1
|
Xu L, Jin X, Lu Y, Zheng B, Zheng Z, Chen L, Zhu H. Increased PLAGL1 Gene Methylation in Cord Blood is Positively Correlated with Brain Injury in Chorioamniotic Preterm Infants. Biochem Genet 2025; 63:1361-1380. [PMID: 38564096 DOI: 10.1007/s10528-024-10762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
The study aims to explore the epigenetic mechanisms of neurodevelopmental impairment accompanied in chorioamniotic preterm infants. Our study included 16 full-term infants and 69 preterm infants. The methylation status of the pleomorphic adenoma gene-like 1 (PLAGL1) gene in the cord blood was determined by pyrosequencing. Brain B-ultrasonography and magnetic resonance imaging (MRI) were performed to diagnose brain injury. The activity of candidate fragments of PLAGL1 and the effect of methylation on PLAGL1 activity were evaluated by double luciferase reporter assay. The data showed that there were no differences in the methylation levels of each Cytosine-phosphate-Guanine (CpG) site of PLAGL1 between full-term and preterm infants. Within preterm infants, the methylation levels of the CpG2, CpG3, CpG4, and CpG5 sites were increased in the chorioamnionitis group compared with the no chorioamnionitis group. The areas under curves (AUCs) of the receiver operating characteristic (ROC) curves of CpG2, CpG3, CpG4, and CpG5 were 0.656, 0.653, 0.670, and 0.712, respectively. Meanwhile, the methylation level of the CpG2 site was increased in preterm babies with brain injury compared with those without brain injury, and the AUC of CpG2 was 0.648, with a sensitivity of 75.9% and a specificity of 50.0%. A double luciferase reporter assay revealed that PLAGL1 fragments had enhancer-like activity and that the methylated form of PLAGL1 weakened this activity. Thus, PLAGL1 hypermethylation in chorioamniotic preterm infants is positively correlated with brain injury. Our results suggest a potential use for PLAGL1 methylation as a biomarker in the diagnosis of brain injury.
Collapse
Affiliation(s)
- Limin Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China.
| | - Xiamin Jin
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Younan Lu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Bangxu Zheng
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhoushu Zheng
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Lili Chen
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Huaqiang Zhu
- Zhejiang Pharmaceutical University, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Vidal AC, Sosnowski DW, Marchesoni J, Grenier C, Thorp J, Murphy SK, Johnson SB, Schlief W, Hoyo C. Maternal adverse childhood experiences (ACEs) and offspring imprinted gene DMR methylation at birth. Epigenetics 2024; 19:2293412. [PMID: 38100614 PMCID: PMC10730185 DOI: 10.1080/15592294.2023.2293412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Adverse childhood experiences (ACEs) contribute to numerous negative health outcomes across the life course and across generations. Here, we extend prior work by examining the association of maternal ACEs, and their interaction with financial stress and discrimination, with methylation status within eight differentially methylated regions (DMRs) in imprinted domains in newborns. ACEs, financial stress during pregnancy, and experience of discrimination were self-reported among 232 pregnant women. DNA methylation was assessed at PEG10/SGCE, NNAT, IGF2, H19, PLAGL1, PEG3, MEG3-IG, and DLK1/MEG3 regulatory sequences using pyrosequencing. Using multivariable linear regression models, we found evidence to suggest that financial stress was associated with hypermethylation of MEG3-IG in non-Hispanic White newborns; discrimination was associated with hypermethylation of IGF2 and NNAT in Hispanic newborns, and with hypomethylation of PEG3 in non-Hispanic Black newborns. We also found evidence that maternal ACEs interacted with discrimination to predict offspring PLAGL1 altered DMR methylation, in addition to interactions between maternal ACEs score and discrimination predicting H19 and SGCE/PEG10 altered methylation in non-Hispanic White newborns. However, these interactions were not statistically significant after multiple testing corrections. Findings from this study suggest that maternal ACEs, discrimination, and financial stress are associated with newborn aberrant methylation in imprinted gene regions.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David W. Sosnowski
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joddy Marchesoni
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - John Thorp
- Department of Obstetrics and Gynecology, Maternal and Child Health, UNC Gillings School of Public Health, UNC, Chapel Hill, NC, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Sara B. Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Population, Family & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William Schlief
- Johns Hopkins All Children’s Pediatric Biorepository, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Zhang F, Wang M, Li Z, Deng J, Fan Y, Gou Z, Zhou Y, Huang L, Lu L. Rapamycin attenuates pyroptosis by suppressing mTOR phosphorylation and promoting autophagy in LPS-induced bronchopulmonary dysplasia. Exp Lung Res 2023; 49:178-192. [PMID: 37874145 DOI: 10.1080/01902148.2023.2266236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE/AIM Bronchopulmonary dysplasia (BPD) is associated with poor survival in preterm infants. Intrauterine infection can aggravate the degree of obstruction of alveolar development in premature infants; however, the pathogenic mechanism remains unclear. In this study, we sought to determine whether pyroptosis could be inhibited by downregulating mammalian target of rapamycin (mTOR) activation and inducing autophagy in BPD-affected lung tissue. MATERIALS AND METHODS We established a neonatal rat model of BPD induced by intrauterine infection via intraperitoneally injecting pregnant rats with lipopolysaccharide (LPS). Subsequently, mTOR levels and pyroptosis were evaluated using immunohistochemistry, immunofluorescence, TUNEL staining, and western blotting. The Shapiro-Wilk test was employed to assess the normality of the experimental data. Unpaired t-tests were used to compare the means between two groups, and comparisons between multiple groups were performed using analysis of variance. RESULTS Pyroptosis of lung epithelial cells increased in BPD lung tissues. After administering an mTOR phosphorylation inhibitor (rapamycin) to neonatal rats with BPD, the level of autophagy increased, while the expression of autophagy cargo adaptors, LC3 and p62, did not differ. Following rapamycin treatment, NLRP3, Pro-caspase-1, caspase-1, pro-IL-1β, IL-1β, IL-18/Pro-IL-18, N-GSDMD/GSDMD, Pro-caspase-11, and caspase-11 were negatively regulated in BPD lung tissues. The opposite results were observed after treatment with the autophagy inhibitor MHY1485, showing an increase in pyroptosis and a significant decrease in the number of alveoli in BPD. CONCLUSIONS Rapamycin reduces pyroptosis in neonatal rats with LPS-induced BPD by inhibiting mTOR phosphorylation and inducing autophagy; hence, it may represent a potential therapeutic for treating BPD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
- Clinic Medical College, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Minrong Wang
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
- Clinic Medical College, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Zhongni Li
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
- Clinic Medical College, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Jiehong Deng
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
- Clinic Medical College, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Yang Fan
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Zhixian Gou
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Yue Zhou
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Li Huang
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
- Clinic Medical College, Chengdu Medical College, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
4
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
5
|
Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, Murphy L, Thrippleton MJ, Quigley AJ, Bastin ME, Miron VE, Whalley HC, Marioni RE, Boardman JP, Cox SR. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 2023; 110:322-338. [PMID: 36948324 DOI: 10.1016/j.bbi.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (β range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (β range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Collapse
Affiliation(s)
- Eleanor L S Conole
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jill Hall
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J Quigley
- Imaging Department, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
6
|
Abstract
Chorioamnionitis or intrauterine inflammation is a frequent cause of preterm birth. Chorioamnionitis can affect almost every organ of the developing fetus. Multiple microbes have been implicated to cause chorioamnionitis, but "sterile" inflammation appears to be more common. Eradication of microorganisms has not been shown to prevent the morbidity and mortality associated with chorioamnionitis as inflammatory mediators account for continued fetal and maternal injury. Mounting evidence now supports the concept that the ensuing neonatal immune dysfunction reflects the effects of inflammation on immune programming during critical developmental windows, leading to chronic inflammatory disorders as well as vulnerability to infection after birth. A better understanding of microbiome alterations and inflammatory dysregulation may help develop better treatment strategies for infants born to mothers with chorioamnionitis.
Collapse
|
7
|
Xu R, Meng X, Pang Y, An H, Wang B, Zhang L, Ye R, Ren A, Li Z, Gong J. Associations of maternal exposure to 41 metals/metalloids during early pregnancy with the risk of spontaneous preterm birth: Does oxidative stress or DNA methylation play a crucial role? ENVIRONMENT INTERNATIONAL 2022; 158:106966. [PMID: 34735952 DOI: 10.1016/j.envint.2021.106966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies have explored the effects of multiple types of metals/metalloids on spontaneous preterm birth (SPB). A nested case-control study was conducted in Shanxi Province to investigate the associations between maternal exposure to 41 metals/metalloids during early pregnancy and the risk of SPB, and to clarify the underlying mechanisms of oxidative stress and DNA methylation. METHODS A total of 74 controls with full-term delivery and 74 cases with SPB were included in the nested case-control study. The metals/metalloids in serum and the DNA adducts in peripheral blood cell DNA were determined using ICP-MS and UPLC-QqQ-MS/MS, respectively. Unconditional logistic regression models were employed to estimate the associations of the risk of SPB with the metal concentrations, as well as with the levels of oxidative stress/DNA methylation. In addition, linear regression models were used to investigate the associations between the metal/metalloid concentrations and the levels of oxidative stress/DNA methylation. RESULTS After adjusting for potential confounders, the concentrations of Mn, Fe, Cu, Nd, Hg, and Pb in maternal serum during early pregnancy were positively associated with the risk of SPB. Compared with the lowest levels (Quartile 1) of Mn, Fe, Cu, Nd, Hg, and Pb, the odds ratios of SPB increased to 5.21 (95% CI: 1.63, 16.68), 3.47 (95% CI: 1.07, 11.21), 16.23 (95% CI: 3.86, 68.18), 10.54 (95% CI: 2.79, 39.86), 5.88 (95% CI: 1.72, 20.11), and 4.09 (95% CI: 1.31, 12.77) in the highest levels (Quartile 4), respectively. A significant increase in 8-OHdG was associated with the increased exposure to Fe, Pr, Eu, Er, and Lu. The levels of 5-MdC, 5-HmdC, and N6-MdA-the indicators of DNA methylation-were associated with exposure to multiple metals/metalloids. However, no significant associations were observed between the levels of oxidative stress or DNA methylation and the risk of SPB. CONCLUSIONS Exposure to multiple types of metals/metalloids during early pregnancy is positively associated with the risk of SPB. Oxidative stress and DNA methylation are significantly associated with exposure to multiple metals/metalloids. Systemic oxidative stress and DNA methylation have not been proven to be the mediating mechanisms of metals increasing the risk of SPB.
