1
|
Cui X, Huang C, Huang Y, Zhang Y, Wu J, Wang G, Zhou XZ, Zhang J, Wang L, Cheng L, Zhang KQ. Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair. ACS NANO 2024; 18:33614-33628. [PMID: 39579147 DOI: 10.1021/acsnano.4c12236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Macrophages are rapidly activated and polarized toward the M1 phenotype after spinal cord injury (SCI), and inhibiting M1-like macrophages has emerged as a promising SCI treatment approach. Metalloregulatory proteins, which sense specific metal ions with high affinity and specificity, play a critical role in immune regulation. Here, we screened various bioactive metal ions associated with metalloregulatory proteins and discovered that Zn2+ and Mn2+ effectively suppressed M1 polarization. Based on these findings, mildly alkaline ZnMn-based layered double hydroxides (ZnMn-LDHs) self-assembled from Zn2+ coordinated with Mn2+ were developed to inhibit M1-like macrophages. ZnMn-LDHs effectively neutralized the acidic environment and promoted the expression of metalloregulatory proteins, including metallothionein (MT), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2), thereby eliciting robust M1-like macrophage inhibition. More importantly, nerve growth factor (NGF) released by macrophages following the regulation by ZnMn-LDHs promoted the elongation and spreading of Schwann cells. By integrating ZnMn-LDHs with silk fibroin (SF), ZnMn@SF injectable hydrogels were constructed for SCI repair. An in vivo animal model further revealed the excellent anti-inflammatory effects of the ZnMn@SF hydrogels in treating SCI, which promoted functional recovery. Our findings underscore the importance of metalloregulatory proteins regulated by metal ions in inhibiting M1-like macrophages, providing a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xiaoliang Cui
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Cheng Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yechen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuxuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Elajaili HB, Dee NM, Dikalov SI, Kao JPY, Nozik ES. Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury. Mol Imaging Biol 2024; 26:495-502. [PMID: 37193807 PMCID: PMC10188229 DOI: 10.1007/s11307-023-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains. PROCEDURES In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS - specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR. RESULTS As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration. CONCLUSIONS We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Nathan M Dee
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Kim MB, Park SM, Lim GH, Oh YH, Seo KW, Youn HY. Neuroprotective and immunomodulatory effects of superoxide dismutase on SH-SY5Y neuroblastoma cells and RAW264.7 macrophages. PLoS One 2024; 19:e0303136. [PMID: 38743689 PMCID: PMC11093368 DOI: 10.1371/journal.pone.0303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.
Collapse
Affiliation(s)
- Moon-Beom Kim
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ga-Hyun Lim
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hun Oh
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Won Seo
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Meng JH, Huang YB, Long J, Cai QC, Qiao X, Zhang QL, Zhang LD, Yan X, Jing R, Liu XS, Zhou SJ, Yuan YS, Yin-Chen Ma, Zhou LX, Peng NN, Li XC, Cai CH, Tang HM, Martins AF, Jiang JX, Kai-Jun Luo. Innexin hemichannel activation by Microplitis bicoloratus ecSOD monopolymer reduces ROS. iScience 2024; 27:109469. [PMID: 38577101 PMCID: PMC10993139 DOI: 10.1016/j.isci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiu-Chen Cai
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiong-Li Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Dan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Rui Jing
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Shan Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Sai-Jun Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Sheng Yuan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - André F. Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
5
|
Mohamad-Fauzi N, Shaw C, Foutouhi SH, Hess M, Kong N, Kol A, Storey DB, Desai PT, Shah J, Borjesson D, Murray JD, Weimer BC. Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2023; 11:1077350. [PMID: 37009487 PMCID: PMC10055666 DOI: 10.3389/fcell.2023.1077350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Claire Shaw
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Soraya H. Foutouhi
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dylan Bobby Storey
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Prerak T. Desai
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Dori Borjesson
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - James D. Murray
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| |
Collapse
|
6
|
McCarthy SD, Rohde CB, Angel M, Masterson CH, MacLoughlin R, Fandiño J, González HE, Byrnes D, Laffey JG, O'Toole D. Aerosolized Pulmonary Delivery of mRNA Constructs Attenuates Severity of Escherichia coli Pneumonia in the Rat. Nucleic Acid Ther 2023; 33:148-158. [PMID: 36811461 PMCID: PMC10066785 DOI: 10.1089/nat.2022.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), a rapid onset inflammatory lung disease with no effective specific therapy, typically has pathogenic etiology termed pneumonia. In previous studies nuclear factor-κB (NF-κB) inhibitor α super-repressor (IκBα-SR) and extracellular superoxide dismutase 3 (SOD3) reduced pneumonia severity when prophylactically delivered by viral vector. In this study, mRNA coding for green fluorescent protein, IκBα-SR, or SOD3 was complexed with cationic lipid, passed through a vibrating mesh nebulizer, and delivered to cell culture or directly to rats undergoing Escherichia coli pneumonia. Injury level was then assessed at 48 h. In vitro, expression was observed as early as 4 h in lung epithelial cells. IκBα-SR and wild-type IκBα mRNAs attenuated inflammatory markers, while SOD3 mRNA induced protective and antioxidant effects. In rat E. coli pneumonia, IκBα-SR mRNA reduced arterial carbon dioxide (pCO2) and reduced lung wet/dry ratio. SOD3 mRNA improved static lung compliance and alveolar-arterial oxygen gradient (AaDO2) and decreased bronchoalveolar lavage (BAL) bacteria load. White cell infiltration and inflammatory cytokine concentrations in BAL and serum were reduced by both mRNA treatments compared to scrambled mRNA controls. These findings indicate nebulized mRNA therapeutics are a promising approach to ARDS therapy, with rapid expression of protein and observable amelioration of pneumonia symptoms.
