1
|
Farina A, Cavoretto PI, Syngelaki A, Adjahou S, Nicolaides KH. Soluble fms-like tyrosine kinase-1/placental growth factor ratio at 36 weeks' gestation: association with spontaneous onset of labor and intrapartum fetal compromise in low-risk pregnancies. Am J Obstet Gynecol 2025; 232:392.e1-392.e14. [PMID: 39181498 DOI: 10.1016/j.ajog.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Previous evidence showed that placental dysfunction triggers spontaneous preterm or term births and intrapartum fetal compromise and often requires urgent delivery, thereby exposing both the fetus and the mother to significant risks. Predicting spontaneous labor onset and intrapartum fetal compromise could improve obstetrical management and outcomes, but this is currently difficult, particularly in low-risk populations. OBJECTIVE The objective of this study was to examine whether placental dysfunction, as assessed at 36 weeks' gestation by the soluble fms-like tyrosine kinase-1 to placental growth factor ratio, is associated with the interval to spontaneous onset of labor and intrapartum fetal compromise that requires cesarean delivery in a routinely examined population. STUDY DESIGN This was a retrospective analysis of prospectively collected data of women with singleton pregnancies who underwent routine assessment at 35+0 to 36+6 weeks' gestation at the King's College Hospital (London, England). Using a general linear model, the study examined the outcomes related to the soluble fms-like tyrosine kinase-1/placental growth factor ratio, including the time interval from testing to spontaneous onset of labor and the subsequent rate of fetal compromise that required a cesarean delivery. Patients who underwent induction of labor or prelabor cesarean deliveries were excluded from the study. Competing risks regression and Cox regression models were used to estimate the cumulative incidence and the risk of the outcomes of interest. RESULTS In the screened population of 45,375 patients, 23,831 (52.5%) had spontaneous onset of labor and were included in the analysis. Cases with an soluble fms-like tyrosine kinase-1/placental growth factor ratio >50 delivered about 1 week earlier than those with a ratio of ≤50 (39.2 vs 40.0 weeks' gestation; P<.001). The general linear model showed that a larger soluble fms-like tyrosine kinase-1/placental growth factor ratio was associated with earlier spontaneous onset of labor (P<.001), particularly among multiparous women. The soluble fms-like tyrosine kinase-1/placental growth factor ratio was significantly associated, as expected, with cases of preeclampsia and advanced maternal age. The cumulative incidence of spontaneous onset of labor was significantly higher in cases with an soluble fms-like tyrosine kinase-1/placental growth factor ratio >50 than in those with a ratio 50 (P<.001). Cox regression showed that the risk for spontaneous onset of labor increased with an soluble fms-like tyrosine kinase-1/placental growth factor ratio >50 (hazard ratio, 1.424; 95% confidence interval, 1.253-1.618; P<.001) and, as expected, the risk was mitigated over time from when the soluble fms-like tyrosine kinase-1/placental growth factor ratio was measured to spontaneous labor onset (P<.001). Cases with intrapartum fetal compromise had a higher mean soluble fms-like tyrosine kinase-1/placental growth factor ratio than those without intrapartum fetal compromise (21.79 vs 17.67; P<.001). Qualitative addition of fetal compromise to the general linear model showed a higher soluble fms-like tyrosine kinase-1/placental growth factor ratio in cases with fetal compromise than in those without fetal compromise (P=.014). Competing risks regression showed a positive dose-response effect for fetal compromise with increasing soluble fms-like tyrosine kinase-1/placental growth factor ratios (P<.001). Above and below the optimal cutoff of 50, the quoted cumulative incidences were 6.7% and 4.7%, respectively (P<.001). The effect of the soluble fms-like tyrosine kinase-1/placental growth factor ratio remained significant even after adjusting for preeclampsia, which is a well-known major risk factor for fetal compromise. Finally, the proportion of cases with intrapartum fetal compromise who had an soluble fms-like tyrosine kinase-1/placental growth factor ratio >50 decreased from 35% to 0% with advancing gestation. CONCLUSION This study showed that an increased soluble fms-like tyrosine kinase-1/placental growth factor ratio at 36 weeks' gestation is associated with an earlier gestational age at spontaneous onset of labor and higher rates of intrapartum fetal compromise. There are 2 major implications, namely an soluble fms-like tyrosine kinase-1/placental growth factor ratio >50 indicates imminent labor onset with about a 40% mean risk increase and immediate clinical translation for term pregnancy monitoring. In addition, an increased soluble fms-like tyrosine kinase-1/placental growth factor ratio increases the risk for intrapartum fetal compromise, although outcome variability indicates reassessment within multimarker models.
Collapse
Affiliation(s)
- Antonio Farina
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Paolo I Cavoretto
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Argyro Syngelaki
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| | - Stephen Adjahou
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| | - Kypros H Nicolaides
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| |
Collapse
|
2
|
Kurzynska A, Mierzejewski K, Golubska M, Jastrzebski JP, Bogacka I. Immunomodulatory dynamics in the porcine myometrium: global transcriptome analysis, including the effects of PPARγ ligands. BMC Genomics 2024; 25:1183. [PMID: 39639230 PMCID: PMC11619573 DOI: 10.1186/s12864-024-11083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The myometrium is involved in many processes during pregnancy and the estrous/menstrual cycle. Peroxisome proliferator-activated receptors (PPARs) can be regulators of the processes occurring in the myometrium. In the present study, we determined the global transcriptome profile of the porcine myometrium during the peri-implantation period and the late luteal phase of the estrous cycle. In addition, we investigated for the first time the influence of PPARγ ligands on the transcriptome profile. RESULTS The myometrium of gilts (n = 3) was collected on days 10-11 and 14-15 of pregnancy and on the corresponding days of the estrous cycle. The expression of PPARγ was confirmed in the tissue. Based on the mRNA level, further studies were conducted on myometrial explants obtained from pigs at days 14-15 of pregnancy and the corresponding days of the estrous cycle. The tissue sections were incubated in vitro for 6 h in the presence of a PPARγ agonist, pioglitazone (P; 10 µM), or antagonist, T0070907 (T; 1 µM). To identify the transcription profile of the myometrium, RNA-Seq was performed on the NovaSeq 6000 Illumina platform. This study identified 1082 differentially expressed genes (DEGs; 609 upregulated and 473 downregulated) in the porcine myometrium on days 14-15 of pregnancy compared with the corresponding days of the estrous cycle. During pregnancy, we detected 6 and 80 DEGs related to PPARγ agonist and antagonist, respectively. During the estrous cycle, we identified 4 and 17 DEGs for P and T vs. the control, respectively. CONCLUSIONS The results indicate that the DEGs are involved in a number of processes, including the immune response, prostaglandin synthesis, cell differentiation and communication. In addition, the role of PPARγ activity in regulating the expression of genes related to the immune response and hormone synthesis in the porcine myometrium has been demonstrated.
Collapse
Affiliation(s)
- Aleksandra Kurzynska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Tiwari P, Seth S, Sharma R, Verma R, Narain M, Gupta R. Evaluating cervical mucous inflammatory status as novel predictor for spontaneous onset of labour at term: A prospective observational study. Med J Armed Forces India 2024; 80:S7-S13. [PMID: 39734837 PMCID: PMC11670591 DOI: 10.1016/j.mjafi.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background The objective of this study was to explore the relationship between cervical inflammatory status at term gestation and spontaneous onset of labour. The aim was to search for a cost-effective, readily available, point of care test as predictor for spontaneous onset of labour (SPOL) at term. Methods This prospective observational cohort study was ICMR-STS project. Women who were primigravida with 20-30 years age, term gestation, single-live foetus with cephalic presentation, not in labour, asymptomatic with no evidence of infection and obstetric complications, were included in the study. Cervical mucous samples were subjected to cytological assessment after Giemsa staining and differential count under microscope. Primary outcome measure was the spontaneous onset of labour within 7 days of enrollment; and depending on whether SPOL occurred or not the participants were divided into two groups, Group I and Group II, respectively. Results Out of 47 participants, 23 went into SPOL and included in Group I. We observed significantly increased mean levels of polymorphs (71.7 ± 29 vs. 55 ± 28; p-value 0.03), and raised PLR (12.72 ± 6.89 vs. 7.01 ± 3.4; p-value 0.0007) in group I before onset of labour. Polymorphs showed good sensitivity (73.9%) and specificity (83.3%); and on ROC polymorphs curve was on the left of the reference line which indicated that it has good predictive value for SPOL. Conclusion Predominance of polymorphs in the cervical mucous prior to the onset of labour has emerged as a novel, cost-effective, point of care predictor for SPOL.
Collapse
Affiliation(s)
- Priya Tiwari
- MBBS Student, Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Shikha Seth
- Professor & Head (Obstetrics & Gynaecology) AIIMS, Gorakhpur, UP, India
| | - Ritu Sharma
- Associate Professor (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Ruchi Verma
- Assistant Professor (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Meher Narain
- Senior Resident (Obstetrics & Gynaecology) Government Institute of Medical Sciences, Greater Noida, UP, India
| | - Rakesh Gupta
- Director & Professor, Government Institute of Medical Sciences, Greater Noida, UP, India
| |
Collapse
|
4
|
Carvajal JA, Galaz J, Villagrán S, Astudillo R, Garmendia L, Delpiano AM. The role of the RHOA/ROCK pathway in the regulation of myometrial stages throughout pregnancy. AJOG GLOBAL REPORTS 2024; 4:100394. [PMID: 39434813 PMCID: PMC11491706 DOI: 10.1016/j.xagr.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Background Controlling uterine contractile activity is essential to regulate the duration of pregnancy. During most of the pregnancy, the uterus does not contract (i.e., myometrial quiescence). The myometrium recovers its contractile phenotype at around 36 weeks (i.e., myometrial activation) through several mechanisms. The RHOA/ROCK pathway plays a vital role in facilitating muscular contractions by calcium sensitization in humans. Yet, the role of this pathway during different myometrial stages, including quiescence, has not been elucidated. Objective we aimed to study the role of the RHOA/ROCK pathway in the regulation of the different myometrial stages throughout pregnancy. Specifically, we hypothesized that the inhibition of the components of the RHOA/ROCK pathway play an important role in maintaining uterine quiescence. Study design Myometrial samples were obtained from pregnant individuals who underwent cesarean section. Pregnant individuals who delivered preterm without labor (myometrial quiescence), preterm with labor (nonphysiological myometrial stimulation), term not in labor (activation), and term in labor (physiological myometrial stimulation) were included. The mRNA and protein expression of RHOA, ROCK I, ROCK II, RND1-3, and ROCK activity through pMYTP1 were evaluated. Results We found that the human myometrium constitutively expressed RHOA/ROCK pathway components throughout pregnancy. No changes in the components of the RHOA/ROCK pathway were found during quiescence. Moreover, the RHOA protein and ROCK activity increased in the myometrium during labor, supporting the hypothesis that this pathway participates in maintaining the contractile activity of the myometrium. This study provides insight into the role of the RHOA/ROCK pathway in controlling myometrial contractile activity during pregnancy.
