1
|
Tan AW, Tong X, Alvarez-Cubela S, Chen P, Santana AG, Morales AA, Tian R, Infante R, Nunes de Paiva V, Kulandavelu S, Benny M, Dominguez-Bendala J, Wu S, Young KC, Rodrigues CO, Schmidt AF. c-Myc Drives inflammation of the maternal-fetal interface, and neonatal lung remodeling induced by intra-amniotic inflammation. Front Cell Dev Biol 2024; 11:1245747. [PMID: 38481391 PMCID: PMC10933046 DOI: 10.3389/fcell.2023.1245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.
Collapse
Affiliation(s)
- April W. Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Silvia Alvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pingping Chen
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Aline Guimarães Santana
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Runxia Tian
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Rae Infante
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Vanessa Nunes de Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Merline Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Karen C. Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Claudia O. Rodrigues
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Augusto F. Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| |
Collapse
|
2
|
Takahashi Y, Takahashi T, Usuda H, Carter S, Fee EL, Furfaro L, Chemtob S, Olson DM, Keelan JA, Kallapur S, Kemp MW. Pharmacological blockade of the interleukin-1 receptor suppressed Escherichia coli lipopolysaccharide-induced neuroinflammation in preterm fetal sheep. Am J Obstet Gynecol MFM 2023; 5:101124. [PMID: 37597799 DOI: 10.1016/j.ajogmf.2023.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Intraamniotic inflammation is associated with preterm birth, especially in cases occurring before 32 weeks' gestation, and is causally linked with an increased risk for neonatal mortality and morbidity. Targeted anti-inflammatory interventions may assist in improving the outcomes for pregnancies impacted by intrauterine inflammation. Interleukin-1 is a central upstream mediator of inflammation. Accordingly, interleukin-1 is a promising candidate target for intervention therapies and has been targeted previously using the interleukin-1 receptor antagonist, anakinra. Recent studies have shown that the novel, noncompetitive, allosteric interleukin-1 receptor inhibitor, rytvela, partially resolved inflammation associated with preterm birth and fetal injury. In this study, we used a preterm sheep model of chorioamnionitis to investigate the anti-inflammatory efficacy of rytvela and anakinra, administered in the amniotic fluid in the setting of intraamniotic Escherichia coli lipopolysaccharide exposure. OBJECTIVE We hypothesized that both rytvela and anakinra would reduce lipopolysaccharide-induced intrauterine inflammation and protect the fetal brain. STUDY DESIGN Ewes with a singleton fetus at 105 days of gestation (term is ∼150 days) were randomized to one of the following groups: (1) intraamniotic injections of 2 mL saline at time=0 and time=24 hours as a negative control group (saline group, n=12); (2) intraamniotic injection of 10 mg Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2 mL saline at time=0 hours and time=24 hours as an inflammation positive control group (lipopolysaccharide group, n=11); (3) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2.5 mg rytvela at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of rytvela (lipopolysaccharide + rytvela group, n=10); or (4) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 100 mg anakinra at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of anakinra (lipopolysaccharide + anakinra group, n=12). Amniotic fluid was sampled at time 0, 24, and 48 hours (ie, at each intervention and at delivery). Fetal umbilical cord blood was collected at delivery for differential blood counts and chemical studies. Inflammation was characterized by the analysis of fetal tissue cytokine and chemokine levels using quantitative polymerase chain reaction, enzyme-linked inmmunosorbent assay, and histology. The primary study outcome of interest was the assessment of anakinra and rytvela brain-protective effects in the setting of Escherichia coli lipopolysaccharide-induced intrauterine inflammation. Secondary outcomes of interest were to assess protection from fetal and intrauterine (ie, amniotic fluid, chorioamnion) inflammation. RESULTS Intraamniotic administration of lipopolysaccharide caused inflammation of the fetal lung, brain, and chorioamnionitis in preterm fetal sheep. Relative to treatment with saline only in the setting of lipopolysaccharide exposure, intraamniotic administration of both rytvela and anakinra both significantly prevented periventricular white matter injury, microglial activation, and histologic chorioamnionitis. Anakinra showed additional efficacy in inhibiting fetal lung myeloperoxidase activity, but its use was associated with metabolic acidaemia and reduced fetal plasma insulin-like growth factor-1 levels at delivery. CONCLUSION Intraamniotic administration of rytvela or anakinra significantly inhibited fetal brain inflammation and chorioamnionitis in preterm fetal sheep exposed to intraamniotic lipopolysaccharide. In addition, anakinra treatment was associated with potential negative impacts on the developing fetus.
Collapse
Affiliation(s)
- Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp).
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp)
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp)
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dr S Carter, and Kemp)
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada (Dr Chemtob)
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Alberta, Canada (Dr Olson)
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp)
| | - Suhas Kallapur
- Department of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA (Dr Kallapur)
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia (Drs Y Takahashi, T Takahashi, M Usuda, and Carter, Ms Fee, and Drs Furfaro, Keelan, and Kemp); Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan (Drs Y Takahashi, T Takahashi, Usuda, and Kemp); School of Veterinary and Life Sciences, Murdoch University, Perth, Australia (Dr Kemp); Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dr S Carter, and Kemp)
| |
Collapse
|
3
|
Hamamoto TENK, Hatanaka AR, França MS, Sarmento SGP, Helfer TM, Nomura RMY, Araujo Júnior E, Moron AF. An enlarged fetal thymus may be the initial response to intrauterine inflammation in pregnant women at risk for preterm birth. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221678. [PMID: 37075382 PMCID: PMC10176657 DOI: 10.1590/1806-9282.20221678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Fetal thymus involvement in prematurity has been studied, and this study aimed to evaluate its relationship with short cervix and amniotic fluid sludge in the second trimester of pregnancy. METHODS In this prospective cross-sectional study, 79 pregnant women (19+0 to 24+6 weeks) were included, and cervical length and the presence or absence of amniotic fluid sludge were evaluated. In the three-vessel view of the fetal thorax, the thymus was identified, and its perimeter and transverse diameter were measured and transformed to a zeta score based on gestational age. RESULTS Data from 22 women with short cervix (<25 mm) and 57 patients with normal cervix (≥25 mm) were analyzed. The transverse diameter of the fetal thymus was significantly greater in the short cervix group compared to that of the normal cervix group (z-score 2.708 vs. -0.043, p=0.003). There were no significant differences in the perimeter (z-score -0.039 vs. -0.071, p=0.890) or the transverse diameter (z-score 1.297 vs. -0.004, p=0.091) of the fetal thymus associated with the presence (n=21) or absence of sludge (n=58). CONCLUSION A short cervix is associated with an increased transverse diameter of the fetal thymus during the second trimester of gestation.
