1
|
Chaudhary P, Singha B, Abdel-Hafiz HA, Velegraki M, Sundi D, Satturwar S, Parwani AV, Grivennikov SI, You S, Goodridge HS, Ma Q, Chang Y, Ma A, Zheng B, Theodorescu D, Li Z, Li X. Sex differences in bladder cancer: understanding biological and clinical implications. Biol Sex Differ 2025; 16:31. [PMID: 40361239 PMCID: PMC12070554 DOI: 10.1186/s13293-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Bladder cancer (BC) remains a significant global health concern, with substantial sex and racial disparities in incidence, progression, and outcomes. BC is the sixth most common cancer among males and the seventeenth most common among females worldwide. Over 90% of BC cases are urothelial carcinoma (UC) with high degrees of pathological heterogeneity. Molecular subtyping of BC has also revealed distinct luminal, basal, and neuroendocrine subtypes, each with unique genetic and immune signatures. Emerging research uncovers the biasing effects of the sex hormones with androgens increasing BC risk through both tumor cell intrinsic and extrinsic mechanisms. The sex chromosomes, including both the X and Y chromosomes, also contribute to the sex differences in BC. The effect of sex chromosome is both independent from and synergistic with the effects of sex hormones. Loss of the Y chromosome is frequently observed in BC patients, while an extra copy of the X chromosome confers better protection against BC in females than in males. Advent of advanced technologies such as multiomics and artificial intelligence will likely further improve the understanding of sex differences in BC, which may ultimately lead to personalized preventative and treatment strategies depending on the biological sex of patients. This review delves into the impacts of biology of sex on BC, emphasizing the importance of further research into sex-specific biology to improve cancer prevention and care.
Collapse
Affiliation(s)
- Prakash Chaudhary
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biplab Singha
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hany A Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University, Comprehensive Cancer Center Board of Governors, Columbus, OH, USA
| | - Swati Satturwar
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bin Zheng
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Dotto GP, Buckinx A, Özdemir BC, Simon C. Androgen receptor signalling in non-prostatic malignancies: challenges and opportunities. Nat Rev Cancer 2025; 25:93-108. [PMID: 39587300 PMCID: PMC11947662 DOI: 10.1038/s41568-024-00772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
The androgen receptor (AR) signalling pathway has been intensively studied in the context of prostate cancer, where androgen deprivation therapy is part of the standard of care for metastatic disease. By contrast, fewer studies have investigated the impact and translational potential of targeting AR in other cancer types where it is also expressed and functional. In this Review, we discuss the current understanding of AR in non-prostatic cancer types and summarize ongoing AR-directed clinical trials. While different androgen levels contribute to sexual dimorphism in cancer, targeting the AR system could benefit both sexes and help overcome resistance to targeted therapies. However, a bimodal function of AR signalling, which suppresses stromal changes associated with the early stages of cancer development, also needs to be considered. Future research is necessary to scrutinize cellular and molecular mechanisms of action of AR in cancer cells and the tumour microenvironment, to develop selective modulators of AR activity, and to identify patients with non-prostatic cancer who might benefit from targeting this pathway. AR-directed manipulation of host immune cells may offer a promising therapeutic approach for many types of cancers.
Collapse
Affiliation(s)
- G Paolo Dotto
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Service d'Oto-rhino-laryngologie et chirurgie cervical faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Lausanne, Switzerland.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| | - An Buckinx
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - Berna C Özdemir
- Department of Medical Oncology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Simon
- Service d'Oto-rhino-laryngologie et chirurgie cervical faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
3
|
Zhao J, Zhang Q, Zhu C, Yuqi W, Zhang G, Wang Q, Dong X, Li B, Wang X. Prognostic feature based on androgen-responsive genes in bladder cancer and screening for potential targeted drugs. BioData Min 2024; 17:59. [PMID: 39695796 DOI: 10.1186/s13040-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/19/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Bladder cancer (BLCA) is a tumor that affects men more than women. The biological function and prognostic value of androgen-responsive genes (ARGs) in BLCA are currently unknown. To address this, we established an androgen signature to determine the prognosis of BLCA. METHODS Sequencing data for BLCA from the TCGA and GEO datasets were used for research. The tumor microenvironment (TME) was measured using Cibersort and ssGSEA. Prognosis-related genes were identified and a risk score model was constructed using univariate Cox regression, LASSO regression, and multivariate Cox regression. Drug sensitivity analysis was performed using Genomics of drug sensitivity in cancer (GDSC). Real-time quantitative PCR was performed to assess the expression of representative genes in clinical samples. RESULTS ARGs (especially the CDK6, FADS1, PGM3, SCD, PTK2B, and TPD52) might regulate the progression of BLCA. The different expression patterns of ARGs may lead to different immune cell infiltration. The risk model indicates that patients with higher risk scores have a poorer prognosis, more stromal infiltration, and an enrichment of biological functions. Single-cell RNA analysis, bulk RNA data, and PCR analysis support the reliability of this risk model, and a nomogram was also established for clinical use. Drug prediction analysis showed that high-risk patients had a better response to fludarabine, AZD8186, and carmustine. CONCLUSION ARGs played an important role in the progression, immune infiltration, and prognosis of BLCA. The ARGs model has high accuracy in predicting the prognosis of BLCA patients and provides more effective medication guidelines.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
- Department of Urology, People ' s Hospital of Shapingba District, Chongqing, 400030, China
| | - Qian Zhang
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Cunle Zhu
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wu Yuqi
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Urology, South China Hospital Affiliated to Shenzhen University, Shenzhen, 518000, China
| | - Guohui Zhang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qianliang Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xingyou Dong
- Department of Urology, South China Hospital Affiliated to Shenzhen University, Shenzhen, 518000, China.
- Department of Urology, People ' s Hospital of Shapingba District, Chongqing, 400030, China.
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xiangwei Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
4
|
Zhong Q, Huang Y, Sha Y, Wei Q, Long K, Xiao J, Liu Z, Wei X. Halobenzoquinone-induced potential carcinogenicity associated with p53-mediated cell cycle pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125230. [PMID: 39489323 DOI: 10.1016/j.envpol.2024.125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
2,6-Dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), two emerging halobenzoquinones (HBQs), have the highest detection frequencies and levels in drinking water among all HBQs. They are more toxic than the regulated disinfection byproducts. Quantitative structure toxicity relationship analysis predicted that HBQs are a class of potential bladder carcinogens. However, direct experimental evidence for the carcinogenicity of 2,6-DBBQ and 2,6-DCBQ is lacking and the associated toxicity mechanisms remain unclear. In this study, we confirmed the potential carcinogenicity of 2,6-DBBQ and 2,6-DCBQ using an in vitro malignant transformation assay, evaluated their cytotoxicity and genotoxicity, and investigated their toxicity mechanisms. The results showed that 2,6-DBBQ and 2,6-DCBQ significantly decreased the viability of human uroepithelial SV-HUC-1 cells and induced DNA damage in SV-HUC-1 cells, and chromosomal damage in HepG2 cells, and malignant transformation of SV-HUC-1 cells. Moreover, transcriptome sequencing revealed that 2,6-DBBQ and 2,6-DCBQ activated the p53-mediated cell cycle pathway in bladder cancer. In the p53-mediated cell cycle pathway, 2,6-DBBQ and 2,6-DCBQ induced cell cycle arrest at the S phase by downregulating p53 and upregulating p21. Additionally, 2,6-DBBQ and 2,6-DCBQ may have produced excessive reactive oxygen species, damaging DNA and chromosomes. These results not only first confirm the potential carcinogenicity of 2,6-DBBQ and 2,6-DCBQ but also provide an important reference for exploring the cytotoxicity and genotoxicity mechanisms of these HBQs.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuwen Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuyan Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingyi Xiao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhanmou Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
5
|
Matye D, Leak J, Woolbright BL, Taylor JA. Preclinical models of bladder cancer: BBN and beyond. Nat Rev Urol 2024; 21:723-734. [PMID: 38769130 DOI: 10.1038/s41585-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Preclinical modelling is a crucial component of advancing the understanding of cancer biology and therapeutic development. Several models exist for understanding the pathobiology of bladder cancer and evaluating therapeutics. N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder cancer is a commonly used model that recapitulates many of the features of human disease. Particularly in mice, BBN is a preferred laboratory model owing to a high level of reproducibility, high genetic fidelity to the human condition, and its relative ease of use. However, important aspects of the model are often overlooked in laboratory studies. Moreover, the advent of new models has yielded a variety of methodologies that complement the use of BBN. Toxicokinetics, histopathology, molecular genetics and sex can differ between available models and are important factors to consider in bladder cancer modelling.
Collapse
Affiliation(s)
- David Matye
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Juliann Leak
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A Taylor
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Hyldgaard JM, Nørgaard M, Hjort PE, Jensen JB. Bladder cancer incidence and mortality among men with and without castration therapy for prostate cancer - a nation-wide cohort study. Acta Oncol 2024; 63:746-754. [PMID: 39319939 PMCID: PMC11445587 DOI: 10.2340/1651-226x.2024.40969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND PURPOSE Bladder cancer (BC) is a common malignancy in the Western World with men being diagnosed almost four times as often as women. The etiology of bladder cancer may involve sex hormones. Prostate cancer (PCa) patients treated with chemical castration, such as androgen deprivation therapy, or surgical castration, may therefore have a lower risk of developing bladder cancer. PATIENTS/MATERIAL AND METHODS In a nation-wide population-based cohort study using national Danish registry data, we included a cohort of men with a first-time PCa diagnosis between 2002 and 2018 divided according to antihormonal treatment in the first year after PCa diagnosis and a comparison cohort consisting of 10 age-matched persons for each PCa patient. Each individual was followed from 1 year after PCa diagnosis until death or end of follow-up. We computed cumulative incidences (risk) and hazard ratios (HRs) for BC. In a second cohort analysis, we determined overall survival and BC-specific mortality, determined from date of BC diagnosis until death. RESULTS AND INTERPRETATION We included 48,776 PCa patients of whom 13,592 were treated with chemical castration, 2,261 with surgical castration, and 32,923 received no antihormonal treatment. The 5-year risk of BC for each PCa group was 1.1%, 0.7%, and 1.3%, respectively, corresponding to an adjusted HR of 1.13 (95% CI 0.98; 1.31), 0.95 (95% CI 0.62; 1.47), and 1.18 (95% CI 1.09; 1.28) compared to individuals without PCa. Patients receiving antihormonal treatment had a slightly lower incidence of BC compared to individuals without PCa, however, this was not supported by the HRs. The treatment, however, was not associated with overall survival.
