1
|
Peña R, Baulida J. Snail1 as a key prognostic biomarker of cancer-associated fibroblasts in breast tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189316. [PMID: 40222423 DOI: 10.1016/j.bbcan.2025.189316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Accurate cancer diagnosis is crucial for selecting optimal treatments, yet current classification systems often include non-responders who receive ineffective therapies. Cancer-associated fibroblasts (CAFs) play a central role in tumor progression, and CAF biomarkers are increasingly recognized for their prognostic value. Recent studies have revealed significant heterogeneity within CAF populations, with distinct subtypes linked to different tumors and stages of disease. In this review, we summarize recent findings from patient samples and mouse models of breast cancer, focusing on gene signatures identified by single-cell RNA sequencing that define CAF subtypes and predict cancer prognosis. Additionally, we explore the genes and pathways regulated by Snail1, a transcription factor whose expression in breast and colon CAFs is associated with malignancy. Altogether these data emphasize the fibrotic and immunosuppressive roles of Snail1-expressing fibroblasts and unveil an undescribed streamlined Snail1-related gene signature in CAFs with prognostic potential in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Raúl Peña
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Baulida
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Viiklepp K, Knuutila JS, Nissinen L, Siljamäki E, Rappu P, Suwal U, Pellinen T, Kallajoki M, Meri S, Heino J, Kähäri VM, Riihilä P. Expression of C1q by Macrophages and Fibroblasts in Tumor Microenvironment Is Associated with Progression and Metastasis of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2025:S0022-202X(25)00446-4. [PMID: 40311866 DOI: 10.1016/j.jid.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, with poor prognosis for metastatic cases. We demonstrated previously that cSCC cells in culture express C1r and C1s components of the complement C1qr2s2 complex but not C1q. In this study, significantly higher mRNA levels of C1QA, C1QB, and C1QC variants 1 and 2 were found in cSCC tumors than in normal skin. Analysis of single-cell RNA-sequencing data of cSCC revealed expression of mRNAs for C1QA, C1QB, and C1QC in macrophages and activated fibroblasts. C1q staining was detected on the surface of cSCC tumor cells, in peritumoral and intratumoral macrophages, and in peritumoral activated fibroblasts using immunohistochemistry and multiplexed immunofluorescence. Expression was higher in cSCCs than in normal skin, actinic keratoses, and cSCC in situ. C1q production was induced in 3-dimensional spheroid cocultures of cSCC cells, fibroblasts, and macrophages. C1q stimulated the growth of cSCC cells in culture. C1q expression was significantly more prevalent in metastatic primary cSCCs and in metastases than in non-metastatic cSCCs. High C1q expression in cSCC correlated with poor prognosis. These findings provide evidence for macrophage- and fibroblast-derived C1q in the progression of cSCC. They also suggest stromal C1q as a marker for cSCC metastasis and poor prognosis.
Collapse
Affiliation(s)
- Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland.
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
3
|
Gao Q, Cui Y, Gao F, Yang Y, Huangfu W, Wang M. Pan-cancer analysis of PDGFRB: Laying the foundation for the development of targeted immunotherapy drugs. Medicine (Baltimore) 2025; 104:e41797. [PMID: 40128057 PMCID: PMC11936643 DOI: 10.1097/md.0000000000041797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
PDGFRB is a type III tyrosine-protein kinase that is abnormally expressed in various cancers and can serve as a biomarker for cancer prognosis, as studies have demonstrated. However, a pan-cancer analysis of PDGFRB has not yet been carried out. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were utilized to analyze PDGFRB expression levels. Differential expression of PDGFRB in standard, tumor, and different clinical stage samples was calculated using R software (version 3.6.4). Immunohistochemical staining for Cholangiocarcinoma (CHOL) and Esophageal carcinoma (ESCA) was conducted on clinical patient samples. High-quality prognostic datasets from TCGA have been published in previous studies. Additionally, the TARGET follow-up data were obtained as supplementary information, excluding models with a follow-up period of less than 30 days. After conducting a rain analysis of PDGFRB, Kaplan-Meier and univariate Cox regression analyses were performed using the R software package. The DNA tumor stemness scores, derived from methylation signatures for each tumor, were obtained from previous studies. Finally, the infiltration of immune cells was analyzed, and the Pearson correlation between PDGFRB and five immune pathway marker genes was assessed. PDGFRB exhibited differential expression across most tumor types in TCGA, indicating a correlation with poor survival outcomes. The expression of PDGFRB influences the regulation of the immune system and is closely associated with immune cell infiltration, immune checkpoints, immune-activating genes, immune suppressor genes, chemokines, and chemokine receptors. PDGFRB is a cancer gene closely associated with prognosis and immunity in cancer patients, and it may serve as an immune checkpoint.
Collapse
Affiliation(s)
- Qian Gao
- Medical Experiment Center, School of Basic Medicine, Inner Mongolia Medical University, Key Laboratory of Quality Research and Efficacy Evaluation of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Medical University, Huhhot, China
| | - Yan Cui
- School of Humanities Education, Inner Mongolia Medical University, Huhhot, China
| | - Feng Gao
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yan Yang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Weizhong Huangfu
- The Affiliated Hospital of Inner Mongolia Medical University (Inner Mongolia Institute of Cardiovascular Diseases), Huhhot, China
| | - Minjie Wang
- Medical Experiment Center, School of Basic Medicine, Inner Mongolia Medical University, Key Laboratory of Quality Research and Efficacy Evaluation of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
4
|
Strell C, Rodríguez-Tomàs E, Östman A. Functional and clinical roles of stromal PDGF receptors in tumor biology. Cancer Metastasis Rev 2024; 43:1593-1609. [PMID: 38980580 PMCID: PMC11554757 DOI: 10.1007/s10555-024-10194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.
Collapse
Affiliation(s)
- Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway
| | | | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway.
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Knuutila JS, Riihilä P, Nissinen L, Heiskanen L, Kallionpää RE, Pellinen T, Kähäri VM. Cancer-associated fibroblast activation predicts progression, metastasis, and prognosis of cutaneous squamous cell carcinoma. Int J Cancer 2024; 155:1112-1127. [PMID: 38648387 DOI: 10.1002/ijc.34957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer and the metastatic disease is associated with poor prognosis. Cancer-associated fibroblasts (CAFs) promote progression of cancer, but their role in cSCC is largely unknown. We examined the potential of CAF markers in the assessment of metastasis risk and prognosis of primary cSCC. We utilized multiplexed fluorescence immunohistochemistry for profiling CAF landscape in metastatic and non-metastatic primary human cSCCs, in metastases, and in premalignant epidermal lesions. Quantitative high-resolution image analysis was performed with two separate panels of antibodies for CAF markers and results were correlated with clinical and histopathological parameters including disease-specific mortality. Increased stromal expression of fibroblast activation protein (FAP), α-smooth muscle actin, and secreted protein acidic and rich in cysteine (SPARC) were associated with progression to invasive cSCC. Elevation of FAP and platelet-derived growth factor receptor-β (PDGFRβ) expression was associated with metastasis risk of primary cSCCs. High expression of PDGFRβ and periostin correlated with poor prognosis. Multimarker combination defined CAF subset, PDGFRα-/PDGFRβ+/FAP+, was associated with invasion and metastasis, and independently predicted poor disease-specific survival. These results identify high PDGFRβ expression alone and multimarker combination PDGFRα-/PDGFRβ+/FAP+ by CAFs as potential biomarkers for risk of metastasis and poor prognosis.