Collapse
Affiliation(s)
- Sean D McCarthy
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | | | - Matt Angel
- Factor Bioscience Ltd., Cambridge, Massachusetts, USA
| | - Claire H Masterson
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | | | - Juan Fandiño
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Héctor E González
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Declan Byrnes
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - John G Laffey
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Baranzini N, Pulze L, Bon C, Izzo L, Pragliola S, Venditto V, Grimaldi A. Hirudo verbana as a freshwater invertebrate model to assess the effects of polypropylene micro and nanoplastics dispersion in freshwater. FISH & SHELLFISH IMMUNOLOGY 2022; 127:492-507. [PMID: 35803505 DOI: 10.1016/j.fsi.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plastics are a heterogeneous class of synthetic compounds that, due to their unique characteristics find numerous applications both in industrial and civil fields. However, despite the great advantages that these materials brought in everyday life, the plastic wastes resulting from their massive use represent one of the main environmental problems at the global level. Once released, plastics persist for a long time and are subjected both to biotic and abiotic processes leading to the formation of small particles, known as micro and to nanoplastics, that interact with organisms, accumulating inside tissues and risking to enter in the trophic chain. Among the different types of plastic, polypropylene (PP) is one of the diffused, widely exploited in food and textile industries for disposable packaging and to produce surgical masks. Owing to the huge distribution and the resultant abundant presence of PP waste products, it results necessary investigate the possible toxicity on living organisms. For these reasons, here we analyzed the effects of PP micro and nanoplastics dispersed in freshwater, using the medicinal leech Hirudo verbana as invertebrate model. To better follow the plastics fate, fluorescent particles, labeled with a fluorophore, have been used. Animals were examined at various timings after plastics exposure and results were analyzed by means of microscopy, immunofluorescent and molecular biology analyses. After assessing the entrance of PP fragments into leech tissues, the activation of the innate immune response was evaluated. The results show that the presence of micro and nanoplastics induces an initial physical protection that consists in the secretion of mucus, followed by an increase of blood vessels and the recruitment of immune cells, in particular macrophages. Moreover, macrophages were directly involved in both phagocytic and encapsulation processes, as demonstrated by acid phosphatase (ACP) histoenzymatic and Thioflavin-T assays, expressing specific pro-inflammatory factors, such as HvRNASET2 and HmAIF-1, as demonstrated by immunolocalization and qPCR experiments. Finally, the expression levels of genes related to oxidative stress-induced enzymes have been investigated, in order to evaluate the possible increase in reactive oxygen species (ROS), due to the entry into the leech tissues of PP micro and nanoplastics. This work allows deepening the current knowledge of the possible harmful effects on human health deriving from micro and nanoplastics dispersion, leading new insight about freshwater ecosystems that often represent the first environments interested in plastic pollution.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Laura Pulze
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Camilla Bon
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Lorella Izzo
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Stefania Pragliola
- Department of Chemistry and Biology, University of Salerno and INSTM Research Unit, 132 Giovanni Paolo II Rd, I-84084, Italy
| | - Vincenzo Venditto
- Department of Chemistry and Biology, University of Salerno and INSTM Research Unit, 132 Giovanni Paolo II Rd, I-84084, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy.
| |
Collapse
|
8
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
9
|
Rodrigues WF, Miguel CB, Marques LC, da Costa TA, de Abreu MCM, Oliveira CJF, Lazo-Chica JE. Predicting Blood Parasite Load and Influence of Expression of iNOS on the Effect Size of Clinical Laboratory Parameters in Acute Trypanosoma cruzi Infection With Different Inoculum Concentrations in C57BL/6 Mice. Front Immunol 2022; 13:850037. [PMID: 35371021 PMCID: PMC8974915 DOI: 10.3389/fimmu.2022.850037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 01/14/2023] Open
Abstract
In Chagas disease, the initial responses of phagocyte-mediated innate immunity are strongly associated with the control of Trypanosoma cruzi and are mediated by various signaling pathways, including the inducible nitric oxide synthetase (iNOS) pathway. The clinical and laboratory manifestations of Chagas disease depend on the parasite–host relationship, i.e., the responsive capacity of the host immune system and the immunogenicity of the parasite. Here, we evaluated effect sizes in clinical and laboratory parameters mediated by acute infection with different concentrations of T. cruzi inoculum in mice immunosuppressed via iNOS pathway inactivation. Infection was induced in C57BL/6 wild-type and iNOS-/- mice with the “Y” strain of T. cruzi at three inoculum concentrations (3 × 102, 3 × 103, and 3 × 104). Parasitemia and mortality in both mouse strains were monitored. Immunohistochemistry was performed to quantify amastigotes in cardiac tissues and cardiac musculature cells. Biochemical parameters, such as blood urea nitrogen, sodium, albumin, and globulin concentrations, among others, were measured, and cytokine concentrations were also measured. Effect sizes were determined by the eta squared formula. Compared with that in wild-type animals, mice with an absence of iNOS expression demonstrated a greater parasite load, with earlier infection and a delayed parasitemia peak. Inoculum concentration was positively related to death in the immunosuppressed subgroup. Nineteen parameters (hematological, biochemical, cytokine-related, and histopathological) in the immunocompetent subgroup and four in the immunosuppressed subgroup were associated with parasitemia. Parasitemia, biochemical parameters, and hematological parameters were found to be predictors in the knockout group. The impact of effect sizes on the markers evaluated based on T. cruzi inoculum concentration was notably high in the immunocompetent group (Cohen’s d = 88.50%; p <.001). These findings contribute to the understanding of physiopathogenic mechanisms underlying T. cruzi infection and also indicate the influence of the concentration of T. cruzi during infection and the immunosuppression through the iNOS pathway in clinical laboratory heterogeneity reported in acute Chagas disease.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