Collapse
Affiliation(s)
- Josephine M Hyldgaard
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark.
| | - Mette Nørgaard
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter E Hjort
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen B Jensen
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Wang Y, Song Y, Peng Y, Han S, Qin C, Du Y, Xu T. Effects of androgen suppression therapy on the incidence and prognosis of bladder cancer: An updated systematic review and meta-analysis. Urol Oncol 2024; 42:266-274. [PMID: 38729866 DOI: 10.1016/j.urolonc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION The influence of androgen suppression therapy (AST) on bladder cancer (BCa) remains controversial, as recent studies have not reached a consensus regarding the relationship between AST and the incidence or prognosis of BCa. MATERIALS AND METHODS We perform an updated systematic review and meta-analysis utilizing the most recent evidence to investigate the potential influence of AST on the incidence and prognosis of BCa. A comprehensive literature search was performed on the PubMed, Medline, Embase, Web of Science, and the Cochrane Library databases to include potentially eligible studies. Hazard ratios (HR) and odds ratios (OR) were used to calculate the incidence and prognosis of BCa. RESULTS This meta-analysis included 22 studies with 700,755 participants which investigated the impact of AST on the risk and prognosis of BCa. The pooled results revealed no significant relation between AST and a decreased incidence of BCa (OR: 0.92, 95%CI: 0.77-1.09, P = 0.342). Subgroup analysis reported that patients receiving 5-alpha reductase inhibitors (5-ARIs) exhibited a significantly lower risk of BCa (OR: 0.83, 95%CI: 0.75-0.91, P < 0.001), while androgen deprivation therapy did not show a significant reduction (OR: 1.00, 95%CI: 0.46-2.16, P = 0.995). AST may also significantly improve the recurrence-free survival of patients with BCa (HR: 0.69, 95%CI: 0.50-0.95, P = 0.023). We also detected a significant improvement in OS among BCa patients who received 5-ARIs compared to those without 5-ARIs (HR: 0.82, 95%CI: 0.68-0.99, P = 0.037). CONCLUSION No significant correlation was found between AST and a decreased BCa incidence, while 5-ARIs have demonstrated efficacy in reducing BCa occurrence. Moreover, patients who received AST demonstrated improved prognosis.
Collapse
Affiliation(s)
- Yulong Wang
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Yun Peng
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Songchen Han
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China; The Institute of Applied Lithotripsy Technology, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
8
|
Toren P, Wilkins A, Patel K, Burley A, Gris T, Kockelbergh R, Lodhi T, Choudhury A, Bryan RT. The sex gap in bladder cancer survival - a missing link in bladder cancer care? Nat Rev Urol 2024; 21:181-192. [PMID: 37604983 DOI: 10.1038/s41585-023-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The differences in bladder cancer outcomes between the sexes has again been highlighted. Uncommon among cancers, bladder cancer outcomes are notably worse for women than for men. Furthermore, bladder cancer is three to four times more common among men than among women. Factors that might explain these sex differences include understanding the importance of haematuria as a symptom of bladder cancer by both clinicians and patients, the resultant delays in diagnosis and referral of women with haematuria, and health-care access. Notably, these factors seem to have geographical variation and are not consistent across all health-care systems. Likewise, data relating to sex-specific treatment responses for patients with non-muscle-invasive or muscle-invasive bladder cancer are inconsistent. The influence of differences in the microbiome, bladder wall thickness and urine dwell times remain to be elucidated. The interplay of hormone signalling, gene expression, immunology and the tumour microenvironment remains complex but probably underpins the sexual dimorphism in disease incidence and stage and histology at presentation. The contribution of these biological phenomena to sex-specific outcome differences is probable, albeit potentially treatment-specific, and further understanding is required. Notwithstanding these aspects, we identify opportunities to harness biological differences to improve treatment outcomes, as well as areas of fundamental and translational research to pursue. At the level of policy and health-care delivery, improvements can be made across the domains of patient awareness, clinician education, referral pathways and guideline-based care. Together, we aim to highlight opportunities to close the sex gap in bladder cancer outcomes.
Collapse
Affiliation(s)
- Paul Toren
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospitals NHS Trust, London, UK
| | - Keval Patel
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Amy Burley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Typhaine Gris
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Roger Kockelbergh
- University Hospitals of Leicester NHS Trust, Leicester, UK
- Action Bladder Cancer UK, Tetbury, UK
| | - Taha Lodhi
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Richard T Bryan
- Action Bladder Cancer UK, Tetbury, UK.
- Bladder Cancer Research Centre, Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Sundi D, Collier KA, Yang Y, Diaz DA, Pohar KS, Singer EA, Gupta S, Carson WE, Clinton SK, Li Z, Messing EM. Roles of Androgen Receptor Signaling in Urothelial Carcinoma. Cancers (Basel) 2024; 16:746. [PMID: 38398136 PMCID: PMC10886823 DOI: 10.3390/cancers16040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Preclinical and clinical data suggest that androgen receptor signaling strongly contributes to bladder cancer development. The roles of the androgen receptor in bladder carcinogenesis have obvious implications for understanding the strong male sex bias in this disease and for potential therapeutic strategies as well. In this review, we summarize what is known about androgen receptor signaling in urothelial carcinoma as well as in tumor-infiltrating immune cells, reviewing preclinical and clinical data. We also highlight clinical trial efforts in this area.
Collapse
Affiliation(s)
- Debasish Sundi
- Department of Urology, Division of Urologic Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Katharine A. Collier
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kamal S. Pohar
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Eric A. Singer
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University School of Medicine, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steven K. Clinton
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zihai Li
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Edward M. Messing
- Departments of Urology, Oncology, and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Chen J, Huang CP, Quan C, Zu X, Ou Z, Tsai YC, Messing E, Yeh S, Chang C. The androgen receptor in bladder cancer. Nat Rev Urol 2023; 20:560-574. [PMID: 37072491 DOI: 10.1038/s41585-023-00761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
Bladder cancer is the ninth most common cancer worldwide with a striking sex-based difference in incidence. Emerging evidence indicates that the androgen receptor (AR) might promote the development, progression and recurrence of bladder cancer, contributing to the observed sex differences. Targeting androgen-AR signalling has promise as potential therapy for bladder cancer and helps to suppress progression of this disease. In addition, the identification of a new membrane AR and AR-regulated non-coding RNAs has important implications for bladder cancer treatment. The success of human clinical trials of targeted-AR therapies will help in the development of improved treatments for patients with bladder cancer.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yu-Chieh Tsai
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Messing
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Reike M, Ingersoll M, Müller D, Zuiverloon T, Strandgaard T, Kamat A, Williams S, Seiler R, Todenhöfer T, Dyrskjøt L, Nawroth R, Goebell P, Schmitz-Dräger B, Sfakianos J, Meeks J, Horowitz A, Black P. Biology of BCG response in non-muscle invasive bladder cancer - 2021 IBCN Updates Part III. Urol Oncol 2022; 41:211-218. [PMID: 36266219 DOI: 10.1016/j.urolonc.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
Bacillus Calmette-Guerin (BCG) remains the only FDA-approved first-line therapy in patients with high-risk non-muscle invasive bladder cancer. Recurrences, even after adequate BCG therapy, are common and the efficacy of second-line therapies remains modest. Therefore, early identification of patients likely to recur and treatment after recurrence remain critical unmet needs in the clinical care of bladder cancer patients. To address these deficits, a better understanding of the mechanisms of resistance to BCG-therapy is needed. The virtual update of the International Bladder Cancer Network (IBCN) on the biology of response to BCG focused on potential mechanisms and markers of resistance to intravesical BCG therapy. The insights from this meeting will be highlighted and put into context of previously reported mechanisms of resistance to BCG in this review.
Collapse
|
13
|
Lam CM, Li Z, Theodorescu D, Li X. Mechanism of Sex Differences in Bladder Cancer: Evident and Elusive Sex-biasing Factors. Bladder Cancer 2022; 8:241-254. [PMID: 36277328 PMCID: PMC9536425 DOI: 10.3233/blc-211658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Bladder cancer incidence is drastically higher in males than females across geographical, racial, and socioeconomic strata. Despite potential differences in tumor biology, however, male and female bladder cancer patients are still clinically managed in highly similar ways. While sex hormones and sex chromosomes have been shown to promote observed sex differences, a more complex story lies beneath these evident sex-biasing factors than previously appreciated. Advances in genomic technology have spurred numerous preclinical studies characterizing elusive sex-biasing factors such as epigenetics, X chromosome inactivation escape genes, single nucleotide polymorphism, transcription regulation, metabolism, immunity, and many more. Sex-biasing effects, if properly understood, can be leveraged by future efforts in precision medicine based on a patient's biological sex. In this review, we will highlight key findings from the last half century that demystify the intricate ways in which sex-specific biology contribute to differences in pathogenesis as well as discuss future research directions.
Collapse
Affiliation(s)
- Christa M. Lam
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – The James, Columbus, OH, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
De Carlo C, Valeri M, Corbitt DN, Cieri M, Colombo P. Non-muscle invasive bladder cancer biomarkers beyond morphology. Front Oncol 2022; 12:947446. [PMID: 35992775 PMCID: PMC9382689 DOI: 10.3389/fonc.2022.947446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) still represents a challenge in decision-making and clinical management since prognostic and predictive biomarkers of response to treatment are still under investigation. In addition to the risk factors defined by EORTC guidelines, histological features have also been considered key variables able to impact on recurrence and progression in bladder cancer. Conversely, the role of genomic rearrangements or expression of specific proteins at tissue level need further assessment in NMIBC. As with muscle-invasive cancer, NMIBC is a heterogeneous disease, characterized by genomic instability, varying rates of mutation and a wide range of protein tissue expression. In this Review, we summarized the recent evidence on prognostic and predictive tissue biomarkers in NMIBC, beyond morphological parameters, outlining how they could affect tumor biology and consequently its behavior during clinical care. Our aim was to facilitate clinical evaluation of promising biomarkers that may be employed to better stratify patients. We described the most common molecular events and immunohistochemical protein expressions linked to recurrence and progression. Moreover, we discussed the link between available treatments and molecular drivers that could be predictive of clinical response. In conclusion, we foster further investigations with particular focus on immunohistochemical evaluation of tissue biomarkers, a promising and cost-effective tool for daily practice.