Collapse
Affiliation(s)
- Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Lauri Heiskanen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Choi KM, Kim B, Lee SM, Han J, Bae HS, Han SB, Lee D, Ham IH, Hur H, Kim E, Kim JY. Characterization of gastric cancer-stimulated signaling pathways and function of CTGF in cancer-associated fibroblasts. Cell Commun Signal 2024; 22:8. [PMID: 38167009 PMCID: PMC10763493 DOI: 10.1186/s12964-023-01396-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) that play an important role in cancer progression. Although the mechanism by which CAFs promote tumorigenesis has been well investigated, the underlying mechanism of CAFs activation by neighboring cancer cells remains elusive. In this study, we aim to investigate the signaling pathways involved in CAFs activation by gastric cancer cells (GC) and to provide insights into the therapeutic targeting of CAFs for overcoming GC. METHODS Alteration of receptor tyrosine kinase (RTK) activity in CAFs was analyzed using phospho-RTK array. The expression of CAFs effector genes was determined by RT-qPCR or ELISA. The migration and invasion of GC cells co-cultured with CAFs were examined by transwell migration/invasion assay. RESULTS We found that conditioned media (CM) from GC cells could activate multiple receptor tyrosine kinase signaling pathways, including ERK, AKT, and STAT3. Phospho-RTK array analysis showed that CM from GC cells activated PDGFR tyrosine phosphorylation, but only AKT activation was PDGFR-dependent. Furthermore, we found that connective tissue growth factor (CTGF), a member of the CCN family, was the most pronouncedly induced CAFs effector gene by GC cells. Knockdown of CTGF impaired the ability of CAFs to promote GC cell migration and invasion. Although the PDGFR-AKT pathway was pronouncedly activated in CAFs stimulated by GC cells, its pharmacological inhibition affected neither CTGF induction nor CAFs-induced GC cell migration. Unexpectedly, the knockdown of SRC and SRC-family kinase inhibitors, dasatinib and saracatinib, significantly impaired CTGF induction in activated CAFs and the migration of GC cells co-cultured with CAFs. SRC inhibitors restored the reduced expression of epithelial markers, E-cadherin and Zonula Occludens-1 (ZO-1), in GC cells co-cultured with CAFs, as well as CAFs-induced aggregate formation in a 3D tumor spheroid model. CONCLUSIONS This study provides a characterization of the signaling pathways and effector genes involved in CAFs activation, and strategies that could effectively inhibit it in the context of GC. Video Abstract.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Boram Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Su-Min Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Jisoo Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Ha-Song Bae
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Su-Bhin Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
- AI-Super Convergence KIURI Translational Research Center, Suwon, South Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
8
|
Baghaie L, Haxho F, Leroy F, Lewis B, Wawer A, Minhas S, Harless WW, Szewczuk MR. Contemporaneous Perioperative Inflammatory and Angiogenic Cytokine Profiles of Surgical Breast, Colorectal, and Prostate Cancer Patients: Clinical Implications. Cells 2023; 12:2767. [PMID: 38067195 PMCID: PMC10706122 DOI: 10.3390/cells12232767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Surgery-induced tumor growth acceleration and synchronous metastatic growth promotion have been observed for decades. Surgery-induced wound healing, orchestrated through growth factors, chemokines, and cytokines, can negatively impact patients harboring residual or metastatic disease. We provide detailed clinical evidence of this process in surgical breast, prostate, and colorectal cancer patients. Plasma samples were analyzed from 68 cancer patients who had not received treatment before surgery or adjuvant therapy until at least four weeks post-surgery. The levels of plasma cytokines, chemokines, and growth factors were simultaneously quantified and profiled using multiplexed immunoassays for eight time points sampled per patient. The immunologic processes are induced immediately after surgery in patients, characterized by a drastic short-term shift in the expression levels of pro-inflammatory and angiogenic molecules and cytokines. A rapid and significant spike in circulating plasma levels of hepatocyte growth factor (HGF), interleukin-6 (IL-6), placental growth factor (PLGF), and matrix metalloproteinase-9 (MMP-9) after surgery was noted. The rise in these molecules was concomitant with a significant drop in transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF-AB/BB), insulin-like growth factor-1 (IGF-1), and monocyte chemoattractant protein-2 (MCP-2). If not earlier, each plasma analyte was normalized to baseline levels within 1-2 weeks after surgery, suggesting that surgical intervention alone was responsible for these effects. The effects of surgical tumor removal on disrupting the pro-inflammatory and angiogenic plasma profiles of cancer patients provide evidence for potentiating malignant progression. Our findings indicate a narrow therapeutic window of opportunity after surgery to prevent disease recurrence.
Collapse
Affiliation(s)
- Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| | - Fiona Haxho
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Dermatology Residency Program, the Cumming School of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada
| | - Fleur Leroy
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France
| | - Beth Lewis
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Alexander Wawer
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Shamano Minhas
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - William W. Harless
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada; (B.L.); (A.W.); (S.M.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (L.B.); (F.H.); (F.L.)
| |
Collapse
|
9
|
Huang T, Lu C, Zhang Y, Lin BY, Zhang ZJ, Zhu D, Wang L, Lu Y. Effect of activating cancer-associated fibroblasts biomarker TNC on immune cell infiltration and prognosis in breast cancer. Ann Med 2023; 55:2250987. [PMID: 38375814 PMCID: PMC10629425 DOI: 10.1080/07853890.2023.2250987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most important components of the tumor microenvironment (TME). CAFs are heterogeneous and involved in tumor tumorigenesis and drug resistance, contributing to TME remodeling and predicting clinical outcomes as prognostic factors. However, the effect of CAFs the TME and the prognosis of patients with breast cancer (BC) is not fully understood. This study investigated the correlation between CAFs-activating biomarkers immune cell infiltration and survival in patients with breast cancer. METHODS RNA sequencing data and survival information for patients with breast cancer were downloaded from The Cancer Genome Atlas (TCGA) using R software. We then analyzed the correlation between CAFs-expressing biomarkers and immune cells using the clusterProfiler package, and evaluated the prognostic role of appealing genes using the Survminer package. Immunohistochemical (IHC) staining was used to determine the expression levels of TNC in 160 breast cancer samples pathologically diagnosed as invasive ductal carcinoma that were not otherwise specified (IDC-NOS). RESULTS Data analysis showed that CAFs-expressing genes was higher than in normal tissues (p < 0.05). Pathway enrichment revealed that the overexpression of CAFs-related genes was mainly enriched in the focal adhesion and phosphoinositol-3 kinase-serine/threonine kinase (PI3K-AKT) signaling pathways. Immune infiltration analysis suggested that high expression of CAFs-related genes was significantly positively correlated with the infiltration of naive B cells and resting dendritic cells and inversely correlated with macrophages cell infiltration. In addition, high TNC expression in tumor cells was associated with the most adverse clinicopathological features and reduced metastasis-free survival (MFS) (hazard ratio (HR) 0.574, 95% confidence interval (CI) 0.404-0.815, p = 0.035). CONCLUSIONS This study found that CAFs may participate in immunosuppression and regulate tumor cell proliferation and invasion. High TNC expression is associated with several adverse clinicopathological features, and high TNC expression in tumor cells has been identified as an independent prognostic factor for IDC-NOS.
Collapse
Affiliation(s)
- Ting Huang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cheng Lu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ying Zhang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bi-yun Lin
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhe-jun Zhang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Wang Y, Lv W, Yi Y, Zhang Q, Zhang J, Wu Y. A novel signature based on cancer-associated fibroblast genes to predict prognosis, immune feature, and therapeutic response in breast cancer. Aging (Albany NY) 2023; 15:3480-3497. [PMID: 37142271 PMCID: PMC10449298 DOI: 10.18632/aging.204685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Breast cancer (BC) ranks first in the incidence of tumors in women and remains the most prevalent malignancy in women worldwide. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) profoundly influence the progression, recurrence, and therapeutic resistance in BC. Here, we intended to establish a risk signature based on screened CAF-associated genes in BC (BCCGs) for patient stratification. Initially, BCCGs were screened by a combination of several CAF gene sets. The identified BCGGs were found to differ significantly in the overall survival (OS) of BC patients. Accordingly, we constructed a prognostic prediction signature of 5 BCCGs, which were independent prognostic factors associated with BC based on univariate and multivariate Cox regression. The risk model divided patients into low- and high-risk groups, accompanied by different OS, clinical features, and immune infiltration characteristics. Receiver operating characteristic (ROC) curves and a nomogram further validated the predictive performance of the prognostic model. Notably, 21 anticancer agents targeting these BCCGs possessed better sensitivity in BC patients. Meanwhile, the elevated expression of the majority of immune checkpoint genes suggested that the high-risk group may benefit more from immune checkpoint inhibitors (ICIs) therapy. Taken together, our well-established model is a robust instrument to precisely and comprehensively predict the prognosis, immune features, and drug sensitivity in BC patients, for combating BC.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
11
|
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023; 161:114491. [PMID: 37002577 DOI: 10.1016/j.biopha.2023.114491] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cancers express platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs). By directly stimulating tumour cells in an autocrine manner or by stimulating tumour stromal cells in a paracrine manner, the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway is crucial in the growth and spread of several cancers. To combat hypoxia in the tumour microenvironment, it encourages angiogenesis. A growing body of experimental data shows that PDGFs target malignant cells, vascular cells, and stromal cells to modulate tumour growth, metastasis, and the tumour microenvironment. To combat medication resistance and enhance patient outcomes in cancers, targeting the PDGF/PDGFR pathway is a viable therapeutic approach. There have been reports of anomalies in the PDGF pathway, including the gain of function point mutations, activating chromosomal translocations, or overexpression or amplification of PDGF receptors (PDGFRs). As a result, it has been shown that targeting the PDGF/PDGFR signaling pathway is an effective method for treating cancer. As a result, this study will concentrate on the regulation of the PDGF/PDGFR signaling system, in particular the current methods and inhibitors used in cancer treatment, as well as the associated therapeutic advantages and side effects.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Moon Seungjoon
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, Republic of Korea; Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
13
|
