1
|
Chen S, Xiao X, Song X, Luo T, Li J, Gui T, Li Y. Association of maternal pyrethroid pesticides exposure during the whole pregnancy with neonate lipid metabolism: A prospective birth cohort, Yunnan, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136603. [PMID: 39637820 DOI: 10.1016/j.jhazmat.2024.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Dyslipidemias may emerge during the fetal period. However, the association between prenatal pyrethroid pesticides (PYRs) exposure and neonatal lipid metabolism remains uncertain. To explore the association of prenatal PYRs exposure and neonates' lipid metabolism, pregnant women were recruited in rural Yunnan, China, and their urine samples in the first, second, and third trimester and their neonates' cord blood samples were collected to obtain urinary PYRs metabolites (3PBA, 4F3PBA, and DBCA), cord blood TC, TG, HDL-C, LDL-C, and Non-HDL-C, AIP, CRI-I, CRI-II, AC, and LCI. We found the total PYRs detection during pregnancy was 99.6 %. High-level DBCA in the first and third trimester and high-level 3PBA in the second trimester increased risks of high AIP. High-level ∑PYRs in the third trimester enhanced risks of high levels of TG, LDL-C, Non-HDL-C, AIP, and LCI. Repeated high-level 3PBA in two trimesters and above elevated risks of high levels of TG, LDL-C, CRI-I, AIP, AC, and LCI. Repeated high-level DBCA group in two trimesters and above increased the risk of high AIP. Repeated high ∑PYRs in three trimesters intensified risks of high levels of TC, LDL-C, Non-HDL-C, and AIP. Thus, our study suggests high PYRs exposure during the whole pregnancy may increase the risk of neonate abnormal lipid metabolism. The third trimester is the most sensitive window of high prenatal PYRs exposure. The adverse effects on neonate lipid metabolism increased as the increasing of trimesters repeated high-level PYRs exposure during pregnancy. Different kinds of PYRs exposure may induce different cord blood abnormal lipids.
Collapse
Affiliation(s)
- Shuqi Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, Kunming, China.
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, Kunming, China
| | - Tong Luo
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jirong Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Tengwei Gui
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yan Li
- School of Public Health, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Holven KB, Roeters van Lennep J. Sex differences in lipids: A life course approach. Atherosclerosis 2023; 384:117270. [PMID: 37730457 DOI: 10.1016/j.atherosclerosis.2023.117270] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Differences between men and women in lipids and lipoproteins are observed in distribution and trajectory from infancy to adulthood in the general population. However, these differences are more pronounced in hereditary lipid disorders such as familial hypercholesterolemia (FH) when absolute cholesterol levels are higher from birth onwards. In the early life course, girls compared to boys have higher low-density lipoprotein cholesterol (LDL-C) levels and total cholesterol, while high-density lipoprotein cholesterol (HDL-C) levels are similar. In early adulthood to middle-age, women have lower LDL-C and higher HDL-C levels, as LDL-C levels increase and HDLC levels decrease in men. In the elderly, all lipids - total cholesterol, LDL-C, HDL-C and triglyceride levels decrease but are more pronounced in men. Lipid levels are also affected by specific transitions in girls/women such as the menstrual cycle, pregnancy, breastfeeding and menopause. Lipid levels fluctuate during the menstrual cycle. During pregnancy a physiological increase of LDL-C and even a larger increase in triglyceride levels are observed. Pregnancy has a double impact on LDL-C accumulation in women with FH as they have to stop statins, and the absolute increase in LDL-C is higher than in women without FH. In the menopausal transition, women develop a more adverse lipid profile. Therefore, it is important to take into account both sex and the life course when assessing a lipid profile.
Collapse
Affiliation(s)
- Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Science, University of Oslo, Oslo, Norway; National Advisory Unit on FH, Oslo University Hospital, Oslo, Norway.
| | - Jeanine Roeters van Lennep
- Cardiovascular Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Fan P, Wang Y, Lu K, Hong Y, Xu M, Han X, Liu Y. Modeling maternal cholesterol exposure reveals a reduction of neural progenitor proliferation using human cerebral organoids. LIFE MEDICINE 2023; 2:lnac034. [PMID: 39872117 PMCID: PMC11749704 DOI: 10.1093/lifemedi/lnac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2025]
Abstract
Maternal obesity raises the risk of high-cholesterol exposure for their offspring. Studies in cohorts and animal models report that maternal obesity could increase the risk of neurodevelopmental disorders in offspring including intellectual disabilities and autism spectrum disorders (ASDs). However, whether exposure to high cholesterol is responsible for brain developmental defects, as well as its underlying mechanism, is still unclear. Here, we constructed a cholesterol exposure model utilizing human pluripotent stem cell (hPSC)-derived cerebral organoids by exogenously adding cholesterol into the culture system. We observed enlargement of endosomes, decreased neural progenitor proliferation, and premature neural differentiation in brain organoids with the treatment of cholesterol. Moreover, in comparison with published transcriptome data, we found that our single-cell sequencing results showed a high correlation with ASD, indicating that high cholesterol during maternal might mediate the increased risk of ASD in the offspring. Our results reveal a reduction of neural progenitor proliferation in a cholesterol exposure model, which might be a promising indicator for prenatal diagnosis and offer a dynamic human model for maternal environment exposure.
Collapse
Affiliation(s)
- Pan Fan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanhao Wang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Øyri LKL, Christensen JJ, Sebert S, Thoresen M, Michelsen TM, Ulven SM, Brekke HK, Retterstøl K, Brantsæter AL, Magnus P, Bogsrud MP, Holven KB. Maternal prenatal cholesterol levels predict offspring weight trajectories during childhood in the Norwegian Mother, Father and Child Cohort Study. BMC Med 2023; 21:43. [PMID: 36747215 PMCID: PMC9903496 DOI: 10.1186/s12916-023-02742-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Numerous intrauterine factors may affect the offspring's growth during childhood. We aimed to explore if maternal and paternal prenatal lipid, apolipoprotein (apo)B and apoA1 levels are associated with offspring weight, length, and body mass index from 6 weeks to eight years of age. This has previously been studied to a limited extent. METHODS This parental negative control study is based on the Norwegian Mother, Father and Child Cohort Study and uses data from the Medical Birth Registry of Norway. We included 713 mothers and fathers with or without self-reported hypercholesterolemia and their offspring. Seven parental metabolites were measured by nuclear magnetic resonance spectroscopy, and offspring weight and length were measured at 12 time points. Data were analyzed by linear spline mixed models, and the results are presented as the interaction between parental metabolite levels and offspring spline (age). RESULTS Higher maternal total cholesterol (TC) level was associated with a larger increase in offspring body weight up to 8 years of age (0.03 ≤ Pinteraction ≤ 0.04). Paternal TC level was not associated with change in offspring body weight (0.17 ≤ Pinteraction ≤ 0.25). Higher maternal high-density lipoprotein cholesterol (HDL-C) and apoA1 levels were associated with a lower increase in offspring body weight up to 8 years of age (0.001 ≤ Pinteraction ≤ 0.005). Higher paternal HDL-C and apoA1 levels were associated with a lower increase in offspring body weight up to 5 years of age but a larger increase in offspring body weight from 5 to 8 years of age (0.01 ≤ Pinteraction ≤ 0.03). Parental metabolites were not associated with change in offspring height or body mass index up to 8 years of age (0.07 ≤ Pinteraction ≤ 0.99). CONCLUSIONS Maternal compared to paternal TC, HDL-C, and apoA1 levels were more strongly and consistently associated with offspring body weight during childhood, supporting a direct intrauterine effect.