Collapse
Affiliation(s)
- Camilla De Carlo
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marina Valeri
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Miriam Cieri
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- *Correspondence: Piergiuseppe Colombo,
| |
Collapse
|
15
|
Park JO, Nam IC, Kim CS, Park SJ, Lee DH, Kim HB, Han KD, Joo YH. Sex Differences in the Prevalence of Head and Neck Cancers: A 10-Year Follow-Up Study of 10 Million Healthy People. Cancers (Basel) 2022; 14:cancers14102521. [PMID: 35626129 PMCID: PMC9139445 DOI: 10.3390/cancers14102521] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Descriptive epidemiologists have repeatedly reported that males are more susceptible to head and neck cancers. However, most published data are those of cross-sectional studies, and no population-based cohort study has yet been published. The aim of this study was to compare the prevalence of head and neck cancers in healthy males with females. Methods: A retrospective cohort study using the Korean National Health Insurance Service database on 9,598,085 individuals who underwent regular health checkups from 1 January to 31 December 2009. We sought head and neck cancers developed during the 10-year follow-up. Results: A total of 10,732 (incidence rate (IR) per 1000 person-years 0.25) individuals were newly diagnosed with head and neck cancer among the 9,598,085 individuals during the 10-year follow-up. The IR was 0.19 in males (8500 affected) and 0.06 in females (2232 affected). Notably, the male−female ratio increased with age below 70 years but decreased thereafter. The male−female difference was most apparent for laryngeal cancer; the male IR was 11-fold higher in the 40 s and 20-fold higher in the 60 s, followed by hypopharyngeal cancer (6.8- and 24.2-fold). Males smoked more and drank more alcohol than females (p < 0.0001 *, p < 0.0001 *). When never-smokers/-drinkers (only) were compared, males remained at a 2.9-fold higher risk of head and neck cancer than females. The hazard ratios for head and neck cancers in males tended to increase in the lower part of the upper aerodigestive tract: larynx (13.9) > hypopharynx (10.9) > oropharynx (4.4) > nasopharynx (2.9) > sinonasal region (1.8) > oral (1.6). Only the salivary gland cancer incidence did not differ between the sexes; the gland is not in the upper aerodigestive tract. Conclusion: Males are much more susceptible to head and neck cancers than females regardless of whether they drink alcohol or smoke tobacco. Sex differences in the incidence of head and neck cancer are most evident in the 60 s in the lower part of the upper aerodigestive tract, such as the larynx and hypopharynx.
Collapse
Affiliation(s)
- Jun-Ook Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
| | - Inn-Chul Nam
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
| | - Choung-Soo Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
| | - Sung-Joon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Gwangmyeong Hospital, Gwangmyeon-si 14353, Korea;
| | - Dong-Hyun Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
| | - Hyun-Bum Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea;
| | - Young-Hoon Joo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-O.P.); (I.-C.N.); (C.-S.K.); (D.-H.L.); (H.-B.K.)
- Correspondence: ; Tel.: +82-32-340-7090; Fax: +82-32-340-2674
| |
Collapse
|
16
|
Liu N, Chen Y, Yang L, Shi Q, Lu Y, Ma W, Han X, Guo H, Li D, Gan W. Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 2022; 12:e797. [PMID: 35452181 PMCID: PMC9029019 DOI: 10.1002/ctm2.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age‐dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression‐free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin‐related modifier (SUMO)‐specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC‐TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC‐TFE3 tRCC. Conclusions Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC‐TFE3 fusion protein
Collapse
Affiliation(s)
- Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiancheng Shi
- Department of Urology, Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer. Biomolecules 2022; 12:biom12010072. [PMID: 35053220 PMCID: PMC8774219 DOI: 10.3390/biom12010072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
Biomarkers can be used for diagnosis, prognosis, and prediction in targeted therapy. The estrogen receptor α (ERα) and human epidermal growth factor receptor 2 (HER2) are standard biomarkers used in breast cancer for guiding disease treatment. The androgen receptor (AR), a nuclear hormone receptor, contributes to the development and progression of prostate tumors and other cancers. With increasing evidence to support that AR plays an essential role in breast cancer, AR has been considered a useful biomarker in breast cancer, depending on the context of breast cancer sub-types. The existing survival analyses suggest that AR acts as a tumor suppressor in ER + ve breast cancers, serving as a favorable prognostic marker. However, AR functions as a tumor promoter in ER-ve breast cancers, including HER2 + ve and triple-negative (TNBC) breast cancers, serving as a poor prognostic factor. AR has also been shown to be predictive of the potential of response to adjuvant hormonal therapy in ER + ve breast cancers and to neoadjuvant chemotherapy in TNBC. However, conflicting results do exist due to intrinsic molecular differences between tumors and the scoring method for AR positivity. Applying AR expression status to guide treatment in different breast cancer sub-types has been suggested. In the future, AR will be a feasible biomarker for breast cancer. Clinical trials using AR antagonists in breast cancer are active. Targeting AR alone or other therapeutic agents provides alternatives to existing therapy for breast cancer. Therefore, AR expression will be necessary if AR-targeted treatment is to be used.
Collapse
|
18
|
The impact of biological sex on diseases of the urinary tract. Mucosal Immunol 2022; 15:857-866. [PMID: 35869147 PMCID: PMC9305688 DOI: 10.1038/s41385-022-00549-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
Biological sex, being female or male, broadly influences diverse immune phenotypes, including immune responses to diseases at mucosal surfaces. Sex hormones, sex chromosomes, sexual dimorphism, and gender differences all contribute to how an organism will respond to diseases of the urinary tract, such as bladder infection or cancer. Although the incidence of urinary tract infection is strongly sex biased, rates of infection change over a lifetime in women and men, suggesting that accompanying changes in the levels of sex hormones may play a role in the response to infection. Bladder cancer is also sex biased in that 75% of newly diagnosed patients are men. Bladder cancer development is shaped by contributions from both sex hormones and sex chromosomes, demonstrating that the influence of sex on disease can be complex. With a better understanding of how sex influences disease and immunity, we can envision sex-specific therapies to better treat diseases of the urinary tract and potentially diseases of other mucosal tissues.
Collapse
|
19
|
Kafkasli A, Yazici O, Can U, Dinçer E, Akça O, Canguven O. Testosterone status is not associated with bladder cancer parameters in adult male patients: results of a prospective controlled study. Aging Male 2021; 24:101-105. [PMID: 34338109 DOI: 10.1080/13685538.2020.1808968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE This controlled study assessed whether there was a correlation between serum total testosterone levels and bladder cancer (BCa) in terms of tumor grade and stage as objective measures in adult men. MATERIALS AND METHOD Our prospectively-designed study included 257 patients who were diagnosed with primary BCa and its surgery between January 2017 and January 2020. Hundred and forty patients who had surgery in the same period with TUR for prostate or endoscopic ureteral stone treatment were included in the study as a control group. All patients in the study and control groups were male. The age range of the patients was between 34 and 90 years old. In order to examine groups, fasting blood glucose, lipid profile, albumin, total testosterone, and vitamin D levels of all patients included in the study. RESULTS The relationship between tumor aggression and total testosterone level was investigated with a multinomial logistic regression model, where the control group was accepted as a reference, following adjustment for potential confounding variables, including age and serum albumin levels. Testosterone level was not found to be associated with any of the categories that determine tumor aggressiveness (p > 0.05). CONCLUSION In the present study, there was no correlation between any categories that determine tumor aggressiveness of BCa and total testosterone levels in adult men. It is obvious that our findings should be supported and further investigations are needed.
Collapse
Affiliation(s)
- Alper Kafkasli
- Dr Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi, Istanbul, Turkey
| | - Ozgur Yazici
- Department of Urology, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Utku Can
- Dr Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi, Istanbul, Turkey
| | - Erdinç Dinçer
- Dr Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi, Istanbul, Turkey
| | - Oktay Akça
- Dr Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi, Istanbul, Turkey
| | - Onder Canguven
- Hamad General Hospital, Doha, Qatar
- Weill Cornell Medicine, Urology, New York, NY, USA
| |
Collapse
|
20
|
Lutz CT, Livas L, Presnell SR, Sexton M, Wang P. Gender Differences in Urothelial Bladder Cancer: Effects of Natural Killer Lymphocyte Immunity. J Clin Med 2021; 10:5163. [PMID: 34768683 PMCID: PMC8584838 DOI: 10.3390/jcm10215163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in the role of natural killer (NK) cells in anti-cancer immunity.
Collapse
Affiliation(s)
- Charles T. Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Lydia Livas
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Steven R. Presnell
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Morgan Sexton
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Peng Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
21
|
Ho SR, Lee YC, Ittmann MM, Lin FT, Chan KS, Lin WC. RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Lett 2021; 520:344-360. [PMID: 34400221 PMCID: PMC9420248 DOI: 10.1016/j.canlet.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
RNF144A is a DNA damage-induced E3 ubiquitin ligase that targets proteins involved in genome instability for degradation, e.g., DNA-PKcs and BMI1. RNF144A is frequently mutated or epigenetically silenced in cancer, providing the rationale to evaluate RNF144A loss of function in tumorigenesis. Here we report that RNF144A-deficient mice are more prone to the development of bladder tumors upon carcinogen exposure. In addition to DNA-PKcs and BMI1, we identify the immune checkpoint protein PD-L1 as a novel degradation target of RNF144A, since these proteins are expressed at higher levels in Rnf144a KO tumors. RNF144A interacts with PD-L1 in the plasma membrane and intracellular vesicles and promotes poly-ubiquitination and degradation of PD-L1. Therefore, Rnf144a KO stabilizes PD-L1 and leads to a reduction of tumor-infiltrating CD8+ T cell populations in the BBN-induced bladder tumors. The bladder tumors developed in WT and Rnf144a KO mice primarily express CK5 and CK14, markers of basal cancer subtype, as expected in BBN-induced bladder tumors. Intriguingly, the Rnf144a KO tumors also express GATA3, a marker for the luminal subtype, suggesting that RNF144A loss of function promotes features of cellular differentiation. Such differentiation features in Rnf144a KO tumors likely result from a decrease of EGFR expression, consistent with the reported role of RNF144A in maintaining EGFR expression. In summary, for the first time our study demonstrates the in vivo tumor suppressor activity of RNF144A upon carcinogenic insult. Loss of RNF144A promotes the expression of DNA-PKcs, BMI1 and PD-L1, likely contributing to the carcinogen-induced bladder tumorigenesis.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keith Syson Chan
- Department of Pathology and Laboratory Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Kourbanhoussen K, McMartin C, Lodde M, Zlotta A, Bryan RT, Toren P. Switching Cancers: A Systematic Review Assessing the Role of Androgen Suppressive Therapy in Bladder Cancer. Eur Urol Focus 2021; 7:1044-1051. [PMID: 33132108 DOI: 10.1016/j.euf.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Bladder cancer demonstrates striking gender-based differences in incidence, with a role for androgens possibly implicated in the development and progression of the disease. Emerging preclinical and clinical evidence suggests that there may be a role for antiandrogen therapy in bladder cancer. OBJECTIVE This systematic review assessed the current clinical evidence evaluating androgen suppressive therapy (AST) for the treatment or prevention of bladder cancer. EVIDENCE ACQUISITION Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, MEDLINE was searched for full-text articles detailing clinical outcomes or incidence of bladder cancer among patients who received AST, defined as gonadotropin-releasing hormone agonists or equivalent, androgen receptor antagonists, or 5-alpha reductase inhibitors. EVIDENCE SYNTHESIS A total of 12 studies were included. Five studies focused on prostate cancer patients, with one study in men with lower urinary tract symptoms. Among these studies, a lower incidence of bladder cancer was observed in five, with adjusted risk reduction estimates ranging from 7% to 47%. Six studies evaluating 11 820 bladder cancer patients investigated clinical outcomes among men who received a form of AST. Three out of four studies evaluating recurrence-free survival found a benefit for AST, with adjusted hazard ratios for recurrence of non-muscle-invasive cancer ranging from 0.29 to 0.53. Limitations included large variability in data sources and methodologies, as well as no data on tolerability. CONCLUSIONS Current evidence indicates that antiandrogen therapies exert a favorable influence on bladder tumors. Further prospective studies are needed to assess their therapeutic potential. PATIENT SUMMARY Androgen suppressive therapy is commonly prescribed for the treatment of prostate-related problems. Prior research indicates that there may be a role for these treatments in patients with bladder cancer. In this review, we evaluate the current evidence that strongly suggests that these agents may be effective against bladder cancer.