Collapse
Affiliation(s)
- Jorge A. Carvajal
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Jose Galaz
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Sofía Villagrán
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Rocío Astudillo
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Liliana Garmendia
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Ana María Delpiano
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| |
Collapse
|
5
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
6
|
Shang J, Wang Z, Huang Y, Wu Y, Jin J. Spatial Activation of Autophagy in Human Placenta-Related Tissue During Labor: A Possible Mechanism for Labor Onset. Am J Reprod Immunol 2024; 92:e13903. [PMID: 39177075 DOI: 10.1111/aji.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION To explore the mechanisms of labor by investigating the autophagy of placental and fetal membranes tissue in normal pregnant women. METHODS Placenta and fetal membranes were collected from women with singleton pregnancies without any medical complications and from women who delivered vaginally (labor-initiated group; L group) or by caesarean section (labor-noninitiated group; NL group). Autophagosomes were observed by transmission electron microscopy (TEM). Immunofluorescence and western blotting (WB) were used to detect protein levels of the autophagy markers LC3A and LC3B. TEM, immunohistochemistry (IHC), and WB were used to compare autophagy in different parts of the placenta and fetal membranes in the L and NL groups. The expression of LC3B/LC3A, ROCK1, and ROCK2 in the placenta of nonpregnant and pregnant rats was detected by WB and IHC. RESULTS TEM and IHC results showed an increase in the number of autophagosomes and autophagic lysosomes in the L group, and WB results indicated an increase in the LC3B/A ratio between the placenta and fetal membranes in the L group. Autophagy was significantly increased on the maternal side of the placenta in the L group, and the level of autophagy became higher near rupture in the fetal membranes and near the point where the umbilical cord joins the placenta in the L group. The LC3B/A ratio increased and ROCK1 and ROCK2 levels decreased in postnatal rats. DISCUSSION Autophagy can occur in the placenta and fetal membranes and its activity is higher at the onset of labor, suggesting a role in labor.
Collapse
Affiliation(s)
- Jing Shang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yingying Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuyu Wu
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jin Jin
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, Miller D, Chaiworapongsa T, Chaemsaithong P, Berry SM, Awonuga AO, Bryant DR, Pique-Regi R, Gomez-Lopez N. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med 2024; 16:eadh8335. [PMID: 38198568 PMCID: PMC11238316 DOI: 10.1126/scitranslmed.adh8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| | - Azam Peyvandipour
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Clinical chorioamnionitis at term is characterized by changes in the plasma concentration of CHCHD2/MNRR1, a mitochondrial protein. J Matern Fetal Neonatal Med 2023; 36:2222333. [PMID: 37349086 PMCID: PMC10445405 DOI: 10.1080/14767058.2023.2222333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE Mitochondrial dysfunction was observed in acute systemic inflammatory conditions such as sepsis and might be involved in sepsis-induced multi-organ failure. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2), also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1), a bi-organellar protein located in the mitochondria and the nucleus, is implicated in cell respiration, survival, and response to tissue hypoxia. Recently, the reduction of the cellular CHCHD2/MNRR1 protein, as part of mitochondrial dysfunction, has been shown to play a role in the amplification of inflammatory cytokines in a murine model of lipopolysaccharide-induced systemic inflammation. The aim of this study was to determine whether the plasma concentration of CHCHD2/MNRR1 changed during human normal pregnancy, spontaneous labor at term, and clinical chorioamnionitis at term. METHODS We conducted a cross-sectional study that included the following groups: 1) non-pregnant women (n = 17); 2) normal pregnant women at various gestational ages from the first trimester until term (n = 110); 3) women at term with spontaneous labor (n = 50); and 4) women with clinical chorioamnionitis at term in labor (n = 25). Plasma concentrations of CHCHD2/MNRR1 were assessed by an enzyme-linked immunosorbent assay. RESULTS 1) Pregnant women at term in labor with clinical chorioamnionitis had a significantly higher plasma CHCHD2/MNRR1 concentration than those in labor without chorioamnionitis (p = .003); 2) CHCHD2/MNRR1 is present in the plasma of healthy non-pregnant and normal pregnant women without significant differences in its plasma concentrations between the two groups; 3) there was no correlation between maternal plasma CHCHD2/MNRR1 concentration and gestational age at venipuncture; and 4) plasma CHCHD2/MNRR1 concentration was not significantly different in women at term in spontaneous labor compared to those not in labor. CONCLUSIONS CHCHD2/MNRR1 is physiologically present in the plasma of healthy non-pregnant and normal pregnant women, and its concentration does not change with gestational age and parturition at term. However, plasma CHCHD2/MNRR1 is elevated in women at term with clinical chorioamnionitis. CHCHD2/MNRR1, a novel bi-organellar protein located in the mitochondria and the nucleus, is released into maternal plasma during systemic inflammation.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Evidence for the participation of CHCHD2/MNRR1, a mitochondrial protein, in spontaneous labor at term and in preterm labor with intra-amniotic infection. J Matern Fetal Neonatal Med 2023; 36:2183088. [PMID: 36941246 PMCID: PMC10352953 DOI: 10.1080/14767058.2023.2183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Intra-amniotic inflammation (IAI), associated with either microbe (infection) or danger signals (sterile), plays a major role in the pathophysiology of preterm labor and delivery. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2) [also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1)], a mitochondrial protein involved in oxidative phosphorylation and cell survival, is capable of sensing tissue hypoxia and inflammatory signaling. The ability to maintain an appropriate energy balance at the cellular level while adapting to environmental stress is essential for the survival of an organism. Mitochondrial dysfunction has been observed in acute systemic inflammatory conditions, such as sepsis, and is proposed to be involved in sepsis-induced multi-organ failure. The purpose of this study was to determine the amniotic fluid concentrations of CHCHD2/MNRR1 in pregnant women, women at term in labor, and those in preterm labor (PTL) with and without IAI. METHODS This cross-sectional study comprised patients allocated to the following groups: (1) mid-trimester (n = 16); (2) term in labor (n = 37); (3) term not in labor (n = 22); (4) PTL without IAI who delivered at term (n = 25); (5) PTL without IAI who delivered preterm (n = 47); and (6) PTL with IAI who delivered preterm (n = 53). Diagnosis of IAI (amniotic fluid interleukin-6 concentration ≥2.6 ng/mL) included cases associated with microbial invasion of the amniotic cavity and those of sterile nature (absence of detectable bacteria, using culture and molecular microbiology techniques). Amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations were determined with a validated and sensitive immunoassay. RESULTS (1) CHCHD2/MNRR1 was detectable in all amniotic fluid samples and women at term without labor had a higher amniotic fluid CHCHD2/MNRR1 concentration than those in the mid-trimester (p = 0.003); (2) the amniotic fluid concentration of CHCHD2/MNRR1 in women at term in labor was higher than that in women at term without labor (p = 0.01); (3) women with PTL and IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those without IAI, either with preterm (p < 0.001) or term delivery (p = 0.01); (4) women with microbial-associated IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those with sterile IAI (p < 0.001); (5) among women with PTL and IAI, the amniotic fluid concentration of CHCHD2/MNRR1 correlated with that of interleukin-6 (Spearman's Rho = 0.7; p < 0.001); and (6) no correlation was observed between amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations among women with PTL. CONCLUSION CHCHD2/MNRR1 is a physiological constituent of human amniotic fluid in normal pregnancy, and the amniotic concentration of this mitochondrial protein increases during pregnancy, labor at term, and preterm labor with intra-amniotic infection. Hence, CHCHD2/MNRR1 may be released into the amniotic cavity by dysfunctional mitochondria during microbial-associated IAI.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Dahiana M. Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L. Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P. Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I. Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Zaniker EJ, Babayev E, Duncan FE. Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. Biol Rev Camb Philos Soc 2023; 98:1648-1667. [PMID: 37157877 PMCID: PMC10524764 DOI: 10.1111/brv.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Galaz J, Motomura K, Romero R, Liu Z, Garcia-Flores V, Tao L, Xu Y, Done B, Arenas-Hernandez M, Kanninen T, Farias-Jofre M, Miller D, Tarca AL, Gomez-Lopez N. A key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B. Transl Res 2023; 259:46-61. [PMID: 37121539 PMCID: PMC10524625 DOI: 10.1016/j.trsl.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
12
|
Kyathanahalli C, Snedden M, Hirsch E. Is human labor at term an inflammatory condition?†. Biol Reprod 2023; 108:23-40. [PMID: 36173900 PMCID: PMC10060716 DOI: 10.1093/biolre/ioac182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Parturition at term in normal pregnancy follows a predictable sequence of events. There is some evidence that a state of inflammation prevails in the reproductive tissues during labor at term, but it is uncertain whether this phenomenon is the initiating signal for parturition. The absence of a clear temporal sequence of inflammatory events prior to labor casts doubt on the concept that normal human labor at term is primarily the result of an inflammatory cascade. This review examines evidence linking parturition and inflammation in order to address whether inflammation is a cause of labor, a consequence of labor, or a separate but related phenomenon. Finally, we identify and suggest ways to reconcile inconsistencies regarding definitions of labor onset in published research, which may contribute to the variability in conclusions regarding the genesis and maintenance of parturition. A more thorough understanding of the processes underlying normal parturition at term may lead to novel insights regarding abnormal labor, including spontaneous preterm labor, preterm premature rupture of the fetal membranes, and dysfunctional labor, and the role of inflammation in each.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int J Mol Sci 2022; 23:ijms232314574. [PMID: 36498901 PMCID: PMC9738067 DOI: 10.3390/ijms232314574] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-6 (IL-6) is an acknowledged inflammatory cytokine with a pleiotropic action, mediating innate and adaptive immunity and multiple physiological processes, including protective and regenerative ones. IL-8 is a pro-inflammatory CXC chemokine with a primary function in attracting and activating neutrophils, but also implicated in a variety of other cellular processes. These two ILs are abundantly expressed at the feto-maternal interface over the course of a pregnancy and have been shown to participate in numerous pregnancy-related events. In this review, we summarize the literature data regarding their role in healthy and pathological pregnancies. The general information related to IL-6 and IL-8 functions is followed by an overview of their overall expression in cycling endometrium and at the feto-maternal interface. Further, we provide an overview of their involvement in pregnancy establishment and parturition. Finally, the implication of IL-6 and IL-8 in pregnancy-associated pathological conditions, such as pregnancy loss, preeclampsia, gestational diabetes mellitus and infection/inflammation is discussed.