Collapse
Affiliation(s)
| | - Alan Roberto Hatanaka
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| | - Marcelo Santucci França
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| | | | - Talita Micheletti Helfer
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| | - Roseli Mieko Yamamoto Nomura
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| | - Edward Araujo Júnior
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| | - Antonio Fernandes Moron
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics - São Paulo (SP), Brazil
| |
Collapse
|
4
|
Jung E, Romero R, Yoon BH, Theis KR, Gudicha DW, Tarca AL, Diaz-Primera R, Winters AD, Gomez-Lopez N, Yeo L, Hsu CD. Bacteria in the amniotic fluid without inflammation: early colonization vs. contamination. J Perinat Med 2021; 49:1103-1121. [PMID: 34229367 PMCID: PMC8570988 DOI: 10.1515/jpm-2021-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Intra-amniotic infection, defined by the presence of microorganisms in the amniotic cavity, is often accompanied by intra-amniotic inflammation. Occasionally, laboratories report the growth of bacteria or the presence of microbial nucleic acids in amniotic fluid in the absence of intra-amniotic inflammation. This study was conducted to determine the clinical significance of the presence of bacteria in amniotic fluid samples in the absence of intra-amniotic inflammation. METHODS A retrospective cross-sectional study included 360 patients with preterm labor and intact membranes who underwent transabdominal amniocentesis for evaluation of the microbial state of the amniotic cavity as well as intra-amniotic inflammation. Cultivation techniques were used to isolate microorganisms, and broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was utilized to detect the nucleic acids of bacteria, viruses, and fungi. RESULTS Patients whose amniotic fluid samples evinced microorganisms but did not indicate inflammation had a similar perinatal outcome to those without microorganisms or inflammation [amniocentesis-to-delivery interval (p=0.31), spontaneous preterm birth before 34 weeks (p=0.83), acute placental inflammatory lesions (p=1), and composite neonatal morbidity (p=0.8)]. CONCLUSIONS The isolation of microorganisms from a sample of amniotic fluid in the absence of intra-amniotic inflammation is indicative of a benign condition, which most likely represents contamination of the specimen during the collection procedure or laboratory processing rather than early colonization or infection.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, Michigan, USA,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA,Detroit Medical Center, Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Bo Hyun Yoon
- BioMedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kevin R. Theis
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W. Gudicha
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Computer Science, College of Engineering, Wayne State University, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D. Winters
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
5
|
Brosius Lutz A, Al-Nasiry S, Kramer BW, Mueller M. Understanding Host-Pathogen Interactions in Acute Chorioamnionitis Through the Use of Animal Models. Front Cell Infect Microbiol 2021; 11:709309. [PMID: 34386434 PMCID: PMC8353249 DOI: 10.3389/fcimb.2021.709309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation of the chorion and/or amnion during pregnancy is called chorioamnionitis. Acute chorioamnionitis is implicated in approximately 40% of preterm births and has wide-ranging implications for the mother, fetus, and newborn. Large disease burden and lack of therapeutic approaches drive the discovery programs to define and test targets to tackle chorioamnionitis. Central to the advancement of these studies is the use of animal models. These models are necessary to deepen our understanding of basic mechanisms of host-pathogen interactions central to chorioamnionitis disease pathogenesis. Models of chorioamnionitis have been developed in numerous species, including mice, rabbits, sheep, and non-human primates. The various models present an array of strategies for initiating an inflammatory response and unique opportunities for studying its downstream consequences for mother, fetus, or newborn. In this review, we present a discussion of the key features of human chorioamnionitis followed by evaluation of currently available animal models in light of these features and consideration of how these models can be best applied to tackle outstanding questions in the field.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Martin Mueller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| |
Collapse
|
6
|
Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J, Para R, Lopez AM, Pacora P, Gomez-Lopez N, Yoon BH, Kim CJ, Berry SM, Hsu CD. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med 2020; 25:101146. [PMID: 33164775 PMCID: PMC10580248 DOI: 10.1016/j.siny.2020.101146] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetus can deploy a local or systemic inflammatory response when exposed to microorganisms or, alternatively, to non-infection-related stimuli (e.g., danger signals or alarmins). The term "Fetal Inflammatory Response Syndrome" (FIRS) was coined to describe a condition characterized by evidence of a systemic inflammatory response, frequently a result of the activation of the innate limb of the immune response. FIRS can be diagnosed by an increased concentration of umbilical cord plasma or serum acute phase reactants such as C-reactive protein or cytokines (e.g., interleukin-6). Pathologic evidence of a systemic fetal inflammatory response indicates the presence of funisitis or chorionic vasculitis. FIRS was first described in patients at risk for intraamniotic infection who presented preterm labor with intact membranes or preterm prelabor rupture of the membranes. However, FIRS can also be observed in patients with sterile intra-amniotic inflammation, alloimmunization (e.g., Rh disease), and active autoimmune disorders. Neonates born with FIRS have a higher rate of complications, such as early-onset neonatal sepsis, intraventricular hemorrhage, periventricular leukomalacia, and death, than those born without FIRS. Survivors are at risk for long-term sequelae that may include bronchopulmonary dysplasia, neurodevelopmental disorders, such as cerebral palsy, retinopathy of prematurity, and sensorineuronal hearing loss. Experimental FIRS can be induced by intra-amniotic administration of bacteria, microbial products (such as endotoxin), or inflammatory cytokines (such as interleukin-1), and animal models have provided important insights about the mechanisms responsible for multiple organ involvement and dysfunction. A systemic fetal inflammatory response is thought to be adaptive, but, on occasion, may become dysregulated whereby a fetal cytokine storm ensues and can lead to multiple organ dysfunction and even fetal death if delivery does not occur ("rescued by birth"). Thus, the onset of preterm labor in this context can be considered to have survival value. The evidence so far suggests that FIRS may compound the effects of immaturity and neonatal inflammation, thus increasing the risk of neonatal complications and long-term morbidity. Modulation of a dysregulated fetal inflammatory response by the administration of antimicrobial agents, anti-inflammatory agents, or cell-based therapy holds promise to reduce infant morbidity and mortality.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA.