Ollila H, Paajanen J, Wolff H, Ilonen I, Sutinen E, Välimäki K, Östman A, Anttila S, Kettunen E, Räsänen J, Kallioniemi O, Myllärniemi M, Mäyränpää MI, Pellinen T. High tumor cell platelet-derived growth factor receptor beta expression is associated with shorter survival in malignant pleural epithelioid mesothelioma. J Pathol Clin Res 2021; 7:482-494. [PMID: 33955203 PMCID: PMC8363931 DOI: 10.1002/cjp2.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Malignant pleural mesothelioma (MPM) has a rich stromal component containing mesenchymal fibroblasts. However, the properties and interplay of MPM tumor cells and their surrounding stromal fibroblasts are poorly characterized. Our objective was to spatially profile known mesenchymal markers in both tumor cells and associated fibroblasts and correlate their expression with patient survival. The primary study cohort consisted of 74 MPM patients, including 16 patients who survived at least 60 months. We analyzed location-specific tissue expression of seven fibroblast markers in clinical samples using multiplexed fluorescence immunohistochemistry (mfIHC) and digital image analysis. Effect on survival was assessed using Cox regression analyses. The outcome measurement was all-cause mortality. Univariate analysis revealed that high expression of secreted protein acidic and cysteine rich (SPARC) and fibroblast activation protein in stromal cells was associated with shorter survival. Importantly, high expression of platelet-derived growth factor receptor beta (PDGFRB) in tumor cells, but not in stromal cells, was associated with shorter survival (hazard ratio [HR] = 1.02, p < 0.001). A multivariable survival analysis adjusted for clinical parameters and stromal mfIHC markers revealed that tumor cell PDGFRB and stromal SPARC remained independently associated with survival (HR = 1.01, 95% confidence interval [CI] = 1.00-1.03 and HR = 1.05, 95% CI = 1.00-1.11, respectively). The prognostic effect of PDGFRB was validated with an artificial intelligence-based analysis method and further externally validated in another cohort of 117 MPM patients. In external validation, high tumor cell PDGFRB expression associated with shorter survival, especially in the epithelioid subtype. Our findings suggest PDGFRB and SPARC as potential markers for risk stratification and as targets for therapy.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Henrik Wolff
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Arne Östman
- Department of Oncology‐PathologyKarolinska InstitutetSolnaSweden
| | - Sisko Anttila
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eeva Kettunen
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko I Mäyränpää
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| |
Collapse
|
14
|
Strell C, Stenmark Tullberg A, Jetne Edelmann R, Akslen LA, Malmström P, Fernö M, Holmberg E, Östman A, Karlsson P. Prognostic and predictive impact of stroma cells defined by PDGFRb expression in early breast cancer: results from the randomized SweBCG91RT trial. Breast Cancer Res Treat 2021; 187:45-55. [PMID: 33661437 PMCID: PMC8062362 DOI: 10.1007/s10549-021-06136-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Purpose Predictive biomarkers are needed to aid the individualization of radiotherapy (RT) in breast cancer. Cancer-associated fibroblasts have been implicated in tumor radioresistance and can be identified by platelet-derived growth factor receptor-beta (PDGFRb). This study aims to analyze how PDGFRb expression affects RT benefit in a large randomized RT trial. Methods PDGFRb was assessed by immunohistochemistry on tissue microarrays from 989 tumors of the SweBCG91RT trial, which enrolled lymph node-negative, stage I/IIA breast cancer patients randomized to RT after breast-conserving surgery. Outcomes were analyzed at 10 years for ipsilateral breast tumor recurrence (IBTR) and any recurrence and 15 years for breast cancer specific death (BCSD). Results PDGFRb expression correlated with estrogen receptor negativity and younger age. An increased risk for any recurrence was noted in univariable analysis for the medium (HR 1.58, CI 95% 1.11–2.23, p = 0.011) or PDGFRb high group (1.49, 1.06–2.10, p = 0.021) compared to the low group. No differences in IBTR or BCSD risk were detected. RT benefit regarding IBTR risk was significant in the PDGFRb low (0.29, 0.12–0.67, p = 0.004) and medium (0.31, 0.16–0.59, p < 0.001) groups but not the PDGFRb high group (0.64, 0.36–1.11, p = 0.110) in multivariable analysis. Likewise, risk reduction for any recurrence was less pronounced in the PDGFRb high group. No significant interaction between RT and PDGFRb-score could be detected. Conclusion A higher PDGFRb-score conferred an increased risk of any recurrence, which partly can be explained by its association with estrogen receptor negativity and young age. Reduced RT benefit was noted among patients with high PDGFRb, however without significant interaction.
Collapse
Affiliation(s)
- Carina Strell
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Stenmark Tullberg
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Reidunn Jetne Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Lars Andreas Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Per Malmström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Mårten Fernö
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Holmberg
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
16
|
Meng Q, Luo X, Chen J, Wang D, Chen E, Zhang W, Zhang G, Zhou W, Xu J, Song Z. Unmasking carcinoma-associated fibroblasts: Key transformation player within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2020; 1874:188443. [DOI: 10.1016/j.bbcan.2020.188443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
|
17
|
Abstract
Cancer-associated fibroblasts (CAFs) are the key component of tumor stromal. High heterogeneity of CAFs reflects in their origin, phenotype and function. Biological function which can be suggested by biomarkers of distinct CAF subgroups may be different, even opposite, just like water and fire. Identifying CAF subpopulations expressing different biomarkers and reconciling the relationship of the "water and fire" among distinct CAF subsets may be a breakthrough in tumor therapy. Herein, we briefly summarize the biomarkers commonly used or newly identified for distinct CAFs in terms of their features and potential clinical benefits.
Collapse
|
18
|
Bonneau C, Eliès A, Kieffer Y, Bourachot B, Ladoire S, Pelon F, Hequet D, Guinebretière JM, Blanchet C, Vincent-Salomon A, Rouzier R, Mechta-Grigoriou F. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res 2020; 22:76. [PMID: 32665033 PMCID: PMC7362513 DOI: 10.1186/s13058-020-01311-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Early luminal breast cancer (BC) represents 70% of newly diagnosed BC cases. Among them, small (under 2 cm) BC without lymph node metastasis (classified as T1N0) have been rarely studied, as their prognosis is generally favorable. Nevertheless, up to 5% of luminal T1N0 BC patients relapse with distant metastases that ultimately prove fatal. The aim of our work was to identify the mechanisms involved in metastatic recurrence in these patients. Methods Our study addresses the role that autonomous and non-autonomous tumor cell features play with regard to distant recurrence in early luminal BC patients. We created a cohort of T1N0 luminal BC patients (tumors between 0.5–2 cm without lymph node metastasis) with metastatic recurrence (“cases”) and corresponding “controls” (without relapse) matched 1:1 on main prognostic factors: age, grade, and proliferation. We deciphered different characteristics of cancer cells and their tumor micro-environment (TME) by deep analyses using immunohistochemistry. We performed in vitro functional assays and highlighted a new mechanism of cooperation between cancer cells and one particular subset of cancer-associated fibroblasts (CAF). Results We found that specific TME features are indicative of relapse in early luminal BC. Indeed, quantitative histological analyses reveal that “cases” are characterized by significant accumulation of a particular CAF subset (CAF-S1) and decrease in CD4+ T lymphocytes, without any other association with immune cells. In multivariate analysis, TME features, in particular CAF-S1 enrichment, remain significantly associated with recurrence, thereby demonstrating their clinical relevance. Finally, by performing functional analyses, we demonstrated that CAF-S1 pro-metastatic activity is mediated by the CDH11/osteoblast cadherin, consistent with bones being a major site of metastases in luminal BC patients. Conclusions This study shows that distant recurrence in T1N0 BC is strongly associated with the presence of CAF-S1 fibroblasts. Moreover, we identify CDH11 as a key player in CAF-S1-mediated pro-metastatic activity. This is independent of tumor cells and represents a new prognostic factor. These results could assist clinicians in identifying luminal BC patients with high risk of relapse. Targeted therapies against CAF-S1 using anti-FAP antibody or CDH11-targeting compounds might help in preventing relapse for such patients with activated stroma.
Collapse
Affiliation(s)
- Claire Bonneau
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Antoine Eliès
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Brigitte Bourachot
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Sylvain Ladoire
- Inserm U1231, Chemotherapy and immune response, Center Georges François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Floriane Pelon
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France
| | - Delphine Hequet
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Jean-Marc Guinebretière
- Department of Pathology, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Christophe Blanchet
- Inserm U1231, Chemotherapy and immune response, Center Georges François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248, Paris, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France.,Inserm U900, Cancer et génome : bioinformatique, biostatistiques et épidémiologie, Institut Curie, 35 rue Dailly, 92210, Saint-Cloud, France.,UR 7285, Risques cliniques et sécurité en santé des femmes et en santé périnatale, Versailles Saint Quentin en Yvelines University, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France. .,Inserm U830, Institut Curie, PSL Research University, 26, rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
19
|
Saxena M, Kalathur RKR, Rubinstein N, Vettiger A, Sugiyama N, Neutzner M, Coto-Llerena M, Kancherla V, Ercan C, Piscuoglio S, Fischer J, Fagiani E, Cantù C, Basler K, Christofori G. A Pygopus 2-Histone Interaction Is Critical for Cancer Cell Dedifferentiation and Progression in Malignant Breast Cancer. Cancer Res 2020; 80:3631-3648. [PMID: 32586983 DOI: 10.1158/0008-5472.can-19-2910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
Pygopus 2 (Pygo2) is a coactivator of Wnt/β-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me2/3) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me2/3 association has a functional relevance in breast cancer progression in vivo. To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me2/3 was rendered ineffective. Loss of Pygo2-histone interaction resulted in smaller, differentiated, and less metastatic tumors, due, in part, to decreased canonical Wnt/β-catenin signaling. RNA- and ATAC-sequencing analyses of tumor-derived cell lines revealed downregulation of TGFβ signaling and upregulation of differentiation pathways such as PDGFR signaling. Increased differentiation correlated with a luminal cell fate that could be reversed by inhibition of PDGFR activity. Mechanistically, the Pygo2-histone interaction potentiated Wnt/β-catenin signaling, in part, by repressing the expression of Wnt signaling antagonists. Furthermore, Pygo2 and β-catenin regulated the expression of miR-29 family members, which, in turn, repressed PDGFR expression to promote dedifferentiation of wild-type Pygo2 mammary epithelial tumor cells. Collectively, these results demonstrate that the histone binding function of Pygo2 is important for driving dedifferentiation and malignancy of breast tumors, and loss of this binding activates various differentiation pathways that attenuate primary tumor growth and metastasis formation. Interfering with the Pygo2-H3K4me2/3 interaction may therefore serve as an attractive therapeutic target for metastatic breast cancer. SIGNIFICANCE: Pygo2 represents a potential therapeutic target in metastatic breast cancer, as its histone-binding capability promotes β-catenin-mediated Wnt signaling and transcriptional control in breast cancer cell dedifferentiation, EMT, and metastasis.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | - Andrea Vettiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nami Sugiyama
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Melanie Neutzner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Caner Ercan
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Jonas Fischer
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ernesta Fagiani
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Wallenberg Centre for Molecular Medicine Linköping; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
20
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
21
|
Primac I, Maquoi E, Blacher S, Heljasvaara R, Van Deun J, Smeland HY, Canale A, Louis T, Stuhr L, Sounni NE, Cataldo D, Pihlajaniemi T, Pequeux C, De Wever O, Gullberg D, Noel A. Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression. J Clin Invest 2019; 129:4609-4628. [PMID: 31287804 DOI: 10.1172/jci125890] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRβ was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRβ expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using five CAF subpopulations (one murine, four human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, integrin α11 pro-invasive activity relies on its ability to interact with PDGFRβ in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a pro-invasive matricellular protein. Pharmacological inhibition of PDGFRβ and JNK impaired tumor cell invasion induced by integrin α11-positive CAFs. Collectively, our study uncovers an integrin α11-positive subset of pro-tumoral CAFs that exploits PDGFRβ/JNK signalling axis to promote tumor invasiveness in BC.