- *Correspondence: Wellington Francisco Rodrigues,
| | - Camila Botelho Miguel
- Biosciences Unit, Centro Universitário de Mineiros, Mineiros, Brazil
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Thiago Alvares da Costa
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Carlo José Freire Oliveira
- Postgraduate Course in Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Javier Emilio Lazo-Chica
- Cell Biology Laboratory, Institute of Biological and Natural Sciences of the Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
10
|
Cheng AC, Shiu YL, Chiu ST, Ballantyne R, Liu CH. Effects of chitin from Daphnia similis and its derivative, chitosan on the immune response and disease resistance of white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2021; 119:329-338. [PMID: 34662729 DOI: 10.1016/j.fsi.2021.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Daphnia similis chitin and its derivative chitosan were prepared as immunostimulants to boost the immune response and determine the ability to control infectious disease caused by Vibrio alginolyticus in white shrimp, Litopenaeus vannamei. Three experimental diets supplemented with 0% chitin or chitosan (control) and 0.4% chitin or 0.4% chitosan were fed to shrimp for 56 days. Dietary inclusion of 0.4% chitosan accelerated shrimp growth compared to chitin and control. The survival and disease resistance of shrimp increased significantly when fed chitin and chitosan diets, after pathogenic injection, as indicated by the up-regulated immune responses in respiratory burst (RB), superoxide dismutase (SOD), and phagocytic activity (PA). There were no significant differences in the total haemocyte count (THC), phenoloxidase (PO)activity, and lysozyme (LYZ) activity among the groups. No significant differences were observed for prophenoloxidase system-related gene expressions among groups. However, shrimp fed chitin, and chitosan expressed significantly higher levels of antimicrobial proteins (penaeidin 3a, crustin, and anti-lipopolysaccharide factor 2) in the haemocytes than in control. The gene expressions of catalase and heat shock protein 70 increased in the hepatopancreas of shrimp fed chitosan diet compared to the chitin and control diet. The O-linked N-acetylglucosamine transferase (ogt) was significantly higher in the haemocytes of shrimp fed chitosan and chitin than the control, but ogt was only significantly higher in the hepatopancreas of shrimp fed chitosan. Dietary chitin and chitosan also showed positive effects on the transcription of peritrophin-like protein. These findings suggest that both chitin and chitosan from D. similis are efficacious at boosting the immunity of shrimp by preventing and controlling infectious diseases caused by Vibrio and have great potential to be used as a feasible immunostimulant that significantly contributes to the circular economy.
Collapse
Affiliation(s)
- Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
11
|
Prolo C, Estrada D, Piacenza L, Benítez D, Comini MA, Radi R, Álvarez MN. Nox2-derived superoxide radical is crucial to control acute Trypanosoma cruzi infection. Redox Biol 2021; 46:102085. [PMID: 34454164 PMCID: PMC8397891 DOI: 10.1016/j.redox.2021.102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate in the first stages of infection, mounting a cytotoxic response which promotes massive oxidative damage to the parasite. On the other hand, T. cruzi is equipped with a robust antioxidant system to repeal the oxidative attack from macrophages. This work was conceived to explicitly assess the role of mammalian cell-derived superoxide radical in a murine model of acute infection by T. cruzi. Macrophages derived from Nox2-deficient (gp91phox-/-) mice produced marginal amounts of superoxide radical and were more susceptible to parasite infection than those derived from wild type (wt) animals. Also, the lack of superoxide radical led to an impairment of parasite differentiation inside gp91phox-/- macrophages. Biochemical or genetic reconstitution of intraphagosomal superoxide radical formation in gp91phox-/- macrophages reverted the lack of control of infection. Along the same line, gp91phox-/- infected mice died shortly after infection. In spite of the higher lethality, parasitemia did not differ between gp91phox-/- and wt animals, recapitulating an observation that has led to conflicting interpretations about the importance of the mammalian oxidative response against T. cruzi. Importantly, gp91phox-/- mice presented higher and disseminated tissue parasitism, as evaluated by both qPCR- and bioimaging-based methodologies. Thus, this work supports that Nox2-derived superoxide radical plays a crucial role to control T. cruzi infection in the early phase of a murine model of Chagas disease. Nox2 derived-superoxide radical is required to control Trypanosoma cruzi infection in macrophages ∙Nox2-deficient mice (gp91phox-/-) are highly susceptible to Trypanosoma cruzi infection ∙Parasitemia does not reflect the level of organ infection observed in wt and gp91phox-/- mice. ∙gp91phox-/- mice collapse to infection due to uncontrolled parasite proliferation in tissues
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Damián Estrada
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
12
|
Novel and Converging Ways of NOX2 and SOD3 in Trafficking and Redox Signaling in Macrophages. Antioxidants (Basel) 2021; 10:antiox10020172. [PMID: 33503855 PMCID: PMC7911390 DOI: 10.3390/antiox10020172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.
