1
|
Zhou M, Liu S, Wang Y, Zhang B, Zhu M, Wang JE, Rajaram V, Fang Y, Luo W, Wang Y. AIF3 splicing variant elicits mitochondrial malfunction via the concurrent dysregulation of electron transport chain and glutathione-redox homeostasis. Nat Commun 2025; 16:1804. [PMID: 39979311 PMCID: PMC11842818 DOI: 10.1038/s41467-025-57081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Genetic mutations in apoptosis-inducing factor (AIF) have a strong association with mitochondrial disorders; however, little is known about the aberrant splicing variants in affected patients and how these variants contribute to mitochondrial dysfunction and brain development defects. We identified pathologic AIF3/AIF3-like splicing variants in postmortem brain tissues of pediatric individuals with mitochondrial disorders. Mutations in AIFM1 exon-2/3 increase splicing risks. AIF3-splicing disrupts mitochondrial complexes, membrane potential, and respiration, causing brain development defects. Mechanistically, AIF is a mammalian NAD(P)H dehydrogenase and possesses glutathione reductase activity controlling respiratory chain functions and glutathione regeneration. Conversely, AIF3, lacking these activities, disassembles mitochondrial complexes, increases ROS generation, and simultaneously hinders antioxidant defense. Expression of NADH dehydrogenase NDI1 restores mitochondrial functions partially and protects neurons in AIF3-splicing mice. Our findings unveil an underrated role of AIF as a mammalian mitochondrial complex-I alternative NAD(P)H dehydrogenase and provide insights into pathologic AIF-variants in mitochondrial disorders and brain development.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bo Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ming Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer E Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yisheng Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Brosey CA, Shen R, Tainer JA. NADH-bound AIF activates the mitochondrial CHCHD4/MIA40 chaperone by a substrate-mimicry mechanism. EMBO J 2025; 44:1220-1248. [PMID: 39806100 PMCID: PMC11832770 DOI: 10.1038/s44318-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates. NMR and X-ray scattering (SAXS) solution measurements, mutational analyses, and biochemistry show that the substrate-mimicking AIF-interaction domain shields CHCHD4's redox-sensitive active site. Disrupting this shield critically activates CHCHD4 substrate affinity and chaperone activity. Regulatory-domain sequestration by NADH-activated AIF directly stimulates chaperone binding and folding, revealing how AIF mediates CHCHD4 mitochondrial import. These results establish AIF as an integral component of the metazoan disulfide relay and point to NADH-activated dimeric AIF as an organizational import center for CHCHD4 and its substrates. Importantly, AIF regulation of CHCHD4 directly links AIF's cellular NAD(H) sensing to CHCHD4 chaperone function, suggesting a mechanism to balance tissue-specific oxidative phosphorylation (OXPHOS) capacity with NADH availability.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Vasquez A, Schimmenti LA, Demirel N, Rabatin AE, Fischer CR, Pinto MV, Boesch RP, Selcen D. Novel AIFM1 Variant in 2 Siblings With Sensorineural Hearing Loss and Cerebellar Ataxia. Neurol Genet 2024; 10:e200216. [PMID: 39601015 PMCID: PMC11595327 DOI: 10.1212/nxg.0000000000200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
Objectives Apoptosis-inducing factor mitochondria-associated 1 (AIFM1) gene encodes a mitochondrial flavoprotein that mediates caspase-independent programmed cell death. We report a novel AIFM1 variant in 2 siblings with early-onset hearing loss and progressive cerebellar ataxia. Methods We evaluated the clinical features, brain MRI scans, EMG studies, and whole genome sequencing (WGS). Results Sibling A is a 19-year-old man with auditory neuropathy at age 15 years, who subsequently developed optic atrophy, progressive gait and limb ataxia, peripheral neuropathy, and ambulation with cane by age 17 years. Brain MRI was normal. Sibling B is a 13-year-old boy with auditory neuropathy diagnosed at 7 and gait instability at 13, with rapid development of peripheral neuropathy, cerebellar ataxia, muscle weakness and atrophy needing wheelchair for mobility, and neuromuscular respiratory failure requiring noninvasive ventilation. Brain MRI showed mild cerebellar atrophy. Initial EMGs showed axonal neuropathy in both and diffuse chronic and active anterior horn cell disorder later in Sibling B. WGS revealed an X-linked, maternally inherited novel AIFM1 variant (c.1299C>G p. Ile433Met). Discussion AIFM1 variants should be considered in patients with hereditary cerebellar ataxia and auditory neuropathy. We highlight a novel AIFM1 variant and its phenotypic intrafamilial variability expanding the knowledge of the genetic spectrum of AIFM1-related diseases.
Collapse
Affiliation(s)
- Alejandra Vasquez
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Lisa A Schimmenti
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Nadir Demirel
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Amy E Rabatin
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Callie R Fischer
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Marcus V Pinto
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Richard Paul Boesch
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Duygu Selcen
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| |
Collapse
|
4
|
Feng H, Huang S, Ma Y, Yang J, Chen Y, Wang G, Han M, Kang D, Zhang X, Dai P, Yuan Y. Genomic and phenotypic landscapes of X-linked hereditary hearing loss in the Chinese population. Orphanet J Rare Dis 2024; 19:342. [PMID: 39272213 PMCID: PMC11396341 DOI: 10.1186/s13023-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Hearing loss (HL) is the most common sensory birth deficit worldwide, with causative variants in more than 150 genes. However, the etiological contribution and clinical manifestations of X-linked inheritance in HL remain unclear within the Chinese HL population. In this study, we focused on X-linked hereditary HL and aimed to assess its contribution to hereditary HL and identify the genotype-phenotype relationship. METHODS We performed a molecular epidemiological investigation of X-linked hereditary HL based on next-generation sequencing and third-generation sequencing in 3646 unrelated patients with HL. We also discussed the clinical features associated with X-linked non-syndromic HL-related genes based on a review of the literature. RESULTS We obtained a diagnostic rate of 52.72% (1922/3646) among our patients; the aggregate contribution of HL caused by genes on the X chromosome in this cohort was ~ 1.14% (22/1922), and POU3F4 variants caused ~ 59% (13/22) of these cases. We found that X-linked HL was congenital or began during childhood in all cases, with representative audiological profiles or typical cochlear malformations in certain genes. Genotypic and phenotypic analyses showed that causative variants in PRPS1 and AIFM1 were mainly of the missense type, suggesting that phenotypic variability was correlated with the different effects that the replaced residues exert on structure and function. Variations in SMPX causing truncation of the protein product were associated with DFNX4, which resulted in typical audiological profiles before and after the age of 10 years, whereas nontruncated proteins typically led to distal myopathy. No phenotypic differences were identified in patients carrying POU3F4 or COL4A6 variants. CONCLUSIONS Our work constitutes a preliminary evaluation of the molecular contribution of X-linked genes in heritable HL (~ 1.14%). The 15 novel variants reported here expand the mutational spectrum of these genes. Analysis of the genotype-phenotype relationship is valuable for X-linked HL precise diagnostics and genetic counseling. Elucidation of the pathogenic mechanisms and audiological profiles of HL can also guide choices regarding treatment modalities.
