1
|
Song X, Chen S, Cheng J, Li H, Wu R, Yan M, Wang M, Li J, Jin A, Wang W. Screening and identification Hub genes associated with immune cell infiltration and critical biomarkers in osteosarcoma. Mol Cell Probes 2025:102031. [PMID: 40374042 DOI: 10.1016/j.mcp.2025.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
PURPOSE Osteosarcoma (OS) exhibits limited immune cell infiltration that directly contributes to poor prognosis. This study sought to screen and identify pivotal biomarkers of OS immune infiltration and early diagnosis of OS. METHODS The immune cell infiltration profiles with transcriptome sequencing data from 88 OS samples were explored with CIBERSORT algorithm. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-protein interaction (PPI) network analyses were applied to identify hub genes, with the expressions confirmed by dual immunofluorescence in 50 OS samples. The new biomarker gene HTRA1 were examined by immunohistochemistry and validated by the Immune score and immune gene expression profile analyses. The impact of HTRA1 on OS prognosis was verified by Least absolute shrinkage and selection operator (LASSO) regression analysis. The biological effect of HTRA1 was characterized in MG63 cells. RESULT CD8+ T cells, activated memory CD4+ T cells and plasma cells were positively correlated with the prognosis of OS. Hub genes CCL5, CXCL9, CXCL13, and HTRA1, exhibited positive correlation with the infiltration of both CD8+ T cells and CD4+ T cells. HTRA1 expression was reduced in osteosarcoma tissues, which was positively correlated with immune scores and the expressions of immune-related genes. High levels of HTRA1 were associated with favorable OS prognosis, and could negatively impacted MG63 malignant characteristics. CONCLUSION CCL5, CXCL9, CXCL13, and HTRA1 were OS hub genes positively correlate with CD8+ T cell and CD4+ T cell infiltrations. HTRA1 can serve as an underlying biomarker for the prognosis and immunotherapy of OS.
Collapse
Affiliation(s)
- Xin Song
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China; Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Sihao Chen
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Junning Cheng
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,311399, China
| | - Haiyu Li
- Institute of Intelligent Chinese Medicine,Chongqing University of Chinese Medicine,Chongqing 402760, China
| | - Ruixin Wu
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Min Yan
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Min Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Aishun Jin
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Wang Wang
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| |
Collapse
|
2
|
Song S, Li X, Xue X, Dong W, Li C. Progress in the Study of the Role and Mechanism of HTRA1 in Diseases Related to Vascular Abnormalities. Int J Gen Med 2024; 17:1479-1491. [PMID: 38650587 PMCID: PMC11034561 DOI: 10.2147/ijgm.s456912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High temperature requirement A1 (HTRA1) is a member of the serine protease family, comprising four structural domains: IGFBP domain, Kazal domain, protease domain and PDZ domain. HTRA1 encodes a serine protease, a secreted protein that is widely expressed in the vasculature. HTRA1 regulates a wide range of physiological processes through its proteolytic activity, and is also involved in a variety of vascular abnormalities-related diseases. This article reviews the role of HTRA1 in the development of vascular abnormalities-related hereditary cerebral small vessel disease (CSVD), age-related macular degeneration (AMD), tumors and other diseases. Through relevant research advances to understand the role of HTRA1 in regulating signaling pathways or refolding, translocation, degradation of extracellular matrix (ECM) proteins, thus directly or indirectly regulating angiogenesis, vascular remodeling, and playing an important role in vascular homeostasis, further understanding the mechanism of HTRA1's role in vascular abnormality-related diseases is important for HTRA1 to be used as a therapeutic target in related diseases.
Collapse
Affiliation(s)
- Shina Song
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Xiaofeng Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenping Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Changxin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
3
|
Parise EM, Gyles TM, Godino A, Sial OK, Browne CJ, Parise LF, Torres-Berrío A, Salery M, Durand-de Cuttoli R, Rivera MT, Cardona-Acosta AM, Holt L, Markovic T, van der Zee YY, Lorsch ZS, Cathomas F, Garon JB, Teague C, Issler O, Hamilton PJ, Bolaños-Guzmán CA, Russo SJ, Nestler EJ. Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene Htra1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588724. [PMID: 38659771 PMCID: PMC11042238 DOI: 10.1101/2024.04.12.588724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.
Collapse
|
4
|
Miller MJ, Gries KJ, Marcotte GR, Ryan Z, Strub MD, Kunz HE, Arendt BK, Dasari S, Ebert SM, Adams CM, Lanza IR. Human myofiber-enriched aging-induced lncRNA FRAIL1 promotes loss of skeletal muscle function. Aging Cell 2024; 23:e14097. [PMID: 38297807 PMCID: PMC11019130 DOI: 10.1111/acel.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
The loss of skeletal muscle mass during aging is a significant health concern linked to adverse outcomes in older individuals. Understanding the molecular basis of age-related muscle loss is crucial for developing strategies to combat this debilitating condition. Long noncoding RNAs (lncRNAs) are a largely uncharacterized class of biomolecules that have been implicated in cellular homeostasis and dysfunction across a many tissues and cell types. To identify lncRNAs that might contribute to skeletal muscle aging, we screened for lncRNAs whose expression was altered in vastus lateralis muscle from older compared to young adults. We identified FRAIL1 as an aging-induced lncRNA with high abundance in human skeletal muscle. In healthy young and older adults, skeletal muscle FRAIL1 was increased with age in conjunction with lower muscle function. Forced expression of FRAIL1 in mouse tibialis anterior muscle elicits a dose-dependent reduction in skeletal muscle fiber size that is independent of changes in muscle fiber type. Furthermore, this reduction in muscle size is dependent on an intact region of FRAIL1 that is highly conserved across non-human primates. Unbiased transcriptional and proteomic profiling of the effects of FRAIL1 expression in mouse skeletal muscle revealed widespread changes in mRNA and protein abundance that recapitulate age-related changes in pathways and processes that are known to be altered in aging skeletal muscle. Taken together, these findings shed light on the intricate molecular mechanisms underlying skeletal muscle aging and implicate FRAIL1 in age-related skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Matthew J. Miller
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- University of IowaIowa CityIowaUSA
| | | | - George R. Marcotte
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- University of IowaIowa CityIowaUSA
| | - Zachary Ryan
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | | | - Hawley E. Kunz
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | | | - Surendra Dasari
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Scott M. Ebert
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Emmyon, Inc.RochesterMinnesotaUSA
| | - Christopher M. Adams
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Emmyon, Inc.RochesterMinnesotaUSA
| | - Ian R. Lanza
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
5
|
Licini C, Fantone S, Lamanna D, Tossetta G, Marzioni D, Belmonte MM. Possible involvement of HtrA1 serine protease in the onset of osteoporotic bone extracellular matrix changes. Tissue Cell 2024; 87:102329. [PMID: 38367326 DOI: 10.1016/j.tice.2024.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
High-temperature requirement A1 (HtrA1), a multidomain serine protease acting on Extracellular matrix (ECM) rearrangement, is also secreted by osteoblasts and osteoclasts. Recent and conflicting literature highlights HtrA1's role as a controller of bone remodeling, proposing it as a possible target for pathologies with unbalanced bone resorption, like Osteoporosis (OP). To add knowledge on this molecule function in bone physiopathology, here we compared HtrA1 distribution in the ECM of healthy (H) and OP bone tissue, also examining its localization in the sites of new bone formation. HtrA1 was homogeneously expressed in the mature bone ECM of H tissue showing a 55.6 ± 16.4% of the stained area, with a significant (p=0.0001) decrease in OP percentage stained area (21.1 ± 13.1). Moreover, HtrA1 was present in the endosteum and cells involved in osteogenesis, mainly in those "entrapped" in woven bone, whereas osteocytes in mature lamellar bone were negative. Based on our previous observation in OP tissue of a significantly increased expression of Decorin and Osteocalcin, both involved in bone mineralization and remodeling and equally substrates for HtrA1, we speculate that HtrA1 by controlling the proper amount of Decorin and Osteocalcin favors normal bone maturation and mineralization. Besides, we suggest that late-osteoblasts and pre-osteocytes secrete HtrA1 in the adjacent matrix whilst proceeding with their maturation and that HtrA1 expression is further modified during the remodeling from woven to the lamellar bone. Overall, our data suggest HtrA1 as a positive regulator of bone matrix formation and maturation: its reduced expression in mature OP bone, affecting protein content and distribution, could hamper correct bone remodeling and mineralization.
Collapse
Affiliation(s)
- C Licini
- Department of Clinical and Molecular Sciences DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - S Fantone
- Scientific Direction, IRCCS INRCA, Ancona 60124, Italy
| | - D Lamanna
- Department of Clinical and Molecular Sciences DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| | - G Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy.
| | - D Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy.
| | - M Mattioli Belmonte
- Department of Clinical and Molecular Sciences DISCLIMO, Università Politecnica delle Marche, Via Tronto 10/A, Ancona 60126, Italy
| |
Collapse
|
6
|
Tai YK, Iversen JN, Chan KKW, Fong CHH, Abdul Razar RB, Ramanan S, Yap LYJ, Yin JN, Toh SJ, Wong CJK, Koh PFA, Huang RYJ, Franco-Obregón A. Secretome from Magnetically Stimulated Muscle Exhibits Anticancer Potency: Novel Preconditioning Methodology Highlighting HTRA1 Action. Cells 2024; 13:460. [PMID: 38474424 PMCID: PMC10930715 DOI: 10.3390/cells13050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Rafhanah Banu Abdul Razar
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Lye Yee Jasmine Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Pei Fern Angele Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (R.Y.J.H.)