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio Marin-Concha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley M Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
7
|
Cadaret CN, Merrick EM, Barnes TL, Beede KA, Posont RJ, Petersen JL, Yates DT. Sustained maternal inflammation during the early third-trimester yields intrauterine growth restriction, impaired skeletal muscle glucose metabolism, and diminished β-cell function in fetal sheep1,2. J Anim Sci 2019; 97:4822-4833. [PMID: 31616931 PMCID: PMC6915216 DOI: 10.1093/jas/skz321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Maternal inflammation causes fetal intrauterine growth restriction (IUGR), but its impact on fetal metabolism is not known. Thus, our objective was to determine the impact of sustained maternal inflammation in late gestation on fetal inflammation, skeletal muscle glucose metabolism, and insulin secretion. Pregnant ewes were injected every third day from the 100th to 112th day of gestation (term = 150 d) with saline (controls) or lipopolysaccharide (LPS) to induce maternal inflammation and IUGR (MI-IUGR). Fetal femoral blood vessels were catheterized on day 118 to assess β-cell function on day 123, hindlimb glucose metabolic rates on day 124, and daily blood parameters from days 120 to 125. Fetal muscle was isolated on day 125 to assess ex vivo glucose metabolism. Injection of LPS increased (P < 0.05) rectal temperatures, circulating white blood cells, and plasma tumor necrosis factor α (TNFα) concentrations in MI-IUGR ewes. Maternal leukocytes remained elevated (P < 0.05) and TNFα tended to remain elevated (P < 0.10) compared with controls almost 2 wk after the final LPS injection. Total white blood cells, monocytes, granulocytes, and TNFα were also greater (P < 0.05) in MI-IUGR fetuses than controls over this period. MI-IUGR fetuses had reduced (P < 0.05) blood O2 partial pressures and greater (P < 0.05) maternofetal O2 gradients, but blood glucose and maternofetal glucose gradients did not differ from controls. Basal and glucose-stimulated insulin secretion were reduced (P < 0.05) by 32% and 42%, respectively, in MI-IUGR fetuses. In vivo hindlimb glucose oxidation did not differ between groups under resting conditions but was 47% less (P < 0.05) in MI-IUGR fetuses than controls during hyperinsulinemia. Hindlimb glucose utilization did not differ between fetal groups. At day 125, MI-IUGR fetuses were 22% lighter (P < 0.05) than controls and tended to have greater (P < 0.10) brain/BW ratios. Ex vivo skeletal muscle glucose oxidation did not differ between groups in basal media but was less (P < 0.05) for MI-IUGR fetuses in insulin-spiked media. Glucose uptake rates and phosphorylated-to-total Akt ratios were less (P < 0.05) in muscle from MI-IUGR fetuses than controls regardless of media. We conclude that maternal inflammation leads to fetal inflammation, reduced β-cell function, and impaired skeletal muscle glucose metabolism that persists after maternal inflammation ceases. Moreover, fetal inflammation may represent a target for improving metabolic dysfunction in IUGR fetuses.
Collapse
Affiliation(s)
- Caitlin N Cadaret
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Elena M Merrick
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE
| |
Collapse
|
8
|
Fedorka CE, Ball BA, Scoggin KE, Loux SC, Troedsson MHT, Adams AA. The feto-maternal immune response to equine placentitis. Am J Reprod Immunol 2019; 82:e13179. [PMID: 31373743 DOI: 10.1111/aji.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Ascending placentitis is one of the leading causes of abortion in the horse. Minimal work has focused on its effect on fetal fluids or the antenatal immune response of the fetus. METHODOLOGY Placentitis was induced via transcervical inoculation of Streptococcus equi ssp Zooepidemicus, and fluids/serum/tissues were collected 4-6 days later following euthanasia. Cytokine concentrations were detected using a multiplex immunoassay within fetal fluids (amniotic and allantoic) and serum (maternal and fetal) in inoculated and control mares. In addition, tissues from fetal (spleen, liver, lung, umbilicus, amnioallantois) and maternal (spleen, liver, lung, chorioallantois, endometrium) origin were analyzed in inoculated and control mares utilizing qPCR for expression of cytokines. RESULTS No difference in cytokine concentrations in maternal or fetal serum was noted between inoculated and control mares. Concentrations of IL-1β, IL-6, IL-10, and GRO were upregulated in the amniotic fluid following inoculation, with a trend toward higher IL-6 concentration in allantoic fluid. The amnioallantoic tissue separating the two fluids had higher expression of IL-1β and IL-6 following inoculation, while chorioallantois and endometrium upregulated IL-1β and IL-8 expression. IL-1β was upregulated in the maternal spleen following inoculation. Fetal spleens were upregulated in expression of IL-1β, GRO, and IL-6, while IL-6 was higher in fetal liver after inoculation than in controls. CONCLUSION The maternal response to placentitis is primarily pro-inflammatory while the fetus appears to play a regulatory role in this inflammation. Additionally, amniotic fluid sampling may be more diagnostic of ascending placentitis than circulating cytokines.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry A Ball
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shavahn C Loux
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mats H T Troedsson
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Amanda A Adams
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Westover A, Melville JM, McDonald C, Lim R, Jenkin G, Wallace EM, Moss TJ. Effect of Human Amnion Epithelial Cells on the Acute Inflammatory Response in Fetal Sheep. Front Physiol 2017; 8:871. [PMID: 29163213 PMCID: PMC5672144 DOI: 10.3389/fphys.2017.00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Intra-amniotic (IA) lipopolysaccharide (LPS) injection in sheep induces inflammation in the fetus. Human amnion epithelial cells (hAECs) moderate the effect of IA LPS on fetal development, but their influence on the acute inflammatory response to IA LPS is unknown. We aimed to determine the effects of hAECs on the acute fetal inflammatory response to IA LPS. After surgical instrumentation at 116 days' gestation (d) ewes were randomized to 1 of 4 groups at 123 d: IA LPS (10 mg) and intravenous (IV) saline (n = 8), IA LPS and IV hAECs (n = 6), IA saline and IV saline (n = 5) or IA saline and IV hAECs (n = 5). IV injections were administered immediately after IA injections. Serial fetal blood samples were collected. At 125 d, placental, fetal lung and liver samples were collected. IA LPS increased inflammatory cell recruitment in the placenta and lungs, increased IL-1β and IL-8 mRNA levels in the lungs and increased serum amyloid A3 (SAA3) and C-reactive protein (CRP) mRNA levels in the liver. IV hAECs reduced fetal lung inflammatory cell recruitment but did not otherwise alter indices of placental, fetal lung or liver inflammation. The acute fetal inflammatory response to IA LPS is not substantially altered by IV hAEC treatment.