Collapse
Affiliation(s)
- Linn K L Øyri
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, PO Box 5000, FI-90014 University of Oulu, Oulu, Finland
| | - Magne Thoresen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, PO Box 1122, Blindern, 0317, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Oslo University Hospital Rikshospitalet, PO Box 4956, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Hilde K Brekke
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health, Department of Food Safety, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital Ullevål, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway. .,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway.
| |
Collapse
|
5
|
Li X, Hu W, Li L, Chen Z, Jiang T, Zhang D, Liu K, Wang H. MiR-133a-3p/Sirt1 epigenetic programming mediates hypercholesterolemia susceptibility in female offspring induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 206:115306. [PMID: 36326533 DOI: 10.1016/j.bcp.2022.115306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Mounting evidence indicates that adverse intrauterine conditions increase offspring's hypercholesterolemia susceptibility in adulthood. This study aimed to confirm prenatal dexamethasone exposure (PDE)-induced hypercholesterolemia susceptibility in female adult offspring rats, and elucidate its intrauterine programming mechanism. Pregnant Wistar rats were injected with dexamethasone subcutaneously (0, 0.1 and 0.2 mg/kg·d) from gestational day (GD) 9 to 20. Serum and liver of the female offspring were collected at GD21 and postnatal week (PW) 12 and 28. PDE offspring showed elevated serum total cholesterol (TCH) levels and a cholesterol phenotype of high cardiovascular disease risk at PW12 and PW28. The histone acetylation levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) and its expression were consistently increased in the PDE offspring both in utero and after birth. Moreover, PDE promoted glucocorticoid receptor (GR) nuclear translocation and miR-133a-3p expression and inhibited sirtuin-1 (Sirt1) expression in the fetal liver. In vitro, dexamethasone increased intracellular and supernatant TCH levels and miR-133a-3p expression, decreased SIRT1 expression, and promoted HMGCR histone acetylation and expression in bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and HepG2 cell line. GR siRNA, miR-133a-3p inhibitor or SIRT1 overexpression reversed dexamethasone-induced downstream molecular and phenotypic changes. Furthermore, elevated TCH levels in umbilical cord blood and increased HMGCR expression in peripheral blood mononuclear cells (PBMCs) were observed in human female neonates who had received dexamethasone treatment during pregnancy. In conclusion, PDE can cause persistent enhancement of hepatic cholesterol synthesis function before and after birth through GR/miR-133a-3p/Sirt1 pathway, eventually leading to increased hypercholesterolemia susceptibility in female offspring rats.
Collapse
Affiliation(s)
- Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
6
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
7
|
Effects of Gestational Diabetes Mellitus on Cholesterol Metabolism in Women with High-Risk Pregnancies: Possible Implications for Neonatal Outcome. Metabolites 2022; 12:metabo12100959. [PMID: 36295861 PMCID: PMC9607346 DOI: 10.3390/metabo12100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic disorders in pregnancy, particularly gestational diabetes mellitus (GDM), are associated with an increased risk for adverse pregnancy outcome and long-term cardiometabolic health of mother and child. This study analyzed changes of serum cholesterol synthesis and absorption markers during the course of high-risk pregnancies, with respect to the development of GDM. Possible associations of maternal lipid biomarkers with neonatal characteristics were also investigated. The study included 63 women with high risk for development of pregnancy complications. Size and proportions of small low-density (LDL) and high-density lipoprotein (HDL) particles were assessed across trimesters (T1−T3), as well as concentrations of cholesterol synthesis (lathosterol, desmosterol) and absorption markers (campesterol, β-sitosterol). During the study, 15 women developed GDM, while 48 had no complications (non-GDM). As compared to the non-GDM group, women with GDM had significantly higher triglycerides in each trimester, while having a lower HDL-C level in T3. In addition, they had significantly lower levels of β-sitosterol in T3 (p < 0.05). Cholesterol synthesis markers increased across trimesters in both groups. A decrease in serum β-sitosterol levels during the course of pregnancies affected by GDM was observed. The prevalence of small-sized HDL decreased in non-GDM, while in the GDM group remained unchanged across trimesters. Newborn’s size in the non-GDM group was significantly higher (p < 0.01) and inversely associated with proportions of both small, dense LDL and HDL particles (p < 0.05) in maternal plasma in T1. In conclusion, high-risk pregnancies affected by GDM are characterized by altered cholesterol absorption and HDL maturation. Advanced lipid testing may indicate disturbed lipid homeostasis in GDM.
Collapse
|
8
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
9
|
Abdel-Hamid TA, AbdelLatif D, Ahmed E, Abdel-Rasheed M, A-Mageed A. Relation between Maternal and Neonatal Serum Lipid Profile and Their Impact on Birth Weight. Am J Perinatol 2022; 39:1112-1116. [PMID: 33321526 DOI: 10.1055/s-0040-1721690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal malnutrition with disturbed lipid metabolism during pregnancy may affect the fetal lipid profile. We aimed to detect the relation between maternal and neonatal serum lipid profile, as well as to detect the serum lipid profile difference between small for gestational age (SGA) infants and appropriate for gestational age (AGA) infants to disclose the impact of maternal malnutrition on birth weight. STUDY DESIGN A cross-sectional study was conducted on 150 pregnant women coming to the labor room. Before delivery, maternal serum levels of high-density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TGs), and total cholesterol were assessed, then after delivery, cord blood samples were taken for assessment of the neonatal lipid profile. Birth weights were measured, then the neonates were divided into SGA and AGA groups. RESULTS Serum levels of LDL, TGs, and total cholesterol in the SGA infants were lower than that in the AGA infants. A positive correlation between maternal and neonatal serum TGs levels was found. Besides, there was a positive correlation between birth weight and maternal serum levels of LDL, TGs, and total cholesterol. CONCLUSION Maternal serum lipid profile could be an indicator of the neonatal serum lipid profile and birth weight. KEY POINTS · SGA neonates have lower levels of serum lipids compared to AGA neonates.. · There is a positive correlation between maternal and neonatal triglycerides.. · There is a positive correlation between birth weight and maternal serum lipids..