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (R.Y.J.H.)
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore 119228, Singapore
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Falch CM, Arlien-Søborg MC, Dal J, Sundaram AYM, Michelsen AE, Ueland T, Olsen LG, Heck A, Bollerslev J, Jørgensen JOL, Olarescu NC. Gene expression profiling of subcutaneous adipose tissue reveals new biomarkers in acromegaly. Eur J Endocrinol 2023; 188:7075007. [PMID: 36895180 DOI: 10.1093/ejendo/lvad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
CONTEXT Active acromegaly is characterized by lipolysis-induced insulin resistance, which suggests adipose tissue (AT) as a primary driver of metabolic aberrations. OBJECTIVE To study the gene expression landscape in AT in patients with acromegaly before and after disease control in order to understand the changes and to identify disease-specific biomarkers. METHODS RNA sequencing was performed on paired subcutaneous adipose tissue (SAT) biopsies from six patients with acromegaly at time of diagnosis and after curative surgery. Clustering and pathway analyses were performed in order to identify disease activity-dependent genes. In a larger patient cohort (n = 23), the corresponding proteins were measured in serum by immunoassay. Correlations between growth hormone (GH), insulin-like growth factor I (IGF-I), visceral AT (VAT), SAT, total AT, and serum proteins were analyzed. RESULTS 743 genes were significantly differentially expressed (P-adjusted < .05) in SAT before and after disease control. The patients clustered according to disease activity. Pathways related to inflammation, cell adhesion and extracellular matrix, GH and insulin signaling, and fatty acid oxidation were differentially expressed.Serum levels of HTRA1, METRNL, S100A8/A9, and PDGFD significantly increased after disease control (P < .05). VAT correlated with HTRA1 (R = 0.73) and S100A8/A9 (R = 0.55) (P < .05 for both). CONCLUSION AT in active acromegaly is associated with a gene expression profile of fibrosis and inflammation, which may corroborate the hyper-metabolic state and provide a means for identifying novel biomarkers.
Collapse
Affiliation(s)
- Camilla M Falch
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Mai Christiansen Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aalborg University Hospital (AAUH), Hobrovej 18-22, 9000 Aalborg, Denmark
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Søndre Skovvej 3E, 9000 Aalborg, Denmark
| | - Arvind Y M Sundaram
- Department of Medical Genetics, University of Oslo, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Linn Guro Olsen
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Ansgar Heck
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital (AUH), Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Nicoleta C Olarescu
- Section of Specialized Endocrinology, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Postboks 1171 Blindern, 0318 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
9
|
Liu C, Li M, Yin Q, Fan Y, Shen C, Yang R. HTRA1 methylation in peripheral blood as a potential marker for the preclinical detection of stroke: a case-control study and a prospective nested case-control study. Clin Epigenetics 2022; 14:191. [PMID: 36581876 PMCID: PMC9801609 DOI: 10.1186/s13148-022-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Stroke is the leading cause of mortality in China. DNA methylation has essential roles in multiple diseases, but its association with stroke was barely studied. We hereby explored the association between blood-based HTRA serine protease 1 (HTRA1) methylation and the risk of stroke. RESULTS The association was discovered in a hospital-based case-control study (cases/controls = 190:190) and further validated in a prospective nested case-control study including 139 cases who developed stroke within 2 years after recruitment and 144 matched stroke-free controls. We observed stroke-related altered HTRA1 methylation and expression in both case-control study and prospective study. This blood-based HTRA1 methylation was associated with stroke independently from the known risk factors and mostly affected the older population. The prospective results further showed that the altered HTRA1 methylation was detectable 2 years before the clinical determination of stroke and became more robust with increased discriminatory power for stroke along with time when combined with other known stroke-related variables [onset time ≤ 1 year: area under the curve (AUC) = 0.76]. CONCLUSIONS In our study, altered HTRA1 methylation was associated with stroke at clinical and preclinical stages and thus may provide a potential biomarker in the blood for the risk evaluation and preclinical detection of stroke.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Mengxia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166, China.
| |
Collapse
|
10
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
11
|
Overview of Human HtrA Family Proteases and Their Distinctive Physiological Roles and Unique Involvement in Diseases, Especially Cancer and Pregnancy Complications. Int J Mol Sci 2021; 22:ijms221910756. [PMID: 34639128 PMCID: PMC8509474 DOI: 10.3390/ijms221910756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian high temperature requirement A (HtrA) proteins are a family of evolutionarily conserved serine proteases, consisting of four homologs (HtrA1-4) that are involved in many cellular processes such as growth, unfolded protein stress response and programmed cell death. In humans, while HtrA1, 2 and 3 are widely expressed in multiple tissues with variable levels, HtrA4 expression is largely restricted to the placenta with the protein released into maternal circulation during pregnancy. This limited expression sets HtrA4 apart from the rest of the family. All four HtrAs are active proteases, and their specific cellular and physiological roles depend on tissue type. The dysregulation of HtrAs has been implicated in many human diseases such as cancer, arthritis, neurogenerative ailments and reproductive disorders. This review first discusses HtrAs broadly and then focuses on the current knowledge of key molecular characteristics of individual human HtrAs, their similarities and differences and their reported physiological functions. HtrAs in other species are also briefly mentioned in the context of understanding the human HtrAs. It then reviews the distinctive involvement of each HtrA in various human diseases, especially cancer and pregnancy complications. It is noteworthy that HtrA4 expression has not yet been reported in any primary tumour samples, suggesting an unlikely involvement of this HtrA in cancer. Collectively, we accentuate that a better understanding of tissue-specific regulation and distinctive physiological and pathological roles of each HtrA will improve our knowledge of many processes that are critical for human health.
Collapse
|
12
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
13
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Parrish CC, Rise ML. Influence of Varying Dietary ω6 to ω3 Fatty Acid Ratios on the Hepatic Transcriptome, and Association with Phenotypic Traits (Growth, Somatic Indices, and Tissue Lipid Composition), in Atlantic Salmon ( Salmo salar). BIOLOGY 2021; 10:biology10070578. [PMID: 34202562 PMCID: PMC8301090 DOI: 10.3390/biology10070578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Plant oils are routinely used in fish feeds as a fish oil replacement. However, these terrestrial alternatives typically contain high levels of ω6 fatty acids (FA) and, thus, high ω6 to ω3 (ω6:ω3) FA ratios, which influence farmed fish and their consumers. The ω6:ω3 ratio is known to affect many biological processes (e.g., inflammation, FA metabolism) and human diseases; however, its impacts on fish physiology and the underlying molecular mechanisms are less well understood. In this study, we used 44 K microarrays to examine which genes and molecular pathways are altered by variation in dietary ω6:ω3 in Atlantic salmon. Our microarray study showed that several genes related to immune response, lipid metabolism, cell proliferation, and translation were differentially expressed between the two extreme ω6:ω3 dietary treatments. We also revealed that the PPARα activation-related transcript helz2 is a potential novel molecular biomarker of tissue variation in ω6:ω3. Further, correlation analyses illustrated the relationships between liver transcript expression and tissue (liver, muscle) lipid composition, and other phenotypic traits in salmon fed low levels of fish oil. This nutrigenomic study enhanced the current understanding of Atlantic salmon gene expression response to varying dietary ω6:ω3. Abstract The importance of dietary omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios for human health has been extensively examined. However, its impact on fish physiology, and the underlying molecular mechanisms, are less well understood. This study investigated the influence of plant-based diets (12-week exposure) with varying ω6:ω3 (0.4–2.7) on the hepatic transcriptome of Atlantic salmon. Using 44 K microarray analysis, genes involved in immune and inflammatory response (lect2a, itgb5, helz2a, p43), lipid metabolism (helz2a), cell proliferation (htra1b), control of muscle and neuronal development (mef2d) and translation (eif2a, eif4b1, p43) were identified; these were differentially expressed between the two extreme ω6:ω3 dietary treatments (high ω6 vs. high ω3) at week 12. Eight out of 10 microarray-identified transcripts showed an agreement in the direction of expression fold-change between the microarray and qPCR studies. The PPARα activation-related transcript helz2a was confirmed by qPCR to be down-regulated by high ω6 diet compared with high ω3 diet. The transcript expression of two helz2 paralogues was positively correlated with ω3, and negatively with ω6 FA in both liver and muscle, thus indicating their potential as biomarkers of tissue ω6:ω3 variation. Mef2d expression in liver was suppressed in the high ω6 compared to the balanced diet (ω6:ω3 of 2.7 and 0.9, respectively) fed fish, and showed negative correlations with ω6:ω3 in both tissues. The hepatic expression of two lect2 paralogues was negatively correlated with viscerosomatic index, while htra1b correlated negatively with salmon weight gain and condition factor. Finally, p43 and eif2a were positively correlated with liver Σω3, while these transcripts and eif4b2 showed negative correlations with 18:2ω6 in the liver. This suggested that some aspects of protein synthesis were influenced by dietary ω6:ω3. In summary, this nutrigenomic study identified hepatic transcripts responsive to dietary variation in ω6:ω3, and relationships of transcript expression with tissue (liver, muscle) lipid composition and other phenotypic traits.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| |