Collapse
Affiliation(s)
- Alana Westover
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
11
|
Maneenil G, Kemp MW, Kannan PS, Kramer BW, Saito M, Newnham JP, Jobe AH, Kallapur SG. Oral, nasal and pharyngeal exposure to lipopolysaccharide causes a fetal inflammatory response in sheep. PLoS One 2015; 10:e0119281. [PMID: 25793992 PMCID: PMC4368156 DOI: 10.1371/journal.pone.0119281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/15/2015] [Indexed: 11/22/2022] Open
Abstract
Background A fetal inflammatory response (FIR) in sheep can be induced by intraamniotic or selective exposure of the fetal lung or gut to lipopolysaccharide (LPS). The oral, nasal, and pharyngeal cavities (ONP) contain lymphoid tissue and epithelium that are in contact with the amniotic fluid. The ability of the ONP epithelium and lymphoid tissue to initiate a FIR is unknown. Objective To determine if FIR occurs after selective ONP exposure to LPS in fetal sheep. Methods Using fetal recovery surgery, we isolated ONP from the fetal lung, GI tract, and amniotic fluid by tracheal and esophageal ligation and with an occlusive glove fitted over the snout. LPS (5 mg) or saline was infused with 24 h Alzet pumps secured in the oral cavity (n = 7–8/group). Animals were delivered 1 or 6 days after initiation of the LPS or saline infusions. Results The ONP exposure to LPS had time-dependent systemic inflammatory effects with changes in WBC in cord blood, an increase in posterior mediastinal lymph node weight at 6 days, and pro-inflammatory mRNA responses in the fetal plasma, lung, and liver. Compared to controls, the expression of surfactant protein A mRNA increased 1 and 6 days after ONP exposure to LPS. Conclusion ONP exposure to LPS alone can induce a mild FIR with time-dependent inflammatory responses in remote fetal tissues not directly exposed to LPS.
Collapse
Affiliation(s)
- Gunlawadee Maneenil
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Thailand
| | - Matthew W. Kemp
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Paranthaman Senthamarai Kannan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Department of Pediatrics, School of Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Masatoshi Saito
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Department of Perinatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P. Newnham
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Suhas G. Kallapur
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- * E-mail:
| |
Collapse
|
12
|
Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol 2014; 5:574. [PMID: 25520716 PMCID: PMC4249583 DOI: 10.3389/fimmu.2014.00574] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/27/2014] [Indexed: 01/07/2023] Open
Abstract
Preterm birth (PTB) (delivery before 37 weeks’ gestation) is a leading cause of neonatal death and disease in industrialized and developing countries alike. Infection (most notably in high-risk deliveries occurring before 28 weeks’ gestation) is hypothesized to initiate an intrauterine inflammatory response that plays a key role in the premature initiation of labor as well as a host of the pathologies associated with prematurity. As such, a better understanding of intrauterine inflammation in pregnancy is critical to our understanding of preterm labor and fetal injury, as well as on-going efforts to prevent PTB. Focusing on the fetal innate immune system responses to intrauterine infection, the present paper will review clinical and experimental studies to discuss the capacity for a fetal contribution to the intrauterine inflammation associated with PTB. Evidence from experimental studies to suggest that the fetus has the capacity to elicit a pro-inflammatory response to intrauterine infection is highlighted, with reference to the contribution of the lung, skin, and gastrointestinal tract. The paper will conclude that pathological intrauterine inflammation is a complex process that is modified by multiple factors including time, type of agonist, host genetics, and tissue.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|
13
|
Wolfs TGAM, Kramer BW, Thuijls G, Kemp MW, Saito M, Willems MGM, Senthamarai-Kannan P, Newnham JP, Jobe AH, Kallapur SG. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol 2014; 306:G382-93. [PMID: 24458021 PMCID: PMC3949018 DOI: 10.1152/ajpgi.00260.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intra-amniotic exposure to proinflammatory agonists causes chorioamnionitis and fetal gut inflammation. Fetal gut inflammation is associated with mucosal injury and impaired gut development. We tested whether this detrimental inflammatory response of the fetal gut results from a direct local (gut derived) or an indirect inflammatory response mediated by the chorioamnion/skin or lung, since these organs are also in direct contact with the amniotic fluid. The gastrointestinal tract was isolated from the respiratory tract and the amnion/skin epithelia by fetal surgery in time-mated ewes. Lipopolysaccharide (LPS) or saline (controls) was selectively infused in the gastrointestinal tract, trachea, or amniotic compartment at 2 or 6 days before preterm delivery at 124 days gestation (term 150 days). Gastrointestinal and intratracheal LPS exposure caused distinct inflammatory responses in the fetal gut. Inflammatory responses could be distinguished by the influx of leukocytes (MPO(+), CD3(+), and FoxP3(+) cells), tumor necrosis factor-α, and interferon-γ expression and differential upregulation of mRNA levels for Toll-like receptor 1, 2, 4, and 6. Fetal gut inflammation after direct intestinal LPS exposure resulted in severe loss of the tight junctional protein zonula occludens protein 1 (ZO-1) and increased mitosis of intestinal epithelial cells. Inflammation of the fetal gut after selective LPS instillation in the lungs caused only mild disruption of ZO-1, loss in epithelial cell integrity, and impaired epithelial differentiation. LPS exposure of the amnion/skin epithelia did not result in gut inflammation or morphological, structural, and functional changes. Our results indicate that the detrimental consequences of chorioamnionitis on fetal gut development are the combined result of local gut and lung-mediated inflammatory responses.