Collapse
|
14
|
Akram KM, Kulkarni NS, Brook A, Wyles MD, Anumba DOC. Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth. Front Cell Dev Biol 2022; 10:987740. [DOI: 10.3389/fcell.2022.987740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of death in under-five children. Worldwide, annually, over 15 million babies are born preterm and 1 million of them die. The triggers and mechanisms of spontaneous PTB remain largely unknown. Most current therapies are ineffective and there is a paucity of reliable predictive biomarkers. Understanding the molecular mechanisms of spontaneous PTB is crucial for developing better diagnostics and therapeutics. To address this need, we conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes (including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8) associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We also reported two novel targets (ITPR2 and MYLK2) in the oxytocin signalling pathways for further study. Through bioinformatics analysis on DEGs, we identified four key miRNAs, - miR-524-5p, miR-520d-5p, miR-15a-5p and miR-424-5p - which were significantly downregulated in preterm placentas. These miRNAs may have regulatory roles in the aberrant gene expressions that we have observed in preterm placentas. We provide fresh molecular insight into the pathogenesis of spontaneous PTB which may drive further studies to develop new predictive biomarkers and therapeutics.
Collapse
|
15
|
Lee S, Jung Park M, Joo Lee H, Kil Joo J, Soo Suh D, Un Choi K, Hyung Kim K, Chul Kim S. Decreased expression of caveolin-1 have relevance to promoted senescence in preeclamptic placenta. Pregnancy Hypertens 2022; 30:59-67. [PMID: 36007380 DOI: 10.1016/j.preghy.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES To assess the association between altered expression of caveolin-1 and p53/p21, as indicatives of cellular senescence, in preeclamptic placenta. STUDY DESIGN Placental tissues and serum were collected from rats (Sham and reduced uterine perfusion pressure group) at 18.5 days post coitum and humans (normotensive pregnant and preeclampsia groups). The concentration and expression of caveolin-1 were measured in the collected tissues, and the correlation between p53 and p21 expression was evaluation. MAIN OUTCOME MEASURES Placental mRNA expression and serum concentration of caveolin-1 were measured using qRT-PCR and ELISA, respectively. Altered expressions of caveolin-1 and p53/p21 were revealed and quantified by immunohistochemistry. The association between these changes was investigated using correlation analysis. RESULTS Placental mRNA expressions and serum concentrations of caveolin-1 were significantly decreased in reduced uterine perfusion pressure and preeclampsia groups. The expressions of caveolin-1 and p53/ p21 were significantly altered in placenta complicated with preeclampsia. Correlation analysis revealed a significant inverse association between changes in caveolin-1 and p53/p21. Subsequently, these results were obtained by investigating the preeclampsia onset time. CONCLUSION These results revealed that the expression of caveolin-1 profoundly decreases in the placenta and serum of preeclampsia. These factors contribute to the mechanism of accelerated cellular senescence in placenta, which is one of the various etiologies of preeclampsia.
Collapse
Affiliation(s)
- Sul Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Republic of Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Kyung Un Choi
- Biomedical Research Institute Pusan National University Hospital, Republic of Korea; Department of Pathology, Pusan National University School of Medicine, Republic of Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea.
| |
Collapse
|
16
|
Ali HES, Scoggin K, Murase H, Norris J, Menarim B, Dini P, Ball B. Transcriptomic and histochemical analysis reveal the complex regulatory networks in equine Chorioallantois during spontaneous term labor. Biol Reprod 2022; 107:1296-1310. [PMID: 35913756 DOI: 10.1093/biolre/ioac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The equine chorioallantois (CA) undergoes complex physical and biochemical changes during labor. However, the molecular mechanisms controlling these changes are still unclear. Therefore, the current study aimed to characterize the transcriptome of equine CA during spontaneous labor and compare it to that of normal preterm CA. Placental samples were collected postpartum from mares with normal term labor (TL group, n = 4) and from preterm not in labor mares (330 days GA; PTNL group, n = 4). Our study identified 4137 differentially expressed genes (DEGs) (1820 upregulated and 2317 downregulated) in CA during TL as compared to PTNL. TL was associated with the upregulation of several pro-inflammatory mediators (MHC-I, MHC-II, NLRP3, CXCL8, and MIF). Also, TL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, MMP3, and MMP9) with subsequent extracellular matrix degradation and apoptosis, as reflected by upregulation of several apoptosis-related genes (ATF3, ATF4, FAS, FOS, and BIRC3). In addition, TL was associated with downregulation of 21 transcripts coding for collagens. The upregulation of proteases, along with the downregulation of collagens, is believed to be implicated in separation and rupture of the CA during TL. Additionally, TL was associated with downregulation of transcripts coding for proteins essential for progestin synthesis (SRD5A1 and AKR1C1) and angiogenesis (VEGFA and RTL1), as well as upregulation of prostaglandin synthesis-related genes (PTGS2 and PTGES), which could reflect the physiological switch in placental endocrinology and function during TL. In conclusion, our findings revealed the equine CA gene expression signature in spontaneous labor at term, which improves our understanding of the molecular mechanisms triggering labor.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Jamie Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Bruno Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
17
|
Eastman AJ, Noble KN, Pensabene V, Aronoff DM. Leveraging bioengineering to assess cellular functions and communication within human fetal membranes. J Matern Fetal Neonatal Med 2022; 35:2795-2807. [PMID: 32787482 PMCID: PMC7878582 DOI: 10.1080/14767058.2020.1802716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/09/2023]
Abstract
The fetal membranes enclose the growing fetus and amniotic fluid. Preterm prelabor rupture of fetal membranes is a leading cause of preterm birth. Fetal membranes are composed of many different cell types, both structural and immune. These cells must coordinate functions for tensile strength and membrane integrity to contain the growing fetus and amniotic fluid. They must also balance immune responses to pathogens with maintaining maternal-fetal tolerance. Perturbation of this equilibrium can lead to preterm premature rupture of membranes without labor. In this review, we describe the formation of the fetal membranes to orient the reader, discuss some of the common forms of communication between the cell types of the fetal membranes, and delve into the methods used to tease apart this paracrine signaling within the membranes, including emerging technologies such as organ-on-chip models of membrane immunobiology.
Collapse
Affiliation(s)
- Alison J. Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen N. Noble
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37202 USA
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Wong YP, Wagiman N, Tan JWD, Hanim BS, Rashidan MSH, Fong KM, Norhazli NN, Qrisha Y, Shah RNRA, Mustangin M, Zakaria H, Chin SX, Tan GC. Loss of CXC-Chemokine Receptor 1 Expression in Chorioamnionitis Is Associated with Adverse Perinatal Outcomes. Diagnostics (Basel) 2022; 12:882. [PMID: 35453930 PMCID: PMC9028796 DOI: 10.3390/diagnostics12040882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chorioamnionitis complicates about 1−5% of deliveries at term and causes about one-third of stillbirths. CXC-chemokine receptor 1 (CXCR1) binds IL-8 with high affinity and regulates neutrophil recruitment. We aimed to determine the immunoexpression of CXCR1 in placentas with chorioamnionitis, and its association with adverse perinatal outcomes. Methods: A total of 101 cases of chorioamnionitis and 32 cases of non-chorioamnionitis were recruited over a period of 2 years. CXCR1 immunohistochemistry was performed, and its immunoexpression in placentas was evaluated. The adverse perinatal outcomes included intrauterine death, poor APGAR score, early neonatal death, and respiratory complications. Results: Seventeen cases (17/101, 16.8%) with chorioamnionitis presented as preterm deliveries. Lung complications were more common in mothers who were >35 years (p = 0.003) and with a higher stage in the foetal inflammatory response (p = 0.03). Notably, 24 cases (23.8%) of histological chorioamnionitis were not detected clinically. Interestingly, the loss of CXCR1 immunoexpression in the umbilical cord endothelial cells (UCECs) was significantly associated with foetal death (p = 0.009). Conclusion: The loss of CXCR1 expression in UCECs was significantly associated with an increased risk of adverse perinatal outcomes and could be used as a biomarker to predict adverse perinatal outcomes in chorioamnionitis. Further study is warranted to study the pathophysiology involved in the failure of CXCR1 expression in these cells.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
| | - Noorhafizah Wagiman
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
- Department of Pathology, Hospital Sultanah Aminah, Johor Bahru 80100, Malaysia;
| | - Jonathan Wei De Tan
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | - Barizah Syahirah Hanim
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
| | - Muhammad Syamil Hilman Rashidan
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | - Kai Mun Fong
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | - Naufal Naqib Norhazli
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | - Yashini Qrisha
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | | | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
| | - Haliza Zakaria
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
| | - Siew Xian Chin
- ASASIpintar Programme, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.W.D.T.); (M.S.H.R.); (K.M.F.); (N.N.N.); (Y.Q.); (S.X.C.)
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (N.W.); (B.S.H.); (M.M.); (H.Z.)
| |
Collapse
|
19
|
Belville C, Ponelle-Chachuat F, Rouzaire M, Gross C, Pereira B, Gallot D, Sapin V, Blanchon L. Physiological TLR4 regulation in human fetal membranes as an explicative mechanism of a pathological preterm case. eLife 2022; 11:71521. [PMID: 35119365 PMCID: PMC8816379 DOI: 10.7554/elife.71521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon that has been exacerbated. Beyond all the implied biological processes, inflammation is of primary importance and is qualified as ‘sterile’ at the end of pregnancy. In this study, complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants obtained from the altered (cervix zone) and intact fetal membranes at term and before labour were used. By cross-analysing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of toll-like receptor 4 (TLR4), an actor in pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: (1) the methylation of TLR4 and miRNA promoters and (2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3’-UTR of TLR4. Consequently, this study demonstrates that fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.