Collapse
|
14
|
Chen YY, Chiu YL, Kao TW, Peng TC, Yang HF, Chen WL. Cross-sectional associations among P3NP, HtrA, Hsp70, Apelin and sarcopenia in Taiwanese population. BMC Geriatr 2021; 21:192. [PMID: 33743591 PMCID: PMC7980650 DOI: 10.1186/s12877-021-02146-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sarcopenia is a multifactorial pathophysiologic condition of skeletal muscle mass and muscle strength associated with aging. However, biomarkers for predicting the occurrence of sarcopenia are rarely discussed in recent studies. The aim of the study was to elucidate the relationship between sarcopenia and several pertinent biomarkers. METHODS Using the Gene Expression Omnibus (GEO) profiles of the National Center for Biotechnology Information, the associations between mRNA expression of biomarkers and sarcopenia were explored, including high temperature requirement serine protease A1 (HtrA1), procollagen type III N-terminal peptide (P3NP), apelin, and heat shock proteins 70 (Hsp72). We enrolled 408 community-dwelling adults aged 65 years and older with sarcopenia and nonsarcopenia based on the algorithm proposed by the Asian Working Group for Sarcopenia (AWGS). Muscle strength is identified by hand grip strength using an analogue isometric dynamometer. Muscle mass is estimated by skeletal mass index (SMI) using a bioelectrical impedance analysis. Physical performance is measured by gait speed using 6 m walking distance. The associations between these biomarkers and sarcopenia were determined using receiver operating characteristic (ROC) curve analysis and multivariate regression models. RESULTS From the GEO profiles, the sarcopenia gene set variation analysis score was correlated significantly with the mRNA expression of APLNR (p < 0.001) and HSPA2 (p < 0.001). In our study, apelin was significantly associated with decreased hand grip strength with β values of - 0.137 (95%CI: - 0.229, - 0.046) in men. P3NP and HtrA1 were significantly associated with increased SMI with β values of 0.081 (95%CI: 0.010, 0.153) and 0.005 (95%CI: 0.001, 0.009) in men, respectively. Apelin and HtrA1 were inversely associated with the presence of sarcopenia with an OR of 0.543 (95%CI: 0.397-0.743) and 0.003 (95%CI: 0.001-0.890) after full adjustment. The cutoff point of HtrA1 was associated with the presence of sarcopenia with an OR of 0.254 (95%CI: 0.083-0.778) in men. The cutoff point of apelin was negatively associated with the presence of sarcopenia with an OR of 0.254 (95%CI: 0.083-0.778). CONCLUSION Our study highlights that P3NP, HtrA, and apelin are useful for diagnosis of sarcopenia in the clinical setting.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Pathology, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pathology, Tri-Service General Hospital Songshan Branch; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Tao-Chun Peng
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Hui-Fang Yang
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Number 325, Section 2, Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China.
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
15
|
Zurawa-Janicka D, Kobiela J, Slebioda T, Peksa R, Stanislawowski M, Wierzbicki PM, Wenta T, Lipinska B, Kmiec Z, Biernat W, Lachinski AJ, Sledzinski Z. Expression of HTRA Genes and Its Association with Microsatellite Instability and Survival of Patients with Colorectal Cancer. Int J Mol Sci 2020; 21:E3947. [PMID: 32486357 PMCID: PMC7312515 DOI: 10.3390/ijms21113947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
HtrA proteases regulate cellular homeostasis and cell death. Their dysfunctions have been correlated with oncogenesis and response to therapeutic treatment. We investigated the relation between HtrA1-3 expression and clinicopathological, and survival data, as well as the microsatellite status of tumors. Sixty-five colorectal cancer patients were included in the study. The expression of HTRA1-3 was estimated at the mRNA and protein levels by quantitative PCR and immunoblotting. Microsatellite status was determined by high-resolution-melting PCR. We found that the HTRA1 mRNA level was higher in colorectal cancer tissue as compared to the unchanged mucosa, specifically in primary lesions of metastasizing cancer. The levels of HtrA1 and HtrA2 proteins were reduced in tumor tissue when compared to unchanged mucosa, specifically in primary lesions of metastasizing disease. Moreover, a decrease in HTRA1 and HTRA2 transcripts' levels in cancers with a high level of microsatellite instability compared to microsatellite stable ones has been observed. A low level of HtrA1 or/and HtrA2 in cancer tissue correlated with poorer patient survival. The expression of HTRA1 and HTRA2 changes during colorectal carcinogenesis and microsatellite instability may be, at least partially, associated with these changes. The alterations in the HTRA1/2 genes' expression are connected with metastatic potential of colorectal cancer and may affect patient survival.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| | - Tomasz Slebioda
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Rafal Peksa
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (R.P.); (W.B.)
| | - Marcin Stanislawowski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Piotr Mieczyslaw Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.W.); (B.L.)
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (T.S.); (M.S.); (P.M.W.); (Z.K.)
| | - Wojciech Biernat
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (R.P.); (W.B.)
| | - Andrzej Jacek Lachinski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| | - Zbigniew Sledzinski
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17, 80-214 Gdansk, Poland; (J.K.); (A.J.L.); (Z.S.)
| |
Collapse
|
16
|
Differential Secretome Profiling of Human Osteoarthritic Synoviocytes Treated with Biotechnological Unsulfated and Marine Sulfated Chondroitins. Int J Mol Sci 2020; 21:ijms21113746. [PMID: 32466468 PMCID: PMC7312545 DOI: 10.3390/ijms21113746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.
Collapse
|
17
|
Loss of the serine protease HTRA1 impairs smooth muscle cells maturation. Sci Rep 2019; 9:18224. [PMID: 31796853 PMCID: PMC6890777 DOI: 10.1038/s41598-019-54807-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFβ-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFβ signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFβ signaling.
Collapse
|
18
|
Liu C, Yang M, Liu L, Zhang Y, Zhu Q, Huang C, Wang H, Zhang Y, Li H, Li C, Huang B, Feng C, Zhou Y. Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol Med Rep 2019; 21:9-19. [PMID: 31746390 PMCID: PMC6896343 DOI: 10.3892/mmr.2019.10812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and ligamentum flavum hypertrophy (LFH) are major causes of degenerative spinal disorders. Comparative and proteomic analysis was used to identify differentially expressed proteins (DEPs) in IDD and LFH discs compared with normal discs. Subsequent gene ontology term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEPs in human IDD discs or LFH samples were performed to identify the biological processes and signaling pathways involved in IDD and LFH. The PI3K-AKT signaling pathway, advanced glycation endproducts-receptor for advanced glycation endproducts signaling pathway, p53 signaling pathway, and transforming growth factor-b signaling pathway were activated in disc degeneration. This review summarizes the recently identified DEPs, including prolargin, fibronectin 1, cartilage intermediate layer protein, cartilage oligomeric matrix protein, and collagen types I, II and IV, and their pathophysiological roles in degenerative spinal disorders, and may provide a deeper understanding of the pathological processes of human generative spinal disorders. The present review aimed to summarize significantly changed proteins in degenerative spinal disorders and provide a deeper understanding to prevent these diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qi Zhu
- Medical Research Center, Southwestern Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Cong Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hongwei Wang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yaqing Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
19
|
Uemura M, Nozaki H, Koyama A, Sakai N, Ando S, Kanazawa M, Kato T, Onodera O. HTRA1 Mutations Identified in Symptomatic Carriers Have the Property of Interfering the Trimer-Dependent Activation Cascade. Front Neurol 2019; 10:693. [PMID: 31316458 PMCID: PMC6611441 DOI: 10.3389/fneur.2019.00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Mutations in the high-temperature requirement A serine peptidase 1 (HTRA1) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Most carriers for HTRA1 mutations are asymptomatic, but more than 10 mutations have been reported in symptomatic carriers. The molecular differences between the mutations identified in symptomatic carriers and mutations identified only in CARASIL patients are unclear. HTRA1 is a serine protease that forms homotrimers, with each HTRA1 subunit activating the adjacent HTRA1 via the sensor domain of loop 3 (L3) and the activation domain of loop D (LD). Previously, we analyzed four HTRA1 mutant proteins identified in symptomatic carriers and found that they were unable to form trimers or had mutations in the LD or L3 domain. The mutant HTRA1s with these properties are presumed to inhibit trimer-dependent activation cascade. Indeed, these mutant HTRA1s inhibited wild-type (WT) protease activity. In this study, we further analyzed 15 missense HTRA1s to clarify the molecular character of mutant HTRA1s identified in symptomatic carriers. Methods: We analyzed 12 missense HTRA1s identified in symptomatic carriers (hetero-HTRA1) and three missense HTRA1s found only in CARASIL (CARASIL-HTRA1). The protease activity of the purified recombinant mutant HTRA1s was measured using fluorescein isothiocyanate-labeled casein as substrate. Oligomeric structure was evaluated by size-exclusion chromatography. The protease activities of mixtures of WT with each mutant HTRA1 were also measured. Results: Five hetero-HTRA1s had normal protease activity and were excluded from further analysis. Four of the seven hetero-HTRA1s and one of the three CARASIL-HTRA1s were unable to form trimers. The other three hetero-HTRA1s had mutations in the LD domain. Together with our previous work, 10 of 11 hetero-HTRA1s and two of six CARASIL-HTRA1s were either defective in trimerization or had mutations in the LD or L3 domain (P = 0.006). By contrast, eight of 11 hetero-HTRA1s and two of six CARASIL-HTRA1 inhibited WT protease activity (P = 0.162). Conclusions: HTRA1 mutations identified in symptomatic carriers have the property of interfering the trimer-dependent activation cascade of HTRA1.