Collapse
Affiliation(s)
- Ruiwei Xu
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Jicheng Gong
- SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
9
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
10
|
Bhagirath AY, Medapati MR, de Jesus VC, Yadav S, Hinton M, Dakshinamurti S, Atukorallaya D. Role of Maternal Infections and Inflammatory Responses on Craniofacial Development. FRONTIERS IN ORAL HEALTH 2021; 2:735634. [PMID: 35048051 PMCID: PMC8757860 DOI: 10.3389/froh.2021.735634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is a tightly regulated immunological state. Mild environmental perturbations can affect the developing fetus significantly. Infections can elicit severe immunological cascades in the mother's body as well as the developing fetus. Maternal infections and resulting inflammatory responses can mediate epigenetic changes in the fetal genome, depending on the developmental stage. The craniofacial development begins at the early stages of embryogenesis. In this review, we will discuss the immunology of pregnancy and its responsive mechanisms on maternal infections. Further, we will also discuss the epigenetic effects of pathogens, their metabolites and resulting inflammatory responses on the fetus with a special focus on craniofacial development. Understanding the pathophysiological mechanisms of infections and dysregulated inflammatory responses during prenatal development could provide better insights into the origins of craniofacial birth defects.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Manoj Reddy Medapati
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sneha Yadav
- Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Martha Hinton
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Devi Atukorallaya
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Wang J, Luo X, Pan J, Dong X, Tian X, Tu Z, Ju W, Zhang M, Zhong M, De Chen C, Flory M, Wang Y, Ted Brown W, Zhong N. (Epi)genetic variants of the sarcomere-desmosome are associated with premature utero-contraction in spontaneous preterm labor. ENVIRONMENT INTERNATIONAL 2021; 148:106382. [PMID: 33472089 DOI: 10.1016/j.envint.2021.106382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Spontaneous preterm birth is a syndrome with clinical and genetic heterogeneity. Few studies have focused on the genetic and epigenetic defects and pathogenic mechanisms associated with premature uterine contraction in spontaneous preterm birth. The objective of this study was to investigate the (epi)genetic variations associated with premature uterine contraction of spontaneous preterm birth. A systems biology approach with an integrated multiomic study was employed. Biobanked pregnancy tissues selected from a pregnancy cohort were subjected to genomic, transcriptomic, methylomic, and proteomic studies, with a focus on genetic loci/genes related to uterine muscle contraction, specifically, genes associated with sarcomeres and desmosomes. Thirteen single nucleotide variations and pathogenic variants were identified in the sarcomere gene, TTN, which encodes the protein Titin, from 146 women with spontaneous preterm labor. Differential expression profiles of five long non-coding RNAs were identified from loci that overlap with four sarcomeric genes. Longitudinally, the long non-coding RNA of gene TPM3 that encodes the protein tropomysin 3 was found to significantly regulate the mRNA of TPM3 in the placenta, compared to maternal blood. The majority of genome methylation profiles related to premature uterine contraction were also identified in the CpG promoters of sarcomeric genes/loci. Differential expression profiles of mRNAs associated with premature uterine contraction showed 22 genes associated with sarcomeres and three with desmosomes. The results demonstrated that premature uterine contraction was associated mainly with pathogenic variants of the TTN gene and with transcriptomic variations of sarcomeric premature uterine contraction genes. This association is likely regulated by epigenetic factors, including methylation and long non-coding RNAs.
Collapse
Affiliation(s)
- Jie Wang
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China; Preterm Birth International Collaborative, USA
| | - Xiucui Luo
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Jing Pan
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Sanya, Hainan, China
| | - Zhihua Tu
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Meijiao Zhang
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Mei Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Charles De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA; Preterm Birth International Collaborative, USA
| | - W Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Preterm Birth International Collaborative, USA.
| |
Collapse
|
12
|
Chu T, Shaw P, McClain L, Simhan H, Peters D. High-resolution epigenomic liquid biopsy for noninvasive phenotyping in pregnancy. Prenat Diagn 2020; 41:61-69. [PMID: 33002217 DOI: 10.1002/pd.5833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We explored the potential of genome-wide epigenomic liquid biopsy for the comprehensive analysis of cell-free DNA (cfDNA) methylation signatures in maternal plasma in early gestation. METHOD We used solution phase hybridization for targeted region capture of bisulfite-converted DNA obtained from plasma of pregnant women in early gestation and nonpregnant female controls. RESULTS Targeted sequencing of ~80.5 Mb of the plasma methylome generated an average read depth across all 17 plasma samples of ~42x. We used these data to explore the pregnancy-specific characteristics of cfDNA methylation in plasma and found that pregnancy resulted in clearly detectable global alterations in DNA methylation patterns that were influenced by genomic location. We analyzed similar, previously published, data from first-trimester maternal leukocyte populations and gestational age-matched chorionic villus (CV) and confirmed that tissue-specific DNA methylation signatures in these samples had a significant influence on global and gene-specific methylation in the plasma of pregnant women. CONCLUSION We describe an approach for targeted epigenomic liquid biopsy in pregnancy and discuss our findings in the context of noninvasive prenatal testing with respect to phenotypic pregnancy monitoring and the early detection of complex gestational phenotypes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - David Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Polettini J, da Silva MG. Telomere-Related Disorders in Fetal Membranes Associated With Birth and Adverse Pregnancy Outcomes. Front Physiol 2020; 11:561771. [PMID: 33123024 PMCID: PMC7573552 DOI: 10.3389/fphys.2020.561771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Telomere disorders have been associated with aging-related diseases, including diabetes, vascular, and neurodegenerative diseases. The main consequence of altered telomere is the induction of the state of irreversible cell cycle arrest. Though several mechanisms responsible for the activation of senescence have been identified, it is still unclear how a cell is indeed induced to become irreversibly arrested. Most tissues in the body will experience senescence throughout its lifespan, but intrinsic and extrinsic stressors, such as chemicals, pollution, oxidative stress (OS), and inflammation accelerate the process. Pregnancy is a state of OS, as the higher metabolic demand of the growing fetus results in increased reactive oxygen species production. As a temporary organ in the mother, senescence in fetal membranes and placenta is expected and linked to term parturition (>37 weeks of gestation). However, a persistent, overwhelming, or premature OS affects placental antioxidant capacity, with consequent accumulation of OS causing damage to lipids, proteins, and DNA in the placental tissues. Therefore, senescence and its main inducer, telomere length (TL) reduction, have been associated with pregnancy complications, including stillbirth, preeclampsia, intrauterine growth restriction, and prematurity. Fetal membranes have a notable role in preterm births, which continue to be a major health issue associated with increased risk of neo and perinatal adverse outcomes and/or predisposition to disease in later life; however, the ability to mediate a delay in parturition during such cases is limited, because the pathophysiology of preterm births and physiological mechanisms of term births are not yet fully elucidated. Here, we review the current knowledge regarding the regulation of telomere-related senescence mechanisms in fetal membranes, highlighting the role of inflammation, methylation, and telomerase activity. Moreover, we present the evidences of TL reduction and senescence in gestational tissues by the time of term parturition. In conclusion, we verified that telomere regulation in fetal membranes requires a more complete understanding, in order to support the development of successful effective interventions of the molecular mechanisms that triggers parturition, including telomere signals, which may vary throughout placental tissues.
Collapse
Affiliation(s)
- Jossimara Polettini
- Universidade Federal da Fronteira Sul (UFFS), Programa de Pós Graduação em Ciências Biomédicas, Faculdade de Medicina, Campus Passo Fundo, Brazil
| | - Marcia Guimarães da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Departamento de Patologia, Botucatu, Brazil
| |
Collapse
|
14
|
Fong G, Gayen nee' Betal S, Murthy S, Favara M, Chan JSY, Addya S, Shaffer TH, Greenspan J, Bhandari V, Li D, Rahman I, Aghai ZH. DNA Methylation Profile in Human Cord Blood Mononuclear Leukocytes From Term Neonates: Effects of Histological Chorioamnionitis. Front Pediatr 2020; 8:437. [PMID: 32850550 PMCID: PMC7417608 DOI: 10.3389/fped.2020.00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Histological chorioamnionitis (HCA) is an infection/inflammation of fetal membranes and complicates 5.2-28.5% of all live births. Exposure to HCA can have long-term consequences including abnormal neurodevelopment and an increased risk for allergic disorders and asthma later in childhood. HCA may incite epigenetic changes, which have the potential to modulate both the immune and neurological systems as well as increase the risk of related disorders later in life. However, there is limited data on the impact of HCA on epigenetics, in particular DNA methylation, and changes to immune and neurological systems in full-term human neonates. Objective: To determine differential DNA methylation in cord blood mononuclear leukocytes from neonates exposed to HCA. Methods: Cord blood was collected from 10 term neonates (5 with HCA and 5 controls without HCA) and mononuclear leukocytes were isolated. Genome-wide DNA methylation screening was performed on Genomic DNA extracted from mononuclear leukocytes. Results: Mononuclear leukocytes from cord blood of HCA-exposed neonates showed differential DNA methylation of 68 probe sets compared to the control group (44 hypermethylated, 24 hypomethylated) with a p ≤ 0.0001. Several genes involved in immune modulation and nervous system development were found to be differentially methylated. Important canonical pathways as revealed by Ingenuity Pathway Analysis (IPA) were CREB Signaling in Neurons, FcγRIIB Signaling in B Lymphocytes, Cell Cycle: G1/S Checkpoint Regulation, Interleukin-1, 2, 3, 6, 8, 10, 17, and 17A signaling, p53 signaling, dopamine degradation, and serotonin degradation. The diseases and disorders picked up by IPA were nervous system development and function, neurological disease, respiratory disease, immune cell trafficking, inflammatory response, and immunological disease. Conclusions: HCA induces differential DNA methylation in cord blood mononuclear leukocytes. The differentially methylated genes may contribute to inflammatory, immunological and neurodevelopmental disorders in neonates exposed to HCA.
Collapse
Affiliation(s)
- Gina Fong
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| | | | - Swati Murthy
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| | - Michael Favara
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| | - Joanna S. Y. Chan
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sankar Addya
- Laboratory of Cancer Genomics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas H. Shaffer
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| | - Jay Greenspan
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - Dongmei Li
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Zubair H. Aghai
- Neonatology, Thomas Jefferson University/Nemours, Philadelphia, PA, United States
| |
Collapse
|
15
|
Wu Y, Perng W, Peterson KE. Precision Nutrition and Childhood Obesity: A Scoping Review. Metabolites 2020; 10:E235. [PMID: 32521722 PMCID: PMC7345802 DOI: 10.3390/metabo10060235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental exposures such as nutrition during life stages with high developmental plasticity-in particular, the in utero period, infancy, childhood, and puberty-may have long-lasting influences on risk of chronic diseases, including obesity-related conditions that manifest as early as childhood. Yet, specific mechanisms underlying these relationships remain unclear. Here, we consider the study of 'omics mechanisms, including nutrigenomics, epigenetics/epigenomics, and metabolomics, within a life course epidemiological framework to accomplish three objectives. First, we carried out a scoping review of population-based literature with a focus on studies that include 'omics analyses during three sensitive periods during early life: in utero, infancy, and childhood. We elected to conduct a scoping review because the application of multi-'omics and/or precision nutrition in childhood obesity prevention and treatment is relatively recent, and identifying knowledge gaps can expedite future research. Second, concomitant with the literature review, we discuss the relevance and plausibility of biological mechanisms that may underlie early origins of childhood obesity identified by studies to date. Finally, we identify current research limitations and future opportunities for application of multi-'omics in precision nutrition/health practice.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; (Y.W.); (K.E.P.)
| | - Wei Perng
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; (Y.W.); (K.E.P.)