Collapse
Affiliation(s)
| | - Dalia AbdelLatif
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Ahmed
- Pediatrics Department, Alhayat Hospital, Alhayat, Egypt
| | | | - Ahmed A-Mageed
- Obstetrics and Gynecology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Øyri LKL, Bogsrud MP, Christensen JJ, Ulven SM, Brantsæter AL, Retterstøl K, Brekke HK, Michelsen TM, Henriksen T, Roeters van Lennep JE, Magnus P, Veierød MB, Holven KB. Novel associations between parental and newborn cord blood metabolic profiles in the Norwegian Mother, Father and Child Cohort Study. BMC Med 2021; 19:91. [PMID: 33849542 PMCID: PMC8045233 DOI: 10.1186/s12916-021-01959-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND More than one third of Norwegian women and men between 20 and 40 years of age have elevated cholesterol concentration. Parental metabolic health around conception or during pregnancy may affect the offspring's cardiovascular disease risk. Lipids are important for fetal development, but the determinants of cord blood lipids have scarcely been studied. We therefore aimed to describe the associations between maternal and paternal peri-pregnancy lipid and metabolic profile and newborn cord blood lipid and metabolic profile. METHODS This study is based on 710 mother-father-newborn trios from the Norwegian Mother, Father and Child Cohort Study (MoBa) and uses data from the Medical Birth Registry of Norway (MBRN). The sample included in this study consisted of parents with and without self-reported hypercholesterolemia the last 6 months before pregnancy and their partners and newborns. Sixty-four cord blood metabolites detected by nuclear magnetic resonance spectroscopy were analyzed by linear mixed model analyses. The false discovery rate procedure was used to correct for multiple testing. RESULTS Among mothers with hypercholesterolemia, maternal and newborn plasma high-density lipoprotein cholesterol, apolipoprotein A1, linoleic acid, docosahexaenoic acid, alanine, glutamine, isoleucine, leucine, valine, creatinine, and particle concentration of medium high-density lipoprotein were significantly positively associated (0.001 ≤ q ≤ 0.09). Among mothers without hypercholesterolemia, maternal and newborn linoleic acid, valine, tyrosine, citrate, creatinine, high-density lipoprotein size, and particle concentration of small high-density lipoprotein were significantly positively associated (0.02 ≤ q ≤ 0.08). Among fathers with hypercholesterolemia, paternal and newborn ratio of apolipoprotein B to apolipoprotein A1 were significantly positively associated (q = 0.04). Among fathers without hypercholesterolemia, no significant associations were found between paternal and newborn metabolites. Sex differences were found for many cord blood lipids. CONCLUSIONS Maternal and paternal metabolites and newborn sex were associated with several cord blood metabolites. This may potentially affect the offspring's long-term cardiovascular disease risk.
Collapse
Affiliation(s)
- Linn K L Øyri
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital Ullevål, PO Box 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Infection Control and Environmental Health, Section of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway
| | - Hilde K Brekke
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Oslo University Hospital Rikshospitalet, PO Box 4956, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Oslo University Hospital Rikshospitalet, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine, Erasmus University Medical Center, Erasmus MC, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, PO Box 1122, Blindern, 0317, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway. .,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway.
| |
Collapse
|
11
|
Materno-fetal cholesterol transport during pregnancy. Biochem Soc Trans 2021; 48:775-786. [PMID: 32369555 DOI: 10.1042/bst20190129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is a major nutrient required for fetal growth. It is also a precursor for the synthesis of steroid hormones and essential for the development and maturation of fetal organs. During pregnancy, the placenta controls the transport of cholesterol from the mother to the fetus and vice versa. Cholesterol originating from the maternal circulation has to cross two main membrane barriers to reach the fetal circulation: Firstly, cholesterol is acquired by the apical side of the syncytiotrophoblast (STB) from the maternal circulation as high-density lipoprotein (HDL)-, low-density lipoprotein (LDL)- or very-low-density lipoprotein (VLDL)-cholesterol and secreted at the basal side facing the villous stroma. Secondly, from the villous stroma cholesterol is taken up by the endothelium of the fetal vasculature and transported to the fetal vessels. The proteins involved in the uptake of HDL-, LDL-, VLDL- or unesterified-cholesterol are scavenger receptor type B class 1 (SR-B1), cubulin, megalin, LDL receptor (LDLR) or Niemann-Pick-C1 (NPC1) which are localized at the apical and/or basal side of the STB or at the fetal endothelium. Through interaction with apolipoproteins (e.g. apoA1) cholesterol is effluxed either to the maternal or fetal circulation via the ATP-binding-cassette (ABC)-transporter A1 and ABCG1 localized at the apical/basal side of the STB or the endothelium. In this mini-review, we summarize the transport mechanisms of cholesterol across the human placenta, the expression and localization of proteins involved in the uptake and efflux of cholesterol, and the expression pattern of cholesterol transport proteins in pregnancy pathologies such as pre-eclampsia, gestational diabetes mellitus and intrauterine growth retardation.
Collapse
|
12
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
13
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
14
|
Veronesi MC, Fusi J, Comin A, Ferrario PG, Bolis B, Prandi A. Effect of breed body-size on leptin amniotic fluid concentrations at term pregnancy in dogs. Theriogenology 2020; 149:1-5. [PMID: 32224377 DOI: 10.1016/j.theriogenology.2020.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 01/22/2023]
Abstract
Because of the need to improve the knowledge about canine perinatology, and given the major role of fetal fluids in sustaining the course of pregnancy and fetal development, an in-depth analysis to better understand the role of some hormones in these compartments is essential. Among all, leptin is recognized to play a key role not only on the energetic homeostasis, but also at multiple levels, influencing the control of reproduction, food assumption and metabolism. Even if in humans and other species it is reported the presence of leptin receptors during fetal development, very little is known about the canine species, in which the role of leptin still needs to be fully understood. The present study aimed to assess the amniotic fluid leptin (AFL) concentrations at term pregnancy in healthy dogs, and to evaluate the possible influence played by breed body-size (after assessment of correlation with maternal bodyweight and placental weight), or other maternal (age, parity, and the so-called "litter effect") and neonatal (gender, birth weight, litter size) parameters on AFL concentrations, analyzed by ELISA test. The study was performed on 90 healthy, viable and normal weighted puppies, 39 small-sized (adult body weight < 10 kg) and 51 large-sized (adult body weight > 25 kg), born by 29 purebred, healthy bitches, submitted to elective Caesarean section because of breed-related or individual high risk for dystocia. The results showed that the mean AFL concentration in the small-sized puppies was significantly (p < 0.05) higher in comparison to large-sized puppies (867.48 vs 698.42 pg/ml), while all the other studied parameters did not show to influence AFL concentrations. In conclusions, the present study showed significant higher at term AFL concentrations in small-sized as compared to large-sized breeds, suggesting an influence of breed body-size on fetal metabolism, as previously reported for NEFA and IGF-I.