Collapse
Affiliation(s)
- Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ritva Heljasvaara
- Oulu Centre for Cell-Extracellular Matrix Research and Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Hilde Yh Smeland
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Annalisa Canale
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Linda Stuhr
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Taina Pihlajaniemi
- Oulu Centre for Cell-Extracellular Matrix Research and Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Christel Pequeux
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Lu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams ST, Hassan MA, Bowtell DDL, Gabra H, Fotopoulou C, Rockall A, Aboagye EO. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019; 10:764. [PMID: 30770825 PMCID: PMC6377605 DOI: 10.1038/s41467-019-08718-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35-40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name "Radiomic Prognostic Vector" (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types.
Collapse
Affiliation(s)
- Haonan Lu
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Mubarik Arshad
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andrew Thornton
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Giacomo Avesani
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Paula Cunnea
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Ed Curry
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Fahdi Kanavati
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Jack Liang
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Katherine Nixon
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Sophie T Williams
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Mona Ali Hassan
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, 3010, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Early Clinical Development, iMED Biotech Unit, AstraZeneca, Cambridge, SG8 6HB, UK
| | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andrea Rockall
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Eric O Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
23
|
Herrera A, Herrera M, Guerra-Perez N, Galindo-Pumariño C, Larriba MJ, García-Barberán V, Gil B, Giménez-Moyano S, Ferreiro-Monteagudo R, Veguillas P, Candia A, Peña R, Pinto J, García-Bermejo ML, Muñoz A, García de Herreros A, Bonilla F, Carrato A, Peña C. Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1. Oncogenesis 2018; 7:76. [PMID: 30250018 PMCID: PMC6155204 DOI: 10.1038/s41389-018-0085-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 01/26/2023] Open
Abstract
Carcinomas, such as colon cancer, initiate their invasion by rescuing the innate plasticity of both epithelial cells and stromal cells. Although Snail is a transcriptional factor involved in the Epithelial-Mesenchymal Transition, in recent years, many studies have also identified the major role of Snail in the activation of Cancer-Associated Fibroblast (CAF) cells and the remodeling of the extracellular matrix. In CAFs, Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant. High expression of both SNAI1 and PDGF receptors is associated with poor prognosis in cancer patients, but the mechanism(s) that underlie these connections are not understood. In this study, we demonstrate that PDGF-activated fibroblasts stimulate extracellular matrix (ECM) fiber remodeling and deposition. Furthermore, we describe how SNAI1, through the FAK pathway, is a necessary factor for ECM fiber organization. The parallel-oriented fibers are used by endothelial cells as “tracks”, facilitating their activation and the creation of tubular structures mimicking in vivo capillary formation. Accordingly, Snail1 expression in fibroblasts was required for the co-adjuvant effect of these cells on matrix remodeling and neoangiogenesis when co-xenografted in nude mice. Finally, in tumor samples from colorectal cancer patients a direct association between stromal SNAI1 expression and the endothelial marker CD34 was observed. In summary, our results advance the understanding of PDGF/SNAI1-activated CAFs in matrix remodeling and angiogenesis stimulation.
Collapse
Affiliation(s)
- Alberto Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - Mercedes Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Guerra-Perez
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | - Vanesa García-Barberán
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratory of Molecular Oncology, IIS Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - Beatriz Gil
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Sara Giménez-Moyano
- Biomarkers and Therapeutic Targets Lab, Pathology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pilar Veguillas
- Surgery Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Antonio Candia
- Pathology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jesús Pinto
- Pathology Department, Virgen de la Concha Hospital, Zamora, Castilla y León, Spain
| | - Mª Laura García-Bermejo
- Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | | | | | - Alfredo Carrato
- Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, CIBERONC, Alcala University, Madrid, Spain
| | - Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. .,Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERONC, Madrid, Spain.
| |
Collapse
|
24
|
Gattino F, Maniscalco L, Iussich S, Biasato I, Martano M, Morello E, Gola C, Millán Ruiz Y, Saeki N, Buracco P, Martín de las Mulas J, De Maria R. PDGFR-α, PDGFR-β, VEGFR-2 and CD117 expression in canine mammary tumours and evaluation of the in vitro effects of toceranib phosphate in neoplastic mammary cell lines. Vet Rec 2018; 183:221. [DOI: 10.1136/vr.104414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Selina Iussich
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Marina Martano
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Emanuela Morello
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Cecilia Gola
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Yolanda Millán Ruiz
- Department of Comparative Pathology, Veterinary Medicine Faculty; University of Córdoba; Córdoba Spain
| | - Nobuo Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Paolo Buracco
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - Juana Martín de las Mulas
- Department of Comparative Pathology, Veterinary Medicine Faculty; University of Córdoba; Córdoba Spain
| | | |
Collapse
|
25
|
Forte L, Turdo F, Ghirelli C, Aiello P, Casalini P, Iorio MV, D'Ippolito E, Gasparini P, Agresti R, Belmonte B, Sozzi G, Sfondrini L, Tagliabue E, Campiglio M, Bianchi F. The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer 2018; 18:586. [PMID: 29792166 PMCID: PMC5967041 DOI: 10.1186/s12885-018-4500-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
Background CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels. Methods The expression of CDCP1, PDGFRβ and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines. Knock-down of PDGFRβ was established in MDA-MB-231 cells to detect CDCP1 upon WHF treatment. Immunohistochemical staining was used to detect the expression of CDCP1 and PDGFRβ in TNBC clinical samples. Results We discovered that PDGF-BB-mediated activation of PDGFRβ increases CDCP1 protein expression through the downstream activation of ERK1/2. Inhibition of ERK1/2 activity reduced per se CDCP1 expression, evidence strengthening its role in CDCP1 expression regulation. Knock-down of PDGFRβ in TNBC cells impaired CDCP1 increase induced by WHF treatment, highlighting the role if this receptor as a central player of the WHF-mediated CDCP1 induction. A significant association between CDCP1 and PDGFRβ immunohistochemical staining was observed in TNBC specimens, independently of CDCP1 gene gain, thus corroborating the relevance of the PDGF-BB/PDGFRβ axis in the modulation of CDCP1 expression. Conclusion We have identified PDGF-BB/PDGFRβ–mediated pathway as a novel player in the regulation of CDCP1 in TNCBs through ERK1/2 activation. Our results provide the basis for the potential use of PDGFRβ and ERK1/2 inhibitors in targeting the aggressive features of CDCP1-positive TNBCs. Electronic supplementary material The online version of this article (10.1186/s12885-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Forte
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Piera Aiello
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | | | - Elvira D'Ippolito
- Start Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Manuela Campiglio
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| |
Collapse
|
26
|
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinovyev A, Givel AM, Parrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018; 33:463-479.e10. [PMID: 29455927 DOI: 10.1016/j.ccell.2018.01.011] [Citation(s) in RCA: 1114] [Impact Index Per Article: 159.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Carcinoma-associated fibroblasts (CAF) are key players in the tumor microenvironment. Here, we characterize four CAF subsets in breast cancer with distinct properties and levels of activation. Two myofibroblastic subsets (CAF-S1, CAF-S4) accumulate differentially in triple-negative breast cancers (TNBC). CAF-S1 fibroblasts promote an immunosuppressive environment through a multi-step mechanism. By secreting CXCL12, CAF-S1 attracts CD4+CD25+ T lymphocytes and retains them by OX40L, PD-L2, and JAM2. Moreover, CAF-S1 increases T lymphocyte survival and promotes their differentiation into CD25HighFOXP3High, through B7H3, CD73, and DPP4. Finally, in contrast to CAF-S4, CAF-S1 enhances the regulatory T cell capacity to inhibit T effector proliferation. These data are consistent with FOXP3+ T lymphocyte accumulation in CAF-S1-enriched TNBC and show how a CAF subset contributes to immunosuppression.