Collapse
Affiliation(s)
- Kassim Kourbanhoussen
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Catherine McMartin
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Michele Lodde
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada; Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Alexandre Zlotta
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard T Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paul Toren
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada; Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Sikic D, Eckstein M, Weyerer V, Kubon J, Breyer J, Roghmann F, Kunath F, Keck B, Erben P, Hartmann A, Wirtz RM, Wullich B, Taubert H, Wach S. High expression of ERBB2 is an independent risk factor for reduced recurrence-free survival in patients with stage T1 non-muscle-invasive bladder cancer. Urol Oncol 2021; 40:63.e9-63.e18. [PMID: 34330652 DOI: 10.1016/j.urolonc.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Molecular markers associated with breast cancer are assumed to be associated with outcome in non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS We retrospectively investigated the association of the mRNA expression of estrogen receptor 1 (ESR1) and 2 (ESR2), progesterone receptor (PGR), MKI67, and HER2 (ERBB2) with recurrence-free (RFS), cancer-specific (CSS), and overall survival (OS) in 80 patients with stage T1 NMIBC. RESULTS High expression of ESR2 (P = 0.003), ERBB2 (P < 0.001), and MKI67 (P = 0.029) was associated with shorter RFS. Only high ERBB2 was an independent prognostic factor for reduced RFS (HR = 2.98; P = 0.009). When sub stratifying the cohort, high ESR2 was associated with reduced RFS (P < 0.001), CSS (P = 0.037) and OS (P = 0.006) in patients without instillation therapy. High ESR2 was associated with reduced CSS (P = 0.018) and OS (P = 0.029) in females and with shorter RFS in both sexes (males: P = 0.035; females: P = 0.010). Patients with high ERBB2 showed reduced CSS (P = 0.011) and OS (P = 0.042) in females and reduced CSS (P = 0.012) in those without instillation, while RFS was significantly reduced irrespective of sex or instillation. CONCLUSION High mRNA expression of ERBB2 is an independent predictor of reduced RFS in patients with stage T1 NMIBC. High ERBB2 and ESR2 are associated with reduced outcomes, especially in females and patients without instillation therapy.
Collapse
Affiliation(s)
- Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Veronika Weyerer
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Kubon
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Frank Kunath
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Bastian Keck
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Philipp Erben
- Department of Urology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
24
|
Deng G, Wang R, Sun Y, Huang CP, Yeh S, You B, Feng C, Li G, Ma S, Chang C. Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death Differ 2021; 28:2145-2159. [PMID: 34127806 PMCID: PMC8257744 DOI: 10.1038/s41418-021-00743-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
Androgen-deprivation therapy (ADT) via targeting androgens/androgen receptor (AR) signals may suppress cell proliferation in both prostate cancer (PCa) and bladder cancer (BCa), yet its impact on the cell invasion of these two urological cancers remains unclear. Here we found targeting androgens/AR with either the recently developed antiandrogen Enzalutamide (Enz) or AR-shRNAs led to increase PCa cell invasion, yet decrease BCa cell invasion. Mechanistic dissection revealed that suppressing androgens/AR signals could result in differential alterations of the selective circular RNAs (circRNAs) as a result of differential endogenous AR transcription. A negative autoregulation in PCa, yet a positive autoregulation in BCa, as a result of differential binding of AR to different androgen-response elements (AREs) and a discriminating histone H3K4 methylation, likely contributes to this outcome between these two urological tumors. Further mechanistic studies indicated that AR-encoded circRNA-ARC1 might sponge/alter the availability of the miRNAs miR-125b-2-3p and/or miR-4736, to impact the metastasis-related PPARγ/MMP-9 signals to alter the PCa vs. BCa cell invasion. The preclinical study using the in vivo mouse model confirms in vitro cell lines data, showing that Enz treatment could increase PCa metastasis, which can be suppressed after suppressing circRNA-ARC1 with sh-circRNA-ARC1. Together, these in vitro/in vivo results demonstrate that antiandrogen therapy with Enz via targeting AR may lead to either increase PCa cell invasion or decrease BCa cell invasion. Targeting these newly identified AR/circRNA-ARC1/miR-125b-2-3p and/or miR-4736/PPARγ/MMP-9 signals may help in the development of new therapies to better suppress the Enz-altered PCa vs. BCa metastasis.
Collapse
Affiliation(s)
- Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Ronghao Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University/Hospital, Taichung, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Changyong Feng
- Department of Biostatistics, University of Rochester Medical Center, Rochester, NY, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Shenglin Ma
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
25
|
High Androgen Receptor mRNA Expression Is Associated with Improved Outcome in Patients with High-Risk Non-Muscle-Invasive Bladder Cancer. Life (Basel) 2021; 11:life11070642. [PMID: 34209360 PMCID: PMC8306811 DOI: 10.3390/life11070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) in non-muscle-invasive bladder cancer (NMIBC) remains controversial. We retrospectively analyzed the mRNA expression of AR using RT-qPCR in 95 patients with high-risk NMIBC treated with a bladder-sparing approach and correlated AR with clinical data and recurrence-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS). The mRNA expression of AR and KRT5, i.e., the basal-like subtype, was strongly correlated (rs = 0.456; p < 0.001). AR (p = 0.053) and KRT5 (p = 0.029) mRNA expression was negatively correlated with tumor grade. Kaplan–Meier analyses indicated significantly prolonged CSS (p = 0.020) and OS (p = 0.015) and a trend towards longer RFS (p = 0.051) in patients with high AR expression. High KRT5 expression was associated with significantly longer RFS (p = 0.033), CSS (p = 0.029) and OS (p = 0.030), while high KRT20 expression was associated with reduced RFS (p = 0.042). In multivariable analysis, none of the molecular markers was an independent prognostic factor. When performing a substratification with regard to molecular markers and clinicopathological parameters, high AR expression showed improved OS in patients with high KRT20 mRNA expression (p = 0.041). Women showed significantly longer OS in cases with high AR expression (p = 0.011). High AR was associated with significantly improved CSS in males (p = 0.044) and patients with instillation therapy (p = 0.040), while OS was improved regardless of instillation therapy. Younger patients with high AR expression had significantly improved RFS (p = 0.021), CSS (p = 0.014) and OS (p = 0.007). RFS was also improved in patients with high AR and low expression of either KRT5 (p = 0.003) or KRT20 (p = 0.014), but not in patients with high expression of KRT5 or KRT20. In conclusion, high AR mRNA expression is correlated with KRT5 mRNA expression and is associated with an improved outcome in high-risk NMIBC.
Collapse
|
26
|
Luna-Velez MV, Dijkstra JJ, Heuschkel MA, Smit FP, van de Zande G, Smeets D, Sedelaar JPM, Vermeulen M, Verhaegh GW, Schalken JA. Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. Mol Oncol 2021; 15:1882-1900. [PMID: 33797847 PMCID: PMC8253097 DOI: 10.1002/1878-0261.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder urothelial cell carcinoma (UCC) incidence is about three times higher in men compared with women. There are several indications for the involvement of hormonal factors in the aetiology of UCC. Here, we provide evidence of androgen signalling in UCC progression. Microarray and qPCR analysis revealed that the androgen receptor (AR) mRNA level is upregulated in a subset of UCC cases. In an AR‐positive UCC‐derived cell line model, UM‐UC‐3‐AR, androgen treatment increased clonogenic capacity inducing the formation of big stem cell‐like holoclones, while AR knockdown or treatment with the AR antagonist enzalutamide abrogated this clonogenic advantage. Additionally, blockage of AR signalling reduced the cell migration potential of androgen‐stimulated UM‐UC‐3‐AR cells. These phenotypic changes were accompanied by a rewiring of the transcriptome with almost 300 genes being differentially regulated by androgens, some of which correlated with AR expression in UCC patients in two independent data sets. Our results demonstrate that AR signals in UCC favouring the development of an aggressive phenotype and highlights its potential as a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Maria V Luna-Velez
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Jelmer J Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Marina A Heuschkel
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume van de Zande
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Smeets
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
27
|
Lindskrog SV, Prip F, Lamy P, Taber A, Groeneveld CS, Birkenkamp-Demtröder K, Jensen JB, Strandgaard T, Nordentoft I, Christensen E, Sokac M, Birkbak NJ, Maretty L, Hermann GG, Petersen AC, Weyerer V, Grimm MO, Horstmann M, Sjödahl G, Höglund M, Steiniche T, Mogensen K, de Reyniès A, Nawroth R, Jordan B, Lin X, Dragicevic D, Ward DG, Goel A, Hurst CD, Raman JD, Warrick JI, Segersten U, Sikic D, van Kessel KEM, Maurer T, Meeks JJ, DeGraff DJ, Bryan RT, Knowles MA, Simic T, Hartmann A, Zwarthoff EC, Malmström PU, Malats N, Real FX, Dyrskjøt L. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat Commun 2021; 12:2301. [PMID: 33863885 PMCID: PMC8052448 DOI: 10.1038/s41467-021-22465-w] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular landscape in non-muscle-invasive bladder cancer (NMIBC) is characterized by large biological heterogeneity with variable clinical outcomes. Here, we perform an integrative multi-omics analysis of patients diagnosed with NMIBC (n = 834). Transcriptomic analysis identifies four classes (1, 2a, 2b and 3) reflecting tumor biology and disease aggressiveness. Both transcriptome-based subtyping and the level of chromosomal instability provide independent prognostic value beyond established prognostic clinicopathological parameters. High chromosomal instability, p53-pathway disruption and APOBEC-related mutations are significantly associated with transcriptomic class 2a and poor outcome. RNA-derived immune cell infiltration is associated with chromosomally unstable tumors and enriched in class 2b. Spatial proteomics analysis confirms the higher infiltration of class 2b tumors and demonstrates an association between higher immune cell infiltration and lower recurrence rates. Finally, the independent prognostic value of the transcriptomic classes is documented in 1228 validation samples using a single sample classification tool. The classifier provides a framework for biomarker discovery and for optimizing treatment and surveillance in next-generation clinical trials.
