1
|
Vallet SD, Berthollier C, Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am J Physiol Cell Physiol 2022; 322:C1271-C1278. [PMID: 35544698 DOI: 10.1152/ajpcell.00095.2022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides, which are covalently attached to core proteins (except for hyaluronan) to form proteoglycans. They play key roles in the organization of the extracellular matrix, and at the cell surface where they contribute to the regulation of cell signaling and of cell adhesion. To explore the mechanisms and pathways underlying their functions, we have generated an expanded dataset of 4290 interactions corresponding to 3464 unique GAG-binding proteins, four times more than the first version of the GAG interactome (Vallet and Ricard-Blum, 2021 J Histochem Cytochem 69:93-104). The increased size of the GAG network is mostly due to the addition of GAG-binding proteins captured from cell lysates and biological fluids by affinity chromatography and identified by mass spectrometry. We review here the interaction repertoire of natural GAGs and of synthetic sulfated hyaluronan, the specificity and molecular functions of GAG-binding proteins, and the biological processes and pathways they are involved in. This dataset is also used to investigate the differences between proteins binding to iduronic acid-containing GAGs (dermatan sulfate and heparin/heparan sulfate) and those interacting with GAGs lacking iduronic acid (chondroitin sulfate, hyaluronan, and keratan sulfate).
Collapse
|
2
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A master autoantigen-ome links alternative splicing, female predilection, and COVID-19 to autoimmune diseases. J Transl Autoimmun 2022; 5:100147. [PMID: 35237749 PMCID: PMC8872718 DOI: 10.1016/j.jtauto.2022.100147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare adverse effects of the currently available mRNA and viral vector-based COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine BCMB Graduate Program in Biomedical Sciences, New York, NY, USA
| |
Collapse
|
4
|
Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, Hanauer DA, James JA, Kanthi Y, Ladd V, Mehta P, Ring AM, Sanz I, Selmi C, Tracy RP, Utz PJ, Wagner CA, Wang JY, McCune WJ. The intersection of COVID-19 and autoimmunity. J Clin Invest 2021; 131:e154886. [PMID: 34710063 PMCID: PMC8670833 DOI: 10.1172/jci154886] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute COVID-19, caused by SARS-CoV-2, is characterized by diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, and often associated with varied longer-term sequelae. Over the past 18 months, it has become apparent that inappropriate immune responses contribute to the pathogenesis of severe COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently gathered at an American Autoimmune Related Diseases Association Noel R. Rose Colloquium to address the current state of knowledge regarding two important questions: Does established autoimmunity predispose to severe COVID-19? And, at the same time, can SARS-CoV-2 infection trigger de novo autoimmunity? Indeed, work to date has demonstrated that 10% to 15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I interferons, suggesting that preexisting autoimmunity underlies severe disease in some patients. Other studies have identified functional autoantibodies following infection with SARS-CoV-2, such as those that promote thrombosis or antagonize cytokine signaling. These autoantibodies may arise from a predominantly extrafollicular B cell response that is more prone to generating autoantibody-secreting B cells. This Review highlights the current understanding, evolving concepts, and unanswered questions provided by this unique opportunity to determine mechanisms by which a viral infection can be exacerbated by, and even trigger, autoimmunity. The potential role of autoimmunity in post-acute sequelae of COVID-19 is also discussed.