Collapse
Affiliation(s)
- Corinne Belville
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Flora Ponelle-Chachuat
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Marion Rouzaire
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Christelle Gross
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics unit (DRCI) Department, clermont-ferrand, France
| | - Denis Gallot
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Obstetrics and Gynaecology Department, Clermont-ferrand, France
| | - Vincent Sapin
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| |
Collapse
|
20
|
Preterm labor is a distinct process from term labor following computational analysis of human myometrium. Am J Obstet Gynecol 2022; 226:106.e1-106.e16. [PMID: 34245680 DOI: 10.1016/j.ajog.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The onset of the term human parturition involves myometrial gene expression changes to transform the uterus from a quiescent to a contractile phenotype. It is uncertain whether the same changes occur in the uterus during preterm labor. OBJECTIVE This study aimed to compare the myometrial gene expression between term and preterm labor and to determine whether the presence of acute clinical chorioamnionitis or twin gestation affects these signatures. STUDY DESIGN Myometrial specimens were collected during cesarean delivery from the following 7 different groups of patients: term not in labor (n=31), term labor (n=13), preterm not in labor (n=21), preterm labor with acute clinical chorioamnionitis (n=6), preterm labor with no acute clinical chorioamnionitis (n=9), twin preterm not in labor (n=8), and twin preterm labor with no acute clinical chorioamnionitis (n=5). RNA was extracted, reverse transcribed and quantitative polymerase chain reactions were performed on 44 candidate genes (with evidence for differential expression in human term labor) using the Fluidigm platform. Computational analysis was performed using 2-class unpaired Wilcoxon tests and principal component analysis. RESULTS Computational analysis revealed that gene expression in the preterm myometrium, irrespective of whether in labor or not in labor, clustered tightly and is clearly different from the term labor and term not-in-labor groups. This was true for both singleton and twin pregnancies. Principal component analysis showed that 57% of the variation was explained by 3 principal components. These 44 genes interact in themes of prostaglandin activity and inflammatory signaling known to be important during term labor, but are not a full representation of the myometrium transcriptional activity. CONCLUSION The myometrial contractions associated with preterm labor are associated with a pattern of gene expression that is distinct from term labor. Therefore, preterm labor may be initiated by a different myometrial process or processes outside the myometrium.
Collapse
|
21
|
Gomez-Lopez N, Romero R, Galaz J, Bhatti G, Done B, Miller D, Ghita C, Motomura K, Farias-Jofre M, Jung E, Pique-Regi R, Hassan SS, Chaiworapongsa T, Tarca AL. Transcriptome changes in maternal peripheral blood during term parturition mimic perturbations preceding spontaneous Preterm birth†. Biol Reprod 2021; 106:185-199. [PMID: 34686873 DOI: 10.1093/biolre/ioab197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
The complex physiologic process of parturition includes the onset of labor, which requires the orchestrated stimulation of a common pathway involving uterine contractility, cervical ripening, and chorioamniotic membrane activation. However, the labor-specific processes taking place in these tissues have limited use as predictive biomarkers unless they can be probed in non-invasive samples, such as the peripheral blood. Herein, we utilized a transcriptomic dataset to assess labor-specific changes in the peripheral blood of women who delivered at term. We identified a set of genes that were differentially expressed with labor and enriched for immunological processes, and these gene expression changes were strongly correlated with results from prior studies, providing in silico validation of our findings. We then identified significant correlations between labor-specific transcriptomic changes in the maternal circulation and those reported in the chorioamniotic membranes, myometrium, and cervix of women at term, demonstrating that tissue-specific labor signatures are partly mirrored in the peripheral blood. Last, we demonstrated a significant overlap between the peripheral blood transcriptomic changes in term parturition and those observed in asymptomatic women prior to the diagnosis of preterm prelabor rupture of membranes who delivered preterm. Collectively, we provide evidence that the normal process of labor at term is characterized by a unique immunological expression signature, which may serve as a useful tool for assessing labor status and potentially identifying women at risk for preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Corina Ghita
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| |
Collapse
|
22
|
Ding W, Chim SSC, Wang CC, Lau CSL, Leung TY. Molecular Mechanism and Pathways of Normal Human Parturition in Different Gestational Tissues: A Systematic Review of Transcriptome Studies. Front Physiol 2021; 12:730030. [PMID: 34566691 PMCID: PMC8461075 DOI: 10.3389/fphys.2021.730030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: Genome-wide transcriptomic studies on gestational tissues in labor provide molecular insights in mechanism of normal parturition. This systematic review aimed to summarize the important genes in various gestational tissues around labor onset, and to dissect the underlying molecular regulations and pathways that trigger the labor in term pregnancies. Data sources: PubMed and Web of Science were searched from inception to January 2021. Study Eligibility Criteria: Untargeted genome-wide transcriptomic studies comparing the gene expression of various gestational tissues in normal term pregnant women with and without labor were included. Methods: Every differentially expressed gene was retrieved. Consistently expressed genes with same direction in different studies were identified, then gene ontology and KEGG analysis were conducted to understand molecular pathways and functions. Gene-gene association analysis was performed to determine the key regulatory gene(s) in labor onset. Results: A total of 15 studies, including 266 subjects, were included. 136, 26, 15, 7, and 3 genes were significantly changed during labor in the myometrium (seven studies, n = 108), uterine cervix (four studies, n = 64), decidua (two studies, n = 42), amnion (two studies, n = 44) and placenta (two studies, n = 41), respectively. These genes were overrepresented in annotation terms related to inflammatory and immune responses. TNF and NOD-like receptor signaling pathways were overrepresented in all mentioned tissues, except the placenta. IL6 was the only gene included in both pathways, the most common reported gene in all included studies, and also the gene in the central hub of molecular regulatory network. Conclusions: This systematic review identified that genes involved in immunological and inflammatory regulations are expressed in specific gestational tissues in labor. We put forward the hypothesis that IL6 might be the key gene triggering specific mechanism in different gestational tissues, eventually leading to labor onset through inducing uterine contraction, wakening fetal membranes and stimulating cervical ripening. Systematic Review Registration: Identifier [CRD42020187975].
Collapse
Affiliation(s)
- Wenjing Ding
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Siu Chung Chim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Caitlyn So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Leimert KB, Xu W, Princ MM, Chemtob S, Olson DM. Inflammatory Amplification: A Central Tenet of Uterine Transition for Labor. Front Cell Infect Microbiol 2021; 11:660983. [PMID: 34490133 PMCID: PMC8417473 DOI: 10.3389/fcimb.2021.660983] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In preparation for delivery, the uterus transitions from actively maintaining quiescence during pregnancy to an active parturient state. This transition occurs as a result of the accumulation of pro-inflammatory signals which are amplified by positive feedback interactions involving paracrine and autocrine signaling at the level of each intrauterine cell and tissue. The amplification events occur in parallel until they reach a certain threshold, ‘tipping the scale’ and contributing to processes of uterine activation and functional progesterone withdrawal. The described signaling interactions all occur upstream from the presentation of clinical labor symptoms. In this review, we will: 1) describe the different physiological processes involved in uterine transition for each intrauterine tissue; 2) compare and contrast the current models of labor initiation; 3) introduce innovative models for measuring paracrine inflammatory interactions; and 4) discuss the therapeutic value in identifying and targeting key players in this crucial event for preterm birth.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Magdalena M Princ
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Riolo G, Cantara S, Ricci C. What's Wrong in a Jump? Prediction and Validation of Splice Site Variants. Methods Protoc 2021; 4:62. [PMID: 34564308 PMCID: PMC8482176 DOI: 10.3390/mps4030062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a crucial process to enhance gene expression driving organism development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and deletions) involving consensus splicing regulatory sequences in a specific gene may result in the production of aberrant and not properly working proteins. In this review, we introduce the key steps of splicing mechanism and describe all different types of genomic variants affecting this process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep intronic changes). Then, we provide an updated approach to improve splice variants detection. First, we review the main computational tools, including the recent Machine Learning-based algorithms, for the prediction of splice site variants, in order to characterize how a genomic variant interferes with splicing process. Next, we report the experimental methods to validate the predictive analyses are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins (proteomics experiments). For both prediction and validation steps, benefits and weaknesses of each tool/procedure are accurately reported, as well as suggestions on which approaches are more suitable in diagnostic rather than in clinical research.
Collapse
Affiliation(s)
| | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.)
| |
Collapse
|
25
|
Singh N, Herbert B, Sooranna G, Shah NM, Das A, Sooranna SR, Johnson MR. Is there an inflammatory stimulus to human term labour? PLoS One 2021; 16:e0256545. [PMID: 34464407 PMCID: PMC8407546 DOI: 10.1371/journal.pone.0256545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Inflammation is thought to play a pivotal role in the onset of term and some forms of preterm labour. Although, we recently found that myometrial inflammation is a consequence rather than a cause of term labour, there are several other reproductive tissues, including amnion, choriodecidua parietalis and decidua basalis, where the inflammatory stimulus to labour may occur. To investigate this, we have obtained amnion, choriodecidual parietalis and decidua basalis samples from women at various stages of pregnancy and spontaneous labour. The inflammatory cytokine profile in each tissue was determine by Bio-Plex Pro® cytokine multiplex assays and quantitative RT-PCR. Active motif assay was used to study transcription activation in the choriodecidua parietalis. Quantitative RT-PCR was use to study the pro-labour genes (PGHS-2, PGDH, OTR and CX43) in all of the tissues at the onset of labour and oxytocin (OT) mRNA expression in the choriodecidual parietalis and decidua basalis. Statistical significance was ascribed to a P value <0.05. In the amnion and choriodecidua parietalis, the mRNA levels of various cytokines decreased from preterm no labour to term no labour samples, but the protein levels were unchanged. The choriodecidua parietalis showed increase in the protein levels of IL-1β and IL-6 in the term early labour samples. In the amnion and decidua basalis, the protein levels of several cytokines rose in term established labour. The multiples of the median derived from the 19-plex cytokine assay were greater in term early labour and term established labour samples from the choriodecidua parietalis, but only in term established labour for myometrium. These data suggest that the inflammatory stimulus to labour may begin in the choriodecidua parietalis, but the absence of any change in prolabour factor mRNA levels suggests that the cytokines may act on the myometrium where we observed changes in transcription factor activation and increases in prolabour gene expression in earlier studies.