Collapse
Affiliation(s)
- Haifeng Feng
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Ying Ma
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Yijin Chen
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Guojian Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Dongyang Kang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| |
Collapse
|
5
|
Brosey CA, Link TM, Shen R, Moiani D, Burnett K, Hura GL, Jones DE, Tainer JA. Chemical screening by time-resolved X-ray scattering to discover allosteric probes. Nat Chem Biol 2024; 20:1199-1209. [PMID: 38671223 PMCID: PMC11358040 DOI: 10.1038/s41589-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn Burnett
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Regina-Ferreira L, Valdivieso-Rivera F, Angelim MKSC, Menezes Dos Reis L, Furino VO, Morari J, Maia de Sousa L, Consonni SR, Sponton CH, Moraes-Vieira PM, Velloso LA. Inhibition of Crif1 protects fatty acid-induced POMC neuron-like cell-line damage by increasing CPT-1 function. Am J Physiol Endocrinol Metab 2024; 326:E681-E695. [PMID: 38597829 DOI: 10.1152/ajpendo.00420.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.
Collapse
Affiliation(s)
| | - Fernando Valdivieso-Rivera
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Monara K S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Larissa Menezes Dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | | | - Joseane Morari
- Obesity and Comorbidities Research Center, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, São Paulo, Brazil
| |
Collapse
|
7
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Qiu Y, Wang H, Pan H, Ding X, Guan J, Zhuang Q, Wu K, Lei Z, Cai H, Dong Y, Zhou H, Lin A, Wang Q, Yan Q. NADH improves AIF dimerization and inhibits apoptosis in iPSCs-derived neurons from patients with auditory neuropathy spectrum disorder. Hear Res 2024; 441:108919. [PMID: 38043402 DOI: 10.1016/j.heares.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.
Collapse
Affiliation(s)
- Yue Qiu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Brain Science, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Hongyang Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Huaye Pan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xue Ding
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Guan
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Qianqian Zhuang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiwen Wu
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Zhaoying Lei
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajian Cai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yufei Dong
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aifu Lin
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiuju Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medicine Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Zhao Y, Lin Y, Wang B, Liu F, Zhao D, Wang W, Ren H, Wang J, Xu Z, Yan C, Ji K. A Missense Variant in AIFM1 Caused Mitochondrial Dysfunction and Intolerance to Riboflavin Deficiency. Neuromolecular Med 2023; 25:489-500. [PMID: 37603145 DOI: 10.1007/s12017-023-08750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
AIFM1 is a mitochondrial flavoprotein involved in caspase-independent cell death and regulation of respiratory chain complex biogenesis. Mutations in the AIFM1 gene have been associated with multiple clinical phenotypes, but the effectiveness of riboflavin treatment remains controversial. Furthermore, few studies explored the reasons underlying this controversy. We reported a 7-year-old boy with ataxia, sensorimotor neuropathy and muscle weakness. Genetic and histopathological analyses were conducted, along with assessments of mitochondrial function and apoptosis level induced by staurosporine. Riboflavin deficiency and supplementation experiments were performed using fibroblasts. A missense c.1019T > C (p. Met340Thr) variant of AIFM1 was detected in the proband, which caused reduced expression of AIFM1 protein and mitochondrial dysfunction as evidenced by downregulation of mitochondrial complex subunits, respiratory deficiency and collapse of ΔΨm. The proportion of apoptotic cells in mutant fibroblasts was lower than controls after induction of apoptosis. Riboflavin deficiency resulted in decreased AIFM1 protein levels, while supplementation with high concentrations of riboflavin partially increased AIFM1 protein levels in variant fibroblasts. In addition, mitochondrial respiratory function of mutant fibroblasts was partly improved after riboflavin supplementation. Our study elucidated the pathogenicity of the AIFM1 c.1019T > C variant and revealed mutant fibroblasts was intolerant to riboflavin deficiency. Riboflavin supplementation is helpful in maintaining the level of AIFM1 protein and mitochondrial respiratory function. Early riboflavin treatment may serve as a valuable attempt for patients with AIFM1 variant.
Collapse
Affiliation(s)
- Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Hong Ren
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Zambon AA, Ghezzi D, Baldoli C, Cutillo G, Fontana K, Sofia V, Patricelli MG, Nasca A, Vinci S, Spiga I, Lamantea E, Fanelli GF, Sora MGN, Rovelli R, Poloniato A, Carrera P, Filippi M, Barera G. Expanding the spectrum of neonatal-onset AIFM1-associated disorders. Ann Clin Transl Neurol 2023; 10:1844-1853. [PMID: 37644805 PMCID: PMC10578896 DOI: 10.1002/acn3.51876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVES Pathogenic variants in AIFM1 have been associated with a wide spectrum of disorders, spanning from CMT4X to mitochondrial encephalopathy. Here we present a novel phenotype and review the existing literature on AIFM1-related disorders. METHODS We performed EEG recordings, brain MRI and MR Spectroscopy, metabolic screening, echocardiogram, clinical exome sequencing (CES) and family study. Effects of the variant were established on cultured fibroblasts from skin punch biopsy. RESULTS The patient presented with drug-resistant, electro-clinical, multifocal seizures 6 h after birth. Brain MRI revealed prominent brain swelling of both hemispheres and widespread signal alteration in large part of the cortex and of the thalami, with sparing of the basal nuclei. CES analysis revealed the likely pathogenic variant c.5T>C; p.(Phe2Ser) in the AIFM1 gene. The affected amino acid residue is located in the mitochondrial targeting sequence. Functional studies on cultured fibroblast showed a clear reduction in AIFM1 protein amount and defective activities of respiratory chain complexes I, III and IV. No evidence of protein mislocalization or accumulation of precursor protein was observed. Riboflavin, Coenzyme Q10 and thiamine supplementation was therefore given. At 6 months of age, the patient exhibited microcephaly but did not experience any further deterioration. He is still fed orally and there is no evidence of muscle weakness or atrophy. INTERPRETATION This is the first AIFM1 case associated with neonatal seizures and diffuse white matter involvement with relative sparing of basal ganglia, in the absence of clinical signs suggestive of myopathy or motor neuron disease.