Collapse
Affiliation(s)
- Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.,Division of Legal Medicine, Niigata University, Niigata, Japan
| | - Naoko Sakai
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Chen PH, Tang T, Liu C, Wang B, Mian M, Oka C, Baquerizo M, Li Y, Xu L. High-Temperature Requirement A1 Protease as a Rate-Limiting Factor in the Development of Osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1423-1434. [PMID: 31051168 DOI: 10.1016/j.ajpath.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
Preserving the mature articular cartilage of joints is a critical focus in the prevention and treatment of osteoarthritis. We determined whether the genetic inactivation of high-temperature requirement A1 (HtrA1) can significantly attenuate the degradation of articular or condylar cartilage. Two types of mouse models of osteoarthritis were used, a spontaneous mutant mouse model [type XI collagen-haploinsufficient (Col11a1+/-) mice] and two post-traumatic mouse models [destabilization of the medial meniscus (DMM) on the knee and a partial discectomy (PDE) on the temporomandibular joint]. Three different groups of mice were generated: i) HtrA1 was genetically deleted from Col11a1+/- mice (HtrA1-/-;Col11a1+/-), ii) HtrA1-deficient mice (HtrA1-/-) were subjected to DMM, and iii) HtrA1-/- mice were subjected to PDE. Knee and temporomandibular joints from the mice were characterized for evidence of cartilage degeneration. The degradation of articular or condylar cartilage was significantly delayed in HtrA1-/-;Col11a1+/- mice and HtrA1-/- mice after DMM or PDE. The amount of collagen type VI was significantly higher in the articular cartilage in HtrA1-/-;Col11a1+/- mice, compared with that in Col11a1+/- mice. The genetic removal of HtrA1 may delay the degradation of articular or condylar cartilage in mice.
Collapse
Affiliation(s)
- Peter H Chen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Tian Tang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts; Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenlu Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts; Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Beiyu Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts; Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Michelle Mian
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Chio Oka
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Japan
| | - Maria Baquerizo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yefu Li
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts; Faculty of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts; Faculty of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Calvani R, Picca A, Marini F, Biancolillo A, Cesari M, Pesce V, Lezza AMS, Bossola M, Leeuwenburgh C, Bernabei R, Landi F, Marzetti E. The "BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons" (BIOSPHERE) study: Rationale, design and methods. Eur J Intern Med 2018; 56:19-25. [PMID: 29753582 PMCID: PMC6367722 DOI: 10.1016/j.ejim.2018.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Sarcopenia, the progressive and generalised loss of muscle mass and strength/function, is a major health issue in older adults given its high prevalence and burdensome clinical implications. Over the years, this condition has been endorsed as a marker for discriminating biological from chronological age. However, the absence of a unified operational definition has hampered its full appreciation by healthcare providers, researchers and policy-makers. In addition to this unsolved debate, the complexity of musculoskeletal ageing represents a major challenge to the identification of clinically meaningful biomarkers. Here, we illustrate the advantages of biomarker discovery procedures in muscle ageing based on multivariate methodologies as an alternative approach to traditional single-marker strategies. The rationale, design and methods of the "BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons" (BIOSPHERE) study are described as an application of a multi-marker strategy for the development of biomarkers for the newly operationalised Physical Frailty & Sarcopenia condition.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy.
| | - Federico Marini
- Department of Chemistry, "Sapienza" University of Rome, Rome, Italy
| | | | - Matteo Cesari
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy; Geriatric Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Maurizio Bossola
- Department of Surgery, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Christiaan Leeuwenburgh
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Roberto Bernabei
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| |
Collapse
|
22
|
Singh KH, Yadav S, Kumar D, Biswal BK. The crystal structure of an essential high-temperature requirement protein HtrA1 (Rv1223) from Mycobacterium tuberculosis reveals its unique features. Acta Crystallogr D Struct Biol 2018; 74:906-921. [PMID: 30198900 DOI: 10.1107/s205979831800952x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/03/2018] [Indexed: 11/11/2022] Open
Abstract
High-temperature requirement A (HtrA) proteins, which are members of the heat-shock-induced serine protease family, are involved in extracytoplasmic protein quality control and bacterial survival strategies under stress conditions, and are associated with the virulence of several pathogens; they are therefore major drug targets. Mycobacterium tuberculosis possesses three putative HtrAs: HtrA1 (Rv1223), HtrA2 (Rv0983) and HtrA3 (Rv0125). Each has a cytoplasmic region, a transmembrane helix and a periplasmic region. Here, the crystal structure of the periplasmic region consisting of a protease domain (PD) and a PDZ domain from an M. tuberculosis HtrA1 mutant (mHtrA1S387A) is reported at 2.7 Å resolution. Although the mHtrA1S387A PD shows structural features similar to those of other HtrAs, its loops, particularly L3 and LA, display different conformations. Loop L3 communicates between the PDs of the trimer and the PDZ domains and undergoes a transition from an active to an inactive conformation, as reported for an equivalent HtrA (DegS). Loop LA, which is responsible for higher oligomer formation owing to its length (50 amino acids) in DegP, is very short in mHtrA1S387A (five amino acids), as in mHtrA2 (also five amino acids), and therefore lacks essential interactions for the formation of higher oligomers. Notably, a well ordered loop known as the insertion clamp in the PDZ domain interacts with the protease domain of the adjacent molecule, which possibly aids in the stabilization of a trimeric functional unit of this enzyme. The three-dimensional structure of mHtrA1S387A presented here will be useful in the design of enzyme-specific antituberculosis inhibitors.
Collapse
Affiliation(s)
- Khundrakpam Herojit Singh
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Savita Yadav
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Deepak Kumar
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Bichitra Kumar Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
23
|
Zellner A, Scharrer E, Arzberger T, Oka C, Domenga-Denier V, Joutel A, Lichtenthaler SF, Müller SA, Dichgans M, Haffner C. CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol 2018; 136:111-125. [PMID: 29725820 DOI: 10.1007/s00401-018-1853-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and a phenotypically similar recessive condition (CARASIL) have emerged as important genetic model diseases for studying the molecular pathomechanisms of cerebral small vessel disease (SVD). CADASIL, the most frequent and intensely explored monogenic SVD, is characterized by a severe pathology in the cerebral vasculature including the mutation-induced aggregation of the Notch3 extracellular domain (Notch3ECD) and the formation of protein deposits of insufficiently determined composition in vessel walls. To identify key molecules and pathways involved in this process, we quantitatively determined the brain vessel proteome from CADASIL patient and control autopsy samples (n = 6 for each group), obtaining 95 proteins with significantly increased abundance. Intriguingly, high-temperature requirement protein A1 (HTRA1), the extracellular protease mutated in CARASIL, was found to be strongly enriched (4.9-fold, p = 1.6 × 10-3) and to colocalize with Notch3ECD deposits in patient vessels suggesting a sequestration process. Furthermore, the presence of increased levels of several HTRA1 substrates in the CADASIL proteome was compatible with their reduced degradation as consequence of a loss of HTRA1 activity. Indeed, a comparison with the brain vessel proteome of HTRA1 knockout mice (n = 5) revealed a highly significant overlap of 18 enriched proteins (p = 2.2 × 10-16), primarily representing secreted and extracellular matrix factors. Several of them were shown to be processed by HTRA1 in an in vitro proteolysis assay identifying them as novel substrates. Our study provides evidence for a loss of HTRA1 function as a critical step in the development of CADASIL pathology linking the molecular mechanisms of two distinct SVD forms.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Eva Scharrer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Valérie Domenga-Denier
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Anne Joutel
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
| |
Collapse
|
24
|
Capossela S, Bertolo A, Gunasekera K, Pötzel T, Baur M, Stoyanov JV. VEGF vascularization pathway in human intervertebral disc does not change during the disc degeneration process. BMC Res Notes 2018; 11:333. [PMID: 29784013 PMCID: PMC5963106 DOI: 10.1186/s13104-018-3441-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
Objective During degeneration of the intervertebral disc ingrowth of blood vessels and nerves into the disc are associated with back pain. Vascular endothelial growth factors promote vasculogenesis by binding to the membrane vascular endothelial growth factor receptor 1, while shorter soluble forms of this receptor can inhibit vascularization. We hypothesized that membrane and soluble receptor forms might change between stages of intervertebral disc degeneration. Results Expression of soluble and membrane forms of vascular endothelial growth factor receptor 1 in human degenerated intervertebral discs and healthy bovine caudal discs was assessed by qRT-PCR and immunoblot. Comparative microarray meta-analysis across disc degeneration grades showed that membrane and soluble forms of this receptor, together with other components of classic vascularization pathways, are constitutively expressed across human disc degeneration stages. Contrary to our hypothesis, we observed that expression of the classic vascularization pathway is stable across degeneration stages and we assume that soluble vascular endothelial growth factor receptor 1 does not contribute to prevent disc degeneration. However, we observed increased expression levels of genes involved in alternative vascularization signalling pathways in severely degenerated discs, suggesting that abnormal vascularization is part of the pathological progression of disc degeneration. Electronic supplementary material The online version of this article (10.1186/s13104-018-3441-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Capossela
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | - Alessandro Bertolo
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | - Kapila Gunasekera
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | | | - Martin Baur
- Swiss Paraplegic Centre, Nottwil, Switzerland.,Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Jivko V Stoyanov
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland.