Collapse
Affiliation(s)
- M C Veronesi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, Lodi, Italy.
| | - J Fusi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, Lodi, Italy
| | - A Comin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, Udine, Italy
| | - P G Ferrario
- Max Rubner-Institut, Department of Physiology and Biochemistry of Nutrition, Haid-und-Neu-Str. 9, Karlsruhe, Germany
| | - B Bolis
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, Lodi, Italy
| | - A Prandi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, Udine, Italy
| |
Collapse
|
15
|
Okala SG, Sise EA, Sosseh F, Prentice AM, Woollett LA, Moore SE. Maternal plasma lipid levels across pregnancy and the risks of small-for-gestational age and low birth weight: a cohort study from rural Gambia. BMC Pregnancy Childbirth 2020; 20:153. [PMID: 32164563 PMCID: PMC7068879 DOI: 10.1186/s12884-020-2834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Sub-optimal maternal lipid levels during pregnancy may be implicated in the pathophysiological mechanisms leading to low birth weight (LBW) and small-for-gestational-age (SGA). We aimed to determine whether maternal lipid levels across pregnancy were associated with birth weight and the risks of LBW and SGA in rural Gambia. Methods This secondary analysis of the ENID trial involved 573 pregnant women with term deliveries. Plasma levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and triglycerides (TG) were analyzed at enrolment (mean (SD) = 13.9 (3.3) weeks gestation), 20 and 30 weeks gestation as continuous variables and percentile groups. Regression models with adjustment for confounders were used to examine associations between gestational lipid levels and birth weight and the risks of LBW (birth weight < 2500 g) and SGA (<10th percentile INTERGROWTH-21ST for birth weight). Results There were 7.9% LBW and 32.5% SGA infants. At enrolment, every unit increase in HDL-c was associated with a 2.7% (P = 0.011) reduction in relative risk of LBW. At 20 weeks gestation, every unit increase in TC levels was associated with a 1.3% reduction in relative risk of LBW (P = 0.002). Low (<10th percentile) HDL-c at enrolment or at 20 weeks gestation was associated with a 2.6 (P = 0.007) and 3.0 (P = 0.003) times greater risk of LBW, respectively, compared with referent (10th─90th) HDL-c. High (>90th percentile) LDL-c at 30 weeks gestation was associated with a 55% lower risk of SGA compared with referent LDL-c (P = 0.017). Increased levels of TC (β = 1.3, P = 0.027) at 20 weeks gestation and of TC (β = 1.2, P = 0.006) and LDL-c (β = 1.5, P = 0.002) at 30 weeks gestation were all associated with higher birth weight. Conclusions In rural Gambia, lipid levels during pregnancy were associated with infant birth weight and the risks of LBW and SGA. Associations varied by lipid class and changed across pregnancy, indicating an adaptive process by which maternal lipids may influence fetal growth and birth outcomes. Trial registration This trial was registered as ISRCTN49285450 on: 12/11/2009.
Collapse
Affiliation(s)
- Sandra G Okala
- Department of Women and Children's Health, King's College London, London, SE1 7EH, UK
| | - Ebrima A Sise
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatou Sosseh
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, SE1 7EH, UK. .,MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
16
|
von Versen-Höynck F, Häckl S, Tierney ESS, Conrad KP, Baker VL, Winn VD. Maternal Vascular Health in Pregnancy and Postpartum After Assisted Reproduction. Hypertension 2020; 75:549-560. [PMID: 31838910 PMCID: PMC7491550 DOI: 10.1161/hypertensionaha.119.13779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although most pregnancies after assisted reproduction are associated with a favorable outcome for the mother and infant, reports of abnormal vascular adaptation in early pregnancy and emerging maternal and perinatal pathology warrant further investigations. Herein we extended our previous work and further examined whether perturbations of blood pressure and endothelial function during the first trimester in conceptions with nonphysiological corpus luteum (CL) numbers would persist through the third trimester of pregnancy and into the postpartum period. We investigated both maternal and perinatal outcomes. Participants were grouped according to CL number and method of conception: 0 CL (programmed autologous frozen-thawed embryo transfer, N=10-18); 1 CL (spontaneous conception [N=16] and natural cycle frozen-thawed embryo transfer [N=12]); or >3 CL associated with autologous fresh embryo transfer [N=8-12]. Augmentation index was higher during the third trimester in the absence of a CL compared to 1 CL (P=0.03) and in frozen-thawed embryo transfer in a programmed compared to a natural cycle (P=0.02). Moreover, baseline pulse-wave amplitude was higher in >3 CL conceptions at all time points (all P<0.05). The incidence of preeclampsia and preeclampsia with severe features was significantly higher in the absence of a CL compared to the presence of one or >3 CL (P=0.045 and P=0.03). Infants from conceptions with >3 CL had lower birth weights (P=0.02) and a higher rate of low birth weight offspring (P=0.008). Deficient vascular adaptation during early gestation in conceptions with nonphysiological CL numbers might predispose women to adverse pregnancy outcomes, for example, preeclampsia.
Collapse
Affiliation(s)
- Frauke von Versen-Höynck
- Stanford University Medical Center, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 1195 West Fremont Avenue, Sunnyvale, CA 94087, United States of America
- Hannover Medical School, Department of Obstetrics and Gynecology, Lower Saxony, Germany
| | - Sebastian Häckl
- Hannover Medical School, Department of Biometry, Lower Saxony, Germany
| | - Elif Seda Selamet Tierney
- Lucile Packard Children’s Hospital, Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, Palo Alto, USA, 750 Welch Road, Suite 325, Heart Center
| | - Kirk P Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, FL 32610, United States of America
| | - Valerie L. Baker
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Lutherville, MD 21093
| | - Virginia D Winn
- Stanford University Medical Center, Department of Obstetrics and Gynecology, 300 Pasteur Drive, HG332, Stanford CA 94035
| |
Collapse
|
17
|
Pecks U, Bornemann V, Klein A, Segger L, Maass N, Alkatout I, Eckmann-Scholz C, Elessawy M, Lütjohann D. Estimating fetal cholesterol synthesis rates by cord blood analysis in intrauterine growth restriction and normally grown fetuses. Lipids Health Dis 2019; 18:185. [PMID: 31653257 PMCID: PMC6815065 DOI: 10.1186/s12944-019-1117-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component in human development. In fetuses affected by intrauterine growth restriction (IUGR), fetal blood cholesterol levels are low. Whether this is the result of a reduced materno-fetal cholesterol transport, or due to low fetal de novo synthesis rates, remains a matter of debate. By analyzing cholesterol interbolites and plant sterols we aimed at deeper insights into transplacental cholesterol transport and fetal cholesterol handling in IUGR with potential targets for future therapy. We hypothesized that placental insufficiency results in a diminished cholesterol supply to the fetus. METHODS Venous umbilical cord sera were sampled post-partum from fetuses delivered between 24 weeks of gestation and at full term. IUGR fetuses were matched to 49 adequate-for-age delivered preterm and term neonates (CTRL) according to gestational age at delivery. Cholesterol was measured by gas chromatography-flame ionization detection using 5a-cholestane as internal standard. Cholesterol precursors and synthesis markers, such as lanosterol, lathosterol, and desmosterol, the absorption markers, 5α-cholestanol and plant sterols, such as campesterol and sitosterol, as well as enzymatically oxidized cholesterol metabolites (oxysterols), such as 24S- or 27-hydroxycholesterol, were analyzed by gas chromatography-mass spectrometry, using epicoprostanol as internal standard for the non-cholesterol sterols and deuterium labeled oxysterols for 24S- and 27-hydroxycholesterol. RESULTS Mean cholesterol levels were 25% lower in IUGR compared with CTRL (p < 0.0001). Lanosterol and lathosterol to cholesterol ratios were similar in IUGR and CTRL. In relation to cholesterol mean, desmosterol, 24S-hydroxycholesterol, and 27-hydroxycholesterol levels were higher by 30.0, 39.1 and 60.7%, respectively, in IUGR compared to CTRL (p < 0.0001). Equally, 5α-cholestanol, campesterol, and β-sitosterol to cholesterol ratios were higher in IUGR than in CTRL (17.2%, p < 0.004; 33.5%, p < 0.002; 29.3%, p < 0.021). CONCLUSIONS Cholesterol deficiency in IUGR is the result of diminished fetal de novo synthesis rates rather than diminished maternal supply. However, increased oxysterol- and phytosterol to cholesterol ratios suggest a lower sterol elimination rate. This is likely caused by a restricted hepatobiliary function. Understanding the fetal cholesterol metabolism is important, not only for neonatal nutrition, but also for the development of strategies to reduce the known risk of future cardiovascular diseases in the IUGR fetus.