Collapse
|
13
|
French CE, Sales MA, Rochell SJ, Rodriguez A, Erf GF. Local and systemic inflammatory responses to lipopolysaccharide in broilers: new insights using a two-window approach. Poult Sci 2020; 99:6593-6605. [PMID: 33248575 PMCID: PMC7705052 DOI: 10.1016/j.psj.2020.09.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response involves a complex interplay of local tissue activities designed to recruit leukocytes and proteins from the blood to the infected tissue. For egg-type chickens, we established the growing feather (GF) as an accessible tissue test site to monitor tissue responses to injected test-material. For commercial broilers, whose health depends to a large extent on innate immune system functions, the GF test system offers an important novel window to directly assess their natural defenses. This study was conducted to adapt the GF test system for use in broilers, and use it to simultaneously examine local (GF) and systemic (blood) inflammatory responses initiated by GF pulp injection of lipopolysaccharide (LPS). Specifically, GF of 12 male and 12 female, 5-week-old broilers were injected with LPS (16 GF/chicken; 1 μg LPS/GF). Blood and GF were collected at 0 (before), 6, and 24 h after GF injection. GF pulp was used to determine leukocyte-infiltration and gene-expression profiles, reactive-oxygen-species generation, and superoxide dismutase (SOD) activity. Blood was used to determine blood cell profiles and SOD activity. A time effect (P ≤ 0.05) was observed for most aspects examined. In GF, LPS injection resulted in heterophil and monocyte infiltration reaching maximal levels at 6 and 24 h, respectively. Reactive-oxygen-species generation, SOD activity, and mRNA levels of IL-1β, IL-8, IL-6, IL-10, and cathelicidin B1 were elevated, whereas those of TNF-α, LITAF, SOD1, and SOD2 decreased after LPS injection. In blood, levels of heterophils and monocytes were elevated at 6 h, lymphocytes and RBC decreased at 6 h, and thrombocytes and SOD activity increased at 24 h. Assessment of LPS-induced activities at the site of inflammation (GF) provided novel and more relevant insights into temporal, qualitative, and quantitative aspects of inflammatory responses than blood. Knowledge generated from this dual-window approach may find direct application in identification of individuals with robust, balanced innate defenses and provide a platform for studying the effects of exogenous treatments (e.g., nutrients, probiotics, immunomodulators, etc.) on inflammatory responses taking place in a complex tissue.
Collapse
Affiliation(s)
- Chelsea E French
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Marites A Sales
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Samuel J Rochell
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Angeline Rodriguez
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Gisela F Erf
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
14
|
Anthony D, Papanicolaou A, Wang H, Seow HJ, To EE, Yatmaz S, Anderson GP, Wijburg O, Selemidis S, Vlahos R, Bozinovski S. Excessive Reactive Oxygen Species Inhibit IL-17A + γδ T Cells and Innate Cellular Responses to Bacterial Lung Infection. Antioxid Redox Signal 2020; 32:943-956. [PMID: 31190552 DOI: 10.1089/ars.2018.7716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aims: Excessive reactive oxygen species (ROS) are detrimental to immune cellular functions that control pathogenic microbes; however, the mechanisms are poorly understood. Our aim was to determine the immunological consequences of increased ROS levels during acute bacterial infection. Results: We used a model of Streptococcus pneumoniae (Spn) lung infection and superoxide dismutase 3-deficient (SOD3-/-) mice, as SOD3 is a major antioxidant enzyme that catalyses the dismutation of superoxide radicals. First, we observed that in vitro, macrophages from SOD3-/- mice generated excessive phagosomal ROS during acute bacterial infection. In vivo, there was a significant reduction in infiltrating neutrophils in the bronchoalveolar lavage fluid and reduced peribronchial and alveoli inflammation in SOD3-/- mice 2 days after Spn infection. Annexin V/propidium iodide staining revealed enhanced apoptosis in neutrophils from Spn-infected SOD3-/- mice. In addition, SOD3-/- mice showed an altered macrophage phenotypic profile, with markedly diminished recruitment of monocytes (CD11clo, CD11bhi) in the airways. Further investigation revealed significantly lower levels of the monocyte chemokine CCL-2, and cytokines IL-23, IL-1β, and IL-17A in Spn-infected SOD3-/- mice. There were also significantly fewer IL-17A-expressing gamma-delta T cells (γδ T cells) in the lungs of Spn-infected SOD3-/- mice. Innovation: Our data demonstrate that SOD3 deficiency leads to an accumulation of phagosomal ROS levels that initiate early neutrophil apoptosis during pneumococcal infection. Consequent to these events, there was a failure to initiate innate γδ T cell responses. Conclusion: These studies offer new cellular and mechanistic insights into how excessive ROS can regulate innate immune responses to bacterial infection.
Collapse
Affiliation(s)
- Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Angelica Papanicolaou
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Hao Wang
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Huei Jiunn Seow
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Selcuk Yatmaz
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Gary P Anderson
- Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Odilia Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia.,Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response. Redox Biol 2019; 26:101268. [PMID: 31326693 PMCID: PMC6639747 DOI: 10.1016/j.redox.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular enzyme with the capacity to modulate extracellular redox conditions by catalyzing the dismutation of superoxide to hydrogen peroxide. In addition to synthesis and release of this extracellular protein via the secretory pathway, several studies have shown that the protein also localizes to intracellular compartments in neutrophils and macrophages. Here we show that human macrophages release SOD3 from an intracellular compartment within 30 min following LPS stimulation. This release acutely increases the level of SOD3 on the cell surface as well as in the extracellular environment. Generation of the intracellular compartment in macrophages is supported by endocytosis of extracellular SOD3 via the LDL receptor-related protein 1 (LRP1). Using bone marrow-derived macrophages established from wild-type and SOD3−/− mice, we further show that the pro-inflammatory profile established in LPS-stimulated cells is altered in the absence of SOD3, suggesting that the active release of this protein affects the inflammatory response. The internalization and acute release from stimulated macrophages indicates that SOD3 not only functions as a passive antioxidant in the extracellular environment, but also plays an active role in modulating redox signaling to support biological responses. Stimulated macrophages release SOD3 from a pre-formed intracellular compartment. The intracellular compartment is established by receptor-mediated endocytosis. Release of SOD3 from stimulated macrophages modulates the inflammatory response. The level of SOD3 in the extracellular space is actively controlled.