| |
Collapse
|
25
|
Arslan J, Baird PN. Changing vision: a review of pharmacogenetic studies for treatment response in age-related macular degeneration patients. Pharmacogenomics 2018; 19:435-461. [DOI: 10.2217/pgs-2017-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonresponsiveness to age-related macular degeneration (AMD) treatments has become a growing concern in ophthalmology. Disparity among publications that have assessed pharmacogenetic (PGx) connections between AMD disease genes and treatments has delayed the implementation of PGx testing in AMD. We assessed all AMD PGx publications to identify the degree of agreement for publications within similar ethnic cohorts and worldwide, and the causes for differences in study outcomes. There are no accepted genotype–phenotype correlations, either within similar ethnic cohorts or worldwide. The diversity of measured outcomes, treatment protocols and statistical methods used may be causing this discrepancy. A universally accepted treatment protocol and the creation of agreed response group classification may bridge the gap between AMD PGx publications.
Collapse
Affiliation(s)
- Janan Arslan
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, 3002, Australia
| | - Paul N Baird
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, 3002, Australia
| |
Collapse
|
26
|
Wilkinson DJ, Arques MDC, Huesa C, Rowan AD. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: implications for therapeutics. Br J Pharmacol 2018; 176:38-51. [PMID: 29473950 DOI: 10.1111/bph.14173] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022] Open
Abstract
Cartilage destruction is a key characteristic of arthritic disease, a process now widely established to be mediated by metzincins such as MMPs. Despite showing promise in preclinical trials during the 1990s, MMP inhibitors for the blockade of extracellular matrix turnover in the treatment of cancer and arthritis failed clinically, primarily due to poor selectivity for target MMPs. In recent years, roles for serine proteinases in the proteolytic cascades leading to cartilage destruction have become increasingly apparent, renewing interest in the potential for new therapeutic strategies that utilize pharmacological inhibitors against this class of proteinases. Herein, we describe key serine proteinases with likely importance in arthritic disease and highlight recent advances in this field. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- David J Wilkinson
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Del Carmen Arques
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carmen Huesa
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Andrew D Rowan
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
HtrA3 is a cellular partner of cytoskeleton proteins and TCP1α chaperonin. J Proteomics 2018; 177:88-111. [PMID: 29477555 DOI: 10.1016/j.jprot.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
The human HtrA3 protease is involved in placentation, mitochondrial homeostasis, stimulation of apoptosis and proposed to be a tumor suppressor. Molecular mechanisms of the HtrA3 functions are poorly understood and knowledge concerning its cellular targets is very limited. There are two HtrA3 isoforms, the long (HtrA3L) and short (HtrA3S). Upon stress, their N-terminal domains are removed, resulting in the more active ΔN-HtrA3. By pull down and mass spectrometry techniques, we identified a panel of putative ΔN-HtrA3L/S substrates. We confirmed that ΔN-HtrA3L/S formed complexes with actin, β-tubulin, vimentin and TCP1α in vitro and in a cell and partially co-localized with the actin and vimentin filaments, microtubules and TCP1α in a cell. In vitro, both isoforms cleaved the cytoskeleton proteins, promoted tubulin polymerization and displayed chaperone-like activity, with ΔN-HtrA3S being more efficient in proteolysis and ΔN-HtrA3L - in polymerization. TCP1α, essential for the actin and tubulin folding, was directly bound by the ΔN-HtrA3L/S but not cleaved. These results indicate that actin, β-tubulin, vimentin, and TCP1α are HtrA3 cellular partners and suggest that HtrA3 may influence cytoskeleton dynamics. They also suggest different roles of the HtrA3 isoforms and a possibility that HtrA3 protease may also function as a co-chaperone. SIGNIFICANCE The HtrA3 protease stimulates apoptosis and is proposed to be a tumor suppressor and a therapeutic target, however little is known about its function at the molecular level and very few HtrA3 physiological substrates have been identified so far. Furthermore, HtrA3 is the only member of the HtrA family of proteins which, apart from the long isoform possessing the PD and PDZ domains (HtrA3L), has a short isoform (HtrA3S) lacking the PDZ domain. In this work we identified a large panel (about 150) of the tentative HtrA3L/S cellular partners which provides a good basis for further research concerning the HtrA3 function. We have shown that the cytoskeleton proteins actin, β-tubulin and vimentin, and the TCP1α chaperonin are cellular partners of both HtrA3 isoforms. Our findings indicate that HtrA3 may promote destabilization of the actin and vimentin cytoskeleton and suggest that it may influence the dynamics of the microtubule network, with the HtrA3S being more efficient in cytoskeleton protein cleavage and HtrA3L - in tubulin polymerization. Also, we have shown for the first time that HtrA3 has a chaperone-like, holdase activity in vitro - activity typical for co-chaperone proteins. The proposed HtrA3 influence on the cytoskeleton dynamics may be one of the ways in which HtrA3 promotes cell death and affects cancerogenesis. We believe that the results of this study provide a new insight into the role of HtrA3 in a cell and further confirm the notion that HtrA3 should be considered as a target of new anti-cancer therapies.
Collapse
|
28
|
Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Sci Rep 2017; 7:17184. [PMID: 29215065 PMCID: PMC5719358 DOI: 10.1038/s41598-017-17472-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLR) are activated by endogenous alarmins such as fragmented extracellular matrix compounds found in the degenerating disc. TLRs regulate cytokine, neurotrophin, and protease expression in human disc cells in vitro, and thus control key factors in disc degeneration. However, whether TLR activation leads to degenerative changes in intact human discs is unclear. Nucleus pulposus (NP) cells isolated from non-degenerating discs increase IL-1β and nerve growth factor gene expression following treatment with Pam2CSK4 (TLR2/6 agonist) but not Pam3CSK4 (TLR1/2 agonist). Challenging NP cells with Pam2CSK4 or 30 kDa fibronectin fragments (FN-f, an endogenous TLR2 and TLR4 alarmin) increased secretion of proinflammatory cytokines. We then investigated the effect of TLR activation in intact, non-degenerate, ex vivo human discs. Discs were injected with PBS, Pam2CSK4 and FN-f, and cultured for 28 days. TLR activation increased proteoglycan and ECM protein release into the culture media and decreased proteoglycan content in the NP. Proteases, including MMP3, 13 and HTRA1, are secreted at higher levels following TLR activation. In addition, proinflammatory cytokine levels, including IL-6, TNFα and IFNγ, increased following TLR activation. These results indicate that TLR activation induces degeneration in human discs. Therefore, TLRs are potential disease-modifying therapeutic targets to slow disc degeneration.
Collapse
|
29
|
Wenta T, Glaza P, Jarząb M, Zarzecka U, Żurawa-Janicka D, Lesner A, Skórko-Glonek J, Lipińska B. The role of the LB structural loop and its interactions with the PDZ domain of the human HtrA3 protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Filliat G, Mirsaidi A, Tiaden AN, Kuhn GA, Weber FE, Oka C, Richards PJ. Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation. PLoS One 2017; 12:e0181600. [PMID: 28732055 PMCID: PMC5521800 DOI: 10.1371/journal.pone.0181600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
The role of mammalian high temperature requirement protease A1 (HTRA1) in somatic stem cell differentiation and mineralized matrix formation remains controversial, having been demonstrated to impart either anti- or pro-osteogenic effects, depending on the in vitro cell model used. The aim of this study was therefore to further evaluate the role of HTRA1 in regulating the differentiation potential and lineage commitment of murine mesenchymal stem cells in vitro, and to assess its influence on bone structure and regeneration in vivo. Our results demonstrated that short hairpin RNA-mediated ablation of Htra1 in the murine mesenchymal cell line C3H10T1/2 increased the expression of several osteogenic gene markers, and significantly enhanced matrix mineralization in response to BMP-2 stimulation. These effects were concomitant with decreases in the expression of chondrogenic gene markers, and increases in adipogenic gene expression and lipid accrual. Despite the profound effects of loss-of-function of HTRA1 on this in vitro osteochondral model, these were not reproduced in vivo, where bone microarchitecture and regeneration in 16-week-old Htra1-knockout mice remained unaltered as compared to wild-type controls. By comparison, analysis of femurs from 52-week-old mice revealed that bone structure was better preserved in Htra1-knockout mice than age-matched wild-type controls. These findings therefore provide additional insights into the role played by HTRA1 in regulating mesenchymal stem cell differentiation, and offer opportunities for improving our understanding of how this multifunctional protease may act to influence bone quality.