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 80045, USA
| |
Collapse
|
16
|
Jin R, Xu J, Gao Q, Mao X, Yin J, Lu K, Guo Y, Zhang M, Cheng R. IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov 2020; 6:33. [PMID: 32377396 PMCID: PMC7198621 DOI: 10.1038/s41420-020-0267-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the leading cause of chronic lung disease in preterm neonates. Extracellular matrix (ECM) abnormalities reshape lung development, contributing to BPD progression. In the present study, we first discovered that the ECM component fibronectin was reduced in the pulmonary tissues of model mice with BPD induced by lipopolysaccharide (LPS) and hyper-oxygen. Meanwhile, interleukin-33 (IL-33) and other inflammatory cytokines were elevated in BPD lung tissues. LPS stimulated the production of IL-33 in alveolar epithelial cells via myeloid differentiation factor 88 (MyD88), protein 38 (p38), and nuclear factor-kappa B (NF-κB) protein 65 (p65). Following the knockout of either IL-33 or its receptor suppression of tumorigenicity 2 (ST2) in mice, BPD disease severity was improved, accompanied by elevated fibronectin. ST2 neutralization antibody also relieved BPD progression and restored the expression of fibronectin. IL-33 induced the formation of neutrophil extracellular traps (NETs), which degraded fibronectin in alveolar epithelial cells. Moreover, DNase-mediated degradation of NETs was protective against BPD. Finally, a fibronectin inhibitor directly decreased fibronectin and caused BPD-like disease in the mouse model. Our findings may shed light on the roles of IL-33-induced NETs and reduced fibronectin in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Rui Jin
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Junjie Xu
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Qianqian Gao
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Xiaonan Mao
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Jiao Yin
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Keyu Lu
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yan Guo
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, 211166 Nanjing, China
| | - Rui Cheng
- Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, 210008 Nanjing, China
| |
Collapse
|
17
|
Hayashi I, Yamaguchi K, Sumitomo M, Takakura K, Nagai N, Sakane N. Full-term low birth weight infants have differentially hypermethylated DNA related to immune system and organ growth: a comparison with full-term normal birth weight infants. BMC Res Notes 2020; 13:199. [PMID: 32245519 PMCID: PMC7126402 DOI: 10.1186/s13104-020-04961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Low birth weight (LBW) is a major public health issue as it increases the risk of noncommunicable diseases throughout life. However, the genome-wide DNA methylation patterns of full-term LBW infants (FT-LBWs) are still unclear. This exploratory study aimed to analyze the DNA methylation differences in FT-LBWs compared with those in full-term normal birth weight infants (FT-NBWs) whose mothers were nonsmokers and had no complications. Initially, 702 Japanese women with singleton pregnancies were recruited. Of these, four FT-LBWs and five FT-NBWs were selected as references for DNA methylation analysis, and 862,260 CpGs were assessed using Illumina Infinium MethylationEPIC BeadChip. Gene ontology enrichment analysis was performed using DAVID v6.8 software to identify the biological functions of hyper- and hypomethylated DNA in FT-LBWs. Results 483 hyper-differentially methylated genes (DMGs) and 35 hypo-DMGs were identified in FT-LBW promoter regions. Hyper-DMGs were annotated to 11 biological processes; “macrophage differentiation” (e.g., CASP8), “apoptotic mitochondrial changes” (e.g., BH3), “nucleotide-excision repair” (e.g., HUS1), and “negative regulation of inflammatory response” (e.g., NLRP12 and SHARPIN). EREG was classified into “ovarian cumulus expansion” within the “organism growth and organization” category. Our data imply that LBW might be associated with epigenetic modifications, which regulate the immune system and cell maturation.
Collapse
Affiliation(s)
- Ikuyo Hayashi
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8551, Japan. .,Laboratory of Nutrition Education and Nutritional Physiology, Graduate School of Human Science and Environment, University of Hyogo, Himeji, Japan.
| | - Ken Yamaguchi
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8551, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Sumitomo
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Tajima KOUNOTORI Perinatal Medical Center, Toyooka Hospital, Toyooka, Japan
| | - Kenji Takakura
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Narumi Nagai
- Laboratory of Nutrition Education and Nutritional Physiology, Graduate School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Naoki Sakane
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8551, Japan
| |
Collapse
|
18
|
Park B, Khanam R, Vinayachandran V, Baqui AH, London SJ, Biswal S. Epigenetic biomarkers and preterm birth. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa005. [PMID: 32551139 PMCID: PMC7293830 DOI: 10.1093/eep/dvaa005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Preterm birth (PTB) is a major public health challenge, and novel, sensitive approaches to predict PTB are still evolving. Epigenomic markers are being explored as biomarkers of PTB because of their molecular stability compared to gene expression. This approach is also relatively new compared to gene-based diagnostics, which relies on mutations or single nucleotide polymorphisms. The fundamental principle of epigenome diagnostics is that epigenetic reprogramming in the target tissue (e.g. placental tissue) might be captured by more accessible surrogate tissue (e.g. blood) using biochemical epigenome assays on circulating DNA that incorporate methylation, histone modifications, nucleosome positioning, and/or chromatin accessibility. Epigenomic-based biomarkers may hold great potential for early identification of the majority of PTBs that are not associated with genetic variants or mutations. In this review, we discuss recent advances made in the development of epigenome assays focusing on its potential exploration for association and prediction of PTB. We also summarize population-level cohort studies conducted in the USA and globally that provide opportunities for genetic and epigenetic marker development for PTB. In addition, we summarize publicly available epigenome resources and published PTB studies. We particularly focus on ongoing genome-wide DNA methylation and epigenome-wide association studies. Finally, we review the limitations of current research, the importance of establishing a comprehensive biobank, and possible directions for future studies in identifying effective epigenome biomarkers to enhance health outcomes for pregnant women at risk of PTB and their infants.
Collapse
Affiliation(s)
- Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rasheda Khanam
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Vinesh Vinayachandran
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Wu Y, Lin X, Lim IY, Chen L, Teh AL, MacIsaac JL, Tan KH, Kobor MS, Chong YS, Gluckman PD, Karnani N. Analysis of two birth tissues provides new insights into the epigenetic landscape of neonates born preterm. Clin Epigenetics 2019; 11:26. [PMID: 30744680 PMCID: PMC6371604 DOI: 10.1186/s13148-018-0599-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Background Preterm birth (PTB), defined as child birth before completion of 37 weeks of gestation, is a major challenge in perinatal health care and can bear long-term medical and financial burden. Over a million children die each year due to PTB complications, and those who survive can face developmental delays. Unfortunately, our understanding of the molecular pathways associated with PTB remains limited. There is a growing body of evidence suggesting the role of DNA methylation (DNAm) in mediating the effects of PTB on future health outcomes. Thus, epigenome-wide association studies (EWAS), where DNAm sites are examined for associations with PTB, can help shed light on the biological mechanisms linking the two. Results In an Asian cohort of 1019 infants (68 preterm, 951 full term), we examined and compared the associations between PTB and genome-wide DNAm profiles using both cord tissue (n = 1019) and cord blood (n = 332) samples on Infinium HumanMethylation450 arrays. PTB was significantly associated (P < 5.8e−7) with DNAm at 296 CpGs (209 genes) in the cord blood. Over 95% of these CpGs were replicated in other PTB/gestational age EWAS conducted in (cord) blood. This replication was apparent even across populations of different ethnic origin (Asians, Caucasians, and African Americans). More than a third of these 296 CpGs were replicated in at least 4 independent studies, thereby identifying a robust set of PTB-linked epigenetic signatures in cord blood. Interrogation of cord tissue in addition to cord blood provided novel insights into the epigenetic status of the neonates born preterm. Overall, 994 CpGs (608 genes, P < 3.7e−7) associated with PTB in cord tissue, of which only 10 of these CpGs were identified in the analysis using cord blood. Genes from cord tissue showed enrichment of molecular pathways related to fetal growth and development, while those from cord blood showed enrichment of immune response pathways. A substantial number of PTB-associated CpGs from both the birth tissues were also associated with gestational age. Conclusions Our findings provide insights into the epigenetic landscape of neonates born preterm, and that its status is captured more comprehensively by interrogation of more than one neonatal tissue in tandem. Both these neonatal tissues are clinically relevant in their unique ways and require careful consideration in identification of biomarkers related to PTB and gestational age. Trial registration This birth cohort is a prospective observational study designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875. Electronic supplementary material The online version of this article (10.1186/s13148-018-0599-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonghui Wu
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ives Yubin Lim
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Julia L MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Do EK, Zucker NL, Huang ZY, Schechter JC, Kollins SH, Maguire RL, Murphy SK, Hoyo C, Fuemmeler BF. Associations between imprinted gene differentially methylated regions, appetitive traits and body mass index in children. Pediatr Obes 2019; 14:e12454. [PMID: 30231188 PMCID: PMC6437681 DOI: 10.1111/ijpo.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Knowledge regarding genetic influences on eating behaviours is expanding; yet less is known regarding contributions of epigenetic variation to appetitive traits and body mass index (BMI) in children. OBJECTIVE The purpose of this study was to explore relationships between methylation at differentially methylated regions (DMRs) of imprinted genes (insulin-like growth factor 2/H19 and Delta-like, Drosophila, homolog 1/maternally expressed gene 3) using DNA extracted from umbilical cord blood leucocytes, two genetically influenced appetitive traits (food responsiveness and satiety responsiveness) and BMI. METHODS Data were obtained from participants (N = 317; mean age = 3.6 years; SD = 1.8 years) from the Newborn Epigenetic STudy. Conditional process models were implemented to investigate the associations between DMRs of imprinted genes and BMI, and test whether this association was mediated by appetitive traits and birthweight and moderated by sex. RESULTS Appetitive traits and birthweight did not mediate the relationship between methylation at DMRs. Increased insulin-like growth factor 2 DMR methylation was associated with higher satiety responsiveness. Higher satiety responsiveness was associated with lower BMI. Associations between methylation at DMRs, appetitive traits and BMI differed by sex. CONCLUSIONS This is one of the first studies to demonstrate associations between epigenetic variation established prior to birth with appetitive traits and BMI in children, providing support for the need to uncover genetic and epigenetic mechanisms for appetitive traits predisposing some individuals to obesity.