Collapse
Affiliation(s)
- Alberto A. Zambon
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Daniele Ghezzi
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Cristina Baldoli
- Department of NeuroradiologySan Raffaele Scientific InstituteMilanItaly
| | - Gianni Cutillo
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neurophysiology ServiceSan Raffaele Scientific InstituteMilanItaly
| | - Katia Fontana
- Department of NeonatologySan Raffaele Scientific InstituteMilanItaly
| | - Valentina Sofia
- Department of NeonatologySan Raffaele Scientific InstituteMilanItaly
| | | | - Alessia Nasca
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stefano Vinci
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Ivana Spiga
- Laboratory of Genomics and Clinical GeneticsSan Raffaele Scientific InstituteMilanItaly
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | | | | - Rosanna Rovelli
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Antonella Poloniato
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Paola Carrera
- Laboratory of Genomics and Clinical GeneticsSan Raffaele Scientific InstituteMilanItaly
- Unit of Genomics for Human Disease DiagnosisSan Raffaele Scientific InstituteMilanItaly
| | - Massimo Filippi
- Unit of NeurologySan Raffaele Scientific InstituteMilanItaly
- Neurophysiology ServiceSan Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Graziano Barera
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
11
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
12
|
Tunyi J, Abreu NJ, Tripathi R, Mathew MT, Mears A, Agrawal P, Thakur V, Rezai AR, Reyes EDL. Deep Brain Stimulation for the Management of AIFM1-Related Disabling Tremor: A Case Series. Pediatr Neurol 2023; 142:47-50. [PMID: 36907087 DOI: 10.1016/j.pediatrneurol.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The AIFM1 gene encodes a mitochondrial protein that acts as a flavin adenine dinucleotide-dependent nicotinamide adenine dinucleotide oxidase and apoptosis regulator. Monoallelic pathogenic AIFM1 variants result in a spectrum of X-linked neurological disorders, including Cowchock syndrome. Common features in Cowchock syndrome include a slowly progressive movement disorder, cerebellar ataxia, progressive sensorineural hearing loss, and sensory neuropathy. We identified a novel maternally inherited hemizygous missense AIFM1 variant, c.1369C>T p.(His457Tyr), in two brothers with clinical features consistent with Cowchock syndrome using next-generation sequencing. Both individuals had a progressive complex movement disorder phenotype, including disabling tremor poorly responsive to medications. Deep brain stimulation (DBS) of the ventral intermediate thalamic nucleus ameliorated contralateral tremor and improved their quality of life; this suggests the beneficial role for DBS in treatment-resistant tremor within AIFM1-related disorders.
Collapse
Affiliation(s)
- Jude Tunyi
- The Ohio State College of Medicine, Columbus, Ohio
| | - Nicolas J Abreu
- Department of Neurology, New York University Langone Medical Center, New York, New York
| | - Richa Tripathi
- Department of Neurology, Emory University, Atlanta, Georgia
| | - Mariam T Mathew
- Department of Pathology, The Ohio State University, Columbus, Ohio; The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Mears
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Punit Agrawal
- Department of Neurology, West Virginia University, Morgantown, West Virginia
| | - Vishal Thakur
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Emily de Los Reyes
- The Ohio State College of Medicine, Columbus, Ohio; Pediatric Neurology, Nationwide Children's Hospital, Ohio State University, Columbus, Ohio.
| |
Collapse
|
13
|
Kattner AA. Small and mighty - microRNAs pulling the strings. Biomed J 2022; 45:851-856. [PMID: 36442792 PMCID: PMC9795349 DOI: 10.1016/j.bj.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The current issue of Biomedical Journal gives an insight into the influence miRNAs have in myocardial injury, and in hepatocellular carcinoma. Furthermore the association between dysmobility syndrome and vertebral fractures is assessed, the role of doxycycline in schistosomiasis is elucidated, and the effect of stress on the blood-brain barrier is examined. An article proving the accuracy of Taiwan's largest medical record databank is presented, as well as a potential biomarker for Parkinson's. Risk factors for recurrence of papillary thyroid cancer are identified, the outcome of reirradiation in oral squamous cell carcinoma is investigated, and the post-surgery outcomes in cases of infantile hypertrophic pyloric stenosis are reviewed. Finally this issue contains two articles about COVID-19, one describes the potential neurological damage left after the infection, and the second article analysis the outcome of uptake in vaccination against SARS-CoV-2.
Collapse
|
14
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Wang R, Bai X, Yang H, Ma J, Yu S, Lu Z. Identification of a novel AIFM1 variant from a Chinese family with auditory neuropathy. Front Genet 2022; 13:1064823. [DOI: 10.3389/fgene.2022.1064823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Auditory neuropathy (AN) is a specific type of hearing loss characterized by impaired language comprehension. Apoptosis inducing factor mitochondrion associated 1 (AIFM1) is the most common gene associated with late-onset AN. In this study, we aimed to screen the pathogenic variant of AIFM1 in a Chinese family with AN and to explore the molecular mechanism underlying the function of such variant in the development of AN.Methods: One patient with AN and eight unaffected individuals from a Chinese family were enrolled in this study. A comprehensive clinical evaluation was performed on all participants. A targeted next-generation sequencing (NGS) analysis of a total of 406 known deafness genes was performed to screen the potential pathogenic variants in the proband. Sanger sequencing was used to confirm the variants identified in all participants. The pathogenicity of variant was predicted by bioinformatics analysis. Immunofluorescence and Western blot analyses were performed to evaluate the subcellular distribution and expression of the wild type (WT) and mutant AIFM1 proteins. Cell apoptosis was evaluated based on the TUNEL analyses.Results: Based on the clinical evaluations, the proband in this family was diagnosed with AN. The results of NGS and Sanger sequencing showed that a novel missense mutation of AIFM1, i.e., c.1367A > G (p. D456G), was identified in this family. Bioinformatics analysis indicated that this variant was pathogenic. Functional analysis showed that in comparison with the WT, the mutation c.1367A > G of AIFM1 showed no effect on its subcellular localization and the ability to induce apoptosis, but changed its protein expression level.Conclusion: A novel variant of AIFM1 was identified for the first time, which was probably the genetic cause of AN in a Chinese family with AN.