Collapse
Affiliation(s)
- Gladys Filliat
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ali Mirsaidi
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
| | - André N. Tiaden
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Franz E. Weber
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Oral Biotechnology & Bioengineering, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Chio Oka
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Nara, Japan
| | - Peter J. Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Altobelli E, Latella G, Morroni M, Licini C, Tossetta G, Mazzucchelli R, Profeta VF, Coletti G, Leocata P, Castellucci M, Guerrieri M, Petrocelli R, De Berardis B, De Padova M, Di Leonardo G, Paladini A, Mignosi F, Quaglione G, Fagnano R, Marzioni D. Low HtrA1 expression in patients with long‑standing ulcerative colitis and colorectal cancer. Oncol Rep 2017; 38:418-426. [PMID: 28586045 DOI: 10.3892/or.2017.5700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 11/05/2022] Open
Abstract
The association between inflammatory bowel disease (IBD) and colorectal cancer (CRC) is being increasingly investigated. HtrA1 overexpression inhibits cell growth and proliferation by influencing apoptosis, invasiveness and migration of tumour cells. In the present study, HtrA1 expression was analysed in 228 colon tissue samples from patients with CRC, adenoma with high-grade dysplasia (AHD), adenoma with low-grade dysplasia (ALD), ulcerative colitis of >10 year duration (UCL), ulcerative colitis of <5 year duration (UCS) and colonic diverticulitis (D), and was compared with its expression in normal colon tissues (NCTs) collected 5 cm from the CRC lesion and in healthy colon mucosa (HC), to establish whether HtrA1 can serve as a biomarker for these conditions. All tissue specimens came from Italian Caucasian subjects. The main finding of the present study was that HtrA1 expression was significantly reduced in CRC and UCL tissues compared with that observed in both NCT and HC samples and with tissues from the other patients. In particular, a similar HtrA1 expression was detected in the stromal compartment of UCL and CRC samples. In contrast, the HtrA1 level was significantly lower (p=0.0008) in UCL compared with UCS tissues, suggesting an inverse relationship between HtrA1 expression and ulcerative colitis duration. HtrA1 immunostaining in the stromal compartment of AHD and ALD tissues showed no differences compared with the HC tissues. No data are available on the immunohistochemical localization of HtrA1 in CRC or IBD. The present findings suggest that HtrA1 could serve as a marker to identify UCL patients at high risk of developing CRC.
Collapse
Affiliation(s)
- Emma Altobelli
- Epidemiology and Biostatistics Unit, Teramo, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Caterina Licini
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Roberta Mazzucchelli
- Pathological Anatomy, Department of Medical Sciences and Public Health, Università Politecnica Delle Marche, United Hospitals, Ancona, Italy
| | | | - Gino Coletti
- Pathology Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Pietro Leocata
- Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Mario Guerrieri
- Unit of Surgery, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | | | | | - Marina De Padova
- Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Leonardo
- Epidemiology and Biostatistics Unit, Teramo, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Paladini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Filippo Mignosi
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
33
|
Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017; 59:158-177. [PMID: 28465248 PMCID: PMC5537591 DOI: 10.1016/j.preteyeres.2017.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are nanometer-sized vesicles that are released by cells in a controlled fashion and mediate a plethora of extra- and intercellular activities. Some key functions of exosomes include cell-cell communication, immune modulation, extracellular matrix turnover, stem cell division/differentiation, neovascularization and cellular waste removal. While much is known about their role in cancer, exosome function in the many specialized tissues of the eye is just beginning to undergo rigorous study. Here we review current knowledge of exosome function in the visual system in the context of larger bodies of data from other fields, in both health and disease. Additionally, we discuss recent advances in the exosome field including use of exosomes as a therapeutic vehicle, exosomes as a source of biomarkers for disease, plus current standards for isolation and validation of exosome populations. Finally, we use this foundational information about exosomes in the eye as a platform to identify areas of opportunity for future research studies.
Collapse
Affiliation(s)
- Mikael Klingeborn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - W Michael Dismuke
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Li D, Yue J, Jiang L, Huang Y, Sun J, Wu Y. Correlation Between Expression of High Temperature Requirement Serine Protease A1 (HtrA1) in Nucleus Pulposus and T2 Value of Magnetic Resonance Imaging. Med Sci Monit 2017; 23:1940-1946. [PMID: 28432852 PMCID: PMC5411019 DOI: 10.12659/msm.904018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Degrading enzymes play an important role in the process of disc degeneration. The objective of this study was to investigate the correlation between the expression of high temperature requirement serine protease A1 (HtrA1) in the nucleus pulposus and the T2 value of the nucleus pulposus region in magnetic resonance imaging (MRI). MATERIAL AND METHODS Thirty-six patients who had undergone surgical excision of the nucleus pulposus were examined by MRI before surgery. Pfirrmann grading of the target intervertebral disc was performed according to the sagittal T2-weighted imaging, and the T2 value of the target nucleus pulposus was measured according to the median sagittal T2 mapping. The correlation between the Pfirrmann grade and the T2 value was analyzed. The expression of HtrA1 in the nucleus pulposus was analyzed by RT-PCR and Western blot. The correlation between the expression of HtrA1 and the T2 value was analyzed. RESULTS The T2 value of the nucleus pulposus region was 33.11-167.91 ms, with an average of 86.64±38.73 ms. According to Spearman correlation analysis, there was a rank correlation between T2 value and Pfirrmann grade (P<0.0001), and the correlation coefficient (rs)=-0.93617. There was a linear correlation between the mRNA level of HtrA1 and T2 value in nucleus pulposus tissues (a=3.88, b=-0.019, F=112.63, P<0.0001), normalized regression coefficient=-0.88. There was a linear correlation between the expression level of HtrA1 protein and the T2 value in the nucleus pulposus tissues (a=3.30, b=-0.016, F=93.15, P<0.0001) and normalized regression coefficient=-0.86. CONCLUSIONS The expression of HtrA1 was strongly related to the T2 value, suggesting that HtrA1 plays an important role in the pathological process of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jiawei Yue
- Department of Physiology, Medical College of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lu Jiang
- Department of Physiology, Medical College of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Yonghui Huang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jifu Sun
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Yan Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Department of Physiology, Medical College of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
35
|
Zurawa-Janicka D, Wenta T, Jarzab M, Skorko-Glonek J, Glaza P, Gieldon A, Ciarkowski J, Lipinska B. Structural insights into the activation mechanisms of human HtrA serine proteases. Arch Biochem Biophys 2017; 621:6-23. [PMID: 28396256 DOI: 10.1016/j.abb.2017.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Miroslaw Jarzab
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Przemyslaw Glaza
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jerzy Ciarkowski
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
36
|
Phenotype-Genotype Association Analysis of ACTH-Secreting Pituitary Adenoma and Its Molecular Link to Patient Osteoporosis. Int J Mol Sci 2016; 17:ijms17101654. [PMID: 27690016 PMCID: PMC5085687 DOI: 10.3390/ijms17101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022] Open
Abstract
Adrenocorticotrophin (ACTH)-secreting pituitary adenoma, also known as Cushing disease (CD), is rare and causes metabolic syndrome, cardiovascular disease and osteoporosis due to hypercortisolism. However, the molecular pathogenesis of CD is still unclear because of a lack of human cell lines and animal models. Here, we study 106 clinical characteristics and gene expression changes from 118 patients, the largest cohort of CD in a single-center. RNA deep sequencing is used to examine genotypic changes in nine paired female ACTH-secreting pituitary adenomas and adjacent nontumorous pituitary tissues (ANPT). We develop a novel analysis linking disease clinical characteristics and whole transcriptomic changes, using Pearson Correlation Coefficient to discover a molecular network mechanism. We report that osteoporosis is distinguished from the phenotype and genotype analysis. A cluster of genes involved in osteoporosis is identified using Pearson correlation coefficient analysis. Most of the genes are reported in the bone related literature, confirming the feasibility of phenotype-genotype association analysis, which could be used in the analysis of almost all diseases. Secreted phosphoprotein 1 (SPP1), collagen type I α 1 chain (COL1A1), 5′-nucleotidase ecto (NT5E), HtrA serine peptidase 1 (HTRA1) and angiopoietin 1 (ANGPT1) and their signalling pathways are shown to be involved in osteoporosis in CD patients. Our discoveries provide a molecular link for osteoporosis in CD patients, and may open new potential avenues for osteoporosis intervention and treatment.
Collapse
|
37
|
HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts. Infect Immun 2016; 84:2372-2381. [PMID: 27271745 DOI: 10.1128/iai.00360-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/04/2023] Open
Abstract
High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity.