Collapse
Affiliation(s)
- Sia Viborg Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Ann Taber
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Clarice S Groeneveld
- Cartes d'Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Paris, France
- Oncologie Moleculaire, UMR144, Institut Curie, Paris, France
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateo Sokac
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lasse Maretty
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers G Hermann
- Department of Urology, Herlev hospital, Copenhagen University, Copenhagen, Denmark
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Marcus Horstmann
- Department of Urology, Jena University Hospital, Jena, Germany
- Department of Urology, Malteser Hospital St. Josephshospital, Krefeld Uerdingen, Krefeld, Germany
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Karin Mogensen
- Department of Urology, Herlev hospital, Copenhagen University, Copenhagen, Denmark
| | - Aurélien de Reyniès
- Cartes d'Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Roman Nawroth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Brian Jordan
- Departments of Pathology, Urology, Biochemistry and Molecular Genetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Xiaoqi Lin
- Departments of Pathology, Urology, Biochemistry and Molecular Genetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Dejan Dragicevic
- Clinic of Urology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Douglas G Ward
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anshita Goel
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolyn D Hurst
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jay D Raman
- Department of Surgery, Division of Urology, Pennsylvania State University, Hershey, PA, USA
| | - Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Division of Urology, Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Kim E M van Kessel
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tobias Maurer
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Department of Urology and Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joshua J Meeks
- Departments of Pathology, Urology, Biochemistry and Molecular Genetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Division of Urology, Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA
| | - Richard T Bryan
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Per-Uno Malmström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, CIBERONC, Barcelona, Spain
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
28
|
Lai C, Hu H, Xu D. Encapsulation and Delivery of Dimethylcurcumin by Using Nanoparticles of a Polyethylene‐Glycol‐Based Dimethylcurcumin Prodrug. ChemistrySelect 2021. [DOI: 10.1002/slct.202100239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chao Lai
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass School of Pharmacy, Changzhou University Changzhou 213164 P. R. China
| | - Hang Hu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass School of Pharmacy, Changzhou University Changzhou 213164 P. R. China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass School of Pharmacy, Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
29
|
Pourhanifeh MH, Mottaghi R, Razavi ZS, Shafiee A, Hajighadimi S, Mirzaei H. Therapeutic Applications of Curcumin and its Novel Formulations in the Treatment of Bladder Cancer: A Review of Current Evidence. Anticancer Agents Med Chem 2021; 21:587-596. [PMID: 32767956 DOI: 10.2174/1871520620666200807223832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Bladder cancer, a life-threatening serious disease, is responsible for thousands of cancer-associated deaths worldwide. Similar to other malignancies, standard treatments of bladder cancer, such as Chemoradiotherapy, are not efficient enough in the affected patients. It means that, according to recent reports in the case of life quality as well as the survival time of bladder cancer patients, there is a critical requirement for exploring effective treatments. Recently, numerous investigations have been carried out to search for appropriate complementary treatments or adjuvants for bladder cancer therapy. Curcumin, a phenolic component with a wide spectrum of biological activities, has recently been introduced as a potential anti-cancer agent. It has been shown that this agent exerts its therapeutic effects via targeting a wide range of cellular and molecular pathways involved in bladder cancer. Herein, the current data on curcumin therapy for bladder cancer are summarized.
Collapse
Affiliation(s)
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra S Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Katleba K, Lombard AP, Tsamouri MM, Baek HB, Nishida KS, Libertini SJ, Platero AJ, Ma AH, Pan CX, Ghosh PM, Mudryj M. Depletion of androgen receptor low molecular weight isoform reduces bladder tumor cell viability and induces apoptosis. Cancer Lett 2021; 504:49-57. [PMID: 33549708 DOI: 10.1016/j.canlet.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.
Collapse
Affiliation(s)
- Kimberley Katleba
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, USA
| | - Maria-Malvina Tsamouri
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Ai-Hong Ma
- Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Chong-Xian Pan
- Department of Faculty of Medicine, Harvard Medical School, West Roxbury, MA, 02115, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA.
| |
Collapse
|
31
|
Hu H, Zhou H, Xu D. A review of the effects and molecular mechanisms of dimethylcurcumin (ASC-J9) on androgen receptor-related diseases. Chem Biol Drug Des 2021; 97:821-835. [PMID: 33277796 DOI: 10.1111/cbdd.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Dimethylcurcumin (ASC-J9) is a curcumin analogue capable of inhibiting prostate cancer cell proliferation. The mechanism is associated with the unique role of ASC-J9 in enhancing androgen receptor (AR) degradation. So far, ASC-J9 has been investigated in typical AR-associated diseases such as prostate cancer, benign prostatic hypertrophy, bladder cancer, renal diseases, liver diseases, cardiovascular diseases, cutaneous wound, spinal and bulbar muscular atrophy, ovarian cancer and melanoma, exhibiting great potentials in disease control. In this review, the effects and molecular mechanisms of ASC-J9 on various AR-associated diseases are summarized. Importantly, the effects of ASC-J9 and AR antagonists enzalutamide/bicalutamide on prostate cancer are compared in detail and crucial differences are highlighted. At last, the pharmacological effects of ASC-J9 are summarized and the future applications of ASC-J9 in AR-associated disease control are discussed.
Collapse
Affiliation(s)
- Hang Hu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Huan Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
32
|
Rousseau M, O’Brien CJ, Antequera E, Zdimerova H, Cansever D, Canton T, Zychlinsky Scharff A, Ingersoll MA. Identification of Sex Differences in Tumor-Specific T Cell Infiltration in Bladder Tumor-Bearing Mice Treated with BCG Immunotherapy. Bladder Cancer 2020. [DOI: 10.3233/blc-200384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: Bladder cancer is the fourth most common cancer for men. However, women are often diagnosed with later stage disease and have poorer outcomes. Whether immune-based sex differences contribute to this discrepancy is unclear. In addition, models to investigate tumor-specific immunity in bladder cancer, in the context of tumor development or response to therapy, are lacking. OBJECTIVE: To address this specific unmet need, we incorporated a commonly used model antigen, ovalbumin, into two well-established models of bladder cancer; the orthotopic MB49 cell line model and the carcinogenic BBN bladder cancer model. METHOD: We tested the utility of these models to investigate tumor-specific immunity in the context of immunotherapy in both sexes. RESULTS: We found that BCG vaccination, prior to weekly BCG instillation does not impart an immune-specific benefit to tumor-bearing mice in the context of multiple BCG instillations. Furthermore, tumors developed in the testes in male mice, precluding the use of the MB49 model to directly investigate sex-based immune differences. In the BBN model, we observed that more tumor antigen-specific CD8+ T cells infiltrated male bladders compared to female bladders in the context of BCG immunotherapy whereas regulatory T cells had higher levels of the exhaustion marker PD-1 in female mice. CONCLUSIONS: We propose our modified BBN model will contribute to our understanding of how tumor-specific immunity arises in bladder cancer. Additionally, the BBN bladder cancer model may help to uncover sex differences in tumor-specific immunity, which would provide valuable information for the development of new treatments or combination therapies for bladder cancer in women and men.