Collapse
Affiliation(s)
- Natasha Singh
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- * E-mail:
| | - Bronwen Herbert
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Garvin Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ananya Das
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Suren R. Sooranna
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS, Charnock-Jones DS. The RNA landscape of the human placenta in health and disease. Nat Commun 2021; 12:2639. [PMID: 33976128 PMCID: PMC8113443 DOI: 10.1038/s41467-021-22695-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( https://www.obgyn.cam.ac.uk/placentome/ ).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Functional Genomics, GlaxoSmithKline Limited, Stevenage, Hertfordshire, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pieter-Jan Volders
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
28
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Romero R, Pacora P, Kusanovic JP, Jung E, Panaitescu B, Maymon E, Erez O, Berman S, Bryant DR, Gomez-Lopez N, Theis KR, Bhatti G, Kim CJ, Yoon BH, Hassan SS, Hsu CD, Yeo L, Diaz-Primera R, Marin-Concha J, Lannaman K, Alhousseini A, Gomez-Roberts H, Varrey A, Garcia-Sanchez A, Gervasi MT. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia - implications for clinical care. J Perinat Med 2021; 49:275-298. [PMID: 33544519 PMCID: PMC8324070 DOI: 10.1515/jpm-2020-0297] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Clinical chorioamnionitis at term is considered the most common infection-related diagnosis in labor and delivery units worldwide. The syndrome affects 5-12% of all term pregnancies and is a leading cause of maternal morbidity and mortality as well as neonatal death and sepsis. The objectives of this study were to determine the (1) amniotic fluid microbiology using cultivation and molecular microbiologic techniques; (2) diagnostic accuracy of the clinical criteria used to identify patients with intra-amniotic infection; (3) relationship between acute inflammatory lesions of the placenta (maternal and fetal inflammatory responses) and amniotic fluid microbiology and inflammatory markers; and (4) frequency of neonatal bacteremia. METHODS This retrospective cross-sectional study included 43 women with the diagnosis of clinical chorioamnionitis at term. The presence of microorganisms in the amniotic cavity was determined through the analysis of amniotic fluid samples by cultivation for aerobes, anaerobes, and genital mycoplasmas. A broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry was also used to detect bacteria, select viruses, and fungi. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin-6 (IL-6) concentration ≥2.6 ng/mL. RESULTS (1) Intra-amniotic infection (defined as the combination of microorganisms detected in amniotic fluid and an elevated IL-6 concentration) was present in 63% (27/43) of cases; (2) the most common microorganisms found in the amniotic fluid samples were Ureaplasma species, followed by Gardnerella vaginalis; (3) sterile intra-amniotic inflammation (elevated IL-6 in amniotic fluid but without detectable microorganisms) was present in 5% (2/43) of cases; (4) 26% of patients with the diagnosis of clinical chorioamnionitis had no evidence of intra-amniotic infection or intra-amniotic inflammation; (5) intra-amniotic infection was more common when the membranes were ruptured than when they were intact (78% [21/27] vs. 38% [6/16]; p=0.01); (6) the traditional criteria for the diagnosis of clinical chorioamnionitis had poor diagnostic performance in identifying proven intra-amniotic infection (overall accuracy, 40-58%); (7) neonatal bacteremia was diagnosed in 4.9% (2/41) of cases; and (8) a fetal inflammatory response defined as the presence of severe acute funisitis was observed in 33% (9/27) of cases. CONCLUSIONS Clinical chorioamnionitis at term, a syndrome that can result from intra-amniotic infection, was diagnosed in approximately 63% of cases and sterile intra-amniotic inflammation in 5% of cases. However, a substantial number of patients had no evidence of intra-amniotic infection or intra-amniotic inflammation. Evidence of the fetal inflammatory response syndrome was frequently present, but microorganisms were detected in only 4.9% of cases based on cultures of aerobic and anaerobic bacteria in neonatal blood.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Susan Berman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David R. Bryant
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Office of Women’s Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio Marin-Concha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kia Lannaman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ali Alhousseini
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Hunter Gomez-Roberts
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Angel Garcia-Sanchez
- Department of Obstetrics, Gynecology, and Pediatrics, University of Salamanca, Salamanca, Spain
| | - Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
30
|
Wang P, Pan J, Tian X, Dong X, Ju W, Wang Y, Zhong N. Transcriptomics-determined chemokine-cytokine pathway presents a common pathogenic mechanism in pregnancy loss and spontaneous preterm birth. Am J Reprod Immunol 2021; 86:e13398. [PMID: 33565696 DOI: 10.1111/aji.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Various etiological factors, such as infection and inflammation, may induce the adverse outcomes of pregnancy of miscarriage, stillbirth, or preterm birth. The pathogenic mechanisms associated with these adverse pregnancies are yet unclear. We hypothesized that a common pathogenic mechanism may underlie variant adverse outcomes of pregnancy, which are induced by genetic-environmental factors. The specific objective of the current study is to uncover the common molecular mechanism(s) by identifying the specific transcripts that are present in variant subtypes of pregnancy loss and preterm birth. METHOD OF STUDY Transcriptomic profiling was performed with RNA expression microarray or RNA sequencing of placentas derived from pregnancy loss (which includes spontaneous miscarriage, recurrent miscarriage, and stillbirth) and spontaneous preterm birth, followed by bioinformatic analysis of multi-omic integration to identify pathogenic molecules and pathways involved in pathological pregnancies. RESULTS The enrichment of common differentially expressed genes between full-term birth and preterm birth and pregnancy loss of miscarriage and stillbirth revealed different pathophysiological pathway(s), including cytokine signaling dysregulated in spontaneous preterm birth, defense response, graft-versus-host disease, antigen processing and presentation, and T help cell differentiation in spontaneous miscarriage. Thirty-three genes shared between spontaneous preterm birth and spontaneous miscarriage were engaged in pathways of interferon gamma-mediated signaling and of antigen processing and presentation. For spontaneous miscarriage, immune response was enriched in the fetal tissue of chorionic villi and in the maternal facet of the placental sac. The transcript of nerve growth factor receptor was identified as the common molecule that is differentially expressed in all adverse pregnancies: spontaneous preterm birth, stillbirth, spontaneous miscarriage, and recurrent miscarriage. Superoxide dismutase 2 was up-regulated in all adverse outcomes of pregnancy except for recurrent miscarriage. Cytokine-cytokine receptor interaction was the common pathway in spontaneous preterm birth and spontaneous miscarriage. Defense response was enriched in the fetal tissue of miscarriage and in the maternal tissue in spontaneous miscarriage. CONCLUSIONS Our results indicated that the chemokine-cytokine pathway may play important roles in and function as a common pathogenic mechanism associated with, the different adverse outcomes of pregnancy, which demonstrated that differentially expressed transcripts could result from a common pathogenic mechanism associated with pregnancy loss and spontaneous preterm birth, although individual pregnancy outcomes may differ from each other phenotypically.
Collapse
Affiliation(s)
- Peirong Wang
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Center for Medical Device Evaluation, National Medical Product Administration, 50 Qixiang Road, Haidian District, Beijing, 100081, China
| | - Jing Pan
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
31
|
Prairie E, Côté F, Tsakpinoglou M, Mina M, Quiniou C, Leimert K, Olson D, Chemtob S. The determinant role of IL-6 in the establishment of inflammation leading to spontaneous preterm birth. Cytokine Growth Factor Rev 2021; 59:118-130. [PMID: 33551331 DOI: 10.1016/j.cytogfr.2020.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB) and its consequences are a major public health concern as preterm delivery is the main cause of mortality and morbidity at birth. There are many causes of PTB, but inflammation is undeniably associated with the process of premature childbirth and fetal injury. At present, treatments clinically available mostly involve attempt to arrest contractions (tocolytics) but do not directly address upstream maternal inflammation on development of the fetus. One of the possible solutions may lie in the modulation of inflammatory mediators. Of the many pro-inflammatory cytokines involved in the induction of PTB, IL-6 stands out for its pleiotropic effects and its involvement in both acute and chronic inflammation. Here, we provide a detailed review of the effects of IL-6 on the timing of childbirth, its occurrence during PTB and its indissociable roles with associated fetal tissue damage.
Collapse
Affiliation(s)
- Elizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - France Côté
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marika Tsakpinoglou
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michael Mina
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada.
| | - Kelycia Leimert
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - David Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada.
| |
Collapse
|
32
|
Ge Y, Zhang C, Cai Y, Huang H. Adverse Maternal and Neonatal Outcomes in Women With Elevated Intrapartum Temperature Complicated by Histological Chorioamnionitis at Term: A Propensity-Score Matched Study. Front Pediatr 2021; 9:654596. [PMID: 34368025 PMCID: PMC8344350 DOI: 10.3389/fped.2021.654596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Elevated intrapartum temperature has been widely proven to be associated with adverse clinical outcomes in both mothers and neonates. Histological chorioamnionitis (HCA), the inflammation of chorion and amniotic membranes, is commonly observed in those with elevated intrapartum temperature. Thus, we aimed to explore whether the combination of HCA would further affect the pregnancy outcomes in those with intrapartum temperature ≥ 37.5°C. Methods: This retrospective cohort study was conducted at the International Peace Maternity and Child Health Hospital (IPMCH), including all full-term women with intrapartum temperature ≥ 37.5°C from Jan 2017 to Jan 2019. Patients were divided in to HCA group or control group according to placental pathology results, and we used 1:1 propensity score matching (PSM) to reduce the effects of potential confounding factors between the two groups. Univariate and multivariable logistic regression were used to identify the association between HCA and different adverse maternal and neonatal outcomes. Results: We formed a propensity-score matched cohort containing 464 women in each group. Higher positive rate of mycoplasma (14.01% vs. 7.33%, p = 0.001) was found in the vaginal secretion culture of women in the HCA group. After adjusting for various baseline clinical characteristics, women with HCA were more likely to end their delivery by cesarean section (AOR = 1.55, 95% CI: 1.05-2.28), and puerperal morbidity (AOR = 2.77, 95% CI: 1.44-5.33) as well as prolonged hospitalization (AOR = 1.56, 95% CI: 1.12-2.17) were more likely to be observed in the HCA group. The existence of HCA might also be associated with neonatal sepsis (AOR = 2.83, 95% CI: 1.14-7.04) and NICU admission (AOR = 1.40, 95% CI: 1.04-1.87) in newborns. In the study on the impact of different stages of HCA, we found that both maternal and neonatal outcomes would not be affected by mild HCA (stage I), while HCA of stage III was associated with increased need for neonatal respiratory support and elevated likelihood of prolonged hospitalization in neonates. Conclusions: Elevated intrapartum temperature complicated by HCA might be related to the elevated occurrence of several adverse maternal and neonatal outcomes, except those with HCA of stage I. Advanced HCA stage correlated with a worse prognosis.