Collapse
|
16
|
Huang P, Wei S, Huang W, Wu P, Chen S, Tao A, Wang H, Liang Z, Chen R, Yan J, Zhang Q. Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int Immunopharmacol 2019; 74:105646. [PMID: 31200337 DOI: 10.1016/j.intimp.2019.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maintaining an airway clear of bacteria, foreign particles and apoptotic cells by alveolar macrophages is very essential for lung homeostasis. In asthma, the phagocytic capacity of alveolar macrophages is significantly reduced, which is thought to be associated with increased oxidative stress. Hydrogen (H2) has been shown to exert potent antioxidant and anti-inflammatory effects, yet its effects on phagocytosis of alveolar macrophages are unknown. This study is aimed to evaluate the beneficial effects of hydrogen gas inhalation on alveolar macrophage phagocytosis in an ovalbumin (OVA)-induced murine asthma model. METHODS Female C57BL/6 mice were intraperitoneally sensitized with OVA before they were subject to airway challenge with aerosolized OVA. Hydrogen gas was delivered to the mice through inhalation twice a day (2 h once) for 7 consecutive days. Phagocytic function of alveolar macrophages isolated from bronchoalveolar lavage fluid was assessed by fluorescence-labeled Escherichia coli as well as flow cytometry. RESULTS Alveolar macrophages isolated from OVA-induced asthmatic mice showed decreased phagocytic capacity to Escherichia coli when compared with those of control mice. Defective phagocytosis in asthmatic mice was reversed by hydrogen gas inhalation. Hydrogen gas inhalation significantly alleviated OVA-induced airway hyperresponsiveness, inflammation and goblet cell hyperplasia, diminished TH2 response and decreased IL-4 as well as IgE levels, reduced malondialdehyde (MDA) production and increased superoxide dismutase (SOD) activity. Concomitantly, hydrogen gas inhalation inhibited NF-κB activation and markedly activated Nrf2 pathway in OVA-induced asthmatic mice. CONCLUSIONS Our findings demonstrated that hydrogen gas inhalation enhanced alveolar macrophage phagocytosis in OVA-induced asthmatic mice, which may be associated with the antioxidant effects of hydrogen gas and the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Peikai Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiratory Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Shushan Wei
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihua Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Penghui Wu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuyu Chen
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Wang
- Firestone Institute for Respiratory Health, The Research Institute of St. Joe's Hamilton, St. Joseph's Healthcare; Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Yan
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Qingling Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Sowrirajan B, Saito Y, Poudyal D, Chen Q, Sui H, DeRavin SS, Imamichi H, Sato T, Kuhns DB, Noguchi N, Malech HL, Lane HC, Imamichi T. Interleukin-27 Enhances the Potential of Reactive Oxygen Species Generation from Monocyte-derived Macrophages and Dendritic cells by Induction of p47 phox. Sci Rep 2017; 7:43441. [PMID: 28240310 PMCID: PMC5327488 DOI: 10.1038/srep43441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 cytokine family, plays an important and diverse role in the function of the immune system. We have previously demonstrated that IL-27 is an anti-viral cytokine which inhibits HIV-1, HIV-2, Influenza virus and herpes simplex virus infection, and enhances the potential of reactive oxygen species (ROS) generating activity during differentiation of monocytes to macrophages. In this study, we further investigated the mechanism of the enhanced potential for ROS generation by IL-27. Real time PCR, western blot and knock down assays demonstrate that IL-27 is able to enhance the potential of superoxide production not only during differentiation but also in terminally differentiated-macrophages and immature dendritic cells (iDC) in association with the induction of p47phox, a cytosolic component of the ROS producing enzyme, NADPH oxidase, and the increase in amounts of phosphorylated p47phox upon stimulation. We also demonstrate that IL-27 is able to induce extracellular superoxide dismutase during differentiation of monocytes but not in terminal differentiated macrophages. Since ROS plays an important role in a variety of inflammation, our data demonstrate that IL-27 is a potent regulator of ROS induction and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Yoshiro Saito
- Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Deepak Poudyal
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20802, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toyotaka Sato
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Noriko Noguchi
- Systems Life Sciences laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20802, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| |
Collapse
|
18
|
Extracellular Superoxide Dismutase Enhances Recruitment of Immature Neutrophils to the Liver. Infect Immun 2016; 84:3302-3312. [PMID: 27600509 DOI: 10.1128/iai.00603-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes spontaneous abortion in pregnant women, as well as septicemia, meningitis, and gastroenteritis, primarily in immunocompromised individuals. Although L. monocytogenes can usually be effectively treated with antibiotics, there is still around a 25% mortality rate with individuals who develop clinical listeriosis. Neutrophils are innate immune cells required for the clearance of pathogenic organisms, including L. monocytogenes The diverse roles of neutrophils during both infectious and noninfectious inflammation have recently gained much attention. However, the impact of reactive oxygen species, and the enzymes that control their production, on neutrophil recruitment and function is not well understood. Using congenic mice with varying levels of extracellular superoxide dismutase (ecSOD) activity, we have recently shown that the presence of ecSOD decreases clearance of L. monocytogenes while increasing the recruitment of neutrophils that are not protective in the liver. The data presented here show that ecSOD activity does not lead to a cell-intrinsic increase in neutrophil-homing potential or a decrease in protection against L. monocytogenes Instead, ecSOD activity enhances the production of neutrophil-attracting factors and protects hyaluronic acid (HA) from damage. Furthermore, neutrophils from the livers of ecSOD-expressing mice have decreased intracellular and surface-bound myeloperoxidase, are less capable of killing phagocytosed L. monocytogenes, and have decreased oxidative burst. Collectively, our data reveal that ecSOD activity modulates neutrophil recruitment and function in a cell-extrinsic fashion, highlighting the importance of the enzyme in protecting tissues from oxidative damage.