Collapse
Affiliation(s)
- Jason S. Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roberto Caricchio
- Section of Rheumatology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Alexis J. Combes
- Department of Pathology, ImmunoX Initiative, UCSF Immunoprofiler Initiative, UCSF CoLabs, UCSF, San Francisco, California, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Northwell Health’s Feinstein Institute for Medical Research, New York, New York, USA
| | - Sharon E. Fox
- Pathology and Laboratory Medicine Service, Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, USA
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David A. Hanauer
- Department of Pediatrics and School of Information, University of Michigan, Ann Arbor, Michigan, USA
| | - Judith A. James
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yogendra Kanthi
- National Heart, Lung, and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Virginia Ladd
- American Autoimmune Related Diseases Association Inc., Eastpointe, Michigan, USA
| | - Puja Mehta
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ignacio Sanz
- Division of Rheumatology, Emory University, Atlanta, Georgia, USA
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital–Scientific Institute for Research, Hospitalization and Healthcare, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Paul J. Utz
- Division of Immunology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Catriona A. Wagner
- American Autoimmune Related Diseases Association Inc., Eastpointe, Michigan, USA
| | | | - William J. McCune
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
6
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile from Jurkat T-Lymphoblasts Provides a Molecular Guide for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.05.451199. [PMID: 34729561 PMCID: PMC8562547 DOI: 10.1101/2021.07.05.451199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to understand autoimmune phenomena contributing to the pathophysiology of COVID-19 and post-COVID syndrome, we have been profiling autoantigens (autoAgs) from various cell types. Although cells share numerous autoAgs, each cell type gives rise to unique COVID-altered autoAg candidates, which may explain the wide range of symptoms experienced by patients with autoimmune sequelae of SARS-CoV-2 infection. Based on the unifying property of affinity between autoantigens (autoAgs) and the glycosaminoglycan dermatan sulfate (DS), this paper reports 140 candidate autoAgs identified from proteome extracts of human Jurkat T-cells, of which at least 105 (75%) are known targets of autoantibodies. Comparison with currently available multi-omic COVID-19 data shows that 125 (89%) of DS-affinity proteins are altered at protein and/or RNA levels in SARS-CoV-2-infected cells or patients, with at least 94 being known autoAgs in a wide spectrum of autoimmune diseases and cancer. Protein alterations by ubiquitination and phosphorylation in the viral infection are major contributors of autoAgs. The autoAg protein network is significantly associated with cellular response to stress, apoptosis, RNA metabolism, mRNA processing and translation, protein folding and processing, chromosome organization, cell cycle, and muscle contraction. The autoAgs include clusters of histones, CCT/TriC chaperonin, DNA replication licensing factors, proteasome and ribosome proteins, heat shock proteins, serine/arginine-rich splicing factors, 14-3-3 proteins, and cytoskeletal proteins. AutoAgs such as LCP1 and NACA that are altered in the T cells of COVID patients may provide insight into T-cell responses in the viral infection and merit further study. The autoantigen-ome from this study contributes to a comprehensive molecular map for investigating acute, subacute, and chronic autoimmune disorders caused by SARS-CoV-2.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
7
|
Lee J, Rho JH, Roehrl MH, Wang JY. Dermatan Sulfate Is a Potential Regulator of IgH via Interactions With Pre-BCR, GTF2I, and BiP ER Complex in Pre-B Lymphoblasts. Front Immunol 2021; 12:680212. [PMID: 34113352 PMCID: PMC8185350 DOI: 10.3389/fimmu.2021.680212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, United States
| | - Jung-hyun Rho
- MP Biomedicals New Zealand Limited, Auckland, New Zealand
| | - Michael H. Roehrl
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | |
Collapse
|
8
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021; 120:102644. [PMID: 33971585 PMCID: PMC8075847 DOI: 10.1016/j.jaut.2021.102644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into “long COVID” and related autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
9