Collapse
|
16
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
17
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
18
|
Peng Q, Ma K, Wang L, Zhu Y, Zhang Y, Rao C, Luo D, Jiang Z, Lai W, Lu H, Duan C, Zhou Z, Lu X. Case Report: A Novel Intronic Mutation in AIFM1 Associated With Fatal Encephalomyopathy and Mitochondrial Disease in Infant. Front Pediatr 2022; 10:889089. [PMID: 35712626 PMCID: PMC9194441 DOI: 10.3389/fped.2022.889089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The AIFM1 gene is located on chromosome Xq26.1 and encodes a flavoprotein essential for nuclear disassembly in apoptotic cells. Mutations in this gene can cause variable clinical phenotypes, but genotype-phenotype correlations of AIFM1-related disorder have not yet been fully determined because of the clinical scarcity. CASE PRESENTATION We describe a 4-month-old infant with mitochondrial encephalopathy, carrying a novel intronic variant in AIFM1 (NM_004208.4: c.1164 + 5G > A). TA cloning of the complementary DNA (cDNA) and Sanger sequencing revealed the simultaneous presence of an aberrant transcript with exon 11 skipping (89 bp) and a normal transcript through analysis of mRNA extracted from the patient's fibroblasts, which is consistent with direct RNA sequencing results. CONCLUSION We verified the pathogenic effect of the AIFM1 c.1164 + 5G > A splicing variant, which disturbed normal mRNA splicing. Our findings expand the mutation spectrum of AIFM1 and point out the necessity of intronic sequence analysis and the importance for integrative functional studies in the interpretation of sequence variants.
Collapse
Affiliation(s)
- Qi Peng
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Keze Ma
- Pediatric Intensive Care Unit, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Linsheng Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yinghua Zhu
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Yaozhong Zhang
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Chunbao Rao
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Dong Luo
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Zaixue Jiang
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Wei Lai
- Department of Radiology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Huiling Lu
- Pediatric Intensive Care Unit, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Chaohui Duan
- Laboratory of Clinical, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaomei Lu
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| |
Collapse
|
19
|
Yap ZY, Efthymiou S, Seiffert S, Vargas Parra K, Lee S, Nasca A, Maroofian R, Schrauwen I, Pendziwiat M, Jung S, Bhoj E, Striano P, Mankad K, Vona B, Cuddapah S, Wagner A, Alvi JR, Davoudi-Dehaghani E, Fallah MS, Gannavarapu S, Lamperti C, Legati A, Murtaza BN, Nadeem MS, Rehman MU, Saeidi K, Salpietro V, von Spiczak S, Sandoval A, Zeinali S, Zeviani M, Reich A, Jang C, Helbig I, Barakat TS, Ghezzi D, Leal SM, Weber Y, Houlden H, Yoon WH, Houlden H, Yoon WH. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. Am J Hum Genet 2021; 108:2368-2384. [PMID: 34800363 DOI: 10.1016/j.ajhg.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
20
|
Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A 2021; 118:e2106950118. [PMID: 34548399 PMCID: PMC8488679 DOI: 10.1073/pnas.2106950118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Zenezeni Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Lozic M, Minarik L, Racetin A, Filipovic N, Saraga Babic M, Vukojevic K. CRKL, AIFM3, AIF, BCL2, and UBASH3A during Human Kidney Development. Int J Mol Sci 2021; 22:ijms22179183. [PMID: 34502088 PMCID: PMC8431184 DOI: 10.3390/ijms22179183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.
Collapse
Affiliation(s)
- Mirela Lozic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Luka Minarik
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Mirna Saraga Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| |
Collapse
|
22
|
Rex DAB, Arun Kumar ST, Rai AB, Kotimoole CN, Modi PK, Prasad TSK. Novel Post-Translational Modifications and Molecular Substrates in Glioma Identified by Bioinformatics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:463-473. [PMID: 34227895 DOI: 10.1089/omi.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioma is the most common type of brain cancer that originates from the glial cells. It constitutes about one-third of all brain cancers. Recently, transcriptomics, proteomics, and multiomics approaches have been harnessed to discover potential biomarkers and therapeutic targets in glioma. Moreover, post-translational modifications (PTMs) of proteins play a major role in cell biology and function and offer new avenues of research in cancer. Using unbiased multi-PTM bioinformatics analyses of two proteomic datasets of glioma available in the public domain, we identified 866 proteins with common PTMs from both studies. Out of these 866 proteins, 19 proteins were identified with the common PTMs, with the same site modifications pertaining to glioma. Importantly, the identified PTMs belonged to proteins involved in integrin PI3K/Akt/mTOR, JAK/STAT, and Ras/Raf/MAPK pathways. These pathways are essential for cell proliferation in tumor cells and thus involved in glioma progression. Taken together, these findings call for validation in larger datasets in glioma and brain cancers and with an eye to future drug discovery and diagnostic innovation. Bioinformatics-guided discovery of novel PTMs from the publicly available proteomic data can offer new avenues for innovation in cancer research.
Collapse
Affiliation(s)
- Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
23
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
24
|
Severe multisystem pathology, metabolic acidosis, mitochondrial dysfunction, and early death associated with an X-linked AIFM1 variant. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006081. [PMID: 34117073 PMCID: PMC8208043 DOI: 10.1101/mcs.a006081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Variants in the X-linked gene AIFM1 (apoptosis-inducing factor mitochondria-associated 1) are associated with a highly variable clinical presentation that encompasses motor neuropathy, ataxia, encephalopathies, deafness, and cognitive impairment. AIFM1 encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide (NADH) oxidoreductase, with roles in the regulation of respiratory complex assembly and function, production of reactive oxygen species, and the coordination of a caspase-independent type of apoptosis known as parthanatos. In this report, we describe a missense AIFM1 variant (absent in reference population databases; c.506C > T, p.Pro169Leu) identified in the proband and sibling of a family with three affected males. The proband, his brother, and their maternal uncle all exhibited severe multisystem pathology, metabolic acidosis, and early demise. Metabolic testing on the proband revealed normal activity of the pyruvate dehydrogenase complex in skin fibroblasts. Absent or partial deficiency of cytochrome c oxidase was found in muscle fibers, however, supporting a Complex IV mitochondrial deficiency. Functional studies carried out on fibroblasts from the proband demonstrated reduced steady state levels of the AIFM1 protein, decreased Complex I subunit abundance, elevated sensitivity to the apoptosis inducer staurosporine, and increased nuclear condensation when grown in galactose-containing media. The reduced abundance of AIFM1 in the patient cells could not be stabilized with riboflavin or protease inhibitor treatment. Together, these findings suggest that the normal function of the AIFM1 gene product within mitochondria, and its response to apoptotic stimuli, are impaired by this variant, likely accounting for the severity of the phenotype seen in these patients. These findings also imply tissue-specific effects of this variant on different mitochondrial complexes. This study expands the genetic and phenotypic spectrum associated with AIFM1 variants, with the combination of exome sequencing and functional studies allowing a diagnosis to finally be confirmed for this family.