Collapse
Affiliation(s)
- Tim G. A. M. Wolfs
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Boris W. Kramer
- 2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Geertje Thuijls
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio;
| | - Matthew W. Kemp
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Masatoshi Saito
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monique G. M. Willems
- 2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Paranthaman Senthamarai-Kannan
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio;
| | - John P. Newnham
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan H. Jobe
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Suhas G. Kallapur
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
14
|
Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA. Fetal immune response to chorioamnionitis. Semin Reprod Med 2014; 32:56-67. [PMID: 24390922 DOI: 10.1055/s-0033-1361823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chorioamnionitis is a frequent cause of preterm birth and is associated with an increased risk for injury responses in the lung, gastrointestinal tract, brain, and other fetal organs. Chorioamnionitis is a polymicrobial nontraditional infectious disease because the organisms causing chorioamnionitis are generally of low virulence and colonize the amniotic fluid often for extended periods, and the host (mother and the fetus) does not have typical infection-related symptoms such as fever. In this review, we discuss the effects of chorioamnionitis in experimental animal models that mimic the human disease. Our focus is on the immune changes in multiple fetal organs and the pathogenesis of chorioamnionitis-induced injury in different fetal compartments. As chorioamnionitis disproportionately affects preterm infants, we discuss the relevant developmental context for the immune system. We also provide a clinical context for the fetal responses.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Cesar M Rueda
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Claire A Chougnet
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
15
|
Song Y, Karisnan K, Noble PB, Berry CA, Lavin T, Moss TJM, Bakker AJ, Pinniger GJ, Pillow JJ. In utero LPS exposure impairs preterm diaphragm contractility. Am J Respir Cell Mol Biol 2013; 49:866-74. [PMID: 23795611 DOI: 10.1165/rcmb.2013-0107oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preterm birth is associated with inflammation of the fetal membranes (chorioamnionitis). We aimed to establish how chorioamnionitis affects the contractile function and phenotype of the preterm diaphragm. Pregnant ewes received intra-amniotic injections of saline or 10 mg LPS, 2 days or 7 days before delivery at 121 days of gestation (term = 150 d). Diaphragm strips were dissected for the assessment of contractile function after terminal anesthesia. The inflammatory cytokine response, myosin heavy chain (MHC) fibers, proteolytic pathways, and intracellular molecular signaling were analyzed using quantitative PCR, ELISA, immunofluorescence staining, biochemical assays, and Western blotting. Diaphragm peak twitch force and maximal tetanic force were approximately 30% lower than control values in the 2-day and 7-day LPS groups. Activation of the NF-κB pathway, an inflammatory response, and increased proteasome activity were observed in the 2-day LPS group relative to the control or 7-day LPS group. No inflammatory response was evident after a 7-day LPS exposure. Seven-day LPS exposure markedly decreased p70S6K phosphorylation, but no effect on other signaling pathways was evident. The proportion of MHC IIa fibers was lower than that for control samples in the 7-day LPS group. MHC I fiber proportions did not differ between groups. These results demonstrate that intrauterine LPS impairs preterm diaphragmatic contractility after 2-day and 7-day exposures. Diaphragm dysfunction, resulting from 2-day LPS exposure, was associated with a transient activation of proinflammatory signaling, with subsequent increased atrophic gene expression and enhanced proteasome activity. Persistently impaired contractility for the 7-day LPS exposure was associated with the down-regulation of a key component of the protein synthetic signaling pathway and a reduction in the proportions of MHC IIa fibers.
Collapse
Affiliation(s)
- Yong Song
- 1 School of Anatomy, Physiology, and Human Biology, and
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Romero R, Yoon BH, Chaemsaithong P, Cortez J, Park CW, Gonzalez R, Behnke E, Hassan SS, Chaiworapongsa T, Yeo L. Bacteria and endotoxin in meconium-stained amniotic fluid at term: could intra-amniotic infection cause meconium passage? J Matern Fetal Neonatal Med 2013; 27:775-88. [PMID: 24028637 DOI: 10.3109/14767058.2013.844124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Meconium-stained amniotic fluid (MSAF) is a common occurrence among women in spontaneous labor at term, and has been associated with adverse outcomes in both mother and neonate. MSAF is a risk factor for microbial invasion of the amniotic cavity (MIAC) and preterm birth among women with preterm labor and intact membranes. We now report the frequency of MIAC and the presence of bacterial endotoxin in the amniotic fluid of patients with MSAF at term. MATERIALS AND METHODS We conducted a cross-sectional study including women in presumed preterm labor because of uncertain dates who underwent amniocentesis, and were later determined to be at term (n = 108). Patients were allocated into two groups: (1) MSAF (n = 66) and (2) clear amniotic fluid (n = 42). The presence of bacteria was determined by microbiologic techniques, and endotoxin was detected using the Limulus amebocyte lysate (LAL) gel clot assay. Statistical analyses were performed to test for normality and bivariate comparisons. RESULTS Bacteria were more frequently present in patients with MSAF compared to those with clear amniotic fluid [19.6% (13/66) versus 4.7% (2/42); p < 0.05]. The microorganisms were Gram-negative rods (n = 7), Ureaplasma urealyticum (n = 4), Gram-positive rods (n = 2) and Mycoplasma hominis (n = 1). The LAL gel clot assay was positive in 46.9% (31/66) of patients with MSAF, and in 4.7% (2/42) of those with clear amniotic fluid (p < 0.001). After heat treatment, the frequency of a positive LAL gel clot assay remained higher in the MSAF group [18.1% (12/66) versus 2.3% (1/42), p < 0.05]. Median amniotic fluid IL-6 concentration (ng/mL) was higher [1.3 (0.7-1.9) versus 0.6 (0.3-1.2), p = 0.04], and median amniotic fluid glucose concentration (mg/dL) was lower [6 (0-8.9) versus 9 (7.4-12.6), p < 0.001] in the MSAF group, than in those with clear amniotic fluid. CONCLUSION MSAF at term was associated with an increased incidence of MIAC. The index of suspicion for an infection-related process in postpartum women and their neonates should be increased in the presence of MSAF.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kunzmann S, Collins JJ, Kuypers E, Kramer BW. Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am J Obstet Gynecol 2013; 208:429-37. [PMID: 23313727 DOI: 10.1016/j.ajog.2013.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022]
Abstract
In recent years, translational research with various animal models has been helpful to answer basic questions about the effect of antenatal inflammation on maturation and development of the fetal lung and immune system. The fetal lung and immune systems are very plastic and their development can be conditioned and influenced by both endogenous and/or exogenous factors. Antenatal inflammation can induce pulmonary inflammation, leading to lung injury and remodeling in the fetal lung. Exposure to antenatal inflammation can induce interleukin-1α production, which enhances surfactant protein and lipid synthesis thereby promoting lung maturation. Interleukin-1α is therefore a candidate for the link between lung inflammation and lung maturation, preventing respiratory distress syndrome in preterm infants. Antenatal inflammation can, however, cause structural changes in the fetal lung and affect the expression of growth factors, such as transforming growth factor-beta, connective tissue growth factor, fibroblast growth factor-10, or bone morphogenetic protein-4, which are essential for branching morphogenesis. These alterations cause alveolar and microvascular simplification resembling the histology of bronchopulmonary dysplasia. Antenatal inflammation may also affect neonatal outcome by modulating the responsiveness of the immune system. Lipopolysaccharide-tolerance (endotoxin hyporesponsiveness/immunoparalysis), induced by exposure to inflammation in utero, may prevent fetal lung damage, but increases susceptibility to postnatal infections. Moreover, prenatal exposure to inflammation appears to be a predisposition for the development of adverse neonatal outcomes, like bronchopulmonary dysplasia, if the preterm infant is exposed to a second postnatal hit, such as mechanical ventilation oxygen exposure, infections, or steroids.