Collapse
Affiliation(s)
- Yingzhou Ge
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanqing Cai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
33
|
Leimert KB, Messer A, Gray T, Fang X, Chemtob S, Olson DM. Maternal and fetal intrauterine tissue crosstalk promotes proinflammatory amplification and uterine transition†. Biol Reprod 2020; 100:783-797. [PMID: 30379983 DOI: 10.1093/biolre/ioy232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
Birth is a complex biological event requiring genetic, cellular, and physiological changes to the uterus, resulting in a uterus activated for completing the physiological processes of labor. We define the change from the state of pregnancy to the state of parturition as uterine transitioning, which requires the actions of inflammatory mediators and localized paracrine interactions between intrauterine tissues. Few studies have examined the in vitro interactions between fetal and maternal gestational tissues within this proinflammatory environment. Thus, we designed a co-culture model to address this gap, incorporating primary term human myometrium smooth muscle cells (HMSMCs) with human fetal membrane (hFM) explants to study interactions between the tissues. We hypothesized that crosstalk between tissues at term promotes proinflammatory expression and uterine transitioning for parturition. Outputs of 40 cytokines and chemokines encompassing a variety of proinflammatory roles were measured; all but one increased significantly with co-culture. Eighteen of the 39 cytokines increased to a higher abundance than the sum of the effect of each tissue cultured separately. In addition, COX2 and IL6 but not FP and OXTR mRNA abundance significantly increased in both HMSMCs and hFM in response to co-culture. These data suggest that synergistic proinflammatory upregulation within intrauterine tissues is involved with uterine transitioning.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Messer
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theora Gray
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Mitchell CM, Hirst JJ, Mitchell MD, Murray HG, Zakar T. Genes upregulated in the amnion at labour are bivalently marked by activating and repressive histone modifications. Mol Hum Reprod 2020; 25:228-240. [PMID: 30753586 DOI: 10.1093/molehr/gaz007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory genes are expressed increasingly in the foetal membranes at late gestation triggering birth. Here we have examined whether epigenetic histone modifications contribute to the upregulation of proinflammatory genes in the amnion in late pregnancy and at labour. Amnion samples were collected from early pregnancy, at term in the absence of labour and after spontaneous birth. The expression of the labour-associated proinflammatory genes PTGS2, BMP2 and NAMPT was determined by reverse transcription-coupled quantitative real-time PCR (qRT-PCR). Chromatin immunoprecipitation (ChIP) and sequential double ChIP were performed to determine the levels and co-occurrence of activating histone-3, lysine-4 trimethylation (H3K4me3) and repressive histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. H3K4 methyltransferase, H3K27me3 demethylase and H3K27 methyltransferase expression was determined by qRT-PCR and immunofluorescence confocal microscopy. PTGS2, BMP2 and NAMPT expression was upregulated robustly between early pregnancy and term (P < 0.05). The promoters were marked bivalently by both the H3K4me3 and H3K27me3 modifications. Bivalence was reduced at term by the decrease of the H3K27me3-modified fraction of promoter copies marked by H3K4me3 indicating epigenetic activation. Messenger RNAs encoding the H3K4-specific methyl transferases MLL1,-2,-3,-4, SETD1A,-B and the H3K27me3-specific demethylases KDM6A,-B were expressed increasingly while the H3K27 methyl transferase EZH2 was expressed decreasingly at term. Histone modifying enzyme proteins were detected in amnion epithelial and mesenchymal cells. These results with prototypical proinflammatory genes suggest that nucleosomes at labour-promoting genes are marked bivalently in the amnion, which is shifted towards monovalent H3K4me3 modification at term when the genes are upregulated. Bivalent epigenetic regulation by histone modifying enzymes may control the timing of labour.
Collapse
Affiliation(s)
- Carolyn M Mitchell
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Murray D Mitchell
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Henry G Murray
- Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Obstetrics and Gynaecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,Faculty of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
35
|
Levenson D, Romero R, Garcia-Flores V, Miller D, Xu Y, Sahi A, Hassan SS, Gomez-Lopez N. The effects of advanced maternal age on T-cell subsets at the maternal-fetal interface prior to term labor and in the offspring: a mouse study. Clin Exp Immunol 2020; 201:58-75. [PMID: 32279324 DOI: 10.1111/cei.13437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Women who conceive at 35 years of age or older, commonly known as advanced maternal age, have a higher risk of facing parturition complications and their children have an increased risk of developing diseases later in life. However, the immunological mechanisms underlying these pathological processes have yet to be established. To fill this gap in knowledge, using a murine model and immunophenotyping, we determined the effect of advanced maternal age on the main cellular branch of adaptive immunity, T cells, at the maternal-fetal interface and in the offspring. We report that advanced maternal age impaired the process of labor at term, inducing dystocia and delaying the timing of delivery. Advanced maternal age diminished the number of specific proinflammatory T-cell subsets [T helper type 1 (Th1): CD4+ IFN-γ+ , CD8+ IFN-γ+ and Th9: CD4+ IL-9+ ], as well as CD4+ regulatory T cells (CD4+ CD25+ FoxP3+ T cells), at the maternal-fetal interface prior to term labor. Advanced maternal age also altered fetal growth and survival of the offspring in early life. In addition, infants born to advanced-age mothers had alterations in the T-cell repertoire but not in CD71+ erythroid cells (CD3- CD71+ TER119+ cells). This study provides insight into the immune alterations observed at the maternal-fetal interface of advanced-age mothers and their offspring.
Collapse
Affiliation(s)
- D Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - V Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - A Sahi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - S S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - N Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
36
|
Seiler C, Bayless NL, Vergara R, Pintye J, Kinuthia J, Osborn L, Matemo D, Richardson BA, John-Stewart G, Holmes S, Blish CA. Influenza-Induced Interferon Lambda Response Is Associated With Longer Time to Delivery Among Pregnant Kenyan Women. Front Immunol 2020; 11:452. [PMID: 32256497 PMCID: PMC7089959 DOI: 10.3389/fimmu.2020.00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Specific causes of preterm birth remain unclear. Several recent studies have suggested that immune changes during pregnancy are associated with the timing of delivery, yet few studies have been performed in low-income country settings where the rates of preterm birth are the highest. We conducted a retrospective nested case-control evaluation within a longitudinal study among HIV-uninfected pregnant Kenyan women. To characterize immune function in these women, we evaluated unstimulated and stimulated peripheral blood mononuclear cells in vitro with the A/California/2009 strain of influenza to understand the influenza-induced immune response. We then evaluated transcript expression profiles using the Affymetrix Human GeneChip Transcriptome Array 2.0. Transcriptional profiles of sufficient quality for analysis were obtained from 54 women; 19 of these women delivered <34 weeks and were defined as preterm cases and 35 controls delivered >37 weeks. The median time to birth from sample collection was 13 weeks. No transcripts were significantly associated with preterm birth in a case-control study of matched term and preterm birth (n = 42 women). In the influenza-stimulated samples, expression of IFNL1 was associated with longer time to delivery-the amount of time between sample collection and delivery (n = 54 women). A qPCR analysis confirmed that influenza-induced IFNL expression was associated with longer time to delivery. These data indicate that during pregnancy, ex vivo influenza stimulation results in altered transcriptional response and is associated with time to delivery in cohort of women residing in an area with high preterm birth prevalence.
Collapse
Affiliation(s)
- Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands
| | - Nicholas L. Bayless
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemary Vergara
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian Pintye
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | | | | | | | - Barbra A. Richardson
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Grace John-Stewart
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Catherine A. Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
37
|
El-Sheikh Ali H, Boakari YL, Loux SC, Dini P, Scoggin KE, Esteller-Vico A, Kalbfleisch T, Ball BA. Transcriptomic analysis reveals the key regulators and molecular mechanisms underlying myometrial activation during equine placentitis†. Biol Reprod 2020; 102:1306-1325. [PMID: 32065222 DOI: 10.1093/biolre/ioaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
The key event in placentitis-induced preterm labor is myometrial activation with the subsequent initiation of labor. However, the molecular mechanisms underlying myometrial activation are not fully understood in the mares. Therefore, the equine myometrial transcriptome was characterized during placentitis (290.0 ± 1.52 days of GA, n = 5) and the prepartum period (330 days of GA, n = 3) in comparison to normal pregnant mares (289.8 ± 2.18 days of GA, n = 4). Transcriptome analysis identified 596 and 290 DEGs in the myometrium during placentitis and the prepartum period, respectively, with 138 DEGs in common. The placentitis DEGs included eight genes (MMP1, MMP8, S100A9, S100A8, PI3, APOBEC3Z1B, RETN, and CXCL2) that are exclusively expressed in the inflamed myometrium. Pathway analysis elucidated that inflammatory signaling, Toll-like receptor signaling, and apoptosis pathways dominate myometrial activation during placentitis. The prepartum myometrium was associated with overexpression of inflammatory signaling, oxidative stress, and 5-hydroxytryptamine degradation. Gene ontology enrichment analysis identified several chemoattractant factors in the myometrium during placentitis and prepartum period, including CCL2, CXCL1, CXCL3, and CXCL6 in common. Upstream regulator analysis revealed 19 potential upstream regulators in placentitis dataset including transcription regulators (E2F1, FOXM1, HIF1A, JUNB, NFKB1A, and STAT1), transmembrane receptors (FAS, ICAM1, SELP, TLR2, and TYROBP), growth factors (HGF and TGFB3), enzymes (PTGS2 and PRKCP), and others (S100A8, S100A9, CD44, and C5AR1). Additionally, three upstream regulators (STAT3, EGR1, and F2R) were identified in the prepartum dataset. These findings revealed the key regulators and pathways underlying myometrial activation during placentitis, which aid in understanding the disease and facilitate the development of efficacious therapies.