Collapse
Affiliation(s)
- Ana Costa
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Alix Scholer-Dahirel
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France; Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Floriane Pelon
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Melissa Cardon
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Philemon Sirven
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France; Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Ilaria Magagna
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Laetitia Fuhrmann
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248 Paris, France
| | - Charles Bernard
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Inserm, U900, Mines Paris Tech, Paris 75005, France
| | - Anne-Marie Givel
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France
| | - Maria-Carla Parrini
- Analysis of Transduction Pathway, Institut Curie, Inserm, U830, PSL Research University, 26 rue d'Ulm, Paris 75005, France
| | - Vassili Soumelis
- Institut Curie, Integrative Biology of Human Dendritic Cells and T Cells Laboratory, PSL Research University, Inserm, U932, 26, rue d'Ulm, 75005 Paris, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie Hospital Group, 26, rue d'Ulm, 75248 Paris, France
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labelisée Ligue Nationale Contre le Cancer, PSL Research University, 26, rue d'Ulm, 75005 Paris, France; Inserm, U830, Paris 75005, France.
| |
Collapse
|
27
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Östman A. PDGF receptors in tumor stroma: Biological effects and associations with prognosis and response to treatment. Adv Drug Deliv Rev 2017; 121:117-123. [PMID: 28970051 DOI: 10.1016/j.addr.2017.09.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Platelet-derived growth factor (PDGF) ligands and their receptors (PDGFRα and PDGFRβ) regulate mesenchymal cells, such as fibroblasts and pericytes. These cells are important constituents of tumor stroma where they impact on tumor growth, metastasis and drug response. Studies in model systems have demonstrated ability of the PDGF system to regulate the tumor-stimulatory effects of fibroblasts, as well as their ability to promote cancer cell migration and invasion. Animal studies imply PDGFR-signaling as a regulator of tumor drug uptake. Emerging correlative analyses of different tumor collections are identifying clinically relevant variations in stromal PDGFR status, and associations between PDGFR status in tumor stroma and survival. These associations could either relate to effects of stromal PDGFR signaling on the natural course of the disease or response to treatment. The availability of clinically approved PDGFR-inhibitory drugs suggest interesting possibilities for novel clinical studies, performed on selected patient sub-groups, which further exploits tumor stroma-derived PDGFR signaling.
Collapse
|
29
|
Kimbung S, Markholm I, Bjöhle J, Lekberg T, von Wachenfeldt A, Azavedo E, Saracco A, Hellström M, Veerla S, Paquet E, Bendahl PO, Fernö M, Bergh J, Loman N, Hatschek T, Hedenfalk I. Assessment of early response biomarkers in relation to long-term survival in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy plus bevacizumab: Results from the Phase II PROMIX trial. Int J Cancer 2017; 142:618-628. [PMID: 28940389 PMCID: PMC5765477 DOI: 10.1002/ijc.31070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023]
Abstract
Pathologic complete response (pCR) is a predictor for favorable outcome after neoadjuvant treatment in early breast cancer. Modulation of gene expression may also provide early readouts of biological activity and prognosis, offering the possibility for timely response-guided treatment adjustment. The role of early transcriptional changes in predicting response to neoadjuvant chemotherapy plus bevacizumab was investigated. One-hundred-and-fifty patients with large, operable and locally advanced HER2-negative breast cancer received epirubicin and docetaxel, with the addition of bevacizumab. Patients underwent tumor biopsies at baseline, after Cycle 2 and at the time of surgery. The primary end point, pCR, and its relation with the secondary endpoints event-free survival (EFS), overall survival (OS) and gene expression profiles, are reported. The pCR rate was 13% (95% CI 8.6-20.2), with significantly more pCRs among triple-negative [28% (95% CI 14.8-45.4)] than among hormone receptor positive (HR+) tumors [9% (95% CI 4.6-16.3); (OR = 3.9 [CI = 1.5-10.3])]. pCR rates were not associated with EFS or OS. PAM50 subtypes significantly changed after Cycle 2 (p = 0.03) and an index of absolute changes in PAM50 correlations between these time-points was associated with EFS [HR = 0.62 (CI = 0.3-1.1)]. In univariable analyses, signatures for angiogenesis, proliferation, estrogen receptor signaling, invasion and metastasis, and immune response, measured after Cycle 2, were associated with pCR in HR+ tumors. Evaluation of changes in molecular subtypes and other signatures early in the course of neoadjuvant treatment may be predictive of pCR and EFS. These factors may help guide further treatment and should be considered when designing neoadjuvant trials.
Collapse
Affiliation(s)
- Siker Kimbung
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Ida Markholm
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Judith Bjöhle
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Lekberg
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Edward Azavedo
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Ariel Saracco
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Hellström
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Srinivas Veerla
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Eric Paquet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Pär-Ola Bendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mårten Fernö
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jonas Bergh
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Radiumhemmet, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Loman
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Thomas Hatschek
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Radiumhemmet, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Hedenfalk
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | | |
Collapse
|
30
|
Strell C, Norberg KJ, Mezheyeuski A, Schnittert J, Kuninty PR, Moro CF, Paulsson J, Schultz NA, Calatayud D, Löhr JM, Frings O, Verbeke CS, Heuchel RL, Prakash J, Johansen JS, Östman A. Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. Br J Cancer 2017; 117:65-77. [PMID: 28524160 PMCID: PMC5520204 DOI: 10.1038/bjc.2017.140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The HMGA2 protein has experimentally been linked to EMT and cancer stemness. Recent studies imply that tumour-stroma interactions regulate these features and thereby contribute to tumour aggressiveness. METHODS We analysed 253 cases of pancreatic ductal adenocarcinoma (PDAC) and 155 cases of ampullary adenocarcinoma (AAC) for HMGA2 expression by IHC. The data were correlated with stroma abundance and supplemented by experimental studies. RESULTS HMGA2 acts as an independent prognostic marker associated with a significantly shorter overall survival in both tumour types. Overall, HMGA2-positivity was more frequent in patients with PDAC than with AAC. The HMGA2 status in tumour cells significantly correlated with the abundance of PDGFRβ-defined stroma cells. In vivo co-injection of Panc-1 cancer cells with pancreatic stellate cells increased tumour growth in a manner associated with increased HMGA2 expression. Furthermore, in vitro treatment of Panc-1 with conditioned media from PDGF-BB-activated stellate cells increased their ability to form tumour spheroids. CONCLUSIONS This study identifies HMGA2 expression in tumour cells as an independent prognostic marker in PDAC and AAC. Correlative data analysis gives novel tissue-based evidence for a heterotypic cross-talk with stroma cells as a possible mechanism for HMGA2 induction, which is further supported by experimental models.
Collapse
Affiliation(s)
- Carina Strell
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Karin Jessica Norberg
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Artur Mezheyeuski
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Jonas Schnittert
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Praneeth R Kuninty
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Carlos Fernández Moro
- Department of Laboratory Medicine (LabMed) Division of Pathology, Karolinska Institutet, Stockholm 14186, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm 14186, Sweden
| | - Janna Paulsson
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Johannes Matthias Löhr
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Oliver Frings
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden
| | - Caroline Sophie Verbeke
- Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, Oslo 0318, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postbox 4956 Nydalen, Oslo 0424, Norway
| | - Rainer Lothar Heuchel
- Department of Clinical Intervention and Technology (CLINTEC), Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, Karolinska Institutet, Stockholm 14186, Sweden
| | - Jai Prakash
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
- Department of Biomaterials Science and Technology, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Zuidhorst building, ZH254, Enschede 7500AE, The Netherlands
| | - Julia Sidenius Johansen
- Department of Oncology and Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm 17176, Sweden
| |
Collapse
|
31
|
Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas. Int J Mol Sci 2017; 18:ijms18051101. [PMID: 28531107 PMCID: PMC5455009 DOI: 10.3390/ijms18051101] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated stroma (CAS) plays a key role in cancer initiation and progression. Spontaneously occurring canine mammary carcinomas are viewed as excellent models of human breast carcinomas. Considering the importance of CAS for human cancer, it likely plays a central role in canine tumours as well. So far, however, canine CAS lacks characterisation, and it remains unclear whether the biology between CAS from canine and human tumours is comparable. In this proof-of-principle study, using laser-capture microdissection, we isolated CAS and normal stroma from 13 formalin-fixed paraffin embedded canine simple mammary carcinomas and analysed the expression of seven known human CAS markers by RT-qPCR (Reverse Transcription quantitative PCR) and validated some targets by immunohistochemistry. We found that Col1a1 (Collagen1α1), αSMA (alpha Smooth Muscle Actin), FAP (Fibroblast activation protein), PDGFRβ (Platelet-derived growth factor receptor beta), and Caveolin-1 were significantly upregulated in canine CAS, and the expression of CXCL12 (Stromal cell derived factor 1) significantly decreased, whereas MMP2 (Matrix Metalloproteinase 1) and IL6 (Interleukin 6) did not change. Our results suggest strong similarities in CAS biology in canine and human mammary carcinomas but also reveal some differences. To the best of our knowledge, this is the first report to provide a comprehensive expression analysis of the most important CAS markers in canine simple mammary carcinomas and further supports the validity of the dog as model for human cancer.