Collapse
|
18
|
Kemp MW, Kannan PS, Saito M, Newnham JP, Cox T, Jobe AH, Kramer BW, Kallapur SG. Selective exposure of the fetal lung and skin/amnion (but not gastro-intestinal tract) to LPS elicits acute systemic inflammation in fetal sheep. PLoS One 2013; 8:e63355. [PMID: 23691033 PMCID: PMC3656923 DOI: 10.1371/journal.pone.0063355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/31/2013] [Indexed: 01/25/2023] Open
Abstract
Inflammation of the uterine environment (commonly as a result of microbial colonisation of the fetal membranes, amniotic fluid and fetus) is strongly associated with preterm labour and birth. Both preterm birth and fetal inflammation are independently associated with elevated risks of subsequent short- and long-term respiratory, gastro-intestinal and neurological complications. Despite numerous clinical and experimental studies to investigate localised and systemic fetal inflammation following exposure to microbial agonists, there is minimal data to describe which fetal organ(s) drive systemic fetal inflammation. We used lipopolysaccharide (LPS) from E.coli in an instrumented ovine model of fetal inflammation and conducted a series of experiments to assess the systemic pro-inflammatory capacity of the three major fetal surfaces exposed to inflammatory mediators in pregnancy (the lung, gastro-intestinal tract and skin/amnion). Exposure of the fetal lung and fetal skin/amnion (but not gastro-intestinal tract) caused a significant acute systemic inflammatory response characterised by altered leucocytosis, neutrophilia, elevated plasma MCP-1 levels and inflammation of the fetal liver and spleen. These novel findings reveal differential fetal organ responses to pro-inflammatory stimulation and shed light on the pathogenesis of fetal systemic inflammation after exposure to chorioamnionitis.
Collapse
Affiliation(s)
- Matthew W. Kemp
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Paranthaman Senthamarai Kannan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Masatoshi Saito
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Perinatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P. Newnham
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Tom Cox
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Department of Paediatrics, School of Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Suhas G. Kallapur
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kuypers E, Wolfs TGAM, Collins JJP, Jellema RK, Newnham JP, Kemp MW, Kallapur SG, Jobe AH, Kramer BW. Intraamniotic lipopolysaccharide exposure changes cell populations and structure of the ovine fetal thymus. Reprod Sci 2013; 20:946-56. [PMID: 23314960 DOI: 10.1177/1933719112472742] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Chorioamnionitis induces preterm delivery and acute involution of the fetal thymus which is associated with postnatal inflammatory disorders. We studied the immune response, cell composition, and architecture of the fetal thymus following intraamniotic lipopolysaccharide (LPS) exposure. METHODS Time-mated ewes received an intraamniotic injection of LPS 5, 12, or 24 hours or 2, 4, 8, or 15 days before delivery at 125 days gestational age (term = 150 days). RESULTS The LPS exposure resulted in decreased blood lymphocytes within 5 hours and decreased thymic corticomedullary ratio within 24 hours. Thymic interleukin 6 (IL6) and IL17 messenger RNA (mRNA) increased 5-fold 24 hours post-LPS exposure. Increased toll-like receptor 4 (TLR4) mRNA and nuclear factor κB positive cells at 24 hours after LPS delivery demonstrated acute thymic activation. Both TLR4 and IL1 mRNA increased by 5-fold and the number of Foxp3-positive cells (Foxp3+ cells) decreased 15 days after exposure. CONCLUSION Intraamniotic LPS exposure caused a proinflammatory response, involution, and a persistent depletion of thymic Foxp3+ cells indicating disturbance of the fetal immune homeostasis.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, School for Oncology and Developmental Biology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Atik A, Sozo F, Orgeig S, Suri L, Hanita T, Harding R, De Matteo R. Long-Term Pulmonary Effects of Intrauterine Exposure to Endotoxin Following Preterm Birth in Sheep. Reprod Sci 2012; 19:1352-64. [DOI: 10.1177/1933719112450327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anzari Atik
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Australia
| | - Foula Sozo
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Australia
| | - Sandra Orgeig
- Sansom Institute for Health Research and School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, Australia
| | - Lakshmi Suri
- Sansom Institute for Health Research and School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, Australia
| | - Takushi Hanita
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Australia
| | - Richard Harding
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Australia
| | - Robert De Matteo
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Australia
| |
Collapse
|
21
|
Savasan ZA, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Xu Y, Dong Z, Kim CJ, Hassan SS. Interleukin-19 in fetal systemic inflammation. J Matern Fetal Neonatal Med 2012; 25:995-1005. [PMID: 21767236 PMCID: PMC3383927 DOI: 10.3109/14767058.2011.605917] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The fetal inflammatory response syndrome (FIRS) is considered the fetal counterpart of the systemic inflammatory response syndrome (SIRS), which can be caused by infection and non-infection-related insults. Although the initial response is mediated by pro-inflammatory signals, the control of this response is achieved by anti-inflammatory mediators which are essential for the successful outcome of the affected individual. Interleukin (IL)-19 is capable of stimulating the production of IL-10, a major anti-inflammatory cytokine, and is a potent inducer of the T-helper 2 (Th2) response. The aim of this study was to determine if there is a change in umbilical cord plasma IL-19 and IL-10 concentrations in preterm neonates with and without acute funisitis, the histologic counterpart of FIRS. METHODS A case-control study was conducted including 80 preterm neonates born after spontaneous labor. Neonates were classified according to the presence (n = 40) or absence of funisitis (n = 40), which is the pathologic