Collapse
Affiliation(s)
- Matthieu Rousseau
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Conan J.O. O’Brien
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Eduardo Antequera
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Hana Zdimerova
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Dilay Cansever
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Tracy Canton
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | | | - Molly A. Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| |
Collapse
|
33
|
Nagata Y, Goto T, Jiang G, Teramoto Y, Miyamoto H. 5α-Reductase Inhibitors Do Not Prevent the Development and Progression of Urothelial Cancer: In Vitro Evidence. Bladder Cancer 2020. [DOI: 10.3233/blc-200380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Androgen receptor (AR) activation has been implicated in the pathogenesis of urothelial cancer. However, it remains controversial whether 5α-reductase inhibitors (5α-RIs), which are known for blocking the conversion of testosterone to the more potent androgen dihydrotestosterone and often prescribed for the treatment of, for instance, benign prostatic hyperplasia, contribute to preventing the development of bladder cancer. OBJECTIVE: To determine the role of 5α-RI therapy in urothelial tumorigenesis and tumor progression, using cell line models. METHODS: In a human non-neoplastic urothelial SVHUC subline stably expressing a full-length wild-type human AR (SVHUC-AR) with carcinogen/MCA challenge and human bladder cancer lines, we assessed the effects of three 5α-RIs, dutasteride (up to 100 nM), finasteride (up to 500 nM), and epristeride (up to 5μM), on neoplastic/malignant transformation and cell growth, respectively. RESULTS: In AR-positive bladder cancer UMUC3 and 5637-AR cells, an AR antagonist bicalutamide significantly inhibited their proliferation, whereas three 5α-RIs failed to do. Similarly, these 5α-RIs did not significantly inhibit the migration of bladder cancer cells induced by the treatment of testosterone which could be metabolized into dihydrotestosterone in culture medium. In MCA-SVHUC-AR cells, induction of their neoplastic transformation by testosterone, which was prevented by bicalutamide, was confirmed. However, no significant inhibitory effects of 5α-RIs on the neoplastic transformation of AR-positive urothelial cells treated with or without testosterone were observed. CONCLUSIONS: Using in vitro models for urothelial cancer, 5α-RI treatment even at supra-pharmacological doses was thus found to have no significant impact on the prevention of both tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-Wide Sex and Gender Differences in Cancer. Front Oncol 2020; 10:597788. [PMID: 33330090 PMCID: PMC7719817 DOI: 10.3389/fonc.2020.597788] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Despite their known importance in clinical medicine, differences based on sex and gender are among the least studied factors affecting cancer susceptibility, progression, survival, and therapeutic response. In particular, the molecular mechanisms driving sex differences are poorly understood and so most approaches to precision medicine use mutational or other genomic data to assign therapy without considering how the sex of the individual might influence therapeutic efficacy. The mandate by the National Institutes of Health that research studies include sex as a biological variable has begun to expand our understanding on its importance. Sex differences in cancer may arise due to a combination of environmental, genetic, and epigenetic factors, as well as differences in gene regulation, and expression. Extensive sex differences occur genome-wide, and ultimately influence cancer biology and outcomes. In this review, we summarize the current state of knowledge about sex-specific genetic and genome-wide influences in cancer, describe how differences in response to environmental exposures and genetic and epigenetic alterations alter the trajectory of the disease, and provide insights into the importance of integrative analyses in understanding the interplay of sex and genomics in cancer. In particular, we will explore some of the emerging analytical approaches, such as the use of network methods, that are providing a deeper understanding of the drivers of differences based on sex and gender. Better understanding these complex factors and their interactions will improve cancer prevention, treatment, and outcomes for all individuals.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
35
|
Koti M, Ingersoll MA, Gupta S, Lam CM, Li X, Kamat AM, Black PC, Siemens DR. Sex Differences in Bladder Cancer Immunobiology and Outcomes: A Collaborative Review with Implications for Treatment. Eur Urol Oncol 2020; 3:622-630. [PMID: 32967818 DOI: 10.1016/j.euo.2020.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Urothelial carcinoma of the bladder (UCB) exhibits significant sexual dimorphism in the incidence, etiology, and response to intravesical immunotherapy. Environmental factors such as tobacco use and clinical management issues such as delayed presentation have widely been associated with sex differences in UCB outcomes. Emerging findings from immune checkpoint blockade trials are suggestive of differential outcomes in females compared with males. Sex-specific differences in the way immune system functions and responds to pathogenic insults are well established. As such, an in-depth understanding of the genetic and epigenetic factors contributing to sex-associated differences in response to immunomodulatory therapies is needed urgently for improved management of UCB. OBJECTIVE To review the associations between patient sex and clinical outcomes, with a focus on the incidence, host intrinsic features, and response to therapies in UCB. EVIDENCE ACQUISITION Using the PubMed database, this narrative review evaluates published findings from mouse model-based and clinical cohort studies to identify factors associated with sex and clinical outcomes in bladder cancer. A scoping review of the key findings on epidemiology, genetic, hormonal, immune physiology, and clinical outcomes was performed to explore potential factors that could have implications in immunomodulatory therapy design. EVIDENCE SYNTHESIS Sex-associated differences in UCB incidence and clinical outcomes are influenced by sex hormones, local bladder resident immune populations, tumor genetics, and bladder microbiome. In the context of therapeutic outcomes, sex differences are prominent in response to bacillus Calmette-Guérin immunotherapy used in the treatment of non-muscle-invasive bladder cancer. Similarly, with respect to tumor molecular profiles in muscle-invasive bladder cancer, tumors from females show enrichment of the basal subtype. CONCLUSIONS Among proposed tumor/host intrinsic factors that may influence response to immune-based therapies, patient sex remains a challenging consideration that deserves further attention. Evidence to date supports a multifactorial origin of sexual dimorphism in the incidence and outcomes of UCB. PATIENT SUMMARY In this review, we highlight the sex-associated host and tumor intrinsic features that may potentially drive differential disease progression and therapeutic response in urothelial carcinoma of the bladder.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Obstetrics and Gynecology, Queen's University, Kingston, Ontario, Canada; Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada; Department of Urology, Queen's University, Kingston, Ontario, Canada.
| | | | - Shilpa Gupta
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christa M Lam
- Department of Urology and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Li
- Department of Urology and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashish M Kamat
- Department of Urology, Division of Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - D Robert Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada; Department of Urology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
36
|
Wang CS, Li CC, Juan YS, Wu WJ, Lee HY. 5α-reductase inhibitors impact prognosis of urothelial carcinoma. BMC Cancer 2020; 20:872. [PMID: 32917158 PMCID: PMC7488389 DOI: 10.1186/s12885-020-07373-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background 5α-reductase inhibitors (5-ARIs) inhibit the pathway of converting the testosterone to dihydrotestosterone and are widely used in benign prostatic hyperplasia patients. Since androgen receptor activation may play a role in urothelial tumorigenesis, we conducted this retrospective cohort study to determine whether 5α-reductase inhibitors (5-ARIs) administration is associated with bladder cancer mortality, bladder cancer recurrence and upper tract urothelial carcinoma mortality, using the Taiwan National Health Insurance database. Methods The data of this retrospective cohort study were sourced from the Longitudinal Health Insurance Database of Taiwan, compiled by the Taiwan National Health Insurance database from 1996 to 2010. It consists of 18,530 men with bladder cancer, of whom 474 were 5-ARIs recipients and 4384 men with upper tract urothelial carcinoma, of whom 109 were 5-ARIs recipients. Propensity Score Matching on the age and geographic data was done at the ratio of 1:10. We analyzed the odds ratios (OR) and 95% confidence interval (CI) of the risk of bladder cancer death, bladder cancer recurrence rate and upper tract urothelial carcinoma related death by the 5-ARIs administration. Results Those who received 5-ARIs showed a lower risk of bladder cancer related death compared to nonusers in multivariable adjusted analysis (OR 0.835, 95% CI 0.71–0.98). However, there was no significant difference in the bladder cancer recurrence rate (OR 0.956, 95% CI 0.82–1.11) and upper tract urothelial carcinoma related mortality in multivariable adjusted analysis (OR 0.814, 95% CI 0.6–1.1). Conclusions Patients who receive 5-ARIs have lower bladder cancer related mortality compared to those who don’t. 5-ARIs may prove to be a viable strategy to improve bladder cancer outcomes.
Collapse
Affiliation(s)
- Chien-Sheng Wang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Sanmin Dist, Kaohsiung City, 807, Taiwan
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Sanmin Dist, Kaohsiung City, 807, Taiwan.,Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Sanmin Dist, Kaohsiung City, 807, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Sanmin Dist, Kaohsiung City, 807, Taiwan. .,Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
37
|
Lee KH, Kim BC, Jeong SH, Jeong CW, Ku JH, Kim HH, Kwak C. Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int J Mol Sci 2020; 21:5658. [PMID: 32781788 PMCID: PMC7460860 DOI: 10.3390/ijms21165658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Male
- Methylation
- Mice, Inbred NOD
- Middle Aged
- Neoplasm Invasiveness
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Transcription, Genetic/drug effects
- Tumor Burden/drug effects
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Byung-Chan Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Seung-Hwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34052, Korea;
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
38
|
Ide H, Miyamoto H. The Role of Steroid Hormone Receptors in Urothelial Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082155. [PMID: 32759680 PMCID: PMC7465876 DOI: 10.3390/cancers12082155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Preclinical and/or clinical evidence has indicated a potential role of steroid hormone-mediated signaling pathways in the development of various neoplastic diseases, while precise mechanisms for the functions of specific receptors remain poorly understood. Specifically, in urothelial cancer where sex-related differences particularly in its incidence are noted, activation of sex hormone receptors, such as androgen receptor and estrogen receptor-β, has been associated with the induction of tumor development. More recently, glucocorticoid receptor has been implied to function as a suppressor of urothelial tumorigenesis. This article summarizes and discusses available data suggesting that steroid hormone receptors, including androgen receptor, estrogen receptor-α, estrogen receptor-β, glucocorticoid receptor, progesterone receptor and vitamin D receptor, as well as their related signals, contribute to modulating urothelial tumorigenesis.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
39
|
Ide H, Inoue S, Mizushima T, Jiang G, Nagata Y, Goto T, Kashiwagi E, Miyamoto H. Compound A inhibits urothelial tumorigenesis via both the androgen receptor and glucocorticoid receptor signaling pathways. Am J Transl Res 2020; 12:1779-1788. [PMID: 32509176 PMCID: PMC7270017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Recent preclinical evidence has indicated that both androgen receptor (AR) inactivation and glucocorticoid receptor (GR) transrepression are associated with suppression of urothelial carcinogenesis. We therefore assessed the effect of a unique compound, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride (Compound A; CpdA), which could function as an AR antagonist as well as a GR ligand, on urothelial tumorigenesis. Using the in vitro system with GR-positive non-neoplastic urothelial SVHUC cells stably expressing AR (SVHUC-AR), neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA) was inhibited similarly by an anti-androgen hydroxyflutamide and a glucocorticoid prednisone, and more strongly by CpdA. CpdA also prevented the neoplastic transformation of AR-negative MCA-SVHUC cells, which was diminished by a GR antagonist RU486, but failed to prevent that of GR knockdown MCA-SVHUC cells. In MCA-SVHUC-AR cells, CpdA significantly reduced the expression levels of oncogenes (c-Fos/c-Jun/c-Myc) and induced those of tumor suppressors (UGT1A/p21/p27/p53/PTEN). Additionally, a potent carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine induced bladder cancer in all of 8 mock-treated mice versus 4 (50%) of flutamide-treated (P = 0.021), 4 (50%) of prednisone-treated (P = 0.021), or 2 (25%) of CpdA-treated (P = 0.002) animals. Finally, CpdA was found to reduce AR transactivation and selectively induce GR transrepression (i.e. suppression of NF-κB transactivation and expression of its regulated genes), but not GR transactivation (i.e. activation of glucocorticoid-response element-mediated transcription and expression of its targets) in SVHUC cells. These findings suggest that CpdA suppresses urothelial tumorigenesis via both the AR and GR pathways, which may consequently provide an effective option of chemoprevention for bladder cancer, especially in patients with superficial disease following transurethral surgery.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
40
|
Sanguedolce F, Cormio L, Carrieri G, Calò B, Russo D, Menin A, Pastore AL, Greco F, Bozzini G, Galfano A, Pini G, Porreca A, Mugavero F, Falsaperla M, Ceruti C, Cindolo L, Antonelli A, Minervini A. Role of androgen receptor expression in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. Histol Histopathol 2020; 35:423-432. [PMID: 31803932 DOI: 10.14670/hh-18-189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to evaluate the potential prognostic/predictive role of androgen receptor (AR) expression in non-muscle-invasive bladder cancer (NMIBC), and whether it may represent a therapeutic target, we conducted a systematic search of the literature using 'androgen receptor or AR', 'testosterone', 'bladder cancer' and 'non-muscle invasive bladder cancer or NMIBC' as keywords. Eleven studies met the inclusion/exclusion criteria. No significant association was found between AR status and patients' gender (p=0.232), tumor size (p=0.975), tumor stage (p=0.237), tumor grade (p=0.444), tumor multicentricity (p=0.397), concomitant CIS (p=0.316) and progression of disease (p=0.397). On the other hand, relative lack of AR expression was significantly correlated to recurrent disease (p=0.001). Evidence for a direct correlation between AR expression and recurrence-free survival of patients with NMIBC indicate ARs as potential markers of BC behavior; moreover, the finding of a role of androgen blockade therapy in improving survival highlights the potential clinical application of this pathway, which deserves to be further explored.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Department of Pathology, University Hospital, Foggia, Italy.