Collapse
|
32
|
Corvigno S, Wisman GBA, Mezheyeuski A, van der Zee AGJ, Nijman HW, Åvall-Lundqvist E, Östman A, Dahlstrand H. Markers of fibroblast-rich tumor stroma and perivascular cells in serous ovarian cancer: Inter- and intra-patient heterogeneity and impact on survival. Oncotarget 2017; 7:18573-84. [PMID: 26918345 PMCID: PMC4951310 DOI: 10.18632/oncotarget.7613] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/11/2016] [Indexed: 01/06/2023] Open
Abstract
Inter- and intra-patient variations in tumor microenvironment of serous ovarian cancer are largely unexplored. We aimed to explore potential co-regulation of tumor stroma characteristics, analyze their concordance in primary and metastatic lesions, and study their impact on survival. A tissue microarray (TMA) with 186 tumors and 91 matched metastases was subjected to immunohistochemistry double staining with endothelial cell marker CD34 and fibroblast and pericyte markers α-SMA, PDGFβR and desmin. Images were digitally analyzed to yield “metrics” related to vasculature and stroma features. Intra-case analyses showed that PDGFβR in perivascular cells and fibroblasts were strongly correlated. Similar findings were observed concerning α-SMA. Most stroma characteristics showed large variations in intra-case comparisons of primary tumors and metastasis. Large PDGFβR-positive stroma fraction and high PDGFβFR positive perivascular intensity were both significantly associated with shorter survival in uni- and multi-variate analyses (HR 1.7, 95% CI 1.1-2.5; HR 1.7, 95% CI 1.1-2.8). In conclusion, we found PDGFβR- and α-SMA-expression to be largely independent of each other but concordantly activated in perivascular cells and in fibroblasts within the primary tumor. Stromal characteristics differed between primary tumors and metastases. PDGFβR in perivascular cells and in fibroblasts may be novel prognostic markers in serous ovarian cancer.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Artur Mezheyeuski
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Unit for Breast, Gynecologic Cancer and Sarcoma, Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan AC, Sams SB, Pillai MM, Elias AD, Robinson WA, Sartorius CA, Kabos P. Fibroblast Subtypes Regulate Responsiveness of Luminal Breast Cancer to Estrogen. Clin Cancer Res 2016; 23:1710-1721. [PMID: 27702820 DOI: 10.1158/1078-0432.ccr-15-2851] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023]
Abstract
Purpose: Antiendocrine therapy remains the most effective treatment for estrogen receptor-positive (ER+) breast cancer, but development of resistance is a major clinical complication. Effective targeting of mechanisms that control the loss of ER dependency in breast cancer remains elusive. We analyzed breast cancer-associated fibroblasts (CAF), the largest component of the tumor microenvironment, as a factor contributing to ER expression levels and antiendocrine resistance.Experimental Design: Tissues from patients with ER+ breast cancer were analyzed for the presence of CD146-positive (CD146pos) and CD146-negative (CD146neg) fibroblasts. ER-dependent proliferation and tamoxifen sensitivity were evaluated in ER+ tumor cells cocultured with CD146pos or CD146neg fibroblasts. RNA sequencing was used to develop a high-confidence gene signature that predicts for disease recurrence in tamoxifen-treated patients with ER+ breast cancer.Results: We demonstrate that ER+ breast cancers contain two CAF subtypes defined by CD146 expression. CD146neg CAFs suppress ER expression in ER+ breast cancer cells, decrease tumor cell sensitivity to estrogen, and increase tumor cell resistance to tamoxifen therapy. Conversely, the presence of CD146pos CAFs maintains ER expression in ER+ breast cancer cells and sustains estrogen-dependent proliferation and sensitivity to tamoxifen. Conditioned media from CD146pos CAFs with tamoxifen-resistant breast cancer cells are sufficient to restore tamoxifen sensitivity. Gene expression profiles of patient breast tumors with predominantly CD146neg CAFs correlate with inferior clinical response to tamoxifen and worse patient outcomes.Conclusions: Our data suggest that CAF composition contributes to treatment response and patient outcomes in ER+ breast cancer and should be considered a target for drug development. Clin Cancer Res; 23(7); 1710-21. ©2016 AACR.
Collapse
Affiliation(s)
- Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado.
| | | | - Tomomi M Yamamoto
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Austin E Gillen
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Manoj M Pillai
- Section of Hematology, Division of Hematology, Yale Cancer Center and Yale University School of Medicine, New Haven, Connecticut
| | - Anthony D Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - William A Robinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
34
|
Kalluri R. The biology and function of fibroblasts in cancer. NATURE REVIEWS. CANCER 2016. [PMID: 27550820 DOI: 10.1038/nrc.2016.73.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
35
|
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
36
|
Mezawa Y, Orimo A. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas. Cell Tissue Res 2016; 365:675-89. [PMID: 27506216 DOI: 10.1007/s00441-016-2471-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
Carcinoma-associated fibroblasts (CAFs) constitute a substantial proportion of the non-neoplastic mesenchymal cell compartment in various human tumors. These fibroblasts are phenotypically converted from their progenitors via interactions with nearby cancer cells during the course of tumor progression. The resulting CAFs, in turn, support the growth and progression of carcinoma cells. These fibroblasts have a major influence on the hallmarks of carcinoma and promote tumor malignancy through the secretion of tumor-promoting growth factors, cytokines and exosomes, as well as through the remodeling of the extracellular matrix. Coevolution of CAFs and carcinoma cells during tumorigenesis is therefore essential for progression into fully malignant tumors. Recent studies have revealed the molecular mechanisms underlying CAF functions, especially in tumor invasion, metastasis and drug resistance and have highlighted the significant heterogeneity among these cells. In this review, we summarize the impacts of recently identified roles of tumor-promoting CAFs and discuss the therapeutic implications of targeting the heterotypic interactions of these fibroblasts with carcinoma cells. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshihiro Mezawa
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, 113-8412, Japan
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, 113-8412, Japan.
| |
Collapse
|
37
|
Regier MC, Maccoux LJ, Weinberger EM, Regehr KJ, Berry SM, Beebe DJ, Alarid ET. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomed Microdevices 2016; 18:70. [PMID: 27432323 PMCID: PMC5076020 DOI: 10.1007/s10544-016-0083-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture.
Collapse
Affiliation(s)
- Mary C. Regier
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey J. Maccoux
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma M. Weinberger
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Keil J. Regehr
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M. Berry
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Beebe
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Elaine T. Alarid
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
TGF-β Negatively Regulates CXCL1 Chemokine Expression in Mammary Fibroblasts through Enhancement of Smad2/3 and Suppression of HGF/c-Met Signaling Mechanisms. PLoS One 2015; 10:e0135063. [PMID: 26252654 PMCID: PMC4529193 DOI: 10.1371/journal.pone.0135063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023] Open
Abstract
Fibroblasts are major cellular components of the breast cancer stroma, and influence the growth, survival and invasion of epithelial cells. Compared to normal tissue fibroblasts, carcinoma associated fibroblasts (CAFs) show increased expression of numerous soluble factors including growth factors and cytokines. However, the mechanisms regulating expression of these factors remain poorly understood. Recent studies have shown that breast CAFs overexpress the chemokine CXCL1, a key regulator of tumor invasion and chemo-resistance. Increased expression of CXCL1 in CAFs correlated with poor patient prognosis, and was associated with decreased expression of TGF-β signaling components. The goal of these studies was to understand the role of TGF-β in regulating CXCL1 expression in CAFs, using cell culture and biochemical approaches. We found that TGF-β treatment decreased CXCL1 expression in CAFs, through Smad2/3 dependent mechanisms. Chromatin immunoprecipitation and site-directed mutagenesis assays revealed two new binding sites in the CXCL1 promoter important for Smad2/3 modulation of CXCL1 expression. Smad2/3 proteins also negatively regulated expression of Hepatocyte Growth Factor (HGF), which was found to positively regulate CXCL1 expression in CAFs through c-Met receptor dependent mechanisms. HGF/c-Met signaling in CAFs was required for activity of NF-κB, a transcriptional activator of CXCL1 expression. These studies indicate that TGF-β negatively regulates CXCL1 expression in CAFs through Smad2/3 binding to the promoter, and through suppression of HGF/c-Met autocrine signaling. These studies reveal novel insight into how TGF-β and HGF, key tumor promoting factors modulate CXCL1 chemokine expression in CAFs.
