fibromuscular dysplasia (P = 0.021, OR = 1.82 [95% CI: 1.09–3.02]) and (2) lower risk of atherosclerotic coronary artery disease and MI in the UK Biobank (P = 1.28 × 10−17, HR = 0.91 [95% CI :0.89–0.93], for MI) and Million Veteran Program (P = 9.33 × 10−36, OR = 0.95 [95% CI: 0.94–0.96], for CAD; P = 3.35 × 10−6, OR = 0.96 [95% CI: 0.95–0.98] for MI). Here we report that SCAD-related MI and atherosclerotic MI exist at opposite ends of a genetic risk spectrum, inciting MI with disparate underlying vascular biology. Spontaneous coronary artery dissection (SCAD) is a cause of myocardial infarction Here, the authors present a genome-wide association study of SCAD, finding an association at 1q21.2 which potentially affects expression of ADAMTSL4.
Collapse
|
46
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
48
|
Mangum KD, Farber MA. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet 2020; 97:815-826. [PMID: 31957007 DOI: 10.1111/cge.13705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.
Collapse
Affiliation(s)
- Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark A Farber
- Division of Vascular Surgery, UNC Department of Surgery, Chapel Hill, North Carolina
| |
Collapse
|
49
|
van Laarhoven CJHCM, van Setten J, van Herwaarden JA, Pasterkamp G, de Kleijn DPV, de Borst GJ, van der Laan SW. Polygenic Susceptibility of Aortic Aneurysms Associates to the Diameter of the Aneurysm Sac: the Aneurysm-Express Biobank Cohort. Sci Rep 2019; 9:19844. [PMID: 31882626 PMCID: PMC6934821 DOI: 10.1038/s41598-019-56230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/08/2019] [Indexed: 11/23/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have discovered ten genetic risk variants for abdominal aortic aneurysms (AAA). To what extent these genetic variants contribute to the pathology of aneurysms is yet unknown. The present study aims to investigate whether genetic risk variants are associated with three clinical features: diameter of aneurysm sac, type of artery and aneurysm related-symptoms in aortic and peripheral aneurysm patients. Aneurysm tissue of 415 patients included in the Aneurysm-Express biobank was used. A best-fit polygenic risk score (PRS) based on previous GWAS effect estimates was modeled for each clinical phenotype. The best-fit PRS (including 272 variants at PT = 0.01015) showed a significant correlation with aneurysm diameter (R2 = 0.019, p = 0.001). No polygenic association was found with clinical symptoms or artery type. In addition, the ten genome-wide significant risk variants for AAA were tested individually, but no associations were observed with any of the clinical phenotypes. All models were corrected for confounders and data was normalized. In conclusion, a weighted PRS of AAA susceptibility explained 1.9% of the phenotypic variation (p = 0.001) in diameter in aneurysm patients. Given our limited sample size, future biobank collaborations need to confirm a potential causal role of susceptibility variants on aneurysmal disease initiation and progression.
Collapse
Affiliation(s)
- Constance J H C M van Laarhoven
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost A van Herwaarden
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|