Collapse
Affiliation(s)
- E. K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - N. L. Zucker
- Duke Center for Eating Disorders and the Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Z. Y. Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, US
| | - J. C. Schechter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - S. H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - R. L. Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - S. K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, US
| | - C. Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - B. F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Konwar C, Price EM, Wang LQ, Wilson SL, Terry J, Robinson WP. DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 2018; 11:63. [PMID: 30373633 PMCID: PMC6205793 DOI: 10.1186/s13072-018-0234-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Placental inflammation, often presenting as acute chorioamnionitis (aCA), is commonly associated with preterm birth. Preterm birth can have both immediate and long-term adverse effects on the health of the baby. Developing biomarkers of inflammation in the placenta can help to understand its effects and potentially lead to new approaches for rapid prenatal diagnosis of aCA. We aimed to characterize epigenetic variation associated with aCA in placenta (chorionic villi) and fetal membranes (chorion and amnion) to better understand how aCA may impact processes that lead to preterm birth. This study lays the groundwork for development of novel biomarkers for aCA. METHODS Samples from 44 preterm placentas (chorionic villi) as well as matched chorion and amnion for 16 of these cases were collected for this study. These samples were profiled using the Illumina Infinium HumanMethylation850 BeadChip to measure DNA methylation (DNAm) at 866,895 CpGs across the genome. An additional 78 placental samples were utilized to independently validate the array findings by pyrosequencing. RESULTS Using a false discovery rate of < 0.15 and average group difference in DNAm of > 0.05, 66 differentially methylated (DM) CpG sites were identified between aCA cases and non-aCA cases in chorionic villi. For the majority of these 66 DM CpGs, the DNAm profile of the aCA cases as compared to the non-aCA cases trended in the direction of the blood cell DNAm. Interestingly, neutrophil-specific DNAm signatures, but not those associated with other immune cell types, were capable of separating aCA cases from the non-aCA cases. CONCLUSIONS Our results suggest that aCA-associated placentas showed altered DNAm signatures that were not observed in the absence of aCA. This DNAm profile is consistent with the activation of the innate immune response in the placenta and/or reflect increase in neutrophils as a response to inflammation.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - E. Magda Price
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Li Qing Wang
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Samantha L. Wilson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Jefferson Terry
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Pathology, BC Children’s Hospital, Vancouver, BC V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| |
Collapse
|
22
|
Provenzi L, Carli PD, Fumagalli M, Giorda R, Casavant S, Beri S, Citterio A, D'Agata A, Morandi F, Mosca F, Borgatti R, Montirosso R. Very preterm birth is associated with PLAGL1 gene hypomethylation at birth and discharge. Epigenomics 2018; 10:1121-1130. [PMID: 30070601 DOI: 10.2217/epi-2017-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Recent findings show that DNA methylation is susceptible to very preterm (VPT) birth and to the experience of the early stay in the neonatal intensive care unit. The aim of the study was to compare PLAGL1 methylation between VPT and full-term (FT) infants at birth as well as between VPT infants at discharge and FT infants at birth. METHODS DNA was collected from cord blood of 56 VPT and 27 FT infants at birth and from peripheral blood in VPT infants at neonatal intensive care unit discharge. Sociodemographic and neonatal variables were considered. RESULTS PLAGL1 methylation at birth and at discharge were highly correlated in VPT infants. Lower methylation emerged in VPT infants at birth and discharge compared to FT counterparts. CONCLUSION PLAGL1 hypomethylation emerged as a potential epigenetic mark of VPT birth. Future research is warranted to assess the functional consequences of PLAGL1 diminished methylation in VPT infants' development.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Pietro De Carli
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Monica Fumagalli
- NICU, Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 201223, Milan, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Sharon Casavant
- School of Nursing, University of Connecticut, Storrs, CT, 060325, USA
| | - Silvana Beri
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Andrea Citterio
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 238424, Bosisio Parini, Italy
| | - Amy D'Agata
- College of Nursing, University of Rhode Island, Kingston, RI, 028816, USA
| | | | - Fabio Mosca
- NICU, Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 201223, Milan, Italy
| | - Renato Borgatti
- Neuropsychiatry & Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, 238422, Bosisio Parini, Italy
| |
Collapse
|
23
|
Dozmorov MG, Bilbo SD, Kollins SH, Zucker N, Do EK, Schechter JC, Zhang J(J, Murphy SK, Hoyo C, Fuemmeler BF. Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain Behav Immun 2018; 70:390-397. [PMID: 29588230 PMCID: PMC6471612 DOI: 10.1016/j.bbi.2018.03.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies demonstrate that environmentally-induced alterations in inflammatory cytokines generated by the maternal and fetal immune system can significantly impact fetal brain development. Yet, the relationship between maternal cytokines during gestation and later cognitive ability and executive function remains understudied. Children (n = 246) were born of mothers enrolled in the Newborn Epigenetic Study - a prospective pre-birth cohort in the Southeastern US. We characterized seven cytokines [IL-1β, IL-4,IL-6, IL-12p70, IL-17A, tumor necrosis factor-α (TNFα), and interferon-γ (IFNγ)] and one chemokine (IL-8) from maternal plasma collected during pregnancy. We assessed children's cognitive abilities and executive functioning at a mean age of 4.5 (SD = 1.1) years. Children's DAS-II and NIH toolbox scores were regressed on cytokines and the chemokine, controlling for maternal age, race, education, body mass index, IQ, parity, smoking status, delivery type, gestational weeks, and child birth weight and sex. Higher IL-12p70 (βIL-12p70 = 4.26, p = 0.023) and IL-17A (βIL-17A = 3.70, p = 0.042) levels were related to higher DAS-II GCA score, whereas higher IL-1β (βIL-1B = -6.07, p = 0.003) was related to lower GCA score. Higher IL-12p70 was related to higher performance on NIH toolbox measures of executive functions related to inhibitory control and attention (βIL-12p70 = 5.20, p = 0.046) and cognitive flexibility (βIL-12p70 = 5.10, p = 0.047). Results suggest that dysregulation in gestational immune activity are associated with child cognitive ability and executive functioning.
Collapse
Affiliation(s)
- Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Staci D. Bilbo
- Lurie Center for Autism, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Scott H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, USA
| | - Nancy Zucker
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, USA
| | - Elizabeth K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Julia C. Schechter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, USA
| | - Junfeng (Jim) Zhang
- The Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA 23298, USA,Corresponding author at: Virginia Commonwealth University, Department of Health Behavior and Policy, P.O. Box 980149, 830 E Main St., Richmond, VA 23219, USA., (B.F. Fuemmeler)
| |
Collapse
|
24
|
Affiliation(s)
- Sharvari S. Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| | - Nafisa H. Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
25
|
Cowley M, Skaar DA, Jima DD, Maguire RL, Hudson KM, Park SS, Sorrow P, Hoyo C. Effects of Cadmium Exposure on DNA Methylation at Imprinting Control Regions and Genome-Wide in Mothers and Newborn Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037003. [PMID: 29529597 PMCID: PMC6071808 DOI: 10.1289/ehp2085] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.
Collapse
Affiliation(s)
- Michael Cowley
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- W.M. Keck Center for Behavioral Biology , North Carolina State University , Raleigh, North Carolina, USA
| | - David A Skaar
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Dereje D Jima
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Kathleen M Hudson
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Sarah S Park
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Patricia Sorrow
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| |
Collapse
|
26
|
Lu L, Claud EC. Intrauterine Inflammation, Epigenetics, and Microbiome Influences on Preterm Infant Health. CURRENT PATHOBIOLOGY REPORTS 2018; 6:15-21. [PMID: 29938128 PMCID: PMC5978889 DOI: 10.1007/s40139-018-0159-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Significant research reveals that the microbiome modulates perinatal and postnatal health. This review aims to examine mechanisms by which intrauterine infection, the epigenome, and microbiome specifically influence preterm infant health outcomes. RECENT FINDINGS Intrauterine infection is a primary cause of preterm birth and can cause alterations in gene expression and epigenetic programming as well as postnatal inflammatory responses in the offspring. Insights from our own studies demonstrate epigenetic modifications of TLRs associated with exposure to intrauterine inflammation, as well as a cross talk between host epigenome and microbiome. Lastly, the gut microbiome modulates maturation of inflammatory pathways, which influences the development of preterm infants. SUMMARY We present a unifying theme that preterm infant outcomes are associated with modulation of host immune and inflammatory responses, which are influenced by acute intrauterine infection, epigenetic, and microbiome factors.