Collapse
|
39
|
Alexeyenko A, Alkasalias T, Pavlova T, Szekely L, Kashuba V, Rundqvist H, Wiklund P, Egevad L, Csermely P, Korcsmaros T, Guven H, Klein G. Confrontation of fibroblasts with cancer cells in vitro: gene network analysis of transcriptome changes and differential capacity to inhibit tumor growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:62. [PMID: 26081588 PMCID: PMC4472614 DOI: 10.1186/s13046-015-0178-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/02/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND There is growing evidence that emerging malignancies in solid tissues might be kept under control by physical intercellular contacts with normal fibroblasts. METHODS Here we characterize transcriptional landscapes of fibroblasts that confronted cancer cells. We studied four pairs of in vitro and ex vivo fibroblast lines which, within each pair, differed in their capacity to inhibit cancer cells. The natural process was modeled in vitro by confronting the fibroblasts with PC-3 cancer cells. Fibroblast transcriptomes were recorded by Affymetrix microarrays and then investigated using network analysis. RESULTS The network enrichment analysis allowed us to separate confrontation- and inhibition-specific components of the fibroblast transcriptional response. Confrontation-specific differences were stronger and were characterized by changes in a number of pathways, including Rho, the YAP/TAZ cascade, NF-kB, and TGF-beta signaling, as well as the transcription factor RELA. Inhibition-specific differences were more subtle and characterized by involvement of Rho signaling at the pathway level and by potential individual regulators such as IL6, MAPK8, MAP2K4, PRKCA, JUN, STAT3, and STAT5A. CONCLUSIONS We investigated the interaction between cancer cells and fibroblasts in order to shed light on the potential mechanisms and explain the differential inhibitory capacity of the latter, which enabled both a holistic view on the process and details at the gene/protein level. The combination of our methods pointed to proteins, such as members of the Rho pathway, pro-inflammatory signature and the YAP1/TAZ cascade, that warrant further investigation via tools of experimental perturbation. We also demonstrated functional congruence between the in vitro and ex vivo models. The microarray data are made available via the Gene Expression Omnibus as GSE57199.
Collapse
Affiliation(s)
- Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, Box 1031, 171 21, Solna, Sweden.
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,College of Science, Department of Biology, Salahaddin University, Erbil, Kurdistan-Iraq.
| | - Tatiana Pavlova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Laszlo Szekely
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Institute of Molecular Biology and Genetics, UNAS, Kiev, Ukraine.
| | - Helene Rundqvist
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Peter Wiklund
- Department of Molecular Medicine and Surgery, section of Urology, Karolinska Institutet, Stockholm, Sweden.
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444, Budapest 8, Hungary.
| | - Tamas Korcsmaros
- TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich, UK. .,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK.
| | - Hayrettin Guven
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Spanheimer PM, Lorenzen AW, De Andrade JP, Kulak MV, Carr JC, Woodfield GW, Sugg SL, Weigel RJ. Receptor Tyrosine Kinase Expression Predicts Response to Sunitinib in Breast Cancer. Ann Surg Oncol 2015; 22:4287-94. [PMID: 25971960 DOI: 10.1245/s10434-015-4597-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preliminary data indicate that tyrosine kinase inhibitors (TKIs) function through rearranged during transfection (RET) in breast cancer. However, TKIs are not specific and can block several receptor tyrosine kinases (RTKs). This study used cell lines and primary breast cancer specimens to determine factors associated with TKI response. METHODS Proliferation was assessed after short interfering RNA knockdown with or without sunitinib in breast cancer cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Breast cancer tissue and matched normal breast was obtained from 30 women with invasive breast carcinoma. Gene expression was assessed by reverse transcriptase-polymerase chain reaction. Fresh tissue was treated in vitro with sunitinib or control media for 30 min, and response was assessed by phosphorylation-specific western blot. RESULTS The RTKs including epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR1-3), platelet-derived growth factor receptor (PDGFRa/b), and Kit were overexpressed in triple-negative breast tumors relative to HER2- and estrogen receptor-alpha (ERα)-positive tumors and normal breast tissue. Knockdown of EGFR reduced in vitro proliferation in MCF-7 and MDA-MB-231 but not in SKBR-3 or ZR-75-1 breast cancer cells. With the exception of RET, response to sunitinib was independent of RTK expression in all four cell lines. Both ERα-positive and low-EGFR-expressing tumors had an increased in vitro sunitinib response, as determined by alteration of Erk activation. Expression of other RTKs and additional clinical factors were not associated with response. CONCLUSION Triple-negative breast cancers overexpress RTKs but have decreased in vitro response to the TKI sunitinib. In addition to RET, TKIs that block EGFR may increase the therapeutic efficacy of TKIs in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Jennifer C Carr
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | | | - Sonia L Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
41
|
Liu C, Louhimo R, Laakso M, Lehtonen R, Hautaniemi S. Identification of sample-specific regulations using integrative network level analysis. BMC Cancer 2015; 15:319. [PMID: 25928379 PMCID: PMC4424448 DOI: 10.1186/s12885-015-1265-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Histologically similar tumors even from the same anatomical position may still show high variability at molecular level hindering analysis of genome-wide data. Leveling the analysis to a gene regulatory network instead of focusing on single genes has been suggested to overcome the heterogeneity issue although the majority of the network methods require large datasets. Network methods that are able to function at a single sample level are needed to overcome the heterogeneity and sample size issues. Methods We present a novel network method, Differentially Expressed Regulation Analysis (DERA) that integrates expression data to biological network information at a single sample level. The sample-specific networks are subsequently used to discover samples with similar molecular functions by identification of regulations that are shared between samples or are specific for a subgroup. Results We applied DERA to identify key regulations in triple negative breast cancer (TNBC), which is characterized by lack of estrogen receptor, progesterone receptor and HER2 expression and has poorer prognosis than the other breast cancer subtypes. DERA identified 110 core regulations consisting of 28 disconnected subnetworks for TNBC. These subnetworks are related to oncogenic activity, proliferation, cancer survival, invasiveness and metastasis. Our analysis further revealed 31 regulations specific for TNBC as compared to the other breast cancer subtypes and thus form a basis for understanding TNBC. We also applied DERA to high-grade serous ovarian cancer (HGS-OvCa) data and identified several common regulations between HGS-OvCa and TNBC. The performance of DERA was compared to two pathway analysis methods GSEA and SPIA and our results shows better reproducibility and higher sensitivity in a small sample set. Conclusions We present a novel method called DERA to identify subnetworks that are similarly active for a group of samples. DERA was applied to breast cancer and ovarian cancer data showing our method is able to identify reliable and potentially important regulations with high reproducibility. R package is available at http://csbi.ltdk.helsinki.fi/pub/czliu/DERA/. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengyu Liu
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Riku Louhimo
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Marko Laakso
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Rainer Lehtonen
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| |
Collapse
|
42
|
Paulsson J, Ehnman M, Östman A. PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol 2015; 10:1695-708. [PMID: 25145436 DOI: 10.2217/fon.14.83] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PDGF receptors (PDGFRs) exert cell type-specific effects in many different tumor types. They are emerging as key regulators of mesenchymal cells of the tumor microenvironment, and of many common malignancies, such as cancer of the breast, colon and prostate. In some tumor types PDGFRs are genetically activated and are thus directly involved in stimulation of malignant cell growth. Recent studies have uncovered clinically relevant variations in stromal PDGFR expression. High stromal PDGFRβ expression or activation is associated with poor prognosis in breast and prostate cancer. Indications of prognostic significance of stromal PDGFRβ expression in various GI tract tumor types also exist. The prognostic significance of PDGFRα and β in malignant cells of common epithelial tumor types should be further studied. Collectively data suggest that continued characterization of PDGFR expression in human tumors should present opportunities for improved accuracy in prognosis and also allow novel biomarker-based clinical studies exploring the efficacy of PDGFR-directed tumor therapies.
Collapse
Affiliation(s)
- Janna Paulsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Jitariu AA, Cimpean AM, Kundnani NR, Raica M. Platelet-derived growth factors induced lymphangiogenesis: evidence, unanswered questions and upcoming challenges. Arch Med Sci 2015; 11:57-66. [PMID: 25861290 PMCID: PMC4379379 DOI: 10.5114/aoms.2015.49217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between angiogenesis and lymphangiogenesis in embryonic development continues during postnatal life and has specific mechanisms involving factors that initiate activation of the intracellular cascade for their specific receptors. Platelet-derived growth factors (PDGFs) and their corresponding receptors (PDGFRs) are known as important regulators of blood vessel development in both normal and pathologic angiogenesis. Despite some recent papers which reported a potential role of the PDGF/PDGFR axis in lymphatic spread of tumor cells, a few papers have suggested the potential role of PDGFs in tumor lymphangiogenesis development. The present paper summarizes the potential lymphangiogenic role of the PDGF/PDGFR axis, underlying upcoming challenges in the field.
Collapse
Affiliation(s)
| | | | | | - Marius Raica
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
44
|
Soady KJ, Kendrick H, Gao Q, Tutt A, Zvelebil M, Ordonez LD, Quist J, Tan DWM, Isacke CM, Grigoriadis A, Smalley MJ. Mouse mammary stem cells express prognostic markers for triple-negative breast cancer. Breast Cancer Res 2015; 17:31. [PMID: 25849541 PMCID: PMC4381533 DOI: 10.1186/s13058-015-0539-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours in which chemotherapy, the current mainstay of systemic treatment, is often initially beneficial but with a high risk of relapse and metastasis. There is currently no means of predicting which TNBC will relapse. We tested the hypothesis that the biological properties of normal stem cells are re-activated in tumour metastasis and that, therefore, the activation of normal mammary stem cell-associated gene sets in primary TNBC would be highly prognostic for relapse and metastasis. METHODS Mammary basal stem and myoepithelial cells were isolated by flow cytometry and tested in low-dose transplant assays. Gene expression microarrays were used to establish expression profiles of the stem and myoepithelial populations; these were compared to each other and to our previously established mammary epithelial gene expression profiles. Stem cell genes were classified by Gene Ontology (GO) analysis and the expression of a subset analysed in the stem cell population at single cell resolution. Activation of stem cell genes was interrogated across different breast cancer cohorts and within specific subtypes and tested for clinical prognostic power. RESULTS A set of 323 genes was identified that was expressed significantly more highly in the purified basal stem cells compared to all other cells of the mammary epithelium. A total of 109 out of 323 genes had been associated with stem cell features in at least one other study in addition to our own, providing further support for their involvement in the biology of this cell type. GO analysis demonstrated an enrichment of these genes for an association with cell migration, cytoskeletal regulation and tissue morphogenesis, consistent with a role in invasion and metastasis. Single cell resolution analysis showed that individual cells co-expressed both epithelial- and mesenchymal-associated genes/proteins. Most strikingly, we demonstrated that strong activity of this stem cell gene set in TNBCs identified those tumours most likely to rapidly progress to metastasis. CONCLUSIONS Our findings support the hypothesis that the biological properties of normal stem cells are drivers of metastasis and that these properties can be used to stratify patients with a highly heterogeneous disease such as TNBC.
