1
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
2
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Ouyang Q, Yu H, Xu L, Yu M, Zhang Y. Relationship between gut microbiota and multiple sclerosis: a scientometric visual analysis from 2010 to 2023. Front Immunol 2024; 15:1451742. [PMID: 39224586 PMCID: PMC11366631 DOI: 10.3389/fimmu.2024.1451742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have investigated the relationship between gut microbiota (GM) and multiple sclerosis(MS), highlighting the significant role of GM in MS. However, there is a lack of systematic Scientometric analyses published in this specific research area to provide an overall understanding of the current research status. Methods Perform a scientometric analysis on research conducted between 2010 and 2023 concerning the link between GM and MS using quantitative and visual analysis software (CiteSpace and VOSviewer.). Results From January 1, 2010, and December 31, 2023, a total of 1019 records about GM and MS were retrieved. The number of publications exhibited a consistent upward trend annually. The United States led in publications, showed the strongest level of collaboration among countries. The University of California, San Francisco stands as the top institution in terms of output, and the most prolific and cited authors were Lloyd H. Kasper and Javier Ochoa-Reparaz from the USA. The research in this field primarily centers on investigating the alterations and associations of GM in MS or EAE, the molecular immunological mechanisms, and the potential of GM-based interventions to provide beneficial effects in MS or EAE. The Keywords co-occurrence network reveals five primary research directions in this field. The most frequently occurring keywords are inflammation, probiotics, diet, dysbiosis, and tryptophan. In recent years, neurodegeneration and neuropsychiatric disorders have been prominent, indicating that the investigation of the mechanisms and practical applications of GM in MS has emerged as a current research focus. Moreover, GM research is progressively extending into the realm of neurodegenerative and psychiatric diseases, potentially becoming future research hotspots. Conclusions This study revealed a data-driven systematic comprehension of research in the field of GM in MS over the past 13 years, highlighted noteworthy research within the field, provided us with a clear understanding of the current research status and future trends, providing a valuable reference for researchers venturing into this domain.
Collapse
Affiliation(s)
- Qingrong Ouyang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hao Yu
- Department of Emergency, Suining Central Hospital, Suining, China
| | - Lei Xu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Ming Yu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Yunwei Zhang
- Department of Neurology, Suining Central Hospital, Suining, China
| |
Collapse
|
5
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Samy DM, Zaki EI, Hassaan PS, Abdelmonsif DA, Mohamed DY, Saleh SR. Neurobehavioral, biochemical and histological assessment of the effects of resveratrol on cuprizone-induced demyelination in mice: role of autophagy modulation. J Physiol Biochem 2023:10.1007/s13105-023-00959-z. [PMID: 37131098 DOI: 10.1007/s13105-023-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Resveratrol is known to exhibit neuroprotective effects in many neurological disorders via autophagy modulation. However, controversial results have been reported about the therapeutic potential of resveratrol and the implication of autophagy in demyelinating diseases. This study aimed to evaluate the autophagic changes in cuprizone-intoxicated C57Bl/6 mice and explore the effect of autophagy activation by resveratrol on the demyelination and remyelination processes. Mice were fed with chow containing 0.2% cuprizone for 5 weeks, followed by a cuprizone-free diet for 2 weeks. Resveratrol (250 mg/kg/day) and/or chloroquine (an autophagy inhibitor; 10 mg/kg/day) were given for 5 weeks starting from the third week. At the end of the experiment, animals were tested on rotarod and then sacrificed for biochemical assessment, luxol fast blue (LFB) staining, and transmission electron microscopy (TEM) imaging of the corpus callosum. We observed that cuprizone-induced demyelination was associated with impaired degradation of autophagic cargo, induction of apoptosis, and manifest neurobehavioral disturbances. Oral treatment with resveratrol promoted motor coordination and improved remyelination with regular compacted myelin in most axons without a significant impact on myelin basic protein (MBP) mRNA expression. These effects are mediated, at least in part, via activating autophagic pathways that may involve SIRT1/FoxO1 activation. This study verified that resveratrol dampens cuprizone-induced demyelination, and partially enhances myelin repair through modulation of the autophagic flux, since interruption of the autophagic machinery by chloroquine reversed the therapeutic potential of resveratrol.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eiman I Zaki
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Y Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Bioscreening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
10
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
11
|
Basta M, Saleh SR, Aly RG, Dief AE. Resveratrol ameliorates the behavioural and molecular changes in rats exposed to uninephrectomy: role of hippocampal SIRT1, BDNF and AChE. J Physiol Biochem 2022:10.1007/s13105-022-00937-x. [DOI: 10.1007/s13105-022-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2022] [Indexed: 12/11/2022]
Abstract
AbstractSubtle memory and cognitive changes may occur in uninephrectomized (Unix) patients long before the development of chronic kidney disease, such changes may be unnoticed. The dietary polyphenol, Resveratrol, displayed various neuroprotective effects, its role in chronic kidney disease is an area of intense studies. This work was designed to investigate the behavioural and molecular changes that may occur following 7 months of Unix in rats, and to determine whether Resveratrol intake can improve such pathology. Male Wistar rats were divided into three groups: sham operated, Unix and Unix group treated with Resveratrol (20 mg/kg/day). Rats were subjected to series of behavioural testing, different biochemical parameters along with RT-PCR and immunohistochemistry of the hippocampal tissue to track the development of functional or structural brain changes. Anxiety behaviour and reduced spatial memory performance were observed in rats 7 months post-nephrectomy; these deficits were remarkably reversed with Resveratrol. Among the species typical behaviour, burrowing was assessed; it showed significant impairment post-nephrectomy. Resveratrol intake was almost able to increase the burrowing behaviour. Decreased SIRT1 in immune-stained sections, oxidative stress, inflammatory changes, and increased AChE activity in hippocampal homogenates were found in Unix rats, and Resveratrol once more was capable to reverse such pathological changes. This work has investigated the occurrence of behavioural and structural brain changes 7 months following Unix and underlined the importance of Resveratrol to counterbalance the behavioural impairment, biochemical and brain pathological changes after uninephrectomy. These findings may raise the possible protective effects of Resveratrol intake in decreased kidney function.