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.05.438500. [PMID: 33851168 PMCID: PMC8043459 DOI: 10.1101/2021.04.05.438500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs. These proteins are associated with gene expression, mRNA processing, mRNA splicing, translation, protein folding, vesicles, and chromosome organization. Numerous nuclear autoAgs were identified, including both classical ANAs and ENAs of systemic autoimmune diseases and unique autoAgs involved in the DNA replication fork, mitotic cell cycle, or telomerase maintenance. We also identified many uncommon autoAgs involved in nucleic acid and peptide biosynthesis and nucleocytoplasmic transport, such as aminoacyl-tRNA synthetases. In addition, this study found autoAgs that potentially interact with multiple SARS-CoV-2 Nsp and Orf components, including CCT/TriC chaperonin, insulin degrading enzyme, platelet-activating factor acetylhydrolase, and the ezrin-moesin-radixin family. Furthermore, B-cell-specific IgM-associated ER complex (including MBZ1, BiP, heat shock proteins, and protein disulfide-isomerases) is enriched by DS-affinity and up-regulated in B-cells of COVID-19 patients, and a similar IgH-associated ER complex was also identified in autoreactive pre-B1 cells in our previous study, which suggests a role of autoreactive B1 cells in COVID-19 that merits further investigation. In summary, this study demonstrates that virally infected cells are characterized by alterations of proteins with propensity to become autoAgs, thereby providing a possible explanation for infection-induced autoimmunity. The COVID autoantigen-ome provides a valuable molecular resource and map for investigation of COVID-related autoimmune sequelae and considerations for vaccine design.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
10
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
12
|
DEAD-box RNA helicase protein DDX21 as a prognosis marker for early stage colorectal cancer with microsatellite instability. Sci Rep 2020; 10:22085. [PMID: 33328538 PMCID: PMC7745018 DOI: 10.1038/s41598-020-79049-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022] Open
Abstract
DEAD-box RNA helicase DDX21 (also named nucleolar RNA helicase 2) is a nuclear autoantigen with undefined roles in cancer. To explore possible roles of autoimmune recognition in cancer immunity, we examined DDX21 protein expression in colorectal cancer tissue and its association with patient clinical outcomes. Unbiased deep proteomic profiling of two independent colorectal cancer cohorts using mass spectrometry showed that DDX21 protein was significantly upregulated in cancer relative to benign mucosa. We then examined DDX21 protein expression in a validation group of 710 patients, 619 of whom with early stage and 91 with late stage colorectal cancers. DDX21 was detected mostly in the tumor cell nuclei, with high expression in some mitotic cells. High levels of DDX21 protein were found in 28% of stage I, 21% of stage II, 30% of stage III, and 32% of stage IV colorectal cancer cases. DDX21 expression levels correlated with non-mucinous histology in early stage cancers but not with other clinicopathological features such as patient gender, age, tumor location, tumor grade, or mismatch repair status in any cancer stage. Kaplan-Meier analyses revealed that high DDX21 protein levels was associated with longer survival in patients with early stage colorectal cancer, especially longer disease-free survival in patients with microsatellite instability (MSI) cancers, but no such correlations were found for the microsatellite stable subtype or late stage colorectal cancer. Univariate and multivariate analyses also identified high DDX21 protein expression as an independent favorable prognostic marker for early stage MSI colorectal cancer.
Collapse
|
13
|
Roehrl MH, Roehrl VB, Wang JY. Proteome-based pathology: the next frontier in precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 6:1-4. [PMID: 33768159 DOI: 10.1080/23808993.2021.1854611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
14
|
Wang JY, Zhang W, Rho JH, Roehrl MW, Roehrl MH. A proteomic repertoire of autoantigens identified from the classic autoantibody clinical test substrate HEp-2 cells. Clin Proteomics 2020; 17:35. [PMID: 32973414 PMCID: PMC7507713 DOI: 10.1186/s12014-020-09298-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoantibodies are a hallmark of autoimmune diseases. Autoantibody screening by indirect immunofluorescence staining of HEp-2 cells with patient sera is a current standard in clinical practice. Differential diagnosis of autoimmune disorders is based on commonly recognizable nuclear and cytoplasmic staining patterns. In this study, we attempted to identify as many autoantigens as possible from HEp-2 cells using a unique proteomic DS-affinity enrichment strategy. METHODS HEp-2 cells were cultured and lysed. Total proteins were extracted from cell lysate and fractionated with DS-Sepharose resins. Proteins were eluted with salt gradients, and fractions with low to high affinity were collected and sequenced by mass spectrometry. Literature text mining was conducted to verify the autoantigenicity of each protein. Protein interaction network and pathway analyses were performed on all identified proteins. RESULTS This study identified 107 proteins from fractions with low to high DS-affinity. Of these, 78 are verified autoantigens with previous reports as targets of autoantibodies, whereas 29 might