Collapse
Affiliation(s)
- Kelly J Soady
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS UK
| | - Howard Kendrick
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Qiong Gao
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Andrew Tutt
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - Marketa Zvelebil
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Liliana D Ordonez
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Jelmar Quist
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - David Wei-Min Tan
- />Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648 Singapore
| | - Clare M Isacke
- />Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Anita Grigoriadis
- />Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- />Department of Research Oncology, King’s Health Partners AHSC, Life Sciences and Medicine, King’s College London, Guy’s Campus, London, SE1 1UL UK
| | - Matthew J Smalley
- />European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
45
|
Luo NA, Qu YQ, Yang GD, Wang T, Li RL, Jia LT, Dong R. Post-transcriptional up-regulation of PDGF-C by HuR in advanced and stressed breast cancer. Int J Mol Sci 2014; 15:20306-20320. [PMID: 25383675 PMCID: PMC4264168 DOI: 10.3390/ijms151120306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is a heterogeneous disease characterized by multiple genetic alterations leading to the activation of growth factor signaling pathways that promote cell proliferation. Platelet-derived growth factor-C (PDGF-C) is overexpressed in various malignancies; however, the involvement of PDGF-C in breast cancers and the mechanisms underlying PDGF-C deregulation remain unclear. Here, we show that PDGF-C is overexpressed in clinical breast cancers and correlates with poor prognosis. PDGF-C up-regulation was mediated by the human embryonic lethal abnormal vision-like protein HuR, which stabilizes the PDGF-C transcript by binding to two predicted AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). HuR is up-regulated in hydrogen peroxide-treated or ultraviolet-irradiated breast cancer cells. Clinically, HuR levels are correlated with PDGF-C expression and histological grade or pathological tumor-node-metastasis (pTNM) stage. Our findings reveal a novel mechanism underlying HuR-mediated breast cancer progression, and suggest that HuR and PDGF-C are potential molecular candidates for targeted therapy of breast cancers.
Collapse
Affiliation(s)
- Nian-An Luo
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Ya-Qi Qu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Guo-Dong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Tao Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ren-Li Li
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Rui Dong
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
46
|
Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 2014; 25:61-8. [PMID: 24560651 DOI: 10.1016/j.semcancer.2014.02.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
Prognostication is an integral part of cancer diagnostic and helps oncologists to guide treatment decisions and therapy intensity. Accumulating evidence suggest that the stroma compartment also contains independent prognostic information, best exemplified by the impact of immune cells and cells of the vasculature on cancer progression. Similarly, strong experimental evidence exist that stromal fibroblasts, often designated cancer associated fibroblasts (CAFs), are actively involved in tumorigenesis. Thus, it can be anticipated that the molecular repertoire of CAFs is likewise important for the clinical behavior of the tumor. In this review we present recent studies addressing the prognostic impact of CAFs, with the focus on human lung and breast cancer. Several single markers have been suggested, either CAF specific or CAF derived, that in immunohistochemical studies have demonstrated independent association with survival. This includes members of the platelet derived growth factor receptor (PDGFR) family, CAF-markers like podoplanin and fibroblast activation protein (FAP) as well as transcription factors (FoxF1) and secreted factors (matrix metalloproteinases (MMPs), SPARC). However, most studies are based on explorative evaluations on single patient cohorts and require further validation. Using a more comprehensive approach, microarray studies have been employed to create gene expression signatures that detect an activated fibroblast state. These "stroma signatures" have been applied to identify specific CAF features associated with prognosis in several independent data sets of breast and lung cancer patients. Early studies in breast cancer have also demonstrated that fibroblast features influence therapy response. Thus, many strategies have been used to present encouraging proof-of-concept findings that CAFs could be exploited for prognostication. However, these studies also highlight the difficulties to conclusively define an "activated stroma" and to identify the individual factors involved in clinically relevant tumor-stroma interactions.
Collapse
Affiliation(s)
- Janna Paulsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014; 25:47-60. [PMID: 24486645 DOI: 10.1016/j.semcancer.2014.01.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/22/2022]
Abstract
Fibroblasts are the most abundant "non-cancerous" cells in tumors. However, it remains largely unknown how these cancer-associated fibroblasts (CAFs) promote tumor growth and metastasis, driving chemotherapy resistance and poor clinical outcome. This review summarizes new findings on CAF signaling pathways and their emerging metabolic phenotypes that promote tumor growth. Although it is well established that altered cancer metabolism enhances tumor growth, little is known about the role of fibroblast metabolism in tumor growth. New studies reveal that metabolic coupling occurs between catabolic fibroblasts and anabolic cancer cells, in many types of human tumors, including breast, prostate, and head & neck cancers, as well as lymphomas. These catabolic phenotypes observed in CAFs are secondary to a ROS-induced metabolic stress response. Mechanistically, this occurs via HIF1-alpha and NFκB signaling, driving oxidative stress, autophagy, glycolysis and senescence in stromal fibroblasts. These catabolic CAFs then create a nutrient-rich microenvironment, to metabolically support tumor growth, via the local stromal generation of mitochondrial fuels (lactate, ketone bodies, fatty acids, glutamine, and other amino acids). New biomarkers of this catabolic CAF phenotype (such as caveolin-1 (Cav-1) and MCT4), which are reversible upon treatment with anti-oxidants, are strong predictors of poor clinical outcome in various types of human cancers. How cancer cells metabolically reprogram fibroblasts can also help us to understand the effects of cancer cells at an organismal level, explaining para-neoplastic phenomena, such as cancer cachexia. In conclusion, cancer should be viewed more as a systemic disease, that engages the host-organism in various forms of energy-transfer and metabolic co-operation, across a whole-body "ecosystem".
Collapse
Affiliation(s)
| | - Michael P Lisanti
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| | - Federica Sotgia
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| |
Collapse
|
48
|
Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 2013; 11:149-55. [PMID: 24317253 PMCID: PMC3922286 DOI: 10.1038/nmeth.2763] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
Multiple reaction monitoring (MRM) mass spectrometry has been successfully applied to monitor targeted proteins in biological specimens, raising the possibility that assays could be configured to measure all human proteins. We report the results of a pilot study designed to test the feasibility of a large-scale, international effort for MRM assay generation. We have configured, validated across three laboratories and made publicly available as a resource to the community 645 novel MRM assays representing 319 proteins expressed in human breast cancer. Assays were multiplexed in groups of >150 peptides and deployed to quantify endogenous analytes in a panel of breast cancer-related cell lines. The median assay precision was 5.4%, with high interlaboratory correlation (R(2) > 0.96). Peptide measurements in breast cancer cell lines were able to discriminate among molecular subtypes and identify genome-driven changes in the cancer proteome. These results establish the feasibility of a large-scale effort to develop an MRM assay resource.
Collapse
|
49
|
Ehnman M, Östman A. Therapeutic targeting of platelet-derived growth factor receptors in solid tumors. Expert Opin Investig Drugs 2013; 23:211-26. [PMID: 24206431 DOI: 10.1517/13543784.2014.847086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Genetic aberrations that are associated with platelet-derived growth factor receptor (PDGFR) activity are frequently found in glioblastomas (10 - 15%), dermatofibrosarcoma protuberans (≤ 100%) and gastrointestinal stromal tumors (5%). Sequencing studies have also identified mutations at lower frequency in common cancer types. Preclinical evidence further suggests tumor stimulatory roles of PDGFRs expressed by tumor stroma cells and indicates a deleterious effect of stromal PDGFRs on intratumoral drug uptake. AREAS COVERED This review summarizes the present understanding of PDGF signaling in solid tumors based on experimental studies and clinical findings. It also provides a discussion of selected ongoing efforts to develop novel cancer therapies involving PDGFR inhibition with tyrosine kinase inhibitors or PDGFR-targeting monoclonal antibodies. EXPERT OPINION An increased molecular understanding of response and resistance mechanisms will be essential for therapeutic advances in PDGFR-directed cancer therapy. Further developments rely on clinical studies where systematic analyses of target status in malignant cells and in cells of the tumor stroma are included. Studies with combination therapies will be facilitated by selective PDGFR inhibitors with reduced side effects. Finally, development of improved companion diagnostics is of critical importance for patient selection and monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Monika Ehnman
- Karolinska Institutet, Department of Oncology-Pathology , SE-17177 Stockholm , Sweden
| | | |
Collapse
|