Collapse
Affiliation(s)
- H El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.,Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, Dakahlia, Mansoura, Egypt
| | - Y L Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - S C Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - P Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.,Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K E Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - A Esteller-Vico
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA.,Department of Biomedical and Diagnostic Sciences, University of Tennessee, Tennessee, Knoxville, USA
| | - T Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - B A Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
38
|
Cell-Free Fetal DNA Increases Prior to Labor at Term and in a Subset of Preterm Births. Reprod Sci 2020; 27:218-232. [PMID: 32046392 DOI: 10.1007/s43032-019-00023-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Cell-free fetal DNA in the maternal circulation has been associated with the onset of labor at term. Moreover, clinical studies have suggested that cell-free fetal DNA has value to predict pregnancy complications such as spontaneous preterm labor leading to preterm birth. However, a mechanistic link between cell-free fetal DNA and preterm labor and birth has not been established. Herein, using an allogeneic mouse model in which a paternal green fluorescent protein (GFP) can be tracked in the fetuses, we established that cell-free fetal DNA (Egfp) concentrations were higher in late gestation compared to mid-pregnancy and were maintained at increased levels during the onset of labor at term, followed by a rapid decrease after birth. A positive correlation between cell-free fetal DNA concentrations and the number of GFP-positive pups was also observed. The increase in cell-free fetal DNA concentrations prior to labor at term was not linked to a surge in any specific cytokine/chemokine; yet, specific chemokines (i.e., CCL2, CCL7, and CXCL2) increased as gestation progressed and maintained elevated levels in the postpartum period. In addition, cell-free fetal DNA concentrations increased prior to systemic inflammation-induced preterm birth, which was associated with a strong cytokine response in the maternal circulation. However, cell-free fetal DNA concentrations were not increased prior to intra-amniotic inflammation-induced preterm birth, but in this model, a mild inflammatory response was observed in the maternal circulation. Collectively, these findings suggest that an elevation in cell-free fetal DNA concentrations in the maternal circulation precedes the physiological process of labor at term and the pathological process of preterm labor linked with systemic inflammation, but not that associated with intra-amniotic inflammation.
Collapse
|
39
|
Gomez-Lopez N, Romero R, Hassan SS, Bhatti G, Berry SM, Kusanovic JP, Pacora P, Tarca AL. The Cellular Transcriptome in the Maternal Circulation During Normal Pregnancy: A Longitudinal Study. Front Immunol 2019; 10:2863. [PMID: 31921132 PMCID: PMC6928201 DOI: 10.3389/fimmu.2019.02863] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Pregnancy represents a unique immunological state in which the mother adapts to tolerate the semi-allogenic conceptus; yet, the cellular dynamics in the maternal circulation are poorly understood. Using exon-level expression profiling of up to six longitudinal whole blood samples from 49 pregnant women, we undertook a systems biology analysis of the cellular transcriptome dynamics and its correlation with the plasma proteome. We found that: (1) chromosome 14 was the most enriched in transcripts differentially expressed throughout normal pregnancy; (2) the strongest expression changes followed three distinct longitudinal patterns, with genes related to host immune response (e.g., MMP8, DEFA1B, DEFA4, and LTF) showing a steady increase in expression from 10 to 40 weeks of gestation; (3) multiple biological processes and pathways related to immunity and inflammation were modulated during gestation; (4) genes changing with gestation were among those specific to T cells, B cells, CD71+ erythroid cells, natural killer cells, and endothelial cells, as defined based on the GNF Gene Expression Atlas; (5) the average expression of mRNA signatures of T cells, B cells, and erythroid cells followed unique patterns during gestation; (6) the correlation between mRNA and protein abundance was higher for mRNAs that were differentially expressed throughout gestation than for those that were not, and significant mRNA-protein correlations were observed for genes part of the T-cell signature. In summary, unique changes in immune-related genes were discovered by longitudinally assessing the cellular transcriptome in the maternal circulation throughout normal pregnancy, and positive correlations were noted between the cellular transcriptome and plasma proteome for specific genes/proteins. These findings provide insights into the immunobiology of normal pregnancy.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
- Department of Obstetrics & Gynecology, Florida International University, Miami, FL, United States
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Stanley M. Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| |
Collapse
|
40
|
Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, Leng Y, Luca F, Hassan SS, Gomez-Lopez N. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 2019; 8:52004. [PMID: 31829938 PMCID: PMC6949028 DOI: 10.7554/elife.52004] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, United States.,Detroit Medical Center, Detroit, United States
| | - Adi L Tarca
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Computer Science, College of Engineering, Wayne State University, Detroit, United States
| | - Edward D Sendler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
| | - Yi Xu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Yaozhu Leng
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, United States
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, United States.,Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, United States
| |
Collapse
|
41
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2757-2769. [PMID: 31740550 PMCID: PMC6871659 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
- Detroit Medical Center, Detroit, MI 48201; and
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|
42
|
Ross KM, Carroll JE, Dunkel Schetter C, Hobel C, Cole SW. Pro-inflammatory immune cell gene expression during the third trimester of pregnancy is associated with shorter gestational length and lower birthweight. Am J Reprod Immunol 2019; 82:e13190. [PMID: 31529581 DOI: 10.1111/aji.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Altered maternal immune function predicts risk for shorter gestation and low birthweight. Few studies examine associations between prenatal immune cell gene expression and gestational length or birthweight. No studies examine which cell types drive associations. The purpose of this study is to explore associations between peripheral blood immune cell gene expression and gestational length and birthweight, using transcript origin analysis. METHOD OF STUDY Eighty-nine women were drawn from the Community Child Health Network cohort. Third trimester maternal dried blood spots were used for genome-wide transcriptional (mRNA) profiling. Gestational length and birthweight were obtained from medical charts. Covariates were age, race/ethnicity, pre-pregnancy body mass index, smoking, gestational age at blood sampling, and pregnancy infections. Associations between gene expression profiles and gestational length and birthweight were tested using general linear models. The Transcription Element Listening System (TELiS) bioinformatics analysis quantified upstream transcription factor activity. Transcript origin analysis identified leukocyte subsets mediating observed effects. RESULTS Shorter gestation was predicted by increased NF-kB (TFBM ratio = -0.582 ± 0.172, P < .001) and monocyte activity (diagnosticity score = 0.172 ± 0.054, P < .001). Longer gestation was associated with increased dendritic cell activity (diagnosticity score = 0.194 ± 0.039, P < .001). Increased AP-1 activity predicted lower birthweight (TFBM ratio = -0.240 ± 0.111, P = .031). Dendritic cells and CD4+ and CD8+ T cells predicted birthweight-related gene expression differences (diagnosticity score P's < 0.021). CONCLUSION Higher third trimester pro-inflammatory gene expression predicted shorter gestation and lower birthweight. Variations in monocyte and dendritic cell biology contributed to both effects, and T-cell biology contributed to higher birthweight. These analyses clarify the role of myeloid/lymphoid lineage immune regulation in pregnancy outcomes.
Collapse
Affiliation(s)
- Kharah M Ross
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta
| | - Judith E Carroll
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, California
| | | | - Calvin Hobel
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Steve W Cole
- Department of Medicine and Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, California
| |
Collapse
|
43
|
Weinberg A, Huo Y, Kacanek D, Patel K, Watts DH, Wara D, Hoffman RM, Klawitter J, Christians U, IMPAACT P1025 Team. Brief Report: Markers of Spontaneous Preterm Delivery in Women Living With HIV: Relationship With Protease Inhibitors and Vitamin D. J Acquir Immune Defic Syndr 2019; 82:181-187. [PMID: 31513074 PMCID: PMC6760328 DOI: 10.1097/qai.0000000000002111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Women living with HIV (WLHIV) have increased risk of spontaneous preterm delivery (SPTD). We sought to identify plasma predictors of SPTD and their correlations with factors that increase the risk of SPTD, such as vitamin D deficiency and use of protease inhibitors. DESIGN Plasma was obtained from 103 WLHIV with SPTD (≤35 weeks gestation) and 205 controls with term deliveries (TDs; ≥37 weeds) matched to cases 2:1 by race and gestational age at blood draw. TNFα, IFNγ, IL6, IL8, IL1β, IL18, IL17, granulocyte colony stimulating factor (GCSF), MCP1, IP10, sIL2Rα, sCD14, vascular endothelial factor a, monocyte colony stimulation factor, GROα, MMP9, IL10, TGFβ, sCTLA4, and eicosanoids were compared between cases adjusting for known SPTD risk factors. RESULTS Participants had similar demographic characteristics, but cases had higher plasma HIV RNA, lower CD4 cells, and more advanced HIV disease compared with controls. High sIL2Rα was associated with increased risk of SPTD. High sCD14, GCSF, PGF2α, and 5-HEPE were marginally associated with increased risk of SPTD. Women who initiated protease inhibitors-containing antiretroviral treatment before or during the first trimester had higher levels of GCSF and 5-HEPE compared with women without such exposure before plasma collection. Vitamin D insufficiency was associated with higher inflammatory sCD14 and PGF2α, and lower anti-inflammatory 5-HEPE. CONCLUSIONS The best plasma predictor of SPTD in WLHIV was sIL2Rα, a marker of T-cell activation. Markers of monocyte activation and eicosanoids were marginally increased in WLHIV and SPTD, suggesting that they may also play a role in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Medicine and Pathology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045
| | - Yanling Huo
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Kunjal Patel
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - D. Heather Watts
- National Institute of Child Health and Human Development, Bethesda, MD
| | | | - Risa M. Hoffman
- University of California San Francisco, San Francisco, CA
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles. Los Angeles, CA
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | |
Collapse
|
44
|
Lui S, Duval C, Farrokhnia F, Girard S, Harris LK, Tower CL, Stevens A, Jones RL. Delineating differential regulatory signatures of the human transcriptome in the choriodecidua and myometrium at term labor. Biol Reprod 2019; 98:422-436. [PMID: 29329366 DOI: 10.1093/biolre/iox186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Preterm deliveries remain the leading cause of neonatal morbidity and mortality. Current therapies target only myometrial contractions and are largely ineffective. As labor involves multiple coordinated events across maternal and fetal tissues, identifying fundamental regulatory pathways of normal term labor is vital to understanding successful parturition and consequently labor pathologies. We aimed to identify transcriptomic signatures of human normal term labor of two tissues: in the fetal-facing choriodecidua and the maternal myometrium. Microarray transcriptomic data from choriodecidua and myometrium following term labor were analyzed for functional hierarchical networks, using Cytoscape 2.8.3. Hierarchically high candidates were analyzed for their regulatory casual relationships using Ingenuity Pathway Analysis. Selected master regulators were then chemically inhibited and effects on downstream targets were assessed using real-time quantitative PCR (RT-qPCR). Unbiased network analysis identified upstream molecular components in choriodecidua including vimentin, TLR4, and TNFSF13B. In the myometrium, candidates included metallothionein 2 (MT2A), TLR2, and RELB. These master regulators had significant differential gene expression during labor, hierarchically high centrality in community cluster networks, interactions amongst the labor gene set, and strong causal relationships with multiple downstream effects. In vitro experiments highlighted MT2A as an effective regulator of labor-associated genes. We have identified unique potential regulators of the term labor transcriptome in uterine tissues using a robust sequence of unbiased mathematical and literature-based in silico analyses. These findings encourage further investigation into the efficacy of predicted master regulators in blocking multiple pathways of labor processes across maternal and fetal tissues, and their potential as therapeutic approaches.