Collapse
|
19
|
Iversen MB, Gottfredsen RH, Larsen UG, Enghild JJ, Praetorius J, Borregaard N, Petersen SV. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation. Free Radic Biol Med 2016; 97:478-488. [PMID: 27394172 DOI: 10.1016/j.freeradbiomed.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.
Collapse
Affiliation(s)
- Marie B Iversen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Niels Borregaard
- Department of Hematology, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
20
|
Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res 2016; 2016:1280347. [PMID: 27403445 PMCID: PMC4923598 DOI: 10.1155/2016/1280347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Chronic obstructive pulmonary disease (COPD) is a common, smoking-related lung disease. Patients with COPD frequently suffer disease exacerbations induced by bacterial respiratory infections, suggestive of impaired innate immunity. Low-dose oxygen is a mainstay of therapy during COPD exacerbations; yet we understand little about whether oxygen can modulate the effects of cigarette smoke on lung immunity. Methods. Wild-type mice were exposed to cigarette smoke for 5 weeks, followed by intratracheal instillation of Pseudomonas aeruginosa (PAO1) and 21% or 35–40% oxygen. After two days, lungs were harvested for PAO1 CFUs, and bronchoalveolar fluid was sampled for inflammatory markers. In culture, macrophages were exposed to cigarette smoke and oxygen (40%) for 24 hours and then incubated with PAO1, followed by quantification of bacterial phagocytosis and inflammatory markers. Results. Mice exposed to 35–40% oxygen after cigarette smoke and PAO1 had improved survival and reduced lung CFUs and inflammation. Macrophages from these mice expressed less TNF-α and more scavenger receptors. In culture, macrophages exposed to cigarette smoke and oxygen also demonstrated decreased TNF-α secretion and enhanced phagocytosis of PAO1 bacteria. Conclusions. Our findings demonstrate a novel, protective role for low-dose oxygen following cigarette smoke and bacteria exposure that may be mediated by enhanced macrophage phagocytosis.
Collapse
|
21
|
Nouari W, Ysmail-Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. Int Immunopharmacol 2015; 30:94-101. [PMID: 26655879 DOI: 10.1016/j.intimp.2015.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/07/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The bioactive form of vitamin D3, i.e.1,25-dihydroxyvitamin D3 (1,25(OH)2D3) vitamin D has been shown to modulate monocytes/macrophages physiology and its response against bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterial pathogen that can most frequently be fatal in immunocompromised infected people. METHODS We investigated the ex vivo effect of 1,25(OH)2D3 on monocyte-derived macrophages function against P. aeruginosa infection. RESULTS Relative vitamin D receptor (VDR) mRNA expression was significantly increased in infected and 1,25(OH)2D3-treated macrophages compared to controls (p<0.01). Treatment with 1,25(OH)2D3 markedly resulted in up-regulation of nitric oxide (NO) and IL-1β production and down-regulation of IL-10 levels (respectively, p=0.029, p=0.048 and p=0.008). Additionally, 1,25(OH)2D3 significantly increased M1/M2 macrophage ratio (p<0.05) and slightly reduced intracellular bacterial development. Furthermore, the arginase activity, P. aeruginosa phagocytosis and killing were significantly increased in cells that were both infected and 1,25(OH)2D3-treated compared to the infected, but not 1,25(OH)2D3-treated macrophages (respectively, p<0.001, p<0.01 and p<0.001). CONCLUSIONS We show in this study that bioactive from of vitamin D [1,25-dihydroxyvitamin D3 (1,25D3)] can enhance M1 macrophage polarization and their bactericidal protective activity against P. aeruginosa. Future works would involve improving the treatment response through dose-dependent effect studies, both in ex vivo and in vivo models.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, 13000, Tlemcen, Algeria.
| |
Collapse
|
22
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
23
|
Barst BD, Bridges K, Korbas M, Roberts AP, Van Kirk K, McNeel K, Drevnick PE. The role of melano-macrophage aggregates in the storage of mercury and other metals: an example from yelloweye rockfish (Sebastes ruberrimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1918-25. [PMID: 26177920 DOI: 10.1002/etc.3009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/02/2015] [Accepted: 04/04/2015] [Indexed: 05/12/2023]
Abstract
Melano-macrophage aggregates, collections of specialized cells of the innate immune system of fish, are considered a general biomarker for contaminant toxicity. To elucidate further the relationship between macrophage aggregates and metals exposure, yelloweye rockfish (Sebastes ruberrimus), a long-lived species, were sampled from the east and west coasts of Prince of Wales Island, Alaska. Metals concentrations in livers (inorganic Hg, methyl mercury, Se, Ni, Cd, Cu, Zn) and spleens (inorganic Hg and methyl mercury) were determined, as well as their correlations with melano-macrophage aggregate area. Sections of liver tissue were analyzed by laser ablation-inductively coupled plasma-mass spectrometry to determine how metals were spatially distributed between hepatocytes and macrophage aggregates. The concentration of inorganic Hg in whole tissue was the best predictor of macrophage area in yelloweye livers and spleens. Macrophage aggregates had higher relative concentrations than most metals compared with the surrounding hepatocytes. However, not all metals were accumulated to the same degree, as evidenced by differences in the ratios of metals in macrophages compared with hepatocytes. Laser ablation data were corroborated with the results of X-ray synchrotron fluorescence imaging of a yelloweye liver section. Hepatic macrophage aggregates in yelloweye rockfish may play an important role in the detoxification and storage of Hg and other metals.