Collapse
Affiliation(s)
- Ulrich Pecks
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Verena Bornemann
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Anika Klein
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Laura Segger
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Christel Eckmann-Scholz
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Mohamed Elessawy
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Huang W, Zhou J, Zhang G, Zhang Y, Wang H. Decreased H3K9 acetylation level of LXRα mediated dexamethasone-induced placental cholesterol transport dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158524. [PMID: 31513924 DOI: 10.1016/j.bbalip.2019.158524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023]
Abstract
Due to the insufficient fetal cholesterol synthesis, maternal cholesterol transport through the placenta becomes an important source of fetal cholesterol pool, which is essential for fetal growth and development. This study aimed to investigate the effects of dexamethasone on fetal cholesterol levels, and explore its placental mechanism. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.8 mg/kg·d) from gestational day 9 to 20. Results showed that dexamethasone increased maternal serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) levels, as well as placental cholesterol synthesis and TC concentration, while reduced fetal birth weight, and serum TC, HDL-C and LDL-C levels. Meanwhile, the expression of placental cholesterol transporters, including low-density lipoprotein receptor (LDLR), scavenger receptor class B type I (SR-B1) and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) were decreased by dexamethasone. Furthermore, the expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) were increased, while the H3K9ac and expression levels of liver X receptor α (LXRα) promoter were reduced. In human trophoblast cell line (BeWo), dexamethasone concentration-dependently decreased the expression levels of LDLR, SR-B1, ABCA1, ABCG1 as well as LXRα. Dexamethasone (2500 nM) induced GR translocation into nucleus and recruited HDAC3. Furthermore, LXRα agonist and GR inhibitor reversed respectively dexamethasone-induced the expression inhibitions of cholesterol transporter and LXRα, and HDAC3 siRNA reversed the H3K9ac level of LXRα promoter and its expression. Together, dexamethasone impaired placental cholesterol transport and eventually decreased fetal cholesterol levels, which is related to the down-regulation of LXRα mediated by GR/HDAC3/H3K9ac signaling.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
19
|
Horne H, Holme AM, Roland MCP, Holm MB, Haugen G, Henriksen T, Michelsen TM. Maternal-fetal cholesterol transfer in human term pregnancies. Placenta 2019; 87:23-29. [PMID: 31541855 DOI: 10.1016/j.placenta.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The extent to which the human term fetus utilizes cholesterol released from the placenta has remained elusive. Our aims were to estimate the net mass of cholesterol taken up by the uteroplacental unit, released by the placenta and taken up by the fetus. Thereby we aimed to explore the maternal-fetal cholesterol transfer and hypothesized that maternal levels and uteroplacental uptake were correlated to the fetal uptake of cholesterol. METHODS A cross-sectional in vivo study of 179 fasting, healthy women with uncomplicated singleton pregnancies. Blood flow in the uterine artery (n = 70) and umbilical vein (n = 125) was measured by Doppler ultrasound. Blood samples from the maternal radial artery, antecubital vein and uterine vein, and the umbilical artery and vein were obtained during cesarean section. Cholesterol was determined enzymatically. RESULTS We found a significant uteroplacental uptake (median [Q1,Q3]) of total (3.50 [-36.8,61.1]) and HDL cholesterol (6.69 [-3.78,17.9]) μmol/min, and a fetal uptake of HDL (8.07 [4.48,12.59]), LDL (5.97 [2.77,8.92]) and total cholesterol (13.2 [8.06,21.58]) μmol/min. Maternal cholesterol levels were not correlated to fetal uptake of cholesterol. There was a correlation between uteroplacental uptake of total (rho 0.35, p 0.003) and LDL cholesterol (rho 0.25, p 0.03) and the fetal uptake of LDL cholesterol from the umbilical circulation. The fetal uptake of cholesterol from HDL was higher than from LDL (p < 0.001). CONCLUSION Fetal cholesterol uptake is independent of maternal cholesterol levels, but related to the uteroplacental uptake of cholesterol from LDL. This suggests that the placenta influences maternal-fetal cholesterol transfer at term.
Collapse
Affiliation(s)
- Hildegunn Horne
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway.
| | - Ane Moe Holme
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Maia Blomhoff Holm
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Guttorm Haugen
- Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway; Department of Fetal Medicine, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway.
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| |
Collapse
|
20
|
Barboza-Cerda MC, Barboza-Quintana O, Martínez-Aldape G, Garza-Guajardo R, Déctor MA. Phenotypic severity in a family with MEND syndrome is directly associated with the accumulation of potentially functional variants of cholesterol homeostasis genes. Mol Genet Genomic Med 2019; 7:e931. [PMID: 31397093 PMCID: PMC6732292 DOI: 10.1002/mgg3.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Background Male EBP disorder with neurologic defects (MEND) syndrome is an X‐linked disease caused by hypomorphic mutations in the EBP (emopamil‐binding protein) gene. Modifier genes may explain the clinical variability among individuals who share a primary mutation. Methods We studied four males (Patient 1 to Patient 4) exhibiting a descending degree of phenotypic severity from a family with MEND syndrome. To identify candidate modifier genes that explain the phenotypic variability, variants of homeostasis cholesterol genes identified by whole‐exome sequencing (WES) were ranked according to the predicted magnitude of their effect through an in‐house scoring system. Results Twenty‐seven from 105 missense variants found in 45 genes of the four exomes were considered significant (−5 to −9 scores). We found a direct genotype–phenotype association based on the differential accumulation of potentially functional gene variants among males. Patient 1 exhibited 17 variants, both Patients 2 and 3 exhibited nine variants, and Patient 4 exhibited only five variants. Conclusion We conclude that APOA5 (rs3135506), ABCA1 (rs9282541), and APOB (rs679899 and rs12714225) are the most relevant candidate modifier genes in this family. Relative accumulation of the deficiencies associated with variants of these genes along with other lesser deficiencies in other genes appears to explain the variable expressivity in MEND syndrome.