Collapse
Affiliation(s)
- Lei Lu
- Department of Pediatrics/Neonatology, University of Chicago, 900 E 57th Street, Chicago, IL 60637 USA
| | - Erika C. Claud
- Department of Pediatrics/Neonatology, University of Chicago, 5143 Maryland Street, Chicago, IL 60637 USA
| |
Collapse
|
27
|
Gussenhoven R, Ophelders DRMG, Kemp MW, Payne MS, Spiller OB, Beeton ML, Stock SJ, Cillero-Pastor B, Barré FPY, Heeren RMA, Kessels L, Stevens B, Rutten BP, Kallapur SG, Jobe AH, Kramer BW, Wolfs TGAM. The Paradoxical Effects of Chronic Intra-Amniotic Ureaplasma parvum Exposure on Ovine Fetal Brain Development. Dev Neurosci 2017; 39:472-486. [PMID: 28848098 DOI: 10.1159/000479021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/24/2017] [Indexed: 01/23/2023] Open
Abstract
Chorioamnionitis is associated with adverse neurodevelopmental outcomes in preterm infants. Ureaplasma spp. are the microorganisms most frequently isolated from the amniotic fluid of women diagnosed with chorioamnionitis. However, controversy remains concerning the role of Ureaplasma spp. in the pathogenesis of neonatal brain injury. We hypothesize that reexposure to an inflammatory trigger during the perinatal period might be responsible for the variation in brain outcomes of preterms following Ureaplasma-driven chorioamnionitis. To investigate these clinical scenarios, we performed a detailed multimodal study in which ovine neurodevelopmental outcomes were assessed following chronic intra-amniotic Ureaplasma parvum (UP) infection either alone or combined with subsequent lipopolysaccharide (LPS) exposure. We show that chronic intra-amniotic UP exposure during the second trimester provoked a decrease in astrocytes, increased oligodendrocyte numbers, and elevated 5-methylcytosine levels. In contrast, short-term LPS exposure before preterm birth induced increased microglial activation, myelin loss, elevation of 5-hydroxymethylcytosine levels, and lipid profile changes. These LPS-induced changes were prevented by chronic preexposure to UP (preconditioning). These data indicate that chronic UP exposure has dual effects on preterm brain development in utero. On the one hand, prolonged UP exposure causes detrimental cerebral changes that may predispose to adverse postnatal clinical outcomes. On the other, chronic intra-amniotic UP exposure preconditions the brain against a second inflammatory hit. This study demonstrates that microbial interactions and the timing and duration of the inflammatory insults determine the effects on the fetal brain. Therefore, this study helps to understand the complex and diverse postnatal neurological outcomes following UP driven chorioamnionitis.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McCullough LE, Miller EE, Calderwood LE, Shivappa N, Steck SE, Forman MR, A Mendez M, Maguire R, Fuemmeler BF, Kollins SH, D Bilbo S, Huang Z, Murtha AP, Murphy SK, Hébert JR, Hoyo C. Maternal inflammatory diet and adverse pregnancy outcomes: Circulating cytokines and genomic imprinting as potential regulators? Epigenetics 2017; 12:688-697. [PMID: 28678596 DOI: 10.1080/15592294.2017.1347241] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Excessive inflammation during pregnancy alters homeostatic mechanisms of the developing fetus and has been linked to adverse pregnancy outcomes. An anti-inflammatory diet could be a promising avenue to combat the pro-inflammatory state of pregnancy, particularly in obese women, but we lack mechanistic data linking this dietary pattern during pregnancy to inflammation and birth outcomes. In an ethnically diverse cohort of 1057 mother-child pairs, we estimated the relationships between dietary inflammatory potential [measured via the energy-adjusted dietary inflammatory index (E-DII™)] and birth outcomes overall, as well as by offspring sex and maternal pre-pregnancy body mass index (BMI). In a subset of women, we also explored associations between E-DII, circulating cytokines (n = 105), and offspring methylation (n = 338) as potential modulators of these relationships using linear regression. Adjusted regression models revealed that women with pro-inflammatory diets had elevated rates of preterm birth among female offspring [β = -0.22, standard error (SE) = 0.07, P<0.01], but not male offspring (β=0.09, SE = 0.06, P<0.12) (Pinteraction = 0.003). Similarly, we observed pro-inflammatory diets were associated with higher rates of caesarean delivery among obese women (β = 0.17, SE = 0.08, P = 0.03), but not among women with BMI <25 kg/m2 (Pinteraction = 0.02). We observed consistent inverse associations between maternal inflammatory cytokine concentrations (IL-12, IL-17, IL-4, IL-6, and TNFα) and lower methylation at the MEG3 regulatory sequence (P<0.05); however, results did not support the link between maternal E-DII and circulating cytokines. We replicate work by others on the association between maternal inflammatory diet and adverse pregnancy outcomes and provide the first empirical evidence supporting the inverse association between circulating cytokine concentrations and offspring methylation.
Collapse
Affiliation(s)
| | - Erline E Miller
- b Department of Epidemiology , University of North Carolina Chapel Hill , Chapel Hill , NC , USA
| | | | - Nitin Shivappa
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA.,e Connecting Health Innovations LLC , Columbia , SC , USA
| | - Susan E Steck
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA
| | - Michele R Forman
- f Department of Nutritional Sciences , Purdue University , West Lafayette , IN , USA
| | - Michelle A Mendez
- g Department of Nutrition , University of North Carolina Chapel Hill, Chapel Hill , NC , USA
| | - Rachel Maguire
- h Department of Biological Sciences , North Carolina State University, Raleigh , NC , USA
| | - Bernard F Fuemmeler
- i Department of Health Behavior and Policy , Virginia Commonwealth University , Richmond , VA , USA
| | - Scott H Kollins
- j Department of Psychiatry and Behavioral Sciences , Duke University , Durham , NC , USA
| | - Staci D Bilbo
- k Department of Pediatrics , Harvard Medical School, Massachusetts General Hospital , Boston , MA , USA
| | - Zhiqing Huang
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - Amy P Murtha
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - Susan K Murphy
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - James R Hébert
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA.,e Connecting Health Innovations LLC , Columbia , SC , USA
| | - Cathrine Hoyo
- h Department of Biological Sciences , North Carolina State University, Raleigh , NC , USA
| |
Collapse
|
29
|
Maternal vitamin D, DNA methylation at imprint regulatory regions and offspring weight at birth, 1 year and 3 years. Int J Obes (Lond) 2017; 42:587-593. [PMID: 28676681 PMCID: PMC5756131 DOI: 10.1038/ijo.2017.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/17/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Vitamin D deficiency during pregnancy is associated with poor birth outcomes in some studies, but few have examined weight beyond birth. In addition, little is known about how vitamin D influences DNA methylation of regulatory regions known to be involved in growth, as possible mediators to weight status in offspring. SUBJECTS/METHODS We conducted linear regressions to assess maternal plasma 25-hydroxyvitamin D (25(OH)D) by quartile and birth weight for gestational age z-score, 1-year weight-for-length z-score and 3-year body mass index (BMI) z-score among 476 mother/infant dyads from a prospective cohort. We assessed maternal 25(OH)D and infant DNA methylation at nine differentially methylated regions (DMRs) of genomically imprinted genes with known functions in fetal growth, including H19, IGF2, MEG3, MEG3-IG, MEST, NNAT, PEG3, PLAGL1 and SGCE/PEG10. RESULTS Mean (standard deviation, s.d.) maternal 25(OH)D was 41.1 (14.2) nmol l-m at a mean (s.d.) of 13.2 (5.5) weeks gestation. After adjustment for potential confounders, the first (Q1) and second (Q2) quartiles of 25(OH)D, compared to the fourth (Q4), were associated with lower birth weight for gestational age z-scores (-0.43 units; CI: -0.79, -0.07; P=0.02 for Q1 and -0.56 units; CI: -0.89, -0.23; P=0.001 for Q2). Q1 compared to Q4 was associated with higher 1-year weight-for-length z-scores (0.78 units; 0.08, 1.54; P=0.04) and higher 3-year BMI z-scores (0.83 units; 0.11, 0.93; P=0.02). We did not observe associations between maternal 25(OH)D and methylation for any of the nine DMRs after correcting for multiple testing. CONCLUSIONS Reduced maternal 25(OH)D was associated with lower birth weight for gestational age z-scores but higher 1-year weight-for-length and 3-year BMI z-scores in offspring. However, 25(OH)D does not appear to be operating through the regulatory sequences of the genomically imprinted genes we examined.
Collapse
|
30
|
Increased expression of toll-like receptors 2 and 9 is associated with reduced DNA methylation in spontaneous preterm labor. J Reprod Immunol 2017. [PMID: 28622534 DOI: 10.1016/j.jri.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cause of spontaneous preterm labor (sPTL) is not known, but it could be due to epigenetic alterations that increase the sensitivity of decidual tissue to inflammatory stimuli. We collected decidual tissue from women at term not in labor (TNL), women at term in labor (TL), and women with sPTL. Illumina Infinium HumanMethylation450 BeadChip analysis revealed significantly reduced DNA methylation for TLR-2 and TLR-9 in sPTL as compared to TL. Immunohistochemical staining documented significantly increased expression of TLR-2 and TLR-9 in decidual tissue of women with sPTL as compared to TL or TNL. TLR expression was not present in decidual cells, but localized to tissue leukocytes as revealed by staining for CD14, a macrophage antigen, and neutrophil elastase. Microarray analysis of inflammatory genes to assess innate immune response demonstrated marked increases in expression of inflammatory cytokines and chemokines in women with TL as compared to TNL. However, when sPTL was compared to TL, there was a further increase in inflammatory cytokines, and a remarkable increase in neutrophil chemokines. These results suggest that epigenetic mechanisms could play a role in increasing leukocyte infiltration, and increasing the sensitivity of decidual tissue to inflammatory stimuli that could precipitate labor prematurely.
Collapse
|
31
|
Barcelona de Mendoza V, Wright ML, Agaba C, Prescott L, Desir A, Crusto CA, Sun YV, Taylor JY. A Systematic Review of DNA Methylation and Preterm Birth in African American Women. Biol Res Nurs 2017; 19:308-317. [PMID: 27646016 PMCID: PMC5357599 DOI: 10.1177/1099800416669049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The causes of many cases of preterm birth (PTB) remain enigmatic. Increased understanding of how epigenetic factors are associated with health outcomes has resulted in studies examining DNA methylation (DNAm) as a contributing factor to PTB. However, few studies on PTB and DNAm have included African American women, the group with the highest rate of PTB. METHODS The objective of this review was to systematically analyze the existing studies on DNAm and PTB among African American women. RESULTS Studies ( N = 10) were limited by small sample size, cross-sectional study designs, inconsistent methodologies for epigenomic analysis, and evaluation of different tissue types across studies. African Americans comprised less than half of the sample in 50% of the studies reviewed. Despite these limitations, there is evidence for an association between DNAm patterns and PTB. CONCLUSIONS Future research on DNAm patterns and PTB should use longitudinal study designs, repeated DNAm testing, and a clinically relevant definition of PTB and should include large samples of high-risk African American women to better understand the mechanisms for PTB in this population.