be potential autoantigens yet to be verified. Among the 107 proteins, 82 can be located to nucleus and 15 to the mitotic cell cycle, which may correspond to the dominance of nuclear and mitotic staining patterns in HEp-2 test. There are 55 vesicle-associated proteins and 12 ribonucleoprotein granule proteins, which may contribute to the diverse speckled patterns in HEp-2 stains. There are also 32 proteins related to the cytoskeleton. Protein network analysis indicates that these proteins have significantly more interactions among themselves than would be expected of a random set, with the top 3 networks being mRNA metabolic process regulation, apoptosis, and DNA conformation change. CONCLUSIONS This study provides a proteomic repertoire of confirmed and potential autoantigens for future studies, and the findings are consistent with a mechanism for autoantigenicity: how self-molecules may form molecular complexes with DS to elicit autoimmunity. Our data contribute to the molecular etiology of autoimmunity and may deepen our understanding of autoimmune diseases.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jung-hyun Rho
- MP Biomedicals New Zealand Limited, Auckland, New Zealand
| | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
15
|
Zhang W, Rho JH, Roehrl MH, Wang JY. A comprehensive autoantigen-ome of autoimmune liver diseases identified from dermatan sulfate affinity enrichment of liver tissue proteins. BMC Immunol 2019; 20:21. [PMID: 31242852 PMCID: PMC6595630 DOI: 10.1186/s12865-019-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoimmune diseases result from aberrant immune attacks by the body itself. It is mysterious how autoantigens, a large cohort of seemingly unconnected molecules expressed in different parts of the body, can induce similar autoimmune responses. We have previously found that dermatan sulfate (DS) can form complexes with molecules of apoptotic cells and stimulate autoreactive CD5+ B cells to produce autoantibodies. Hence, autoantigenic molecules share a unique biochemical property in their affinity to DS. This study sought to further test this uniform principle of autoantigenicity. RESULTS Proteomes were extracted from freshly collected mouse livers. They were loaded onto columns packed with DS-Sepharose resins. Proteins were eluted with step gradients of increasing salt strength. Proteins that bound to DS with weak, moderate, or strong affinity were eluted with 0.4, 0.6, and 1.0 M NaCl, respectively. After desalting, trypsin digestion, and gel electrophoresis, proteins were sequenced by mass spectrometry. To validate whether these proteins have been previously identified as autoantigens, an extensive literature search was conducted using the protein name or its alternative names as keywords. Of the 41 proteins identified from the strong DS-affinity fraction, 33 (80%) were verified autoantigens. Of the 46 proteins with moderate DS-affinity, 27 (59%) were verified autoantigens. Of the 125 proteins with weak DS-affinity, 44 (35%) were known autoantigens. Strikingly, these autoantigens fell into the classical autoantibody categories of autoimmune liver diseases: ANA (anti-nuclear autoantibodies), SMA (anti-smooth muscle autoantibodies), AMA (anti-mitochondrial autoantibodies), and LKM (liver-kidney microsomal autoantigens). CONCLUSIONS This study of DS-affinity enrichment of liver proteins establishes a comprehensive autoantigen-ome for autoimmune liver diseases, yielding 104 verified and 108 potential autoantigens. The liver autoantigen-ome sheds light on the molecular origins of autoimmune liver diseases and further supports the notion of a unifying biochemical principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | | |
Collapse
|
16
|
Zhang W, Rho JH, Roehrl MW, Roehrl MH, Wang JY. A repertoire of 124 potential autoantigens for autoimmune kidney diseases identified by dermatan sulfate affinity enrichment of kidney tissue proteins. PLoS One 2019; 14:e0219018. [PMID: 31237920 PMCID: PMC6592568 DOI: 10.1371/journal.pone.0219018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Autoantigens are the molecular targets in autoimmune diseases. They are a cohort of seemingly unrelated self-molecules present in different parts of the body, yet they can trigger a similar chain of autoimmune responses such as autoantibody production. We previously reported that dermatan sulfate (DS) can bind self-molecules of dying cells to stimulate autoreactive CD5+ B cells to produce autoantibodies. The formation of autoantigen-DS complexes converts the normally non-antigenic self-molecules to none-self antigens, and thus DS-affinity represents a common underlying biochemical property for autoantigens. This study sought to apply this property to identify potential autoantigens in the kidney. Total proteins were extracted from mouse kidney tissues and loaded onto DS-Sepharose resins. Proteins without affinity were washed off the resins, whereas those with increasing DS-affinity were eluted with step gradients of increasing salt strength. Fractions with strong and moderate