Collapse
Affiliation(s)
- María Carmen Barboza-Cerda
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Gerardo Martínez-Aldape
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Raquel Garza-Guajardo
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Angel Déctor
- Facultad de Medicina y Hospital Universitario "Dr. José E. González", Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.,Facultad de Medicina y Hospital Universitario "Dr. José E. González", Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
21
|
van Gorp C, de Lange IH, Spiller OB, Dewez F, Cillero Pastor B, Heeren RMA, Kessels L, Kloosterboer N, van Gemert WG, Beeton ML, Stock SJ, Jobe AH, Payne MS, Kemp MW, Zimmermann LJ, Kramer BW, Plat J, Wolfs TGAM. Protection of the Ovine Fetal Gut against Ureaplasma-Induced Chorioamnionitis: A Potential Role for Plant Sterols. Nutrients 2019; 11:E968. [PMID: 31035616 PMCID: PMC6566982 DOI: 10.3390/nu11050968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/29/2023] Open
Abstract
Chorioamnionitis, clinically most frequently associated with Ureaplasma, is linked to intestinal inflammation and subsequent gut injury. No treatment is available to prevent chorioamnionitis-driven adverse intestinal outcomes. Evidence is increasing that plant sterols possess immune-modulatory properties. Therefore, we investigated the potential therapeutic effects of plant sterols in lambs intra-amniotically (IA) exposed to Ureaplasma. Fetal lambs were IA exposed to Ureaplasma parvum (U. parvum, UP) for six days from 127 d-133 d of gestational age (GA). The plant sterols β-sitosterol and campesterol, dissolved with β-cyclodextrin (carrier), were given IA every two days from 122 d-131 d GA. Fetal circulatory cytokine levels, gut inflammation, intestinal injury, enterocyte maturation, and mucosal phospholipid and bile acid profiles were measured at 133 d GA (term 150 d). IA plant sterol administration blocked a fetal inflammatory response syndrome. Plant sterols reduced intestinal accumulation of proinflammatory phospholipids and tended to prevent mucosal myeloperoxidase-positive (MPO) cell influx, indicating an inhibition of gut inflammation. IA administration of plant sterols and carrier diminished intestinal mucosal damage, stimulated maturation of the immature epithelium, and partially prevented U. parvum-driven reduction of mucosal bile acids. In conclusion, we show that β-sitosterol and campesterol administration protected the fetus against adverse gut outcomes following UP-driven chorioamnionitis by preventing intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Ilse H de Lange
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Owen B Spiller
- Cardiff University School of Medicine, Cardiff CF10 3AT, Wales, UK.
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Berta Cillero Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Lilian Kessels
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Nico Kloosterboer
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Wim G van Gemert
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Michael L Beeton
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF14 4XN, UK.
| | - Sarah J Stock
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Matthew S Payne
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley WA 6009, Australia.
| | - Matthew W Kemp
- School of Women's and Infant's Health, The University of Western Australia, Crawley WA 6009, Australia.
| | - Luc J Zimmermann
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Boris W Kramer
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
22
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Zhou J, Zhu C, Luo H, Shen L, Gong J, Wu Y, Magdalou J, Chen L, Guo Y, Wang H. Two intrauterine programming mechanisms of adult hypercholesterolemia induced by prenatal nicotine exposure in male offspring rats. FASEB J 2018; 33:1110-1123. [PMID: 30113880 DOI: 10.1096/fj.201800172r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiologic studies showed that low birth weight is associated with high cholesterol and an increased risk of cardiovascular diseases in adulthood. This study aimed to elucidate the intrauterine programming mechanisms of adult hypercholesterolemia. The results showed that prenatal nicotine exposure (PNE) caused intrauterine growth retardation and hypercholesterolemia in male adult offspring rats. Hepatic cholesterol synthesis and output were deceased in utero but increased in adults; hepatic reverse cholesterol transport (RCT) persistently deceased before and after birth. Meanwhile, PNE elevated serum corticosterone level and decreased hepatic IGF1 pathway activity in male fetuses, whereas converse changes were observed in male adults. The chronic stress model and cortisol-treated HepG2 cells verified that excessive glucocorticoid (GC)-induced GC-IGF1 axis programming enhanced hepatic cholesterol synthesis and output. In addition, PNE decreased the expression of specific protein 1 and P300 enrichment and H3K27 acetylation at the promoter region of genes responsible for RCT both in fetal and adult, male livers and reduced expression of those genes, similar alterations were also confirmed in cortisol-treated HepG2 cells, suggesting that excessive GC-related programming induced continuous RCT reduction by epigenetic modification. Taken together, the "2-programming" approach discussed above may ultimately contribute to the development of hypercholesterolemia in male adult offspring.-Zhou, J., Zhu, C., Luo, H., Shen, L., Gong, J., Wu, Y., Magdalou, J., Chen, L., Guo, Y., Wang, H. Two intrauterine programming mechanisms of adult hypercholesterolemia induced by prenatal nicotine exposure in male offspring rats.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lang Shen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yimeng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7561, Centre National de la Recherche Scientifique (CNRS), Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
24
|
Pendzialek SM, Schindler M, Plösch T, Gürke J, Haucke E, Hecht S, Fischer B, Santos AN. Cholesterol metabolism in rabbit blastocysts under maternal diabetes. Reprod Fertil Dev 2018; 29:1921-1931. [PMID: 27918728 DOI: 10.1071/rd15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/24/2016] [Indexed: 01/10/2023] Open
Abstract
In the rabbit reproductive model, maternal experimentally induced insulin-dependent diabetes mellitus (expIDD) leads to accumulation of lipid droplets in blastocysts. Cholesterol metabolism is a likely candidate to explain such metabolic changes. Therefore, in the present study we analysed maternal and embryonic cholesterol concentrations and expression of related genes in vivo (diabetic model) and in vitro (embryo culture in hyperglycaemic medium). In pregnant expIDD rabbits, the serum composition of lipoprotein subfractions was changed, with a decrease in high-density lipoprotein cholesterol and an increase in very low-density lipoprotein cholesterol; in uterine fluid, total cholesterol concentrations were elevated. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), very low-density lipoprotein receptor (VLDLR), sterol regulatory element binding transcription factor 2 (SREBF2), insulin-induced gene-1 (INSIG1) and cholesterol 7α-hydroxylase (CYP7A1) mRNA was decreased in the liver and low-density lipoprotein receptor (LDLR) mRNA expression was decreased in the adipose tissue of diabetic rabbits. In embryos from diabetic rabbits, the mean (±s.e.m.) ratio of cholesterol concentrations in trophoblasts to embryoblasts was changed from 1.27±2.34 (control) to 0.88±3.85 (expIDD). Rabbit blastocysts expressed HMGCR, LDLR, VLDLR, SREBF2 and INSIG1 but not CYP7A1, without any impairment of expression as a result of maternal diabetes. In vitro hyperglycaemia decreased embryonic HMGCR and SREBF2 transcription in rabbit blastocysts. The findings of the present study show that a diabetic pregnancy leads to distinct changes in maternal cholesterol metabolism with a minor effect on embryo cholesterol metabolism.