hallmark of FIRS. Neonates in each group were also matched for gestational age. Umbilical cord plasma IL-19 and IL-10 concentrations were determined by ELISA. RESULTS 1) The median umbilical cord plasma IL-19 concentration was 2.5-fold higher in neonates with funisitis than in those without funisitis (median 87 pg/mL; range 20.6-412.6 pg/mL vs. median 37 pg/mL; range 0-101.7 pg/mL; p < 0.001); 2) newborns with funisitis had a significantly higher median umbilical cord plasma IL-10 concentration than those without funisitis (median 4 pg/mL; range 0-33.5 pg/mL vs. median 2 pg/mL; range 0-13.8 pg/mL; p < 0.001); and 3) the results were similar when we included only patients with funisitis who met the definition of FIRS by umbilical cord plasma IL-6 concentrations ≥ 17.5 pg/mL (p < 0.001). CONCLUSION IL-19 and IL-10 are parts of the immunologic response of FIRS. A subset of fetuses with FIRS had high umbilical cord plasma IL-19 concentrations. In utero exposure to high systemic concentrations of IL-19 may reprogram the immune response.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Youssef Hussein
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile and Center for Perinatal Research, Sótero del Río Hospital, Santiago, Chile
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Pathology, Wayne State University, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
22
|
Kuypers E, Collins JJP, Jellema RK, Wolfs TGAM, Kemp MW, Nitsos I, Pillow JJ, Polglase GR, Newnham JP, Germeraad WTV, Kallapur SG, Jobe AH, Kramer BW. Ovine fetal thymus response to lipopolysaccharide-induced chorioamnionitis and antenatal corticosteroids. PLoS One 2012; 7:e38257. [PMID: 22693607 PMCID: PMC3365024 DOI: 10.1371/journal.pone.0038257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022] Open
Abstract
Rationale Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. Methods Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. Results Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. Conclusion Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jennifer J. P. Collins
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthew W. Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Ilias Nitsos
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - J. Jane Pillow
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Graeme R. Polglase
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - John P. Newnham
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Wilfred T. V. Germeraad
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suhas G. Kallapur
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alan H. Jobe
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Kallapur SG, Kramer BW, Nitsos I, Pillow JJ, Collins JJP, Polglase GR, Newnham JP, Jobe AH. Pulmonary and systemic inflammatory responses to intra-amniotic IL-1α in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 301:L285-95. [PMID: 21665964 DOI: 10.1152/ajplung.00446.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clinical and epidemiological studies implicate IL-1 as an important mediator of perinatal inflammation. We tested the hypothesis that intra-amniotic IL-1α would induce pulmonary and systemic fetal inflammatory responses. Sheep with singleton fetuses were given an intra-amniotic injection of recombinant sheep IL-1α (100 μg) and were delivered 1, 3, or 7 days later, at 124 ± 1 days gestation (n=5-8/group). A separate group of sheep were given two intra-amniotic IL-1α injections (100 μg dose each): 7 days and again 1 day prior to delivery. IL-1α induced a robust increase in monocytes, neutrophils, lymphocytes, and IL-8 protein in bronchoalveolar lavage fluid. H(2)O(2) secretion was increased in inflammatory cells isolated from lungs of IL-1α-exposed lambs upon LPS challenge in vitro compared with control monocytes. T lymphocytes were recruited to the lung. IL-1β, cyclooxygenase-1, and cyclooxygenase-2 mRNA expression increased in the lung 1 day after intra-amniotic IL-1α exposure. Lung volumes increased 7 days after intra-amniotic IL-1α exposure, with minimal anatomic changes in air space morphology. The weight of the posterior mediastinal lymph node draining the lung and the gastrointestinal tract doubled, inducible nitric oxide synthase (NOSII)-positive cells increased, and Foxp3-positive T-regulatory lymphocytes decreased in the lymph node after IL-1α exposure. In the blood, neutrophil counts and plasma haptoglobin increased after IL-1α exposure. Compared with a single exposure, exposure to intra-amniotic IL-1α 7 days and again 1 day before delivery had a variable effect (increases in some inflammatory markers, but not pulmonary cytokines). IL-1α is a potent mediator of the fetal inflammatory response syndrome.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Cincinnati Children's Hospital Medical Center, Univ. of Cincinnati, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Berry CA, Nitsos I, Hillman NH, Pillow JJ, Polglase GR, Kramer BW, Kemp MW, Newnham JP, Jobe AH, Kallapur SG. Interleukin-1 in lipopolysaccharide induced chorioamnionitis in the fetal sheep. Reprod Sci 2011; 18:1092-102. [PMID: 21493953 DOI: 10.1177/1933719111404609] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We tested the hypothesis that interleukin 1 (IL-1) mediates intra-amniotic lipopolysaccharide (LPS)-induced chorioamnionitis in preterm fetal sheep. Time-mated Merino ewes with singleton fetuses received IL-1α, LPS, or saline (control) by intra-amniotic injection 1 to 2 days before operative delivery at 124 ± 1 days gestational age (N = 5-9/group; term = 150 days). Recombinant human IL-1 receptor antagonist (rhIL-1ra) was given into the amniotic fluid 3 hours before intra-amniotic LPS or saline to block IL-1 signaling. Inflammation in the chorioamnion was determined by histology, cytokine messenger RNA (mRNA), protein expression, and by quantitation of activated inflammatory cells. Intra-amniotic IL-1 and LPS both induced chorioamnionitis. However, IL-1 blockade with IL-1ra did not decrease intra-amniotic LPS-induced increases in pro-inflammatory cytokine mRNAs, numbers of inflammatory cells, myeloperoxidase, or monocyte chemotactic protein-1-expressing cells in the chorioamnion. We conclude that IL-1 and LPS both can cause chorioamnionitis, but IL-1 is not an important mediator of LPS-induced chorioamnionitis in fetal sheep.