Collapse
|
38
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
39
|
Glanz S, Mirsaidi A, López-Fagundo C, Filliat G, Tiaden AN, Richards PJ. Loss-of-Function of HtrA1 Abrogates All-Trans Retinoic Acid-Induced Osteogenic Differentiation of Mouse Adipose-Derived Stromal Cells Through Deficiencies in p70S6K Activation. Stem Cells Dev 2016; 25:687-98. [PMID: 26950191 DOI: 10.1089/scd.2015.0368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a potent inducer of osteogenic differentiation in mouse adipose-derived stromal cells (mASCs), although the underlying mechanisms responsible for its mode of action have yet to be completely elucidated. High temperature requirement protease A1 (HtrA1) is a newly recognized modulator of human multipotent stromal cell (MSC) osteogenesis and as such, may play a role in regulating ATRA-dependent osteogenic differentiation of mASCs. In this study, we assessed the influence of small interfering RNA (siRNA)-induced repression of HtrA1 production on mASC osteogenesis and examined its effects on ATRA-mediated mammalian target of rapamycin (mTOR) signaling. Inhibition of HtrA1 production in osteogenic mASCs resulted in a significant reduction of alkaline phosphatase activity and mineralized matrix formation. Western blot analyses revealed the rapid activation of Akt (Ser473) and p70S6K (Thr389) in ATRA-treated mASCs, and that levels of phosphorylated p70S6K were noticeably reduced in HtrA1-deficient mASCs. Further studies using mTOR inhibitor rapamycin and siRNA specific for the p70S6K gene Rps6kb1 confirmed ATRA-mediated mASC osteogenesis as being dependent on p70S6K activation. Finally, transfection of cells with a constitutively active rapamycin-resistant p70S6K mutant could restore the mineralizing capacity of HtrA1-deficient mASCs. These findings therefore lend further support for HtrA1 as a positive mediator of MSC osteogenesis and provide new insights into the molecular mode of action of ATRA in regulating mASC lineage commitment.
Collapse
Affiliation(s)
- Stephan Glanz
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - Ali Mirsaidi
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | | | - Gladys Filliat
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| | - André N Tiaden
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland
| | - Peter J Richards
- 1 Bone and Stem Cell Research Group, CABMM, University of Zurich , Zurich, Switzerland .,2 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| |
Collapse
|
40
|
Tiaden AN, Bahrenberg G, Mirsaidi A, Glanz S, Blüher M, Richards PJ. Novel Function of Serine Protease HTRA1 in Inhibiting Adipogenic Differentiation of Human Mesenchymal Stem Cells via MAP Kinase-Mediated MMP Upregulation. Stem Cells 2016; 34:1601-14. [PMID: 26864869 DOI: 10.1002/stem.2297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/02/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Adipogenesis is the process by which mesenchymal stem cells (MSCs) develop into lipid-laden adipocytes. Being the dominant cell type within adipose tissue, adipocytes play a central role in regulating circulating fatty acid levels, which is considered to be of critical importance in maintaining insulin sensitivity. High temperature requirement protease A1 (HTRA1) is a newly recognized regulator of MSC differentiation, although its role as a mediator of adipogenesis has not yet been defined. The aim of this work was therefore to evaluate HTRA1's influence on human MSC (hMSC) adipogenesis and to establish a potential mode of action. We report that the addition of exogenous HTRA1 to hMSCs undergoing adipogenesis suppressed their ability to develop into lipid laden adipocytes. These effects were demonstrated as being reliant on both its protease and PDZ domain, and were mediated through the actions of c-Jun N-terminal kinase and matrix metalloproteinases (MMPs). The relevance of such findings with regards to HTRA1's potential influence on adipocyte function in vivo is made evident by the fact that HTRA1 and MMP-13 were readily identifiable within crown-like structures present in visceral adipose tissue samples from insulin resistant obese human subjects. These data therefore implicate HTRA1 as a negative regulator of MSC adipogenesis and are suggestive of its potential involvement in adipose tissue remodeling under pathological conditions. Stem Cells 2016;34:1601-1614.
Collapse
Affiliation(s)
- André N Tiaden
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
| | - Gregor Bahrenberg
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ali Mirsaidi
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Stephan Glanz
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Matthias Blüher
- Department of Medicine, Dermatology and Neurology, University of Leipzig, Leipzig, Germany.,Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Peter J Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Zhu F, Duan YF, Bao WY, Liu WS, Yang Y, Cai HH. HtrA1 regulates epithelial-mesenchymal transition in hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 467:589-94. [PMID: 26403966 DOI: 10.1016/j.bbrc.2015.09.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Epithelial-mesenchymal transition (EMT) is involved in the development and progression of cancer. HtrA1 had been showed to play a modulatory role in metastasis of hepatocellular carcinoma (HCC). The relationship between HtrA1 and EMT in HCC was investigated in the present study. METHODS The HtrA1 expression in human HCC tumor tissues and cells was determined by real-time PCR. SiRNA-HtrA1 and pcDNA-HtrA1 were respectively transfected into HepG2 and MHCC97H cells to observe their effects on cell migration and expression of EMT-associated markers Vimentin and E-cadherin. The relationship between HtrA1 and EMT in 60 HCC patients was also investigated. RESULTS HtrA1 expression of tumor tissues was down-regulated with the increasing of number in lymph nodes metastasis in HCC patients. HtrA1 down-regulation led to the significant increase of cell migration, Vimentin expression and decrease of E-cadherin expression, while HtrA1 overexpression resulted in an opposite function. The HtrA1 expression was positively related to the E-cadherin level (R(2) = 0.5903, P < 0.001) and negatively correlated with Vimentin level (R(2) = 0.6067, P < 0.001) in tumor tissues of HCC, respectively. CONCLUSION HtrA1 expression was closely related to EMT, which might be a potential mechanism underlying metastasis of HCC.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China.
| | - Yun-Fei Duan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Wan-Yuan Bao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Wen-Song Liu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Hui-Hua Cai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| |
Collapse
|
42
|
Russell TM, Tang X, Goldstein JM, Bagarozzi D, Johnson BJB. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA. Mol Microbiol 2015; 99:586-96. [PMID: 26480895 DOI: 10.1111/mmi.13251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 11/28/2022]
Abstract
HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA). Previous studies established that, like the human orthologue HtrA1, BbHtrA is proteolytically active against numerous extracellular proteins in vitro. In this study, we utilized size exclusion chromatography and blue native polyacrylamide gel electrophoresis (BN-PAGE) to demonstrate BbHtrA oligomeric structures that were substrate independent and salt sensitive. Examination of the influence of transition metals on the activity of BbHtrA revealed that this protease is inhibited by Zn(2+) > Cu(2+) > Mn(2+). Extending this analysis to two other HtrA proteases, E. coli DegP and HtrA1, revealed that all three HtrA proteases were reversibly inhibited by ZnCl2 at all micro molar concentrations examined. Commercial inhibitors for HtrA proteases are not available and physiologic HtrA inhibitors are unknown. Our observation of conserved zinc inhibition of HtrA proteases will facilitate structural and functional studies of additional members of this important class of proteases.
Collapse
Affiliation(s)
- Theresa M Russell
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Fort Collins, CO, USA
| | - Xiaoling Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA
| | - Jason M Goldstein
- Division of Scientific Resources, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA
| | - Dennis Bagarozzi
- Division of Scientific Resources, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA
| | - Barbara J B Johnson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Fort Collins, CO, USA
| |
Collapse
|
43
|
Poepsel S, Sprengel A, Sacca B, Kaschani F, Kaiser M, Gatsogiannis C, Raunser S, Clausen T, Ehrmann M. Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat Chem Biol 2015; 11:862-9. [PMID: 26436840 DOI: 10.1038/nchembio.1931] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/09/2015] [Indexed: 01/28/2023]
Abstract
Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.
Collapse
Affiliation(s)
- Simon Poepsel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andreas Sprengel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Barbara Sacca
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Ehrmann
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
44
|
ALTOBELLI EMMA, MARZIONI DANIELA, LATTANZI AMEDEO, ANGELETTI PAOLOMATTEO. HtrA1: Its future potential as a novel biomarker for cancer. Oncol Rep 2015; 34:555-66. [PMID: 26035313 PMCID: PMC4487665 DOI: 10.3892/or.2015.4016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
HtrA1 appears to be involved in several physiological processes as well as in the pathogenesis of conditions such as Alzheimer's disease and osteoarthritis. It has also been hypothesized to play a role as a tumor suppressor. This manuscript reviews the current cancer-related HtrA1 research from the methodological and clinical standpoints including studies regarding its potential role as a tumor marker and/or prognostic factor. PRISMA method was used for study selection. The articles thus collected were examined and selected by two independent reviewers; any disagreement was resolved by a methodologist. A laboratory researcher reviewed the methods and laboratory techniques. Fifteen studies met the inclusion criteria and concerned the following cancer sites: the nervous system, bladder, breast, esophagus, stomach, liver, endometrium, thyroid, ovaries, pleura, lung and skin. Most articles described in vivo studies using a morphological approach and immunohistochemistry, whereas protein expression was quantified as staining intensity scored by two raters. Often the results were not comparable due to the different rating scales and study design. Current research on HtrA1 does not conclusively support its role as a tumor suppressor.