Collapse
Affiliation(s)
- S Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Elisa Haucke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Stefanie Hecht
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstr. 52, 06108 Halle (Saale), Germany
| |
Collapse
|
25
|
Rebholz SL, Melchior JT, Davidson WS, Jones HN, Welge JA, Prentice AM, Moore SE, Woollett LA. Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth. FASEB J 2018; 32:717-727. [PMID: 28982731 PMCID: PMC6266630 DOI: 10.1096/fj.201700528r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Studies in humans have shown a direct association between maternal plasma cholesterol concentrations and infant birthweight. Similarly, previous studies in our laboratory have shown that chow-fed mice lacking apolipoprotein (apo) A-I, the major protein in HDL, have low HDL-cholesterol (HDL-C) concentrations and smaller fetuses in midgestation. In the current study, we measured fetal weights in mice with varying levels of apoA-I gene dose (knockout, wild-type, and transgenic) and examined metabolic pathways known to affect fetal growth. As expected, we found the differences in apoA-I expression led to changes in HDL particle size and protein cargo as well as plasma cholesterol concentrations. Fetal masses correlated directly with maternal plasma cholesterol and apoA-I concentrations, but placental masses and histology did not differ between groups of mice. There was no significant difference in glucose or amino acid transport to the fetus or in expression levels of the glucose (glucose transporter 1 and 2) or amino acid (sodium-coupled neutral amino acid transporter 1 and 2) transporters in whole placentas, although there was a trend for greater uptake of both nutrients in the whole fetal unit (fetus + placenta) of mice with greater apoA-I levels; significant differences in transport rates occurred when mice without apoA-I (knockout) vs. mice with apoA-I (wild-type and transgenic) were compared. Glucose tolerance tests were improved in the mice with the highest level of apoA-I, suggesting increased insulin-induced uptake of glucose by tissues of apoA-I transgenic mice. Thus, maternal HDL is associated with fetal growth, an effect that is likely mediated by plasma cholesterol or other HDL-cargo, including apolipoproteins or complement system proteins. A direct role of enhanced glucose and/or amino acid transport cannot be excluded.-Rebholz, S. L., Melchior, J. T., Davidson, W. S., Jones, H. N., Welge, J. A., Prentice, A. M., Moore, S. E., Woollett, L. A. Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth.
Collapse
Affiliation(s)
- Sandra L. Rebholz
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - John T. Melchior
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Helen N. Jones
- Division of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Andrew M. Prentice
- Medical Research Council (MRC) Unit, Serekunda, The Gambia
- MCR International Nutrition Group, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom; and
| | - Sophie E. Moore
- Medical Research Council (MRC) Unit, Serekunda, The Gambia
- Division of Women’s Health, King’s College London, London, United Kingdom
| | - Laura A. Woollett
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| |
Collapse
|
26
|
Gallo L, Barrett H, Dekker Nitert M. Review: Placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta 2017; 54:59-67. [DOI: 10.1016/j.placenta.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
|
27
|
RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci U S A 2017; 114:E4753-E4761. [PMID: 28559354 DOI: 10.1073/pnas.1702560114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The yolk sac is phylogenetically the oldest of the extraembryonic membranes. The human embryo retains a yolk sac, which goes through primary and secondary phases of development, but its importance is controversial. Although it is known to synthesize proteins, its transport functions are widely considered vestigial. Here, we report RNA-sequencing (RNA-seq) data for the human and murine yolk sacs and compare those data with data for the chicken. We also relate the human RNA-seq data to proteomic data for the coelomic fluid bathing the yolk sac. Conservation of transcriptomes across the species indicates that the human secondary yolk sac likely performs key functions early in development, particularly uptake and processing of macro- and micronutrients, many of which are found in coelomic fluid. More generally, our findings shed light on evolutionary mechanisms that give rise to complex structures such as the placenta. We identify genetic modules that are conserved across mammals and birds, suggesting these modules are part of the core amniote genetic repertoire and are the building blocks for both oviparous and viviparous reproductive modes. We propose that although a choriovitelline placenta is never established physically in the human, the placental villi, the exocoelomic cavity, and the secondary yolk sac function together as a physiological equivalent.
Collapse
|
28
|
Farias DR, Poston L, Franco-Sena AB, Moura da Silva AA, Pinto T, de Oliveira LC, Kac G. Maternal lipids and leptin concentrations are associated with large-for-gestational-age births: a prospective cohort study. Sci Rep 2017; 7:804. [PMID: 28400574 PMCID: PMC5429770 DOI: 10.1038/s41598-017-00941-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 11/22/2022] Open
Abstract
The change in maternal lipid, leptin and adiponectin concentrations during pregnancy and infant birth weight (BW) is still poorly characterized. Thus, the aim of the study was to evaluate the association of maternal lipids, leptin and adiponectin throughout pregnancy with large-for-gestational-age (LGA) births and BW z-score. A prospective cohort of 199 mothers was followed during pregnancy in Rio de Janeiro, Brazil. The statistical analyses comprised multiple logistic and linear regression. Women delivered 36 LGA and 11 small-for-gestational-age newborns. HDL-c rate of change throughout pregnancy was negatively associated with BW z-score (β = -1.99; p = 0.003) and the delivery of a LGA newborn (OR = 0.02; p = 0.043). Pregnancy baseline concentration of log leptin was positively associated (OR = 3.92; p = 0.025) with LGA births. LDL-c rate of change throughout pregnancy was positively associated with BW z-score (β = 0.31; p = 0.004). Log triglycerides and log adiponectin were not significantly associated with BW z-score or LGA birth. In conclusion, a higher log leptin pregnancy baseline concentration and a lower HDL-c rate of change during pregnancy were associated with higher odds of having a LGA newborn. These maternal biomarkers are important to foetal growth and could be used in prenatal care as an additional strategy to screen women at risk of inadequate BW.