Collapse
Affiliation(s)
| | | | | | | | | | - Cindy A. Crusto
- Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, University of Pretoria, Pretoria, South Africa
| | - Yan V. Sun
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Joseph RM, Korzeniewski SJ, Allred EN, O'Shea TM, Heeren T, Frazier JA, Ware J, Hirtz D, Leviton A, Kuban K, for the ELGAN Study Investigators. Extremely low gestational age and very low birthweight for gestational age are risk factors for autism spectrum disorder in a large cohort study of 10-year-old children born at 23-27 weeks' gestation. Am J Obstet Gynecol 2017; 216:304.e1-304.e16. [PMID: 27847193 PMCID: PMC5334372 DOI: 10.1016/j.ajog.2016.11.1009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/21/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND No prospective cohort study of high-risk children has used rigorous exposure assessment and optimal diagnostic procedures to examine the perinatal antecedents of autism spectrum disorder separately among those with and without cognitive impairment. OBJECTIVE We sought to identify perinatal factors associated with increased risk for autism spectrum disorder with and without intellectual disability (intelligence quotient <70) in children born extremely preterm. STUDY DESIGN This prospective multicenter (14 institutions in 5 states) birth cohort study included children born at 23-27 weeks' gestation in 2002 through 2004 who were evaluated for autism spectrum disorder and intellectual disability at age 10 years. Pregnancy information was obtained from medical records and by structured maternal interview. Cervical-vaginal "infection" refers to maternal report of bacterial infection (n = 4), bacterial vaginosis (n = 30), yeast infection (n = 62), mixed infection (n = 4), or other/unspecified infection (n = 43; eg, chlamydia, trichomonas, or herpes). We do not know the extent to which infection per se was confirmed by microbial colonization. We use the terms "fetal growth restriction" and "small for gestational age" interchangeably in light of the ongoing challenge to discern pathologically from constitutionally small newborns. Severe fetal growth restriction was defined as a birthweight Z-score for gestational age at delivery <-2 (ie, ≥2 SD below the median birthweight in a referent sample that excluded pregnancies delivered for preeclampsia or fetal indications). Participants were classified into 4 groups based on whether or not they met rigorous diagnostic criteria for autism spectrum disorder and intellectual disability (autism spectrum disorder+/intellectual disability-, autism spectrum disorder+/intellectual disability+, autism spectrum disorder-/intellectual disability+, and autism spectrum disorder-/intellectual disability-). Temporally ordered multinomial logistic regression models were used to examine the information conveyed by perinatal factors about increased risk for autism spectrum disorder and/or intellectual disability (autism spectrum disorder+/intellectual disability-, autism spectrum disorder+/intellectual disability+, and autism spectrum disorder-/intellectual disability+). RESULTS In all, 889 of 966 (92%) children recruited were assessed at age 10 years, of whom 857 (96%) were assessed for autism spectrum disorder; of these, 840 (98%) children were assessed for intellectual disability. Autism spectrum disorder+/intellectual disability- was diagnosed in 3.2% (27/840), autism spectrum disorder+/intellectual disability+ in 3.8% (32/840), and autism spectrum disorder-/intellectual disability+ in 8.5% (71/840). Maternal report of presumed cervical-vaginal infection during pregnancy was associated with increased risk of autism spectrum disorder+/intellectual disability+ (odds ratio, 2.7; 95% confidence interval, 1.2-6.4). The lowest gestational age category (23-24 weeks) was associated with increased risk of autism spectrum disorder+/intellectual disability+ (odds ratio, 2.9; 95% confidence interval, 1.3-6.6) and autism spectrum disorder+/intellectual disability- (odds ratio, 4.4; 95% confidence interval, 1.7-11). Severe fetal growth restriction was strongly associated with increased risk for autism spectrum disorder+/intellectual disability- (odds ratio, 9.9; 95% confidence interval, 3.3-30), whereas peripartum maternal fever was uniquely associated with increased risk of autism spectrum disorder-/intellectual disability+ (odds ratio, 2.9; 95% confidence interval, 1.2-6.7). CONCLUSION Our study confirms that low gestational age is associated with increased risk for autism spectrum disorder irrespective of intellectual ability, whereas severe fetal growth restriction is strongly associated with autism spectrum disorder without intellectual disability. Maternal report of cervical-vaginal infection is associated with increased risk of autism spectrum disorder with intellectual disability, and peripartum maternal fever is associated with increased risk for intellectual disability without autism spectrum disorder.
Collapse
Affiliation(s)
- Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Steven J. Korzeniewski
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Elizabeth N. Allred
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - T. Michael O'Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill NC, USA
| | - Tim Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jean A. Frazier
- University of Massachusetts Memorial Health Care and University of Massachusetts Medical School, Worcester, MA, USA
| | - Janice Ware
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah Hirtz
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
- The University of Vermont Medical Center, Burlington, VT, USA
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karl Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | | |
Collapse
|
33
|
Fuemmeler BF, Lee CT, Soubry A, Iversen ES, Huang Z, Murtha AP, Schildkraut JM, Jirtle RL, Murphy SK, Hoyo C. DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament. GENETICS & EPIGENETICS 2016; 8:59-67. [PMID: 27920589 PMCID: PMC5127604 DOI: 10.4137/geg.s40538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND DNA methylation of the differentially methylated regions (DMRs) of imprinted genes is relevant to neurodevelopment. METHODS DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behaviors and temperament (n = 158). RESULTS MEG3 DMR levels were positively associated with internalizing (β = 0.15, P = 0.044) and surgency (β = 0.19, P = 0.018) behaviors, after adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency (β = 0.28, P = 0.0003) and PEG3 was positively related to externalizing (β = 0.20, P = 0.01) and negative affectivity (β = 0.18, P = 0.02). CONCLUSION While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in regulatory regions of imprinted domains at birth and later infant temperament.
Collapse
Affiliation(s)
- Bernard F Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Chien-Ti Lee
- Department of Family Life, Brigham Young University, Provo, UT, USA
| | - Adelheid Soubry
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Amy P Murtha
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Randy L Jirtle
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.; Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, University Square, Luton, UK
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Zhong J, Xu C, Reece EA, Yang P. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol 2016; 215:368.e1-368.e10. [PMID: 26979632 PMCID: PMC5270539 DOI: 10.1016/j.ajog.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maternal diabetes increases the risk of neural tube defects in offspring. Our previous study demonstrated that the green tea polyphenol, Epigallocatechin gallate, inhibits high glucose-induced neural tube defects in cultured embryos. However, the therapeutic effect of Epigallocatechin gallate on maternal diabetes-induced neural tube defects is still unclear. OBJECTIVE We aimed to examine whether Epigallocatechin gallate treatment can reduce maternal diabetes-induced DNA methylation and neural tube defects. STUDY DESIGN Nondiabetic and diabetic pregnant mice at embryonic day 5.5 were given drinking water with or without 1 or 10 μM Epigallocatechin gallate. At embryonic day 8.75, embryos were dissected from the visceral yolk sac for the measurement of the levels and activity of DNA methyltransferases, the levels of global DNA methylation, and methylation in the CpG islands of neural tube closure essential gene promoters. embryonic day 10.5 embryos were examined for neural tube defect incidence. RESULTS Epigallocatechin gallate treatment did not affect embryonic development because embryos from nondiabetic dams treated with Epigallocatechin gallate did not exhibit any neural tube defects. Treatment with 1 μM Epigallocatechin gallate did not reduce maternal diabetes-induced neural tube defects significantly. Embryos from diabetic dams treated with 10 μM Epigallocatechin gallate had a significantly lower neural tube defect incidence compared with that of embryos without Epigallocatechin gallate treatment. Epigallocatechin gallate reduced neural tube defect rates from 29.5% to 2%, an incidence that is comparable with that of embryos from nondiabetic dams. Ten micromoles of Epigallocatechin gallate treatment blocked maternal diabetes-increased DNA methyltransferases 3a and 3b expression and their activities, leading to the suppression of global DNA hypermethylation. Additionally, 10 μM Epigallocatechin gallate abrogated maternal diabetes-increased DNA methylation in the CpG islands of neural tube closure essential genes, including Grhl3, Pax3, and Tulp3. CONCLUSION Epigallocatechin gallate reduces maternal diabetes-induced neural tube defects formation and blocks the enhanced expression and activity of DNA methyltransferases, leading to the suppression of DNA hypermethylation and the restoration of neural tube closure essential gene expression. These observations suggest that Epigallocatechin gallate supplements could mitigate the teratogenic effects of hyperglycemia on the developing embryo and prevent diabetes-induced neural tube defects.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Cheng Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
35
|
Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril 2016; 106:739-748.e3. [PMID: 27178226 DOI: 10.1016/j.fertnstert.2016.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). DESIGN Case control. SETTING Research institution. PATIENT(S) Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). INTERVENTION(S) Placentas were obtained at birth for biopsy and cord blood extraction. MAIN OUTCOME MEASURE(S) DNA methylation and expression of imprinted genes. RESULT(S) DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). CONCLUSION(S) Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development.
Collapse
Affiliation(s)
- Rebecca N Vincent
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke D Gooding
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Knight AK, Smith AK. Epigenetic Biomarkers of Preterm Birth and Its Risk Factors. Genes (Basel) 2016; 7:E15. [PMID: 27089367 PMCID: PMC4846845 DOI: 10.3390/genes7040015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 01/21/2023] Open
Abstract
A biomarker is a biological measure predictive of a normal or pathogenic process or response. Biomarkers are often useful for making clinical decisions and determining treatment course. One area where such biomarkers would be particularly useful is in identifying women at risk for preterm delivery and related pregnancy complications. Neonates born preterm have significant morbidity and mortality, both in the perinatal period and throughout the life course, and identifying women at risk of delivering preterm may allow for targeted interventions to prevent or delay preterm birth (PTB). In addition to identifying those at increased risk for preterm birth, biomarkers may be able to distinguish neonates at particular risk for future complications due to modifiable environmental factors, such as maternal smoking or alcohol use during pregnancy. Currently, there are no such biomarkers available, though candidate gene and epigenome-wide association studies have identified DNA methylation differences associated with PTB, its risk factors and its long-term outcomes. Further biomarker development is crucial to reducing the health burden associated with adverse intrauterine conditions and preterm birth, and the results of recent DNA methylation studies may advance that goal.
Collapse
Affiliation(s)
- Anna K Knight
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA.
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA.
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Manuck TA. The genomics of prematurity in an era of more precise clinical phenotyping: A review. Semin Fetal Neonatal Med 2016; 21:89-93. [PMID: 26851828 PMCID: PMC4798871 DOI: 10.1016/j.siny.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spontaneous preterm birth is a major public health problem, with a clear genetic component. Genetic association studies have evolved substantially in recent years, moving away from the traditional candidate gene analyses to newer approaches utilizing sophisticated analysis platforms to examine sequencing data, and shifting towards functional studies including methylation analysis. It is becoming increasingly evident that careful clinical phenotyping is crucial to high quality genetic association studies regardless of the assay or platform being used. Nonetheless, genetic studies of prematurity are hampered by numerous challenges including small sample sizes, incomplete phenotying, population stratification, and multiple comparisons. As the costs of sequencing and functional analyses continue to decrease, unbiased genome-wide assays will be more widely available. Researchers have met improved success recently when critically applying clinical phenotyping knowledge to group women prior to analyzing genotyping results. Eventually, as the analytic approaches evolve, it is likely that this methodology (combining precisely clinically phenotyped subjects with genome-wide data) will provide key information regarding the pathophysiology of prematurity, and provide potential new avenues for exploring innovative therapeutic strategies.