Collapse
Affiliation(s)
| | - Kristin Bridges
- Department of Biological Sciences & Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | - Malgorzata Korbas
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aaron P Roberts
- Department of Biological Sciences & Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | - Kray Van Kirk
- Division of Commercial Fisheries, Alaska Department of Fish and Game, Douglas, Alaska, USA
| | - Kevin McNeel
- Division of Commercial Fisheries, Alaska Department of Fish and Game, Douglas, Alaska, USA
| | - Paul E Drevnick
- INRS-ETE, Université du Québec, Québec, Québec, Canada
- University of Michigan Biological Station and School of Natural Resources and Environment, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Morales K, Olesen MN, Poulsen ET, Larsen UG, Enghild JJ, Petersen SV. The effects of hypochlorous acid and neutrophil proteases on the structure and function of extracellular superoxide dismutase. Free Radic Biol Med 2015; 81:38-46. [PMID: 25582887 DOI: 10.1016/j.freeradbiomed.2014.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.
Collapse
Affiliation(s)
- Karla Morales
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Ebbe Toftgaard Poulsen
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center and Center for Insoluble Protein Structures, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
26
|
Liang Z, Zhang Q, Thomas CM, Chana KK, Gibeon D, Barnes PJ, Chung KF, Bhavsar PK, Donnelly LE. Impaired macrophage phagocytosis of bacteria in severe asthma. Respir Res 2014; 15:72. [PMID: 24972601 PMCID: PMC4086996 DOI: 10.1186/1465-9921-15-72] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/20/2014] [Indexed: 01/18/2023] Open
Abstract
Background Bacteria are frequently cultured from sputum samples of severe asthma patients suggesting a defect in bacterial clearance from the airway. We measured the capacity of macrophages from patients with asthma to phagocytose bacteria. Methods Phagocytosis of fluorescently-labelled polystyrene beads, Haemophilus influenzae or Staphylococcus aureus by broncholaveolar lavage alveolar macrophages (AM) and by monocyte-derived macrophages (MDM) from non-asthmatics, mild-moderate and severe asthmatic patients was assessed using fluorimetry. Results There were no differences in phagocytosis of polystyrene beads by AMs or MDMs from any of the subject groups. There was reduced phagocytosis of Haemophilus influenzae and Staphylococcus aureus in MDMs from patients with severe asthma compared to non-severe asthma (p < 0.05 and p < 0.01, respectively) and healthy subjects (p < 0.01and p < 0.001, respectively). Phagocytosis of Haemophilus influenzae and Staphylococcus aureus by AM was also reduced in severe asthma compared to normal subjects (p < 0.05). Dexamethasone and formoterol did not suppress phagocytosis of bacteria by MDMs from any of the groups. Conclusions Persistence of bacteria in the lower airways may result partly from a reduced phagocytic capacity of macrophages for bacteria. This may contribute to increased exacerbations, airway colonization and persistence of inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pankaj K Bhavsar
- Airway Disease, National Heart and Lung Institute, Imperial College London, & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London SW3, UK.
| | | |
Collapse
|
27
|
Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, Li Y, Wei Y, Wu M. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 2014; 5:3619. [PMID: 24717937 PMCID: PMC4011559 DOI: 10.1038/ncomms4619] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/11/2014] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) have been implicated in a spectrum of physiological and pathological conditions, including immune responses. miR-302b has been implicated in stem cell differentiation but its role in immunity remains unknown. Here we show that miR-302b is induced by TLR2 and TLR4 through ERK-p38-NF-κB signaling upon Gram-negative bacterium Pseudomonas aeruginosa infection. Suppression of inflammatory responses to bacterial infection is mediated by targeting IRAK4, a protein required for the activation and nuclear translocation of NF-κB. Through negative feedback, enforced expression of miR-302b or IRAK4 siRNA silencing inhibits downstream NF-κB signaling and airway leukocyte infiltration, thereby alleviating lung injury and increasing survival in P. aeruginosa-infected mice. In contrast, miR-302b inhibitors exacerbate inflammatory responses and decrease survival in P. aeruginosa-infected mice and lung cells. These findings reveal that miR-302b is a novel inflammatory regulator of NF-κB activation in respiratory bacterial infections by providing negative feedback to TLRs-mediated immunity.
Collapse
Affiliation(s)
- Xikun Zhou
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [3]
| | - Xuefeng Li
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [3]
| | - Yan Ye
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Kelei Zhao
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yan Zhuang
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yi Li
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| |
Collapse
|
28
|
Gottfredsen RH, Goldstrohm DA, Hartney JM, Larsen UG, Bowler RP, Petersen SV. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution. Free Radic Biol Med 2014; 69:348-56. [PMID: 24512907 PMCID: PMC4440334 DOI: 10.1016/j.freeradbiomed.2014.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/09/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages and associated with the cell surface via the extracellular matrix (ECM)-binding region. Upon cellular activation induced by lipopolysaccharide, EC-SOD is relocated and detected both in the cell culture medium and in lipid raft structures. Although the secreted material presented a significantly reduced ligand-binding capacity, this could not be correlated to proteolytic removal of the ECM-binding region, because the integrity of the material recovered from the medium was comparable to that of the cell surface-associated protein. The naturally occurring R213G amino acid substitution located in the ECM-binding region of EC-SOD is known to affect the binding characteristics of the protein. However, the analysis of macrophages expressing R213G EC-SOD did not present evidence of an altered cellular distribution. Our results suggest that EC-SOD plays a dynamic role in the inflammatory response mounted by activated macrophages.