Collapse
Affiliation(s)
- Dayana Rodrigues Farias
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Lucilla Poston
- Division of Women's Health, King's College London, St Thomas' Hospital, London, UK
| | - Ana Beatriz Franco-Sena
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | | | - Thatiana Pinto
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Lívia Costa de Oliveira
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Liu J, Iqbal A, Raslawsky A, Browne RW, Patel MS, Rideout TC. Influence of maternal hypercholesterolemia and phytosterol intervention during gestation and lactation on dyslipidemia and hepatic lipid metabolism in offspring of Syrian golden hamsters. Mol Nutr Food Res 2016; 60:2151-2160. [PMID: 27213832 DOI: 10.1002/mnfr.201600116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 05/11/2016] [Indexed: 01/29/2023]
Abstract
SCOPE Although there is a normal physiological rise in maternal lipids during pregnancy, excessive maternal hyperlipidemia during pregnancy increases cardiovascular disease risk for both the mother and offspring. There are limited safe lipid-lowering treatment options for use during pregnancy, therefore, we evaluated the influence of maternal phytosterol (PS) supplementation on lipid and lipoprotein metabolism in mothers and progeny. METHODS AND RESULTS Female Syrian golden hamsters were randomly assigned to three diets throughout prepregnancy, gestation, and lactation (n = 6/group): (i) Chow (Chow), (ii) chow with 0.5% cholesterol (CH), and (iii) chow with 0.5% CH and 2% PS (CH/PS). Compared with newly weaned pups from Chow dams, pups from dams fed the CH-enriched diet demonstrated increases (p < 0.05) in total-C, LDL-C, HDL-C, and total LDL and VLDL particle number. Pups from CH-fed mothers also exhibited higher hepatic CH concentration and differential mRNA expression pattern of CH regulatory genes. Pups from PS-supplemented dams demonstrated reductions (p < 0.05) in serum total-C, non-HDL-C, and LDL-C but also increased triglycerides compared with pups from CH-fed dams. Maternal PS supplementation reduced (p < 0.05) hepatic CH and increased the abundance of HMG-CoAr and LDLr protein in newly weaned pups compared with the CH group. CONCLUSION Results suggest that maternal PS supplementation is largely effective in normalizing CH in pups born to mothers with hypercholesterolemia, however, the cause and long-term influence of increased triglyceride is not known.
Collapse
Affiliation(s)
- Jie Liu
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Aadil Iqbal
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Amy Raslawsky
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY, USA
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
30
|
Decreased maternal and fetal cholesterol following maternal bococizumab (anti-PCSK9 monoclonal antibody) administration does not affect rat embryo-fetal development. Regul Toxicol Pharmacol 2015; 73:562-70. [PMID: 26382609 DOI: 10.1016/j.yrtph.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
Abstract
Bococizumab is a humanized monoclonal IgG2Δa antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9) for the treatment of hyperlipidemia. The evaluation of potential effects on embryo-fetal development was conducted in the rat. In a pharmacokinetic/pharmacodynamic study bococizumab was administered intravenously to pregnant Sprague-Dawley (SD) rats (n = 8/group) at 0, 10, 30, and 100 mg/kg during organogenesis. Maternal and fetal bococizumab, total cholesterol and HDL concentrations were determined. Bococizumab was well tolerated and there were no effects on ovarian or uterine parameters. Maternal and fetal bococizumab exposure increased with increasing dose, with a corresponding dose-dependent decrease in fetal cholesterol levels. Maternal cholesterol levels were decreased significantly, with reductions that were of a similar magnitude regardless of dose. In the definitive embryo-fetal development study bococizumab was administered to pregnant SD rats (n = 20/group) at 0, 10, 30, and 100 mg/kg and no adverse maternal or developmental effects were observed up to 100 mg/kg. These studies have provided an appropriate and relevant safety assessment of bococizumab in pregnant rats to inform human risk assessment, demonstrating no adverse effects on embryo-fetal development at magnitudes greater than anticipated clinical exposure and in the presence of maximal reductions in maternal cholesterol and dose-dependent reductions in fetal cholesterol.
Collapse
|
31
|
Miettinen HE, Rönö K, Koivusalo S, Stach-Lempinen B, Pöyhönen-Alho M, Eriksson JG, Hiltunen TP, Gylling H. Elevated serum squalene and cholesterol synthesis markers in pregnant obese women with gestational diabetes mellitus. J Lipid Res 2014; 55:2644-54. [PMID: 25301963 DOI: 10.1194/jlr.p049510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined serum cholesterol synthesis and absorption markers and their association with neonatal birth weight in obese pregnancies affected by gestational diabetes mellitus (GDM). Pregnant women at risk for GDM (BMI >30 kg/m²) were enrolled from maternity clinics in Finland. GDM was determined from the results of an oral glucose tolerance test. Serum samples were collected at six time-points, one in each trimester of pregnancy, and at 6 weeks, 6 months, and 12 months postpartum. Analysis of serum squalene and noncholesterol sterols by gas-liquid chromatography revealed that in subjects with GDM (n = 22), the serum Δ8-cholestenol concentration and lathosterol/sitosterol ratio were higher (P < 0.05) than in the controls (n = 30) in the first trimester, reflecting increased cholesterol synthesis. Also, subjects with GDM had an increased ratio of squalene to cholesterol (100 × μmol/mmol of cholesterol) in the second (11.5 ± 0.5 vs. 9.1 ± 0.5, P < 0.01) and third (12.1 ± 0.8 vs. 10.0 ± 0.7, P < 0.05) trimester. In GDM, the second trimester maternal serum squalene concentration correlated with neonatal birth weight (r = 0.70, P < 0.001). In conclusion, in obesity, GDM associated with elevated serum markers of cholesterol synthesis. Correlation of maternal serum squalene with neonatal birth weight suggests a potential contribution of maternal cholesterol synthesis to newborn weight in GDM.
Collapse
Affiliation(s)
- Helena E Miettinen
- Department of Medicine, Division of Internal Medicine, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Kristiina Rönö
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Saila Koivusalo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South-Karelia Central Hospital, Lappeenranta, Finland
| | - Maritta Pöyhönen-Alho
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Timo P Hiltunen
- Department of Medicine, Division of Internal Medicine, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Helena Gylling
- Department of Medicine, Division of Internal Medicine, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography–mass spectrometry. J Chromatogr A 2014; 1339:154-67. [DOI: 10.1016/j.chroma.2014.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 01/02/2023]
|
33
|
Zarek J, Delano KE, Nickel C, Laskin CA, Koren G. Are statins teratogenic in humans? Addressing the safety of statins in light of potential benefits during pregnancy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.2013.842684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Cholesterol: its regulation and role in central nervous system disorders. CHOLESTEROL 2012; 2012:292598. [PMID: 23119149 PMCID: PMC3483652 DOI: 10.1155/2012/292598] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 02/08/2023]
Abstract
Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.
Collapse
|