Collapse
|
25
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
26
|
Liu S, Zhou M, Ruan Z, Wang Y, Chang C, Sasaki M, Rajaram V, Lemoff A, Nambiar K, Wang JE, Hatanpaa KJ, Luo W, Dawson TM, Dawson VL, Wang Y. AIF3 splicing switch triggers neurodegeneration. Mol Neurodegener 2021; 16:25. [PMID: 33853653 PMCID: PMC8048367 DOI: 10.1186/s13024-021-00442-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Zhi Ruan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Masayuki Sasaki
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jennifer E. Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
27
|
Murari A, Rhooms SK, Goparaju NS, Villanueva M, Owusu-Ansah E. An antibody toolbox to track complex I assembly defines AIF's mitochondrial function. J Cell Biol 2021; 219:152090. [PMID: 32936885 PMCID: PMC7659709 DOI: 10.1083/jcb.202001071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
An ability to comprehensively track the assembly intermediates (AIs) of complex I (CI) biogenesis in Drosophila will enable the characterization of the precise mechanism(s) by which various CI regulators modulate CI assembly. Accordingly, we generated 21 novel antibodies to various mitochondrial proteins and used this resource to characterize the mechanism by which apoptosis-inducing factor (AIF) regulates CI biogenesis by tracking the AI profile observed when AIF expression is impaired. We find that when the AIF–Mia40 translocation complex is disrupted, the part of CI that transfers electrons to ubiquinone is synthesized but fails to progress in the CI biosynthetic pathway. This is associated with a reduction in intramitochondrial accumulation of the Mia40 substrate, MIC19. Importantly, knockdown of either MIC19 or MIC60, components of the mitochondrial contact site and cristae organizing system (MICOS), fully recapitulates the AI profile observed when AIF is inhibited. Thus, AIF’s effect on CI assembly is principally due to compromised intramitochondrial transport of the MICOS complex.
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Naga Sri Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Maximino Villanueva
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY.,The Robert N. Butler Columbia Aging Center, Columbia University Medical Center, New York, NY
| |
Collapse
|
28
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
29
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
30
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
32
|
Elrharchi S, Riahi Z, Salime S, Charoute H, Elkhattabi L, Boulouiz R, Kabine M, Bonnet C, Petit C, Barakat A. Novel Mutation in AIFM1 Gene Associated with X-Linked Deafness in a Moroccan Family. Hum Hered 2021; 85:35-39. [PMID: 33486474 DOI: 10.1159/000512712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Auditory neuropathy is a hearing disorder where outer hair cell function within the cochlea is normal, but inner hair cell and/or the auditory nerve function is disrupted. It is a heterogeneous disorder, which can have either congenital or acquired causes. METHODS We found a disease-segregating mutation in the X-linked AIFM1 gene through whole-exome sequencing, encoding the apoptosis-inducing factor mitochondrion-associated 1. RESULTS The impact of the c.1045A>G; p.(Ser349Gly) mutation on the AIFM1 protein was predicted using different bioinformatics tools. The pedigree analysis in the examined family was consistent with X-linked dominant inheritance. DISCUSSION/CONCLUSION To our knowledge, this is the first study that identifies a mutation in the AIFM1 gene in Moroccan patients suffering from X-linked auditory neuropathy.
Collapse
Affiliation(s)
- Soukaina Elrharchi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratoire de Santé et Environnement, Faculté des sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Zied Riahi
- INSERM UMRS1120, Institut de la Vision, Paris, France.,UPMC-Sorbonnes Universités Paris-VI, Paris, France
| | - Sara Salime
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratoire de Santé et Environnement, Faculté des sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Lamiae Elkhattabi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Redouane Boulouiz
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mostafa Kabine
- Laboratoire de Santé et Environnement, Faculté des sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Crystel Bonnet
- INSERM UMRS1120, Institut de la Vision, Paris, France.,UPMC-Sorbonnes Universités Paris-VI, Paris, France
| | - Christine Petit
- INSERM UMRS1120, Institut de la Vision, Paris, France.,UPMC-Sorbonnes Universités Paris-VI, Paris, France.,Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Collège de France, Paris, France
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco,
| |
Collapse
|
33
|
W196 and the β-Hairpin Motif Modulate the Redox Switch of Conformation and the Biomolecular Interaction Network of the Apoptosis-Inducing Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673661. [PMID: 33510840 PMCID: PMC7822688 DOI: 10.1155/2021/6673661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
The human apoptosis-inducing factor (hAIF) is a moonlight flavoprotein involved in mitochondrial respiratory complex assembly and caspase-independent programmed cell death. These functions might be modulated by its redox-linked structural transition that enables hAIF to act as a NAD(H/+) redox sensor. Upon reduction with NADH, hAIF undergoes a conformational reorganization in two specific insertions—the flexible regulatory C-loop and the 190-202 β-harpin—promoting protein dimerization and the stabilization of a long-life charge transfer complex (CTC) that modulates its monomer-dimer equilibrium and its protein interaction network in healthy mitochondria. In this regard, here, we investigated the precise function of the β-hairpin in the AIF conformation landscape related to its redox mechanism, by analyzing the role played by W196, a key residue in the interaction of this motif with the regulatory C-loop. Mutations at W196 decrease the compactness and stability of the oxidized hAIF, indicating that the β-hairpin and C-loop coupling contribute to protein stability. Kinetic studies complemented with computational simulations reveal that W196 and the β-hairpin conformation modulate the low efficiency of hAIF as NADH oxidoreductase, contributing to configure its active site in a noncompetent geometry for hydride transfer and to stabilize the CTC state by enhancing the affinity for NAD+. Finally, the β-hairpin motif contributes to define the conformation of AIF's interaction surfaces with its physiological partners. These findings improve our understanding on the molecular basis of hAIF's cellular activities, a crucial aspect for clarifying its associated pathological mechanisms and developing new molecular therapies.
Collapse
|
34
|
Piñeyro-Ruiz C, Serrano H, Jorge I, Miranda-Valentin E, Pérez-Brayfield MR, Camafeita E, Mesa R, Vázquez J, Jorge JC. A Proteomics Signature of Mild Hypospadias: A Pilot Study. Front Pediatr 2020; 8:586287. [PMID: 33425810 PMCID: PMC7786202 DOI: 10.3389/fped.2020.586287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Objective: Mild hypospadias is a birth congenital condition characterized by the relocation of the male urethral meatus from its typical anatomical position near the tip of the glans penis, to a lower ventral position up to the brim of the glans corona, which can also be accompanied by foreskin ventral deficiency. For the most part, a limited number of cases have known etiology. We have followed a high-throughput proteomics approach to study the proteome in mild hypospadias patients. Methods: Foreskin samples from patients with mild hypospadias were collected during urethroplasty, while control samples were collected during elective circumcision (n = 5/group). A high-throughput, quantitative proteomics approach based on multiplexed peptide stable isotope labeling (SIL) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to ascertain protein abundance changes in hypospadias patients when compared to control samples. Results: A total of 4,815 proteins were quantitated (2,522 with at least two unique peptides). One hundred and thirty-three proteins from patients with mild hypospadias showed significant abundance changes with respect to control samples, where 38 proteins were increased, and 95 proteins were decreased. Unbiased functional biological analysis revealed that both mitochondrial energy production and apoptotic signaling pathways were enriched in mild hypospadias. Conclusions: This first comprehensive proteomics characterization of mild hypospadias shows molecular changes associated with essential cellular processes related to energy production and apoptosis. Further evaluation of the proteome may expand the search of novel candidates in the etiology of mild hypospadias and could also lead to the identification of biomarkers for this congenital urogenital condition.