Collapse
Affiliation(s)
- Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Cyntia Duval
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,Sainte-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Department of Physiology and Pharmacology, Universite de Montreal, Quebec, Canada
| | - Farkhondeh Farrokhnia
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sylvie Girard
- Sainte-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Department of Physiology and Pharmacology, Universite de Montreal, Quebec, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,School of Pharmacy, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clare L Tower
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Stevens
- St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
45
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|
46
|
Gomez-Lopez N, Romero R, Panaitescu B, Miller D, Zou C, Gudicha DW, Tarca AL, Para R, Pacora P, Hassan SS, Hsu CD. Gasdermin D: in vivo evidence of pyroptosis in spontaneous labor at term. J Matern Fetal Neonatal Med 2019; 34:569-579. [PMID: 31006293 DOI: 10.1080/14767058.2019.1610740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective: Pyroptosis is an inflammatory form of programmed cell death that is mediated by the activation of the inflammasome and depends on the pore-forming function of gasdermin D. Therefore, the detection of gasdermin D represents in vivo evidence of pyroptosis. We recently showed that there is intra-amniotic inflammasome activation in spontaneous labor at term; however, evidence of pyroptosis is lacking. The objectives of this study were to investigate (1) whether gasdermin D is detectable in the amniotic fluid of women who delivered at term; (2) whether amniotic fluid gasdermin D concentrations are associated with the process of spontaneous labor at term; and (3) whether gasdermin D is expressed in the chorioamniotic membranes from these patients.Methods: This retrospective cross-sectional study included amniotic fluid samples from 41 women who underwent spontaneous labor at term (n = 17) or delivered at term without labor (n = 24). As a readout of pyroptosis, gasdermin D was determined in amniotic fluid samples using a specific and sensitive ELISA kit. The 90th percentile of amniotic fluid gasdermin D concentrations was calculated among women without spontaneous labor at term (reference group). The association between high amniotic fluid gasdermin D concentrations (≥90th percentile in the reference group) and spontaneous labor at term was tested using the Fisher's exact test. A p value <.05 was considered significant. Multiplex immunofluorescence staining and phenoptics (multispectral imaging) were performed to determine gasdermin D expression in the chorioamniotic membranes and to colocalize this protein with the inflammasome-related molecules caspase-1 and interleukin-1β.Results: (1) Gasdermin D is present in the amniotic fluid of women who delivered at term; (2) the 90th percentile of amniotic fluid gasdermin D concentrations in women who delivered at term without spontaneous labor was 3.4 ng/mL; (3) the proportion of women with amniotic fluid gasdermin D concentrations above the threshold was higher in those who underwent term labor than in those who delivered at term without labor; (4) amniotic fluid concentrations of gasdermin D > 3.4 ng/mL were significantly associated with the presence of spontaneous labor in women who delivered at term (odds ratio 6.0, p-value .048); and (5) the protein expression of gasdermin D is increased in the chorioamniotic membranes of women who underwent spontaneous labor at term and is colocalized with caspase-1 and IL-1β.Conclusions: Gasdermin D is increased in the amniotic fluid and chorioamniotic membranes of women who underwent spontaneous labor at term compared to those without labor. These data provide evidence implicating pyroptosis in the mechanisms that lead to the sterile inflammatory process of term parturition.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Bogdan Panaitescu
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chengrui Zou
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dereje W Gudicha
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
47
|
Papadogiannakis N, Joerink M, Rindsjö E, Scheynius A, Alm J. Placental inflammation, lifestyle, maternal and early child sensitisation to allergens - the assessment of lifestyle and allergic disease during infancy birth cohort. Acta Paediatr 2019; 108:927-932. [PMID: 30338564 DOI: 10.1111/apa.14618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
AIM To investigate (i) whether maternal sensitisation to allergens, and lifestyle can influence the risk of acute and chronic inflammation of the placenta, in the forms of chorioamnionitis and villitis, respectively, and (ii) whether these placental inflammations are associated with the outcome of sensitisation for the child during preschool age. METHODS Placentas from term uncomplicated pregnancies (n = 275) in the assessment of lifestyle and allergic disease during infancy study were analysed for the presence of acute chorioamnionitis and chronic villitis. Stepwise logistic regression was performed to estimate the relative risk of placental inflammation in relation to maternal allergic sensitisation and lifestyle, and the association between placental inflammation and sensitisation of the child up to five years of age. RESULTS Parity and delivery at home were independently associated with chorioamnionitis, home delivery only with the low grade. Maternal allergic sensitisation was associated with increased risk of villitis in the bivariable model, however, not in the multivariable model. No significant associations were detected between placental inflammation and the outcome of sensitisation to allergens at five years of age. CONCLUSION Our data do not support the hypothesis that the increased risk for sensitisation of a child when the mother is allergic is mediated via placental inflammation.
Collapse
Affiliation(s)
- Nikos Papadogiannakis
- Department of Laboratory Medicine Division of Pathology Section of Perinatal Pathology Karolinska Institutet and Karolinska University Hospital Huddinge Stockholm Sweden
| | - Maaike Joerink
- Translational Immunology Unit Department of Medicine Solna Karolinska Institutet and University Hospital Stockholm Sweden
| | - Erika Rindsjö
- Department of Laboratory Medicine Division of Pathology Section of Perinatal Pathology Karolinska Institutet and Karolinska University Hospital Huddinge Stockholm Sweden
- Department of Oncology‐Pathology Karolinska Institutet Stockholm Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education Sachs’ Children and Youth Hospital Södersjukhuset Karolinska Institutet Stockholm Sweden
- Clinical Genomics Science for Life Laboratory Stockholm Sweden
| | - Johan Alm
- Department of Clinical Science and Education Sachs’ Children and Youth Hospital Södersjukhuset Karolinska Institutet Stockholm Sweden
| |
Collapse
|
48
|
Pereyra S, Sosa C, Bertoni B, Sapiro R. Transcriptomic analysis of fetal membranes reveals pathways involved in preterm birth. BMC Med Genomics 2019; 12:53. [PMID: 30935390 PMCID: PMC6444860 DOI: 10.1186/s12920-019-0498-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Preterm birth (PTB), defined as infant delivery before 37 weeks of completed gestation, results from the interaction of both genetic and environmental components and constitutes a complex multifactorial syndrome. Transcriptome analysis of PTB has proven challenging because of the multiple causes of PTB and the numerous maternal and fetal gestational tissues that must interact to facilitate parturition. The transcriptome of the chorioamnion membranes at the site of rupture in PTB and term fetuses may reflect the molecular pathways of preterm labor. Methods In this work, chorioamnion membranes from severe preterm and term fetuses were analyzed using RNA sequencing. Functional annotations and pathway analysis of differentially expressed genes were performed with the GAGE and GOSeq packages. A subset of differentially expressed genes in PTB was validated in a larger cohort using qRT-PCR and by comparing our results with genes and pathways previously reported in the literature. Results A total of 270 genes were differentially expressed (DE): 252 were upregulated and 18 were down-regulated in severe preterm births relative to term births. Inflammatory and immunological pathways were upregulated in PTB. Both types of pathways were previously suggested to lead to PTB. Pathways that were not previously reported in PTB, such as the hemopoietic pathway, appeared upregulated in preterm membranes. A group of 18 downregulated genes discriminated between term and severe preterm cases. These genes potentially characterize a severe preterm transcriptome pattern and therefore are candidate genes for understanding the syndrome. Some of the downregulated genes are involved in the nervous system, morphogenesis (WNT1, DLX5, PAPPA2) and ion channel complexes (KCNJ16, KCNB1), making them good candidates as biomarkers of PTB. Conclusions The identification of this DE gene pattern will help with the development of a multi-gene disease classifier. These markers were generated in an admixed South American population in which PTB has a high incidence. Since the genetic background may differentially impact different populations, it is necessary to include populations such as those from South America and Africa, which are usually excluded from high-throughput approaches. These classifiers should be compared to those in other populations to obtain a global landscape of PTB. Electronic supplementary material The online version of this article (10.1186/s12920-019-0498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvana Pereyra
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay
| | - Claudio Sosa
- Clínica Ginecotologica "C", Centro Hospitalario Pereira Rossell, Facultad de Medicina, Universidad de la República, Bvar. General Artigas 1590, C:P.11600, Montevideo, Uruguay
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay.
| |
Collapse
|
49
|
Abstract
Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.
Collapse
|
50
|
Mizoguchi M, Ishida Y, Nosaka M, Kimura A, Kuninaka Y, Yahata T, Nanjo S, Toujima S, Minami S, Ino K, Mukaida N, Kondo T. Prevention of lipopolysaccharide-induced preterm labor by the lack of CX3CL1-CX3CR1 interaction in mice. PLoS One 2018; 13:e0207085. [PMID: 30399192 PMCID: PMC6219809 DOI: 10.1371/journal.pone.0207085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Preterm labor (PTL) is the most common cause of neonatal death and long-term adverse outcome. The pharmacological agents for PTL prevention are palliative and frequently fail to prevent PTL and improve neonatal outcome. It is essential to fully understand the molecular mechanisms of PTL in order to develop novel therapeutic methods against PTL. Several lines of evidence indicate some chemokines are expressed in gestational tissues during labor or PTL. To reveal the pathophysiological roles of the CX3CL1-CX3CR1 axis in PTL, we performed present study using LPS-induced PTL mice model in CX3CR1-deficient (Cx3cr1-/-) mice. We indicated that PTL was suppressed in Cx3cr1-/- mice and immunoneutralization of CX3CL1 in WT mice. From immunohistochemical and the gene expression analyses, the CX3CL1-CX3CR1 axis has detrimental roles in PTL through intrauterine recruitment of macrophages and the enhancement of macrophage-derived inflammatory mediators. Thus, the CX3CL1-CX3CR1 axis may be a good molecular target for preventing PTL.
Collapse
Affiliation(s)
- Mika Mizoguchi
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tamaki Yahata
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Sakiko Nanjo
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Sawako Minami
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|