Collapse
Affiliation(s)
- Clare A Berry
- Division of Pulmonary Biology/Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee AJX, Lambermont VAC, Pillow JJ, Polglase GR, Nitsos I, Newnham JP, Beilharz MW, Kallapur SG, Jobe AH, Kramer BW. Fetal responses to lipopolysaccharide-induced chorioamnionitis alter immune and airway responses in 7-week-old sheep. Am J Obstet Gynecol 2011; 204:364.e17-24. [PMID: 21257142 DOI: 10.1016/j.ajog.2010.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/29/2010] [Accepted: 11/02/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We hypothesized that fetal innate immune responses to lipopolysaccharide-induced chorioamnionitis would alter postnatal systemic immune and airway responsiveness. STUDY DESIGN Ewes received intraamniotic injections with saline or lipopolysaccharide at 90, 100, and 110 days of gestation. Immune status and airway responsiveness were evaluated at term and at 7 weeks of age. RESULTS At term, lymphocytes, monocytes, and neutrophils were significantly increased (respectively, 24-fold, 127-fold, and 31,000-fold) in lungs and blood monocytes became Toll-like receptor 2 responsive after lipopolysaccharide exposures. Furthermore, CD4 and CD4/CD25 lymphocytes were increased in thymus and lymph nodes. At 7 weeks, airway reactivity decreased and concentrations of CD8 cytotoxic T lymphocytes changed in the lungs and thymus relative to controls. CONCLUSION Early gestational lipopolysaccharide exposure increased leukocyte responsiveness at term. Decreased airway reactivity and changes in lymphocytes at 7 weeks postnatal demonstrate persistent effects of fetal exposure to LPS.
Collapse
Affiliation(s)
- Andrea J X Lee
- School of Women's and Infant's Health, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Antenatal inflammation may be associated with adverse neonatal outcomes in several organ systems. Bacteria and a few viruses have been detected in cases of microbial invasion of the amniotic cavity which is referred to as chorioamnionitis. Many aspects of this disease remain unclear such as the causes, time of onset and the fetal responses. Chorioamnionitis was therefore induced in pregnant sheep by injections of lipopolysaccharide (LPS) or Ureaplasma species into the amniotic cavity under ultrasound guidance. LPS-induced chorioamnionitis caused a cascade of organ injury, inflammation, and remodeling. The organ-specific changes were accompanied by systemic effects. The systemic effects after LPS-induced chorioamnionitis resulted in immune suppression against several Toll-like receptor agonists (cross-tolerance). Ureaplasma induced chorioamnionitis made changes in the fetal lung structure depending on the time of infection during pregnancy. The mechanisms of inflammation, structural damage and decreased expression of growth factors need to be further studied to determine therapeutic targets in suitable animal models.
Collapse
Affiliation(s)
- Boris W Kramer
- Division of Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
27
|
|
28
|
Abstract
The bacterial infection of chorion and amnion is a common finding in premature delivery and is referred to as chorioamnionitis. As the mother rarely shows symptoms of a systemic inflammation, the course of chorioamnionitis is frequently asymptomatic and chronic. In contrast, the fetal inflammatory response syndrome represents a separate phenomenon, including umbilical inflammation and increased serum levels of proinflammatory cytokines in the fetus. Ascending maternal infections frequently lead to systemic fetal inflammatory reaction. Clinical studies have shown that antenatal exposure to inflammation puts the extremely immature neonates at a high risk for worsening pulmonary, neurological and other organ development. Interestingly, the presence of chorioamnionitis is associated with a lower rate of neonatal mortality in extremely immature newborns. In the following review, the pathogeneses of inflammation-associated perinatal morbidity are outlined. The concept of fetal multiorganic disease during intrauterine infection is introduced and discussed.
Collapse
|
29
|
Kunzmann S, Glogger K, Been JV, Kallapur SG, Nitsos I, Moss TJ, Speer CP, Newnham JP, Jobe AH, Kramer BW. Thymic changes after chorioamnionitis induced by intraamniotic lipopolysaccharide in fetal sheep. Am J Obstet Gynecol 2010; 202:476.e1-9. [PMID: 20452494 DOI: 10.1016/j.ajog.2010.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/19/2010] [Accepted: 02/10/2010] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Regulatory T lymphocytes mediate homeostasis of the immune system and differentiate under the control of the transcription factor FoxP3 in the fetal thymus. We asked whether fetal inflammation caused by chorioamnionitis would modulate thymus development. STUDY DESIGN Fetal sheep were exposed to an intraamniotic injection of 10 mg lipopolysaccharide at 5 hours, 1 day, 2 days, or 5 days before delivery at 123 gestation days. Cord blood lymphocytes, plasma cortisol, and thymus weight were measured. Glucocorticoid receptor-, activated caspase-3-, Ki-67-, proliferating cell nuclear antigen-, nuclear factor-kappaB-, and FoxP3-positive cells were immunohistochemically evaluated in thymus. RESULTS Intraamniotic lipopolysaccharide exposure decreased the number of circulating lymphocytes by 40% after 1 day. Thymus-to-body weight ratios were reduced in all lipopolysaccharide groups by a maximum of 40% at 5 days. Lipopolysaccharide exposure modestly increased plasma cortisol concentration, increased nuclear factor-kappaB immunostaining in fetal thymus and reduced the number of FoxP3-positive cells by 40% at 1 day. CONCLUSION Intraamniotic exposure to lipopolysaccharide induced thymic changes and influenced thymic FoxP3 expression.
Collapse
|