Collapse
Affiliation(s)
- Coriness Piñeyro-Ruiz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Horacio Serrano
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eric Miranda-Valentin
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
| | - Marcos R. Pérez-Brayfield
- Department of Surgery, Urology Section, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Raquel Mesa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Carlos Jorge
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
35
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
36
|
Zhao T, Goedhart C, Pfeffer G, Greenway SC, Lines M, Khan A, Innes AM, Shutt TE. Skeletal Phenotypes Due to Abnormalities in Mitochondrial Protein Homeostasis and Import. Int J Mol Sci 2020; 21:8327. [PMID: 33171986 PMCID: PMC7664180 DOI: 10.3390/ijms21218327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Tian Zhao
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Caitlin Goedhart
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Steven C Greenway
- Departments of Pediatrics, Cardiac Sciences and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Matthew Lines
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Aneal Khan
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T3B 6A8, Canada;
| | - A Micheil Innes
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
37
|
The human papillomavirus E6 protein targets apoptosis-inducing factor (AIF) for degradation. Sci Rep 2020; 10:14195. [PMID: 32848167 PMCID: PMC7450093 DOI: 10.1038/s41598-020-71134-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Oncoprotein E6 of high-risk human papillomavirus (HPV) plays a critical role in inducing cell immortalization and malignancy. E6 downregulates caspase-dependent pathway through the degradation of p53. However, the effect of HPV E6 on other pathways is still under investigation. In the present study, we found that HPV E6 directly binds to all three forms (precursor, mature, and apoptotic) of apoptosis-inducing factor (AIF) and co-localizes with apoptotic AIF. This binding induced MG132-sensitive reduction of AIF expression in the presence of E6 derived from HPV16 (16E6), a cancer-causing type of HPV. Conversely, E6 derived from a non-cancer-causing type of HPV, HPV6 (6E6), did not reduce the levels of AIF despite its interaction with AIF. Flow cytometric analysis revealed that 16E6, but not 6E6, suppressed apoptotic AIF-induced chromatin degradation (an indicator of caspase-independent apoptosis) and staurosporine (STS, a protein kinase inhibitor)-induced apoptosis. AIF knockdown reduced STS-induced apoptosis in both of 16E6-expressing and 6E6-expressing cells; however, the reduction in 16E6-expressing cells was lower than that in 6E6-expressing cells. These findings indicate that 16E6, but not 6E6, blocks AIF-mediated apoptosis, and that AIF may represent a novel therapeutic target for HPV-induced cervical cancer.
Collapse
|
38
|
Herrmann JM, Riemer J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol Chem 2020; 402:289-297. [PMID: 32769219 DOI: 10.1515/hsz-2020-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
The mitochondrial complex I serves as entry point for NADH into the electron transport chain. In animals, fungi and plants, additional NADH dehydrogenases carry out the same electron transfer reaction, however they do not pump protons. The apoptosis inducing factor (AIF, AIFM1 in humans) is a famous member of this group as it was the first pro-apoptotic protein identified that can induce caspase-independent cell death. Recent studies on AIFM1 and the NADH dehydrogenase Nde1 of baker's yeast revealed two independent and experimentally separable activities of this class of enzymes: On the one hand, these proteins promote the functionality of mitochondrial respiration in different ways: They channel electrons into the respiratory chain and, at least in animals, promote the import of Mia40 (named MIA40 or CHCHD4 in humans) and the assembly of complex I. On the other hand, they can give rise to pro-apoptotic fragments that are released from the mitochondria to trigger cell death. Here we propose that AIFM1 and Nde1 serve as conserved redox switches which measure metabolic conditions on the mitochondrial surface and translate it into a binary life/death decision. This function is conserved among eukaryotic cells and apparently used to purge metabolically compromised cells from populations.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663Kaiserslautern, Germany
| | - Jan Riemer
- Department of Biochemistry, University of Cologne, Zülpicher Str. 47A, D-50674Cologne, Germany
| |
Collapse
|
39
|
High Frequency of AIFM1 Variants and Phenotype Progression of Auditory Neuropathy in a Chinese Population. Neural Plast 2020; 2020:5625768. [PMID: 32684920 PMCID: PMC7350177 DOI: 10.1155/2020/5625768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
To decipher the genotype-phenotype correlation of auditory neuropathy (AN) caused by AIFM1 variations, as well as the phenotype progression of these patients, exploring the potential molecular pathogenic mechanism of AN. A total of 36 families of individuals with AN (50 cases) with AIFM1 variations were recruited and identified by Sanger sequencing or next-generation sequencing; the participants included 30 patients from 16 reported families and 20 new cases. We found that AIFM1-positive cases accounted for 18.6% of late-onset AN cases. Of the 50 AN patients with AIFM1 variants, 45 were male and 5 were female. The hotspot variation of this gene was p.Leu344Phe, accounting for 36.1%. A total of 19 AIFM1 variants were reported in this study, including 7 novel ones. A follow-up study was performed on 30 previously reported AIFM1-positive subjects, 16 follow-up cases (53.3%) were included in this study, and follow-up periods were recorded from 1 to 23 years with average 9.75 ± 9.89 years. There was no hearing threshold increase during the short-term follow-up period (1-10 years), but the low-frequency and high-frequency hearing thresholds showed a significant increase with the prolongation of follow-up time. The speech discrimination score progressed gradually and significantly along with the course of the disease and showed a more serious decline, which was disproportionately worse than the pure tone threshold. In addition to the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is also observed in AIFM1-related AN and affects females. In conclusion, we confirmed that AIFM1 is the primary related gene among late-onset AN cases, and the most common recurrent variant is p.Leu344Phe. Except for the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is another probability of AIFM1-related AN, with females affected. Phenotypical features of AIFM1-related AN suggested that auditory dyssynchrony progressively worsened over time.
Collapse
|
40
|
Pandolfo M, Rai M, Remiche G, Desmyter L, Vandernoot I. Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation. NEUROLOGY-GENETICS 2020; 6:e420. [PMID: 32337346 PMCID: PMC7164969 DOI: 10.1212/nxg.0000000000000420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/07/2020] [Indexed: 11/30/2022]
Abstract
Objective To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome. Methods We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity. Results The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance. Conclusions Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication.