Collapse
Affiliation(s)
- EMMA ALTOBELLI
- Department of Life, Health and Environmental Sciences, Epidemiology and Biostatistics Unit, AUSL Teramo, University of L’Aquila, L’Aquila, Italy
| | - DANIELA MARZIONI
- Department of Experimental and Clinical Medicine, University of Ancona, Ancona, Italy
| | - AMEDEO LATTANZI
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - PAOLO MATTEO ANGELETTI
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
45
|
Kamita M, Mori T, Sakai Y, Ito S, Gomi M, Miyamoto Y, Harada A, Niida S, Yamada T, Watanabe K, Ono M. Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis. Proteomics 2015; 15:1622-30. [DOI: 10.1002/pmic.201400442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/16/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Masahiro Kamita
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Taiki Mori
- BioBank Omics Unit; National Center for Geriatrics and Gerontology (NCGG); Morioka, Obu, Aichi Japan
| | - Yoshihito Sakai
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Sadayuki Ito
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Masahiro Gomi
- BioBusiness Group; Mitsui Knowledge Industry; Tokyo Japan
| | - Yuko Miyamoto
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Atsushi Harada
- Department of Orthopedic Surgery; NCGG; Morioka, Obu, Aichi Japan
| | - Shumpei Niida
- BioBank Omics Unit; National Center for Geriatrics and Gerontology (NCGG); Morioka, Obu, Aichi Japan
| | - Tesshi Yamada
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| | - Ken Watanabe
- Department of Bone and Joint Disease; NCGG; Morioka, Obu, Aichi Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research; National Cancer Center Research Institute; Tsukiji Chuo-ku Tokyo Japan
| |
Collapse
|
46
|
Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M, Huber R, Houlden H, Werring D, Haffner C, Dichgans M. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proc Natl Acad Sci U S A 2014; 111:16496-501. [PMID: 25369932 PMCID: PMC4246310 DOI: 10.1073/pnas.1418087111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High temperature requirement protein A1 (HtrA1) is a primarily secreted serine protease involved in a variety of cellular processes including transforming growth factor β (TGF-β) signaling. Loss of its activity causes cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), an inherited form of cerebral small vessel disease leading to early-onset stroke and premature dementia. Dysregulated TGF-β signaling is considered to promote CARASIL pathogenesis, but the underlying molecular mechanisms are incompletely understood. Here we present evidence from mouse brain tissue and embryonic fibroblasts as well as patient skin fibroblasts for a facilitating role of HtrA1 in TGF-β pathway activation. We identify latent TGF-β binding protein 1 (LTBP-1), an extracellular matrix protein and key regulator of TGF-β bioavailability, as a novel HtrA1 target. Cleavage occurs at physiological protease concentrations, is prevented under HtrA1-deficient conditions as well as by CARASIL mutations and disrupts both LTBP-1 binding to fibronectin and its incorporation into the extracellular matrix. Hence, our data suggest an attenuation of TGF-β signaling caused by a lack of HtrA1-mediated LTBP-1 processing as mechanism underlying CARASIL pathogenesis.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University, 81377 Munich, Germany
| | - Eva Scharrer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz-Zentrum München, 81377 Munich, Germany
| | - Vanda Lux
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Robert Huber
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany; Emeritus Group Structure Research, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Center for Integrated Protein Science at the Department of Chemistry, Lehrstuhl für Biochemie, Technische Unversität München, 85748 Garching, Germany; School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, United Kingdom;
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, University College London (UCL) Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom
| | - David Werring
- Stroke Research Group, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; and
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University, 81377 Munich, Germany;
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| |
Collapse
|
47
|
Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2014; 45:3447-53. [PMID: 25116877 DOI: 10.1161/strokeaha.114.004236] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroaki Nozaki
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan
| | - Osamu Onodera
- From the Department of Medical Technology, School of Health Sciences Faculty of Medicine (H.N.), Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute (M.N.), and Department of Molecular Neuroscience, Resource Branch for Brain Disease, Brain Research Institute (O.O.), Niigata University, Niigata, Japan.
| |
Collapse
|
48
|
Assessment of the matrix degenerative effects of MMP-3, ADAMTS-4, and HTRA1, injected into a bovine intervertebral disc organ culture model. Spine (Phila Pa 1976) 2013; 38:E1377-87. [PMID: 23778376 DOI: 10.1097/brs.0b013e31829ffde8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro study to develop an intervertebral disc degeneration organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4, and HTRA1. OBJECTIVE This study aimed to develop an in vitro model of enzyme-mediated intervertebral disc degeneration to mimic the clinical outcome in humans for investigation of therapeutic treatment options. SUMMARY OF BACKGROUND DATA Bovine IVDs are comparable with human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an intervertebral disc degeneration model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant. METHODS Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4, and HTRA1 were injected at a dose of 10 μg/mL each. Phosphate-buffered saline was injected as a control. Discs were cultured for 8 days and loaded diurnally (days 1-4 with ≈0.4 MPa for 16 hr) and left under free swelling condition from days 4 to 8 to avoid expected artifacts because of dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, GAG content, total collagen content, relative gene expression, and histological investigation. RESULTS The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 than the day 0 control discs. Disc height was decreased after injection with HTRA1 and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3. CONCLUSION MMP-3, ADAMTS-4, and HTRA1 provoked neither visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height that positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may, therefore, be necessary to induce disc degeneration.
Collapse
|
49
|
Russell TM, Delorey MJ, Johnson BJB. Borrelia burgdorferi BbHtrA degrades host ECM proteins and stimulates release of inflammatory cytokines in vitro. Mol Microbiol 2013; 90:241-51. [PMID: 23980719 DOI: 10.1111/mmi.12377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2013] [Indexed: 01/08/2023]
Abstract
The Lyme disease spirochaete, Borrelia burgdorferi, causes damage to diverse host tissues and induces inflammation but the mechanisms of injury are poorly understood. We recently reported that a surface-exposed B. burgdorferi protease, which is expressed during human disease and is conserved within the major Lyme disease spirochaete species, degrades the extracellular matrix proteoglycan, aggrecan. Here we demonstrate that BbHtrA also degrades fibronectin and numerous proteoglycans found in skin, joints and neural tissues. BbHtrA degradation of fibronectin released known pro-inflammatory fibronectin fragments FnIII(13-14) and Fnf-29, which may amplify the inflammatory processes triggered by the presence of the bacteria. When this hypothesis was tested directly by exposing chondrocytes to BbHtrA in vitro, inflammatory cytokines (sICAM-1 and IL-6) and chemokines (CXCL1, CCL1, CCL2 and CCL5) that are hallmarks of Lyme disease were induced. These results provide the first evidence that, by utilizing BbHtrA, B. burgdorferi may actively participate in its dissemination and in the tissue damage and inflammation observed in Lyme disease.
Collapse
Affiliation(s)
- Theresa M Russell
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | | |
Collapse
|
50
|
Akhatib B, Önnerfjord P, Gawri R, Ouellet J, Jarzem P, Heinegård D, Mort J, Roughley P, Haglund L. Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J Biol Chem 2013; 288:19280-7. [PMID: 23673665 PMCID: PMC3696698 DOI: 10.1074/jbc.m112.443010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/02/2013] [Indexed: 01/21/2023] Open
Abstract
Chondroadherin, a member of the leucine-rich repeat family, has previously been demonstrated to be fragmented in some juveniles with idiopathic scoliosis. This observation led us to investigate adults with disc degeneration. Immunoblotting analysis demonstrated that non-degenerate discs from three different age groups show no chondroadherin fragmentation. Furthermore, the chondroadherin fragments in adult degenerate disc and the juvenile scoliotic disc were compared via immunoblot analysis and appeared to have a similar size. We then investigated whether or not chondroadherin fragmentation increases with the severity of disc degeneration. Three different samples with different severities were chosen from the same disc, and chondroadherin fragmentation was found to be more abundant with increasing severity of degeneration. This observation led us to the creation of a neoepitope antibody to the cleavage site observed. We then observed that the cleavage site in adult degenerate discs and juvenile scoliotic discs was identical as confirmed by the neoepitope antibody. Consequently, investigation of the protease capable of cleaving chondroadherin at this site was necessary. In vitro digests of disc tissue demonstrated that ADAMTS-4 and -5; cathepsins K, B, and L; and MMP-3, -7, -12, and -13 were incapable of cleavage of chondroadherin at this site and that HTRA1 was indeed the only protease capable. Furthermore, increased protein levels of the processed form of HTRA1 were demonstrated in degenerate disc tissues via immunoblotting. The results suggest that chondroadherin fragmentation can be used as a biomarker to distinguish the processes of disc degeneration from normal aging.
Collapse
Affiliation(s)
- Bashar Akhatib
- From the Orthopaedic Research Laboratory, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Patrik Önnerfjord
- Department of Clinical Sciences, Lund Section for Rheumatology, Molecular Skeletal Biology, Biomedical Center C12, Lund University, SE-22184 Lund, Sweden
| | - Rahul Gawri
- From the Orthopaedic Research Laboratory, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Jean Ouellet
- Department of Clinical Sciences, Lund Section for Rheumatology, Molecular Skeletal Biology, Biomedical Center C12, Lund University, SE-22184 Lund, Sweden
- McGill Scoliosis and Spine Group, Montreal, Quebec H3A 1A1, Canada, and
| | - Peter Jarzem
- Department of Clinical Sciences, Lund Section for Rheumatology, Molecular Skeletal Biology, Biomedical Center C12, Lund University, SE-22184 Lund, Sweden
- McGill Scoliosis and Spine Group, Montreal, Quebec H3A 1A1, Canada, and
| | - Dick Heinegård
- Department of Clinical Sciences, Lund Section for Rheumatology, Molecular Skeletal Biology, Biomedical Center C12, Lund University, SE-22184 Lund, Sweden
| | - John Mort
- Genetics Unit, Shriners Hospitals for Children, Montreal, Quebec H3G 1A6, Canada
| | - Peter Roughley
- Genetics Unit, Shriners Hospitals for Children, Montreal, Quebec H3G 1A6, Canada
| | - Lisbet Haglund
- From the Orthopaedic Research Laboratory, McGill University, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|