Collapse
Affiliation(s)
- Tracy A. Manuck
- Department of Obstetrics and Gynecology, Division of Maternal–Fetal Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA,Department of Obstetrics and Gynecology, Division of Maternal–Fetal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA,Address: UNC Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, 3010 Old Clinic Building, CB#7516, Chapel Hill, NC 27599-7516, USA. Tel.: +1 919-966-1601; fax: +1 919-966-6377.
| |
Collapse
|
38
|
Chen X, Bai G, Scholl TO. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes. ACTA ACUST UNITED AC 2016; 3. [PMID: 27500275 PMCID: PMC4975560 DOI: 10.4172/2376-127x.1000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in particular.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Theresa O Scholl
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
39
|
Lin VW, Baccarelli AA, Burris HH. Epigenetics-a potential mediator between air pollution and preterm birth. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv008. [PMID: 26900485 PMCID: PMC4760696 DOI: 10.1093/eep/dvv008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/29/2023]
Abstract
Preterm birth is a major cause of infant morbidity and mortality and a potential risk factor for adult chronic disease. With over 15 million infants born preterm worldwide each year, preterm birth poses a global health concern. There is a possible association between air pollution and preterm birth, though studies have been inconsistent, likely due to variation in study design. How air pollution induces health effects is uncertain; however, studies have repeatedly demonstrated the effects of air pollution on epigenetic modifications. More recent evidence suggests that epigenetics may, in turn, be linked to preterm birth. Discovery of environmentally modifiable epigenetic processes connected to preterm birth may help to identify women at risk of preterm birth, and ultimately lead to development of new preterm birth prevention measures.
Collapse
Affiliation(s)
- Vania W. Lin
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064 USA
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| |
Collapse
|
40
|
Donzelli G, Carnesecchi G, Amador C, di Tommaso M, Filippi L, Caporali R, Codullo V, Riccieri V, Valesini G, Gabrielli A, Bagnati R, McGreevy KS, De Masi S, Matucci Cerinic M. Fetal programming and systemic sclerosis. Am J Obstet Gynecol 2015; 213:839.e1-8. [PMID: 26232509 DOI: 10.1016/j.ajog.2015.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 06/16/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study investigated whether birthweight is linked to an increased risk of the development of systemic sclerosis. STUDY DESIGN This was a multicenter case-control study with perinatal data that were obtained from 332 cases with systemic sclerosis and 243 control subjects. Birthweight was treated as a dichotomous variable (<2500 g vs ≥2500 g); low birthweight was defined as a weight <2500 g; small for gestational age was defined as birthweight <10th percentile for gestational age adjusted for sex. The relationship between systemic sclerosis and both low birthweight and small for gestational age was expressed with the crude (univariate analysis) and adjusted (multivariate analysis) odds ratio (OR). RESULTS Significantly increased ORs were observed in the univariate analysis for low birthweight (OR, 2.59; 95% confidence interval [CI], 1.39-5.05) and small for gestational age (OR, 2.60; 95% CI, 1.34-5.32) subjects. Similarly increased risks were confirmed for both conditions in the multivariate analysis (OR, 3.93; 95% CI, 1.92-8.07; and OR, 2.58; 95% CI, 1.28-5.19), respectively. CONCLUSION Low birthweight and small for gestational age at birth are risk factors for the adult onset of systemic sclerosis.
Collapse
Affiliation(s)
- Gianpaolo Donzelli
- Department of Fetal-Neonatal Medicine, Meyer Children's Hospital, University of Florence, Florence, Italy.
| | - Giulia Carnesecchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Carolina Amador
- Department of Fetal-Neonatal Medicine, Meyer Children's Hospital, University of Florence, Florence, Italy
| | | | - Luca Filippi
- Department of Fetal-Neonatal Medicine, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Roberto Caporali
- Department of Rheumatology, University and IRCCS Foundation, Policlinico San Matteo, Pavia, Italy
| | - Veronica Codullo
- Department of Rheumatology, University and IRCCS Foundation, Policlinico San Matteo, Pavia, Italy
| | - Valeria Riccieri
- Department of Internal Medicine and Clinical Specialties, Rheumatology Unit, "La Sapienza" University, Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Clinical Specialties, Rheumatology Unit, "La Sapienza" University, Rome, Italy
| | - Armando Gabrielli
- Institute of General Clinical Medicine, Hematology, and Clinical Immunology, University of Ancona, Ancona, Italy
| | - Roberta Bagnati
- Institute of General Clinical Medicine, Hematology, and Clinical Immunology, University of Ancona, Ancona, Italy
| | - Kathleen S McGreevy
- Research, Innovation, and International Relations Office, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Salvatore De Masi
- Department of Fetal-Neonatal Medicine, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Murphy SK, Erginer E, Huang Z, Visco Z, Hoyo C. Genotype-Epigenotype Interaction at the IGF2 DMR. Genes (Basel) 2015; 6:777-89. [PMID: 26343731 PMCID: PMC4584329 DOI: 10.3390/genes6030777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 11/16/2022] Open
Abstract
Paternally expressed Insulin-like Growth Factor II (IGF2) encodes a gene whose protein product functions as a potent growth mitogen. Overexpression of IGF2 has been implicated in a wide number of disorders and diseases. IGF2 is regulated in part by differential methylation of the two parentally derived alleles. The differentially methylated region (DMR) located upstream of the imprinted promoters of IGF2 exhibits plasticity under environmental stress and is hypomethylated in several types of cancer. Through bisulfite pyrosequencing and confirmation by nucleotide sequencing, we discovered a CpG to CpC transversion that results in hypomethylation of one of the three CpGs comprising this DMR. The presence of the polymorphism introduces a genetic rather than an environmentally-driven epigenetic source of hypomethylation that is additive to non-genetic sources.
Collapse
Affiliation(s)
- Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Box 91012, B223 LSRC Building, Durham, NC 27708, USA.
| | - Erin Erginer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Box 91012, B223 LSRC Building, Durham, NC 27708, USA.
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Box 91012, B223 LSRC Building, Durham, NC 27708, USA.
| | - Zachary Visco
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Box 91012, B223 LSRC Building, Durham, NC 27708, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
42
|
Sánchez-Hernández D, Poon AN, Kubant R, Kim H, Huot PSP, Cho CE, Pannia E, Reza-López SA, Pausova Z, Bazinet RP, Anderson GH. High vitamin A intake during pregnancy modifies dopaminergic reward system and decreases preference for sucrose in Wistar rat offspring. J Nutr Biochem 2015; 27:104-11. [PMID: 26456562 DOI: 10.1016/j.jnutbio.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022]
Abstract
High multivitamin (HV) content in gestational diets has long-term metabolic effects in rat offspring. These changes are associated with in utero modifications of gene expression in hypothalamic food intake regulation. However, the role of fat-soluble vitamins in mediating these effects has not been explored. Vitamin A is a plausible candidate due to its role in gene methylation. Vitamin A intake above requirements during pregnancy affects the development of neurocircuitries involved in food intake and reward regulation. Pregnant Wistar rats were fed AIN-93G diets with the following content: recommended multivitamins (1-fold multivitamins: RV), high vitamin A (10-fold vitamin A: HA) or HV with only recommended vitamin A (10-fold multivitamins, 1-fold vitamin A: HVRA). Body weight, food intake and preference, mRNA expression and DNA methylation of hippocampal dopamine-related genes were assessed in male offspring brains at different developmental windows: birth, weaning and 14weeks postweaning. HA offspring had changes in dopamine-related gene expression at all developmental windows and DNA hypermethylation in the dopamine receptor 2 promoter region compared to RV offspring. Furthermore, HA diet lowered sucrose preference but had no effect on body weight and expression of hypothalamic genes. In contrast, HVRA offspring showed only at adulthood changes in expression of hippocampal genes and a modest effect on hypothalamic genes. High vitamin A intake alone in gestational diets has long-lasting programming effects on the dopaminergic system that are further translated into decreased sucrose preference but not food intake.
Collapse
Affiliation(s)
- Diana Sánchez-Hernández
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Abraham N Poon
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Hwanki Kim
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Pedro S P Huot
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Clara E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Sandra A Reza-López
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Zdenka Pausova
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2; Hospital for Sick Children, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2; Department of Physiology, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
43
|
Vidal AC, Semenova V, Darrah T, Vengosh A, Huang Z, King K, Nye MD, Fry R, Skaar D, Maguire R, Murtha A, Schildkraut J, Murphy S, Hoyo C. Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol Toxicol 2015; 16:20. [PMID: 26173596 PMCID: PMC4502530 DOI: 10.1186/s40360-015-0020-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022] Open
Abstract
Background Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationships remain limited. Methods We examined whether maternal Cd levels during early pregnancy were associated with offspring DNA methylation at regulatory sequences of genomically imprinted genes and weight at birth, and whether Fe and Zn altered these associations. Cd, Fe and Zn were measured in maternal blood of 319 women ≤12 weeks gestation. Offspring umbilical cord blood leukocyte DNA methylation at regulatory differentially methylated regions (DMRs) of 8 imprinted genes was measured using bisulfite pyrosequencing. Regression models were used to examine the relationships among Cd, Fe, Zn, and DMR methylation and birth weight. Results Elevated maternal blood Cd levels were associated with lower birth weight (p = 0.03). Higher maternal blood Cd levels were also associated with lower offspring methylation at the PEG3 DMR in females (β = 0.55, se = 0.17, p = 0.05), and at the MEG3 DMR in males (β = 0.72, se = 0.3, p = 0.08), however the latter association was not statistically significant. Associations between Cd and PEG3 and PLAGL1 DNA methylation were stronger in infants born to women with low concentrations of Fe (p < 0.05). Conclusions Our data suggest the association between pre-natal Cd and offspring DNA methylation at regulatory sequences of imprinted genes may be sex- and gene-specific. Essential metals such as Zn may mitigate DNA methylation response to Cd exposure. Larger studies are required.
Collapse
Affiliation(s)
- Adriana C Vidal
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Viktoriya Semenova
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Thomas Darrah
- Division of Water, Climate, and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Research Drive, Durham, NC, 27710, USA.
| | - Zhiqing Huang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA.
| | - Katherine King
- Environmental Public Health Division, U.S. Environmental Protection Agency, Chapel Hill, NC, 27599, USA. .,Department of Community and Family Medicine and Duke Cancer Institute, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Monica D Nye
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA. .,University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, 450 West Drive, Chapel Hill, NC, 27599, USA.
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rachel Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Amy Murtha
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Joellen Schildkraut
- Department of Community and Family Medicine and Duke Cancer Institute, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Susan Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
44
|
Metsalu T, Viltrop T, Tiirats A, Rajashekar B, Reimann E, Kõks S, Rull K, Milani L, Acharya G, Basnet P, Vilo J, Mägi R, Metspalu A, Peters M, Haller-Kikkatalo K, Salumets A. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics 2015; 9:1397-409. [PMID: 25437054 DOI: 10.4161/15592294.2014.970052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle.