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
| | - Luigi Cormio
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Beppe Calò
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Davide Russo
- Department of Pathology, University Hospital, Foggia, Italy
| | - Andrea Menin
- Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Antonio Luigi Pastore
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Urology Unit, Sapienza University of Rome, Latina, Italy
| | - Francesco Greco
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Urology, Humanitas Gavazzeni, Bergamo, Italy
| | - Giorgio Bozzini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Urology, ASST Valle Olona, Busto A. (VA), Italy
| | - Antonio Galfano
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovannalberto Pini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Urology, San Raffaele Turro Hospital, San Raffaele University, Milan, Italy
| | - Angelo Porreca
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Urology Unit, Policlinico of Abano, Abano Terme, Italy
| | - Filippo Mugavero
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Urology Unit, Ospedale Vittorio Emanuele, Catania, Italy
| | - Mario Falsaperla
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Urology Unit, Ospedale Vittorio Emanuele, Catania, Italy
| | - Carlo Ceruti
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Urology Clinic, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Luca Cindolo
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Urology, ASL02 Abruzzo, Chieti, Italy
| | - Alessandro Antonelli
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Urology Unit, ASST-Spedali Civili, Brescia, Italy
| | - Andrea Minervini
- AGILE Group (Italian Group for Advanced Laparoscopic and Robotic Urologic Surgery), Italy
- Department of Oncologic, Minimally-Invasive Urology and Andrology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Yang Z, Chen J, Xie H, Liu T, Chen Y, Ma Z, Pei X, Yang W, Li L. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett 2019; 473:118-129. [PMID: 31843555 DOI: 10.1016/j.canlet.2019.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Early studies suggest that the androgen receptor (AR) may play differential roles in influencing prostate cancer (PCa) and bladder cancer (BCa) metastasis, but the underlying mechanisms remain unclear. Here, we found that the AR might function via differentially altering vasculogenic mimicry (VM) formation to either decrease PCa metastasis or increase BCa metastasis. Mechanism dissection showed that the AR could differentially alter the expression of the VM marker SLPI through miR-525-5p to regulate SLPI; moreover, it could either increase miR-525-5p transcription in PCa or decrease it in BCa via binding to different androgen-response-elements (AREs) located at different positions in the miR-525 precursor promoter. Further, results from liquid chromatography-mass spectrometry (LC-MS) showed that the co-factors of AR in PCa and BCa are NFIX and HDAC2, respectively. Together, these results provide the first detailed mechanism of how the AR can differentially alter PCa and BCa metastasis; thus, targeting the newly identified AR-miR-525-5p-SLPI axis may help suppress metastasis.
Collapse
Affiliation(s)
- Zhao Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenkun Ma
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinqi Pei
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenjie Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
42
|
Quan Y, Lei H, Wahafu W, Liu Y, Ping H, Zhang X. Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomed Pharmacother 2019; 120:109490. [DOI: 10.1016/j.biopha.2019.109490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
|
43
|
Huang CP, Chen J, Chen CC, Liu G, Zhang Y, Messing E, Yeh S, Chang C. ASC-J9® increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-κB survival signals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:275. [PMID: 31234917 PMCID: PMC6592003 DOI: 10.1186/s13046-019-1258-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023]
Abstract
Background The current chemotherapy regimens may extend survival for patients with metastatic bladder cancer (BCa) for a few months, but eventually most patients succumb to disease because they develop resistance to their chemotherapy. Methods TCGA human clinical sample survey and urothelial tumor tissue microarrays (TMAs) were applied to investigate the expression of androgen receptor (AR) and NF-κB. Multiple BCa cell lines were used to test chemotherapy’s efficacy via multiple assays including XTT, flow cytometry, TUNEL, and BrdU incorporation. The effects of the AR degradation enhancer, ASC-J9®, combined with various chemotherapy reagents were examined both in vivo and in vitro. Results We unexpectedly found that in muscle-invasive BCa (miBCa) the signals of both the AR and NF-κB were increased via a TCGA sample survey. Results from multiple approaches revealed that targeting these two increased signals by combining various chemotherapeutic agents, including Cisplatin, Doxorubicin or Mitomycin C, with ASC-J9® led to increase the therapeutic efficacy. The combined therapy increases the expression of the pro-apoptosis BAX gene and cell cycle inhibitor p21 gene, yet suppresses the expression of the pro-survival BCL2 gene in miBCa cells. Preclinical studies using an in vivo mouse model with xenografted miBCa cells confirmed in vitro cell line data showing that treatment with ASC-J9® combined with Cisplatin can result in suppressing miBCa progression better than Cisplatin alone. Conclusions Together, these results support a novel therapeutic approach via combining Cisplatin with ASC-J9® to better suppress the progression of miBCa. Electronic supplementary material The online version of this article (10.1186/s13046-019-1258-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, 404, Taiwan
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Cheng Chen
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, 404, Taiwan.,Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 404, Taiwan
| | - Guodong Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yong Zhang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Edward Messing
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, 404, Taiwan. .,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
44
|
Wu SC, Kwon D, Jue JS, Chen FV, Velasquez Escobar MC, Punnen S, Parekh DJ, Ritch CR, Gonzalgo ML. Androgen Suppression Therapy Is Associated with Lower Recurrence of Non-muscle-invasive Bladder Cancer. Eur Urol Focus 2019; 7:142-147. [PMID: 31103602 DOI: 10.1016/j.euf.2019.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The challenge of managing non-muscle-invasive bladder cancer (NMIBC) is its high recurrence rate. Clinical investigations have begun to explore the role of androgen suppression as an adjunct to bladder cancer (BC) treatment. OBJECTIVE To examine the effect of androgen suppression therapy (AST) on recurrence and progression rate of risk-stratified NMIBC. DESIGN, SETTING, AND PARTICIPANTS Male patients with NMIBC were identified retrospectively from a US institutional database between 2001 and 2017. AST included 5α-reductase inhibitor, gonadotropin-releasing hormone agonist, and antiandrogen. Patients who were exposed to AST prior to documented recurrence/progression were included in the treatment arm. BC was risk stratified to investigate the differential response to AST. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Hazard ratios (HRs) for NMIBC recurrence and progression were estimated using Cox proportional hazards multivariate regression models with stepwise method. Recurrence-free survival (RFS) and progression-free survival (PFS) were compared between groups with and without AST. RESULTS AND LIMITATIONS We identified a total of 274 males with a median follow-up period of 3.1 yr (interquartile range [IQR] 1.5-5.2). Thirty-six patients were exposed to AST with a median duration of 1.7 yr (IQR 0.7-2.6). AST was associated with a lower risk of recurrence (HR 0.53, 95% confidence interval 0.30-0.88) as well as improved RFS (p = 0.014). However, no significant reduction of progression or improvement of PFS (p = 0.23) was found with AST. After risk stratification, all five patients who progressed in the AST cohort had high-risk disease on initial transurethral resection (TUR), whereas no patients with low/intermediate-risk disease progressed on AST. Limitations of the study include nonstandardized initiation of AST in relation to initial TUR, lack of androgen level quantification, and small sample size in the treatment arm. CONCLUSIONS In this retrospective, single-institution study, AST was associated with a lower risk of recurrence in NMIBC. No significant association between AST and progression was found. Further investigation is warranted to define the role of AST as an adjunctive therapy for NMIBC. PATIENT SUMMARY Non-muscle-invasive bladder cancer is a highly recurrent disease that often requires patients to undergo repeated surgical treatments. This single-institution report suggests that medical suppression of androgen may be a potential preventive therapy to reduce recurrence in certain patients.