DS-affinity were sequenced by mass spectrometry and yielded 25 and 99 proteins, respectively. An extensive literature search was conducted to validate whether these had been previously reported as autoantigens. Of the 124 proteins, 79 were reported autoantigens, and 19 out of 25 of the strong-DS-binding ones were well-known autoantigens. Moreover, these proteins largely fell into the two most common autoantibody categories in autoimmune kidney diseases, including 40 ANA (anti-nuclear autoantibodies) and 25 GBM (glomerular basement membrane) autoantigens. In summary, this study compiles a large repertoire of potential autoantigens for autoimmune kidney diseases. This autoantigen-ome sheds light on the molecular etiology of autoimmunity and further supports our hypothesis DS-autoantigen complexes as a unifying principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
- * E-mail: (JYW); (MHR)
| | - Julia Y. Wang
- Curandis, Scarsdale, New York, United States of America
- * E-mail: (JYW); (MHR)
| |
Collapse
|
17
|
Ganshina IV. Serous cavities of coelomic origin as possible organs of the immune system. Part 1. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Del Carpio JC, Nesburn AB, Boyer DS, Kuppermann BD, Vawter MP, Jazwinski SM, Miceli MV, Wallace DC, Udar N. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:208-19. [PMID: 24200652 PMCID: PMC4326177 DOI: 10.1016/j.bbadis.2013.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 02/08/2023]
Abstract
The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP (adenosine triphosphate) turnover rates and lower levels of reactive oxygen species production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 (chemokine, CC motif, receptor 3) signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases.
Collapse
Affiliation(s)
- M Cristina Kenney
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, Univ. of California Irvine, Irvine, CA, USA.
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Shari R Atilano
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | | | - Claudio Ramirez
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Deepika Malik
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | - Mohamed Tarek
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, Univ. of California Irvine, Irvine, CA, USA
| | | | - Michael V Miceli
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | | | - Nitin Udar
- Gavin Herbert Eye Institute, Univ. of California Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Rho JH, Lampe PD. High-Throughput Analysis of Plasma Hybrid Markers for Early Detection of Cancers. Proteomes 2014; 2:1-17. [PMID: 28250367 PMCID: PMC5302729 DOI: 10.3390/proteomes2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 12/29/2022] Open
Abstract
Biomarkers for the early detection of cancer in the general population have to perform with high sensitivity and specificity in order to prevent the costs associated with over-diagnosis. There are only a few current tissue or blood markers that are recommended for generalized cancer screening. Despite the recognition that combinations of multiple biomarkers will likely improve their utility, biomarker panels are usually limited to a single class of molecules. Tissues and body fluids including plasma and serum contain not only proteins, DNA and microRNAs that are differentially expressed in cancers but further cancer specific information might be gleaned by comparing different classes of biomolecules. For example, the level of a certain microRNA might be related to the level of a particular protein in a cancer specific manner. Proteins might have cancer-specific post-translational modifications (e.g., phosphorylation or glycosylation) or lead to the generation of autoantibodies. Most currently approved biomarkers are glycoproteins. Autoantibodies can be produced as a host's early surveillance response to cancer-specific proteins in pre-symptomatic and pre-diagnostic stages of cancer. Thus, measurement of the level of a protein, the level of its glycosylation or phosphorylation and whether autoantibodies are produced to it can yield multi-dimensional information on each protein. We consider specific proteins that show consistent cancer-specific changes in two or three of these measurements to be "hybrid markers". We hypothesize these markers will suffer less variation between different individuals since one component can act to "standardize" the other measurement. As a proof of principle, a 180 plasma sample set consisting of 120 cases (60 colon cancers and 60 adenomas) and 60 controls were analyzed using our high-density antibody array for changes in their protein, IgG-complex and sialyl-Lewis A (SLeA) modified proteins. At p < 0.05, expression changes in 1,070 proteins, 49 IgG-complexes (11 present in the protein list) and 488 Lewis X-modified proteins (57 on the protein list) were observed. The biomarkers significant on both lists are potential hybrid markers. Thus, plasma hybrid markers have the potential to create a new class of early detection markers of cancers.