Collapse
Key Words
- ASE, allele-specific expression
- FDR, false discovery rate
- GEO, Gene Expression Omnibus
- IUGR, intrauterine growth restriction
- MAF, minor allele frequency
- MHC, major histocompatibility complex
- NK cells, natural killer cells
- RNA sequencing
- RNA-Seq, RNA-sequencing
- RPKM, reads per kilobase per million
- UCSC, University of California Santa Cruz
- WT, whole-transcriptome
- allele-specific expression
- imprinting
- placenta
- random monoallelic expression
- short read mapping
Collapse
Affiliation(s)
- Tauno Metsalu
- a Institute of Computer Science ; University of Tartu ; Tartu , Estonia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Parets SE, Conneely KN, Kilaru V, Menon R, Smith AK. DNA methylation provides insight into intergenerational risk for preterm birth in African Americans. Epigenetics 2015; 10:784-92. [PMID: 26090903 DOI: 10.1080/15592294.2015.1062964] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
African Americans are at increased risk for spontaneous preterm birth (PTB). Though PTB is heritable, genetic studies have not identified variants that account for its intergenerational risk, prompting the hypothesis that epigenetic factors may also contribute. The objective of this study was to evaluate DNA methylation from maternal leukocytes to identify patterns specific to PTB and its intergenerational risk. DNA from peripheral leukocytes from African American women that delivered preterm (24-34 weeks; N = 16) or at term (39-41 weeks; N = 24) was assessed for DNA methylation using the HumanMethylation450 BeadChip. In maternal samples, 17,829 CpG sites associated with PTB, but no CpG site remained associated after correction for multiple comparisons. Examination of paired maternal-fetal samples identified 5,171 CpG sites in which methylation of maternal samples correlated with methylation of her respective fetus (FDR < 0.05). These correlated sites were enriched for association with PTB in maternal leukocytes. The majority of correlated CpG sites could be attributed to one or more genetic variants. They were also significantly more likely to be in genes involved in metabolic, cardiovascular, and immune pathways, suggesting a role for genetic and environmental contributions to PTB risk and chronic disease. The results of this study may provide insight into the factors underlying intergenerational risk for PTB and its consequences.
Collapse
Affiliation(s)
- Sasha E Parets
- a Genetics and Molecular Biology Program; Emory University ; Atlanta , GA USA
| | | | | | | | | |
Collapse
|
46
|
Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015; 145:1109S-1115S. [PMID: 25833887 PMCID: PMC4410493 DOI: 10.3945/jn.114.194639] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk of chronic disease development. A few studies have begun to investigate whether dietary nutrients play a beneficial role by modifying or reversing epigenetically induced inflammation. Results of these studies show that nutrients modify epigenetic pathways. However, little is known about how nutrients modulate inflammation by regulating immune cell function and/or immune cell differentiation via epigenetic pathways. This overview will provide information about the current understanding of the role of nutrients in the epigenetic control mechanisms of immune function.
Collapse
Affiliation(s)
- Kate J Claycombe
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Othman Ghribi
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| |
Collapse
|
47
|
McCullough LE, Mendez MA, Miller EE, Murtha AP, Murphy SK, Hoyo C. Associations between prenatal physical activity, birth weight, and DNA methylation at genomically imprinted domains in a multiethnic newborn cohort. Epigenetics 2015; 10:597-606. [PMID: 25928716 DOI: 10.1080/15592294.2015.1045181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Birth weight is a commonly used indicator of the fetal environment and a predictor of future health outcomes. While the etiology of birth weight extremes is likely multifactorial, epidemiologic data suggest that prenatal physical activity (PA) may play an important role. The mechanisms underlying this association remain unresolved, although epigenetics has been proposed. This study aimed to estimate associations between prenatal PA, birth weight, and newborn DNA methylation levels at differentially methylated regions (DMRs) regulating 4 imprinted genes known to be important in fetal development. Study participants (N = 1281) were enrolled as part of the Newborn Epigenetics Study. Prenatal PA was ascertained using the Pregnancy Physical Activity Questionnaire, and birth weight data obtained from hospital records. Among 484 term mother-infant pairs, imprinted gene methylation levels were measured at DMRs using bisulfite pyrosequencing. Generalized linear and logistic regression models were used to estimate associations. After adjusting for preterm birth and race/ethnicity, we found that infants born to mothers in the highest quartile of total non-sedentary time had lower birth weight compared to infants of mothers in the lowest quartile (β = -81.16, SE = 42.02, P = 0.05). These associations appeared strongest among male infants (β = -125.40, SE = 58.10, P = 0.03). Methylation at the PLAGL1 DMR was related to total non-sedentary time (P < 0.05). Our findings confirm that prenatal PA is associated with reduced birth weight, and is the first study to support a role for imprinted gene plasticity in these associations. Larger studies are required.
Collapse
Key Words
- BMI, body mass index
- BW, birth weight
- DMR, differentially methylated regions
- DOHaD, developmental origins of health and disease
- HIV, human immunodeficiency virus
- IGF, insulin-like growth factor
- LBW, low birth weight
- LMP, last menstrual period
- MET, metabolic equivalent
- NEST, Newborn Epigenetic Study
- PA, physical activity
- SE, standard error.
- birth weight
- epidemiology
- epigenetics
- imprinted genes
- methylation
- physical activity
Collapse
Affiliation(s)
- Lauren E McCullough
- a Department of Epidemiology; University of North Carolina Chapel Hill ; Chapel Hill , NC , USA
| | | | | | | | | | | |
Collapse
|
48
|
Provenzi L, Fumagalli M, Sirgiovanni I, Giorda R, Pozzoli U, Morandi F, Beri S, Menozzi G, Mosca F, Borgatti R, Montirosso R. Pain-related stress during the Neonatal Intensive Care Unit stay and SLC6A4 methylation in very preterm infants. Front Behav Neurosci 2015; 9:99. [PMID: 25941480 PMCID: PMC4403508 DOI: 10.3389/fnbeh.2015.00099] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/04/2015] [Indexed: 11/13/2022] Open
Abstract
Very preterm (VPT) infants need long-lasting hospitalization in the Neonatal Intensive Care Unit (NICU) during which they are daily exposed to pain-related stress. Alterations of DNA methylation at the promoter region of the SLC6A4 have been associated with early adverse experiences in infants. The main aim of the present work was to investigate the association between level of exposure to pain-related stress during hospitalization and changes in SLC6A4 DNA methylation at NICU discharge in VPT infants. In order to exclude the potential effect of birth status (i.e., preterm vs. full-term birth) on SLC6A4 methylation, we preliminarily assessed SLC6A4 epigenetic differences between VPT and full-term (FT) infants at birth. Fifty-six VPT and thirty-two FT infants participated in the study. The level of exposure to pain-related stress was quantified on the basis of the amount of skin-breaking procedures to which they were exposed. VPT infants were divided in two sub-groups: low-pain exposure (LPE, N = 25) and high-pain exposure (HPE, N = 31). DNA methylation was evaluated at birth for both VPT and FT infants, assessing 20 CpG sites within the SLC6A4 promoter region. The same CpG sites were re-evaluated for variations in DNA methylation at NICU discharge in LPE and HPE VPT infants. No differences in SLC6A4 CpG sites' methylation emerged between FT and VPT infants at birth. Methylation at CpG sites 5 and 6 significantly increased from birth to NICU discharge only for HPE VPT infants. Findings show that preterm birth per se is not associated with epigenetic alterations of the SLC6A4, whereas higher levels of pain-related stress exposure during NICU stay might alter the transcriptional functionality of the serotonin transporter gene.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Center for the Study of Social Emotional Development of the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | - Monica Fumagalli
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Ida Sirgiovanni
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | - Uberto Pozzoli
- Bioinformatic Lab, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | | | - Silvana Beri
- Molecular Biology Lab, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | - Giorgia Menozzi
- Bioinformatic Lab, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | - Fabio Mosca
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| | - Rosario Montirosso
- 0-3 Center for the Study of Social Emotional Development of the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini (LC), Italy
| |
Collapse
|
49
|
Rubens CE, Sadovsky Y, Muglia L, Gravett MG, Lackritz E, Gravett C. Prevention of preterm birth: Harnessing science to address the global epidemic. Sci Transl Med 2014; 6:262sr5. [DOI: 10.1126/scitranslmed.3009871] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Vidal AC, Benjamin Neelon SE, Liu Y, Tuli AM, Fuemmeler BF, Hoyo C, Murtha AP, Huang Z, Schildkraut J, Overcash F, Kurtzberg J, Jirtle RL, Iversen ES, Murphy SK. Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. GENETICS & EPIGENETICS 2014; 6:37-44. [PMID: 25512713 PMCID: PMC4251062 DOI: 10.4137/geg.s18067] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
In infants exposed to maternal stress in utero, phenotypic plasticity through epigenetic events may mechanistically explain increased risk of preterm birth (PTB), which confers increased risk for neurodevelopmental disorders, cardiovascular disease, and cancers in adulthood. We examined associations between prenatal maternal stress and PTB, evaluating the role of DNA methylation at imprint regulatory regions. We enrolled women from prenatal clinics in Durham, NC. Stress was measured in 537 women at 12 weeks of gestation using the Perceived Stress Scale. DNA methylation at differentially methylated regions (DMRs) associated with H19, IGF2, MEG3, MEST, SGCE/PEG10, PEG3, NNAT, and PLAGL1 was measured from peripheral and cord blood using bisulfite pyrosequencing in a sub-sample of 79 mother–infant pairs. We examined associations between PTB and stress and evaluated differences in DNA methylation at each DMR by stress. Maternal stress was not associated with PTB (OR = 0.98; 95% CI, 0.40–2.40; P = 0.96), after adjustment for maternal body mass index (BMI), income, and raised blood pressure. However, elevated stress was associated with higher infant DNA methylation at the MEST DMR (2.8% difference, P < 0.01) after adjusting for PTB. Maternal stress may be associated with epigenetic changes at MEST, a gene relevant to maternal care and obesity. Reduced prenatal stress may support the epigenomic profile of a healthy infant.
Collapse
Affiliation(s)
- Adriana C Vidal
- Department of Obstetrics and Gynecology, Division of Epidemiology, Duke University School of Medicine, Durham, NC, USA
| | - Sara E Benjamin Neelon
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ying Liu
- Duke University School of Medicine, Durham, NC, USA
| | - Abbas M Tuli
- Duke University School of Medicine, Durham, NC, USA
| | - Bernard F Fuemmeler
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA. ; Department of Psychology and Neurosciences, Duke University, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Obstetrics and Gynecology, Division of Epidemiology, Duke University School of Medicine, Durham, NC, USA. ; Duke Comprehensive Cancer Center, Duke University School of Medicine, Durham, NC, USA
| | - Amy P Murtha
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Joellen Schildkraut
- Department of Psychology and Neurosciences, Duke University, Durham, NC, USA. ; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Francine Overcash
- Department of Obstetrics and Gynecology, Division of Epidemiology, Duke University School of Medicine, Durham, NC, USA
| | - Joanne Kurtzberg
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA. ; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Edwin S Iversen
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA. ; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|