Collapse
Affiliation(s)
- Massimo Pandolfo
- Neurology Service (M.P., G.R.), Hôpital Erasme; Laboratory of Experimental Neurology (M.P., M.R.); and Medical Genetics Service (L.D., I.V.), Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Myriam Rai
- Neurology Service (M.P., G.R.), Hôpital Erasme; Laboratory of Experimental Neurology (M.P., M.R.); and Medical Genetics Service (L.D., I.V.), Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Gauthier Remiche
- Neurology Service (M.P., G.R.), Hôpital Erasme; Laboratory of Experimental Neurology (M.P., M.R.); and Medical Genetics Service (L.D., I.V.), Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Laurence Desmyter
- Neurology Service (M.P., G.R.), Hôpital Erasme; Laboratory of Experimental Neurology (M.P., M.R.); and Medical Genetics Service (L.D., I.V.), Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Isabelle Vandernoot
- Neurology Service (M.P., G.R.), Hôpital Erasme; Laboratory of Experimental Neurology (M.P., M.R.); and Medical Genetics Service (L.D., I.V.), Hôpital Erasme, Université Libre de Bruxelles, Belgium
| |
Collapse
|
41
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
42
|
Kadam A, Mehta D, Jubin T, Mansuri MS, Begum R. Apoptosis inducing factor: Cellular protective function in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148158. [PMID: 31991113 DOI: 10.1016/j.bbabio.2020.148158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/31/2023]
Abstract
Apoptosis Inducing Factor (AIF), a nuclear encoded mitochondrial inter-membrane space flavoprotein with intrinsic NADH oxidase activity, plays an important role in inducing cell death mechanisms. In response to cell death signals, it undergoes mitochondrio-nuclear translocation leading to DNA fragmentation. In addition to its role in cell death, AIF has a pro-survival role, wherein it contributes to the maintenance of mitochondrial structure and function in a coordinated manner. However, its exact mechanism of controlling mitochondrial homeostasis is unclear. The current study aims to explore the protective functions of AIF by its downregulation and overexpression in Dictyostelium discoideum. Constitutive AIF downregulated (dR) cells exhibited compromised oxidative phosphorylation along with elevated levels of cellular ROS. Interestingly, constitutive AIF dR cells showed amelioration in the activity of the ETC complexes upon antioxidant treatment, strengthening AIF's role as an ROS regulator, by virtue of its oxidoreductase property. Also, constitutive AIF dR cells showed lower transcript levels of the various subunits of ETC. Moreover, loss of AIF affected mtDNA content and mitochondrial fusion-fission mechanism, which subsequently caused morphometric mitochondrial alterations. Constitutive AIF overexpressed (OE) cells also showed higher cellular ROS and mitochondrial fission genes transcript levels along with reduced mitochondrial fusion genes transcript levels and mtDNA content. Thus, the results of the current study provide a paradigm where AIF is implicated in cell survival by maintaining mitochondrial bioenergetics, morphology and fusion-fission mechanism in D. discoideum, an evolutionarily significant model organism for mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Darshan Mehta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
43
|
Kawarai T, Yamazaki H, Yamakami K, Tsukamoto-Miyashiro A, Kodama M, Rumore R, Caltagirone C, Nishino I, Orlacchio A. A novel AIFM1 missense mutation in a Japanese patient with ataxic sensory neuronopathy and hearing impairment. J Neurol Sci 2019; 409:116584. [PMID: 31783324 DOI: 10.1016/j.jns.2019.116584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Tokushima University Graduate School, Tokushima, Japan.
| | - Hiroki Yamazaki
- Department of Clinical Neuroscience, Tokushima University Graduate School, Tokushima, Japan
| | - Kei Yamakami
- Department of Clinical Neuroscience, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Tsukamoto-Miyashiro
- Neurology Service, Tokushima National Hospital, National Hospital Organization, Tokushima, Japan
| | - Mizuki Kodama
- Faculty of Medicine-Student Laboratory, Tokushima University Graduate School, Tokushima, Japan
| | - Roberto Rumore
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Carlo Caltagirone
- Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| |
Collapse
|
44
|
Taylor J, Craft J, Blair E, Wordsworth S, Beeson D, Chandratre S, Cossins J, Lester T, Németh AH, Ormondroyd E, Patel SY, Pagnamenta AT, Taylor JC, Thomson KL, Watkins H, Wilkie AOM, Knight JC. Implementation of a genomic medicine multi-disciplinary team approach for rare disease in the clinical setting: a prospective exome sequencing case series. Genome Med 2019; 11:46. [PMID: 31345272 PMCID: PMC6659244 DOI: 10.1186/s13073-019-0651-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A multi-disciplinary approach to promote engagement, inform decision-making and support clinicians and patients is increasingly advocated to realise the potential of genome-scale sequencing in the clinic for patient benefit. Here we describe the results of establishing a genomic medicine multi-disciplinary team (GM-MDT) for case selection, processing, interpretation and return of results. METHODS We report a consecutive case series of 132 patients (involving 10 medical specialties with 43.2% cases having a neurological disorder) undergoing exome sequencing over a 10-month period following the establishment of the GM-MDT in a UK NHS tertiary referral hospital. The costs of running the MDT are also reported. RESULTS In total 76 cases underwent exome sequencing following triage by the GM-MDT with a clinically reportable molecular diagnosis in 24 (31.6%). GM-MDT composition, operation and rationale for whether to proceed to sequencing are described, together with the health economics (cost per case for the GM-MDT was £399.61), the utility and informativeness of exome sequencing for molecular diagnosis in a range of traits, the impact of choice of sequencing strategy on molecular diagnostic rates and challenge of defining pathogenic variants. In 5 cases (6.6%), an alternative clinical diagnosis was indicated by sequencing results. Examples were also found where findings from initial genetic testing were reconsidered in the light of exome sequencing including TP63 and PRKAG2 (detection of a partial exon deletion and a mosaic missense pathogenic variant respectively); together with tissue-specific mosaicism involving a cytogenetic abnormality following a normal prenatal array comparative genomic hybridization. CONCLUSIONS This consecutive case series describes the results and experience of a multidisciplinary team format that was found to promote engagement across specialties and facilitate return of results to the responsible clinicians.