Collapse
Affiliation(s)
- Jung-Hyun Rho
- Translational Research Program, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| | - Paul D Lampe
- Translational Research Program, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Thelin MA, Bartolini B, Axelsson J, Gustafsson R, Tykesson E, Pera E, Oldberg Å, Maccarana M, Malmstrom A. Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 2013; 280:2431-46. [PMID: 23441919 PMCID: PMC3717172 DOI: 10.1111/febs.12214] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 01/08/2023]
Abstract
The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler–Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.
Collapse
Affiliation(s)
- Martin A Thelin
- Department of Experimental Medical Science, BMC, Lund University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Plichta JK, Radek KA. Sugar-coating wound repair: a review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds. J Burn Care Res 2012; 33:299-310. [PMID: 22561305 PMCID: PMC3348504 DOI: 10.1097/bcr.0b013e318240540a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated but only a few have been found to participate in the wound healing process. In particular, FGF-10 is robustly increased in the wound microenvironment after injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans are linear carbohydrates that participate in wound repair by influencing cytokine/growth factor localization and interaction with cognate receptors. Dermatan sulfate (DS) is the most abundant glycosaminoglycan in human wound fluid and has been postulated to be directly involved in the healing process. Recently, the combination of FGF-10 and DS demonstrated the potential to accelerate wound healing via increased keratinocyte proliferation and migration. Based on these preliminary studies, DS may serve as a cofactor for FGF-10, and together they are likely to expedite the healing process by stimulating keratinocyte activity. As a specific subtype of wounds, the overall healing process of burn injuries does not significantly differ from other types of wounds, where optimal repair results in matrix regeneration and complete reepithelialization. At present, standard burn treatment primarily involves topical application of antimicrobial agents, while no routine therapies target acceleration of reepithelialization, the key to wound closure. Thus, this novel therapeutic combination could be used in conjunction with some of the current therapies, but it would have the unique ability to initiate wound healing by stimulating keratinocyte epithelialization.
Collapse
Affiliation(s)
- Jennifer K Plichta
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
22
|
Carter C. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis 2011; 2011:501862. [PMID: 22254144 PMCID: PMC3255168 DOI: 10.4061/2011/501862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.
Collapse
Affiliation(s)
- Chris Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
23
|
Wang JY, Lee J, Yan M, Rho JH, Roehrl MHA. Dermatan sulfate interacts with dead cells and regulates CD5(+) B-cell fate: implications for a key role in autoimmunity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2168-76. [PMID: 21514431 DOI: 10.1016/j.ajpath.2011.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/17/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
CD5(+) (B-1a) B cells play pivotal roles in autoimmunity through expression of autoreactive B-cell receptors and production of autoantibodies. The mechanism underlying their positive selection and expansion is currently unknown. This study demonstrates that dermatan sulfate (DS) expands the B-1a cell population and augments the specific antibody response to an antigen when it is in complex with DS. DS displays preferential affinity for apoptotic and dead cells, and DS-stimulated cell cultures produce antibodies to various known autoantigens. The companion article further illustrates that autoantigens can be identified by affinity to DS, suggesting that molecules with affinity to DS have a high propensity to become autoantigens. We thus propose that the association of antigens from dead cells with DS is a possible origin of autoantigens and that autoreactive B-1a cells are positively selected and expanded by DS∙autoantigen complexes. This mechanism may also explain the clonal expansion of B-1a cells in certain B-cell malignancies.
Collapse
Affiliation(s)
- Julia Y Wang
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|