Collapse
Affiliation(s)
- Shuo-Chieh Wu
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Jue
- Department of Urology, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Felix V Chen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sanoj Punnen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dipen J Parekh
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chad R Ritch
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark L Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
45
|
Ruan JL, Hsu JW, Browning RJ, Stride E, Yildiz YO, Vojnovic B, Kiltie AE. Mouse Models of Muscle-invasive Bladder Cancer: Key Considerations for Clinical Translation Based on Molecular Subtypes. Eur Urol Oncol 2019; 2:239-247. [PMID: 31200837 DOI: 10.1016/j.euo.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT In the past few years, research has suggested that molecular subtypes in muscle-invasive bladder cancer (MIBC) may be exploited to accelerate developments in clinical disease management and novel therapeutics. OBJECTIVE To review MIBC mouse models from a molecular subtype perspective, their advantages and limitations, and their applications in translational medicine, based on a PubMed search for publications from January 2000 to February 2018. EVIDENCE ACQUISITION Publications relevant to MIBC mouse models and their molecular subtypes were identified in a literature review. EVIDENCE SYNTHESIS We classified the models according to the technique used for their establishment. For xenotransplant and allograft models, the inoculated cells and inoculated locations are the major determinants of molecular subtypes. Although the cell lines used in xenotransplant models can cover most of the basal-squamous and luminal subtypes, allograft models offer a more realistic environment in which to reconstruct aspects of the associated stromal and immune features. Autochthonous models, using genetic and/or chemical stimuli to induce disease progression, can also generate models with basal-squamous and luminal subtypes, but further molecular characterisation is needed since other mutational variants may be introduced in these models. CONCLUSIONS We identified preclinical MIBC models with different subtype specifications and assessed their promise and current limitations. These models are versatile tools that can reproduce the molecular complexity of MIBC and support novel therapeutic development. PATIENT SUMMARY Understanding which models of muscle-invasive bladder cancer most accurately represent the clinical situation is important for the development of novel drugs and disease management strategies. We review the different models currently available and their relevance to different clinical subtypes.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jong-Wei Hsu
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Yesna O Yildiz
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borivoj Vojnovic
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Yasui M, Kawahara T, Izumi K, Yao M, Ishiguro Y, Ishiguro H, Uemura H, Miyoshi Y. Androgen receptor mRNA expression is a predictor for recurrence-free survival in non-muscle invasive bladder cancer. BMC Cancer 2019; 19:331. [PMID: 30961575 PMCID: PMC6454612 DOI: 10.1186/s12885-019-5512-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Non-muscular invasive bladder cancer (NMIBC) has a high risk of recurrence. As androgen receptor (AR) reportedly affects bladder cancer, we assessed the correlation between NMIBC recurrence and tumor AR expression in Japanese patients. METHODS We retrospectively reviewed 53 specimens of non-metastatic NMIBC, with recurrence-free survival (RFS) as the primary endpoint. We used real-time quantitative polymerase chain reaction to quantify AR mRNA expression. Kaplan-Meier product-limit estimators were used to assess RFS distribution, log-rank tests to analyze differences in RFS between high- and low-risk groups; and multivariate analyses of AR mRNA expression and other clinicopathological factors to predict independent factors for RFS. RESULTS The high AR mRNA-expressing group (n = 43) tended to have a longer median RFS (not reached) than did the low-AR group (n = 10; 9.04 months; P = 0.112). Multivariate analysis showed female sex (hazard ratio [HR]: 7.360, 95% CI: 1.649-32.856, P = 0.009), tumor size ≥3 cm (HR: 23.697, 95% CI: 4.383-128.117, P < 0.001) and low AR mRNA expression (HR: 0.202, 95% CI: 0.048-0.841, P = 0.028) to be independent predictors of shorter RFS. CONCLUSION Our study showed that low AR mRNA expression level is an independent risk factor for RFS in Japanese patients with NMIBC. Further studies are necessary but AR expression might be a new indicator of recurrence of NMIBC.
Collapse
Affiliation(s)
- Masato Yasui
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Takashi Kawahara
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Koji Izumi
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukari Ishiguro
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Hitoshi Ishiguro
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Photocatalyst Group, Special Research Laboratory, Kanagawa Academy of Science and Technology, Kawasaki, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| | - Yasuhide Miyoshi
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024 Japan
| |
Collapse
|
47
|
Sikic D, Wirtz RM, Wach S, Dyrskjøt L, Erben P, Bolenz C, Breyer J, Otto W, Hoadley KA, Lerner SP, Eckstein M, Hartmann A, Keck B. Androgen Receptor mRNA Expression in Urothelial Carcinoma of the Bladder: A Retrospective Analysis of Two Independent Cohorts. Transl Oncol 2019; 12:661-668. [PMID: 30831560 PMCID: PMC6403442 DOI: 10.1016/j.tranon.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION: Gender-specific differences have led to the androgen receptor (AR) being considered a possible factor in the pathophysiology of urothelial carcinoma of the bladder (UCB), but the exact role remains unclear. MATERIALS AND METHODS: The association of AR mRNA expression with clinicopathological features was retrospectively analyzed in two previously described cohorts. The first cohort consisted of 41 patients with all stages of UCB treated at Aarhus University Hospital, Denmark. The second cohort consisted of 323 patients with muscle-invasive bladder cancer (MIBC) accumulated by the Cancer Genome Atlas (TCGA) Research Network. RESULTS: AR mRNA expression is significantly higher in non-muscle-invasive bladder cancer (NMIBC) when compared to MIBC (P = .0004), with no relevant changes within the different stages of MIBC. AR mRNA expression was significantly associated with TCGA molecular subtypes (P < .0001). In the total cohort, there was no association between AR expression and gender (P = .23). When analyzed separately, females showed a significantly worse disease-free (P = .03) and overall survival (P = .02) when expressing AR mRNA above median level, while the same was not observed for men. Multivariable Cox's regression analyses revealed AR mRNA expression to be an independent prognostic marker for disease-free survival in women (P = .007). CONCLUSIONS: AR mRNA expression is significantly higher in NMIBC than in MIBC, while high AR mRNA expression is associated with worse survival in females with MIBC. Further studies need to investigate the gender-specific role of AR in UCB.
Collapse
Affiliation(s)
- Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany.
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Philipp Erben
- Department of Urology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Christian Bolenz
- Department of Urology and Pediatric Urology, University Hospital Ulm, Ulm, Germany.
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Regensburg, Germany.
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Regensburg, Germany.
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA.
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Bastian Keck
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
48
|
Chou FJ, Chen Y, Chen D, Niu Y, Li G, Keng P, Yeh S, Chang C. Preclinical study using androgen receptor (AR) degradation enhancer to increase radiotherapy efficacy via targeting radiation-increased AR to better suppress prostate cancer progression. EBioMedicine 2019; 40:504-516. [PMID: 30692044 PMCID: PMC6412086 DOI: 10.1016/j.ebiom.2018.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background While androgen deprivation therapy (ADT) and radiotherapy (RT) are currently used together to treat locally advanced prostate cancer (PCa), RT might have the adverse effect of increasing the PCa androgen receptor (AR) protein expression, which might then increase the resistance to continued RT. Methods We used multiple assays for RT sensitivity, protein and RNA expression of AR and related DDR genes, ROS level, DNA damage/repair level, cell cycle and apoptosis. All statistical comparisons were analyzed with t-test or one-way ANOVA. Findings We demonstrated that RT induced AR expression in C4-2 and CWR22Rv-1 cells. We found that combining RT and ASC-J9®, but not the antiandrogen, Enzalutamide, could increase radiosensitivity via inducing DNA damage, altering the AR mediated and DNA repair pathways, and activating apoptosis. ASC-J9® had little effects on normal bladder cells. Interpretation Targeting ionizing radiation (IR)-increased AR with the AR degradation enhancer, ASC-J9®, could increase the radiosensitivity while sparing adjacent normal tissue. Mechanism dissection revealed that ASC-J9®, but not Enzalutamide, treatment could increase radiosensitivity via inducing DNA damage, altering DNA repair pathways, as well as activating the IR-induced apoptosis via suppressing the pATR-CHK1 signals. Importantly, results from preclinical studies using an in vivo mouse model also demonstrated that combining RT with ASC-J9® to target AR led to better therapeutic efficacy to suppress PCa progression. ASC-J9• enhances efficacy of radiotherapy (RT) in PCa through both AR-dependent and AR-independent mechanistic pathways. In AR-independent pathway, ASC-J9• increases endogenous ROS and DNA damage and makes PCa cells more sensitive to RT ASC-J9• could also reduce the DNA damage repair after RT via suppression of AR dependent DDR genes and apoptotic pathway. From pre-clinical mouse model, we found that combining RT and ASC-J9• can provide better efficacy than RT only.
Collapse
Affiliation(s)
- Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuhchyau Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dong Chen
- Department of Urology, National Cancer Center/Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Keng
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA; Sex Hormone Research Center, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
49
|
Zheng D, Williams C, Vold JA, Nguyen JH, Harnois DM, Bagaria SP, McLaughlin SA, Li Z. Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett 2018; 438:24-31. [PMID: 30223066 PMCID: PMC6287770 DOI: 10.1016/j.canlet.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Gender differences in the incidences of cancers have been found in almost all human cancers. However, the mechanisms that underlie gender disparities in most human cancer types have been under-investigated. Here, we provide a comprehensive overview of potential mechanisms underlying sexual dimorphism of each cancer regarding sex hormone signaling. Fully addressing the mechanisms of sexual dimorphism in human cancers will greatly benefit current development of precision medicine. Our discussions of potential mechanisms underlying sexual dimorphism in each cancer will be instructive for future cancer research on gender disparities.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Cecilia Williams
- Department of Biosciences and Nutrition, KTH Royal Institute of Technology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jeremy A Vold
- Mayo Cancer Registry, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Justin H Nguyen
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Denise M Harnois
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sanjay P Bagaria
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sarah A McLaughlin
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
50
|
Erben P, Sikic D, Wirtz RM, Martini T, Weis CA, Breyer J, Otto W, Keck B, Hartmann A, Bolenz C. Analysis of the prognostic relevance of sex-steroid hormonal receptor mRNA expression in muscle-invasive urothelial carcinoma of the urinary bladder. Virchows Arch 2018; 474:209-217. [PMID: 30483954 DOI: 10.1007/s00428-018-2496-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Muscle-invasive urothelial carcinoma of the urinary bladder (UCB) often recurs following radical cystectomy (RC). An altered expression of sex-steroid hormone receptors has been associated with oncological outcomes of UCB and may represent therapeutic targets. Here the expression of different hormone receptors was measured on mRNA levels in patients treated by RC and associated with outcomes. Androgen receptor (AR), estrogen receptor 1 (ESR1), and progesterone receptor (PGR) mRNA expression was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in RC samples of 87 patients with a median age of 66 (39-88) years. Univariate and multivariate analyses were performed to test associations with pathological and clinical characteristics as well as recurrence-free (RFS) and disease-specific survival (DSS). AR mRNA expression was lower in comparison with ESR1 and PGR expression (p < 0.0001). In univariate analysis, high expression levels of AR were associated with reduced RFS (HR 2.8, p = 0.015) and DSS (HR 2.8, p = 0.010). High AR mRNA expression and a positive lymph node status were independent predictors for reduced RFS (HR 2.5, p = 0.0049) and DSS (HR 3.4, p = 0.009). In patients with low AR mRNA expression, an increased ESR1 and PGR mRNA expression were associated with reduced RFS and DSS. High expression levels of AR are significantly associated with adverse outcome in patients with muscle-invasive UCB following RC. ESR1 and PGR expression status can further stratify patients with low AR expression into subgroups with significantly reduced RFS and DSS. Therapeutic targeting of AR may influence outcomes in patients with UCB.
Collapse
Affiliation(s)
- Philipp Erben
- Department of Urology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Ralph M Wirtz
- Stratifyer Molecular Pathology GmbH, Cologne, Germany
| | - Thomas Martini
- Department of Urology and Pediatric Urology, University of Ulm, Ulm, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Bastian Keck
- Department of Urology and Pediatric Urology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bolenz
- Department of Urology and Pediatric Urology, University of Ulm, Ulm, Germany
| |
Collapse
|