Collapse
Affiliation(s)
| | | | - John M Hartney
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
29
|
Kazumura K, Sato Y, Satozono H, Koike T, Tsuchiya H, Hiramatsu M, Katsumata M, Okazaki S. Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence and fluorescence: evaluation of action mechanisms of bioactive compounds in foods. J Pharm Biomed Anal 2013; 84:90-6. [PMID: 23810848 DOI: 10.1016/j.jpba.2013.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 01/02/2023]
Abstract
We have developed a measuring system for simultaneous monitoring of chemiluminescence and fluorescence, which indicate respectively, (i) generation of superoxide anion radicals (O2(-•)) and (ii) change in the intracellular calcium ion concentration ([Ca(2+)]i) of neutrophils triggered by the mechanism of innate immune response. We applied this measuring system for establishing a method to distinguish between anti-inflammatory actions and antioxidant actions caused by bioactive compounds. We evaluated anti-inflammatory agents (zinc ion [Zn(2+)] and ibuprofen) and antioxidants (superoxide dismutase [SOD] and ascorbic acid). It was shown that ibuprofen and Zn(2+) were anti-inflammatory while SOD and ascorbic acid were anti-oxidative. We conclude that it is possible to determine the mechanism of action of bioactive compounds using this method.
Collapse
Affiliation(s)
- Kimiko Kazumura
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Oczypok EA, Oury TD, Chu CT. It's a cell-eat-cell world: autophagy and phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:612-22. [PMID: 23369575 PMCID: PMC3589073 DOI: 10.1016/j.ajpath.2012.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/26/2022]
Abstract
The process of cellular eating, or the phagocytic swallowing of one cell by another, is an ancient manifestation of the struggle for life itself. Following the endosymbiotic origin of eukaryotic cells, increased cellular and then multicellular complexity was accompanied by the emergence of autophagic mechanisms for self-digestion. Heterophagy and autophagy function not only to protect the nutritive status of cells, but also as defensive responses against microbial pathogens externally or the ill effects of damaged proteins and organelles within. Because of the key roles played by phagocytosis and autophagy in a wide range of acute and chronic human diseases, pathologists have played similarly key roles in elucidating basic regulatory phases for both processes. Studies in diverse organ systems (including the brain, liver, kidney, lung, and muscle) have defined key roles for these lysosomal pathways in infection control, cell death, inflammation, cancer, neurodegeneration, and mitochondrial homeostasis. The literature reviewed here exemplifies the role of pathology in defining leading-edge questions for continued molecular and pathophysiological investigations into all forms of cellular digestion.
Collapse
Affiliation(s)
- Elizabeth A. Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Charleen T. Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition. Redox Biol 2013; 1:24-31. [PMID: 24024135 PMCID: PMC3757672 DOI: 10.1016/j.redox.2012.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutase (EC-SOD) controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163). These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.
Collapse
|
32
|
Manni ML, Epperly MW, Han W, Blackwell TS, Duncan SR, Piganelli JD, Oury TD. Leukocyte-derived extracellular superoxide dismutase does not contribute to airspace EC-SOD after interstitial pulmonary injury. Am J Physiol Lung Cell Mol Physiol 2011; 302:L160-6. [PMID: 22003088 DOI: 10.1152/ajplung.00360.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is known to limit inflammation and fibrosis following numerous pulmonary insults. Previous studies have reported a loss of full-length EC-SOD from the pulmonary parenchyma with accumulation of proteolyzed EC-SOD in the airspace after an interstitial lung injury. However, following airspace only inflammation, EC-SOD accumulates in the airspace without a loss from the interstitium, suggesting this antioxidant may be released from an extrapulmonary source. Because leukocytes are known to express EC-SOD and are prevalent in the bronchoalveolar lavage fluid (BALF) after injury, it was hypothesized that these cells may transport and release EC-SOD into airspaces. To test this hypothesis, C57BL/6 wild-type and EC-SOD knockout mice were irradiated and transplanted with bone marrow from either wild-type mice or EC-SOD knockout mice. Bone marrow chimeric mice were then intratracheally treated with asbestos and killed 3 and 7 days later. At both 3 and 7 days following asbestos injury, mice without pulmonary EC-SOD expression but with EC-SOD in infiltrating and resident leukocytes did not have detectable levels of EC-SOD in the airspaces. In addition, leukocyte-derived EC-SOD did not significantly lessen inflammation or early stage fibrosis that resulted from asbestos injury in the lungs. Although it is not influential in the asbestos-induced interstitial lung injury model, EC-SOD is still known to be present in leukocytes and may play an influential role in attenuating pneumonias and other inflammatory diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Rottner M, Tual-Chalot S, Mostefai HA, Andriantsitohaina R, Freyssinet JM, Martínez MC. Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS One 2011; 6:e24880. [PMID: 21931865 PMCID: PMC3171475 DOI: 10.1371/journal.pone.0024880] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/22/2011] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production, sensitive to the inhibition of IκB-α phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce oxidative stress and apoptosis in CF cells.
Collapse
Affiliation(s)
- Mathilde Rottner
- INSERM, U770, Le Kremlin-Bicêtre, France
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | | | | | | | - Jean-Marie Freyssinet
- INSERM, U770, Le Kremlin-Bicêtre, France
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | | |
Collapse
|