Collapse
Affiliation(s)
- John Taylor
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saleel Chandratre
- Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith Cossins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tracy Lester
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea H. Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Smita Y. Patel
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kate L. Thomson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Julian C. Knight
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin metabolism. J Inherit Metab Dis 2019; 42:608-619. [PMID: 30680745 DOI: 10.1002/jimd.12058] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
46
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Villanueva R, Romero-Tamayo S, Laplaza R, Martínez-Olivan J, Velázquez-Campoy A, Sancho J, Ferreira P, Medina M. Redox- and Ligand Binding-Dependent Conformational Ensembles in the Human Apoptosis-Inducing Factor Regulate Its Pro-Life and Cell Death Functions. Antioxid Redox Signal 2019; 30:2013-2029. [PMID: 30450916 DOI: 10.1089/ars.2018.7658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aims: The human apoptosis-inducing factor (hAIF) supports OXPHOS biogenesis and programmed cell death, with missense mutations producing neurodegenerative phenotypes. hAIF senses the redox environment of cellular compartments, stabilizing a charge transfer complex (CTC) dimer that modulates the protein interaction network. In this context, we aimed to evaluate the subcellular pH, CTC formation, and pathogenic mutations effects on hAIF stability, and a thermal denaturation high-throughput screening (HTS) assay to discover AIF binders. Results: Apoptotic hAIFΔ1-101 is not stable at intermembrane mitochondrial space (IMS) pH, but the 77-101 residues confer stability to the mitochondrial isoform. hAIF and its CTC populate different conformational ensembles with redox switch to the CTC producing a less stable and compact protein. The pathogenic G308E, ΔR201, and E493V mutations modulate hAIF stability; particularly, ΔR201 causes a population shift to a less stable conformation that remodels active site structure and dynamics. We have identified new molecules that modulate the hAIF reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+) association/dissociation equilibrium and regulate its catalytic efficiency. Innovation: Biophysical methods allow evaluating the regulation of hAIF functional ensembles and to develop an HTS assay to discover small molecules that might modulate hAIF stability and activities. Conclusions: The mitochondrial soluble 54-77 portion stabilizes hAIF at the IMS pH. NADH-redox-linked conformation changes course with strong NAD+ binding and protein dimerization, but they produce a negative impact in overall hAIF stability. Loss of functionality in the R201 deletion is due to distortion of the active site architecture. We report molecules that may serve as leads in the development of hAIF bioactive compounds.
Collapse
Affiliation(s)
- Raquel Villanueva
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Romero-Tamayo
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Laplaza
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,2 Departamento de Química Física, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Martínez-Olivan
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,3 Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,5 Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Sancho
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.,4 Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Ferreira
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
48
|
Wang Q, Xingxing L, Ding Z, Qi Y, Liu Y. Whole exome sequencing identifies a novel variant in an apoptosis-inducing factor gene associated with X-linked recessive hearing loss in a Chinese family. Genet Mol Biol 2019; 42:543-548. [PMID: 31188924 PMCID: PMC6905455 DOI: 10.1590/1678-4685-gmb-2018-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
We report on the genetic analysis of a Chinese family in which four male patients presented with postlingual progressive hearing loss, associated with distal muscle wasting and unsteady ataxic gait. Using whole exome sequencing, we identified a new pathogenic variant (c.1463C>T, p.Pro488Leu) in the AIFM1 gene, which encodes the apoptosis-inducing factor mitochondrion-associated 1 precursor. AIFM1 is involved in the mitochondrial respiratory chain and cellular caspase-independent apoptosis pathway and has been reported to cause multiple phenotypes including hearing loss. The p.Pro488Leu missense variant segregated with symptoms in the pedigree. It was not found in the dbSNP database, databases of genomes and SNPs in the Chinese population, in 74 patients with sporadic hearing loss, or in 108 normal individuals.We also verified that this AIFM1variant enhanced cell apoptosis rates compared in 293T cells transfected with wild-type AIFM1. Different variations of AIFM1 give rise to different phenotypes in patients, and this is the second reported family with a variant in the C-terminal domain of AIFM1 showing the phenotype of hearing loss and peripheral neuropathy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China.,Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Xingxing
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zhiwei Ding
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:127-176. [PMID: 31208522 PMCID: PMC11533248 DOI: 10.1016/bs.irn.2019.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. Recent clinical studies have identified an association between the development of neuropathy and dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary saturated fatty acids (SFAs) associated with dyslipidemia impair mitochondrial dynamics in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve and sensory mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this debilitating complication.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
50
|
Gao C, Wang X, Mei S, Li D, Duan J, Zhang P, Chen B, Han L, Gao Y, Yang Z, Li B, Yang XA. Diagnostic Yields of Trio-WES Accompanied by CNVseq for Rare Neurodevelopmental Disorders. Front Genet 2019; 10:485. [PMID: 31178897 PMCID: PMC6542989 DOI: 10.3389/fgene.2019.00485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
Objective This study is to investigate the diagnostic yield of the combination of trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNVseq) for rare neurodevelopmental disorders (NDDs). Methods Clinical data from consecutive pediatric patients who were diagnosed with rare NDDs that were suspected to be monogenic disorders, who were admitted to our hospital from April 2017 to March 2019, and who underwent next generation sequencing (NGS) were extracted from the medical records. Patients for whom Trio-WES and CNVseq data were available were enrolled in this study. Sanger sequencing was applied for the validation of the variants identified by Trio-WES. Sequence alignment and structural modeling were conducted for analyzing the possibility of the variants in the onset of the NDDs. Results In total, 54 patients were enrolled in this study, with the median age of 15 (8–26) months. A total of 242 phenotypic abnormalities belonging to 20 different systems were identified in the cohort. Twenty-four patients were diagnosed by Trio-WES, eight patients were diagnosed by CNVseq, and one case was identified by both WES and CNVseq. Compared with Trio-WES, the diagnosis rate of Trio-WES accompanied by CNVseq was significantly higher (P = 0.016). Trio-WES identified 36 variants in 26 different genes, among which 27 variants were novel. CNVseq detected four duplications and eight deletions, ranging from 310 kb to 23.27 Mb. Our case examples demonstrated the high heterogeneity of NDDs and showed the challenges of rare NDDs for physicians. Conclusion The significantly higher diagnosis rate of Trio-WES accompanied by CNVseq makes this strategy a potential alternative to the most widely used approaches for pediatric children with rare and undiagnosed NDDs.
Collapse
Affiliation(s)
- Chao Gao
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China.,Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Dongxiao Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jiali Duan
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Pei Zhang
- Department of Pediatric Neurology and Rehabilitation, First People's Hospital of Shangqiu, Shangqiu, China
| | - Baiyun Chen
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Liang Han
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yang Gao
- Graduate School of Zhengzhou University, Zhengzhou, China
| | - Zhenhua Yang
- Third People's Hospital of Qingdao West Coast New District, Qingdao, China
| | - Bing Li
- Central Laboratory, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiu-An Yang
- School of Basic Medical Science, Chengde Medical University, Chengde, China
| |
Collapse
|