Collapse
|
12
|
Silva P, Portillo MP, Fernández-Quintela A. Resveratrol and Wine: An Overview of Thirty Years in the Digital News. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15815. [PMID: 36497888 PMCID: PMC9740773 DOI: 10.3390/ijerph192315815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Resveratrol's health benefits have received wide media coverage. Since resveratrol is usually associated with wine, informative texts about it should be prepared very carefully, since inaccurate website content could easily change people's wine consumption behavior. This study aimed to assess the quality of informative texts related to resveratrol on science journalism websites. METHODS We analyzed 125 resveratrol posts on Science Daily, WebMD, and EurekAlert! published between 1990 and 2020. RESULTS A higher number of posts was published in the years in which the number of people looking for information on the internet also increased. The increase can also be related to David Sinclair's notoriety, a fact that we called the "Sinclair effect". Most of the posts are replications of universities' press releases, mainly reporting resveratrol's health benefits, which resulted from preclinical studies and cannot be translated to humans. Most of them mention wine in the text and some in the title. CONCLUSIONS Wine is usually mentioned in headline resveratrol news, which could potentially influence wine consumption behavior. Scientists must intensify their efforts to communicate with the public to increase people's health literacy. Online news portals should have science journalists skilled in exploring scientific data and their translation into a simple and accurate language.
Collapse
Affiliation(s)
- Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ICNOVA—NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Tecellioğlu M, Türkmen NB, Ciftçi O, Taşlıdere A, Ekmekyapar T, Yüce H, Öztanır MN, Özcan C. The Beneficial Effects of Resveratrol on Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6J Mouse Model. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|
15
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
16
|
van Brummelen R, van Brummelen AC. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 - A formulator's perspective. Biomed Pharmacother 2022; 148:112767. [PMID: 35240527 PMCID: PMC8884665 DOI: 10.1016/j.biopha.2022.112767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/18/2022] Open
Abstract
With an increased transmissibility but milder form of disease of the omicron variant of COVID-19 and the newer antivirals often still out of reach of many populations, a refocus of the current treatment regimens is required. Safe, affordable, and available adjuvant treatments should also be considered and known drugs and substances need to be repurposed and tested. Resveratrol, a well-known antioxidant of natural origin, shown to act as an antiviral as well as playing a role in immune stimulation, down regulation of the pro-inflammatory cytokine release and reducing lung injury by reducing oxidative stress, is such an option. New initiatives and collaborations will however need to be found to unleash resveratrol's full potential in the pharmaceutical market.
Collapse
|
17
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
18
|
Sato F, Nakamura Y, Katsuki A, Khadka S, Ahmad I, Omura S, Martinez NE, Tsunoda I. Curdlan, a Microbial β-Glucan, Has Contrasting Effects on Autoimmune and Viral Models of Multiple Sclerosis. Front Cell Infect Microbiol 2022; 12:805302. [PMID: 35198458 PMCID: PMC8859099 DOI: 10.3389/fcimb.2022.805302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-β-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ijaz Ahmad
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| |
Collapse
|
19
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
20
|
Kuntzel T, Bagnard D. Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 2022; 14:344. [PMID: 35214076 PMCID: PMC8877500 DOI: 10.3390/pharmaceutics14020344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia are implicated in several diseases with divergent roles in physiopathology. This discrepancy can be explained by their capacity to endorse different polarization states. Theoretical extremes of these states are called M1 and M2. M1 are pro-inflammatory, microbicidal, and cytotoxic whereas M2 are anti-inflammatory, immunoregulatory cells in favor of tumor progression. In pathological states, these polarizations are dysregulated, thus restoring phenotypes could be an interesting treatment approach against diseases. In this review, we will focus on compounds targeting macrophages and microglia polarization in two very distinctive pathologies: multiple sclerosis and glioblastoma. Multiple sclerosis is an inflammatory disease characterized by demyelination and axon degradation. In this case, macrophages and microglia endorse a M1-like phenotype inducing inflammation. Promoting the opposite M2-like polarization could be an interesting treatment strategy. Glioblastoma is a brain tumor in which macrophages and microglia facilitate tumor progression, spreading, and angiogenesis. They are part of the tumor associated macrophages displaying an anti-inflammatory phenotype, thereby inhibiting anti-tumoral immunity. Re-activating them could be a method to limit and reduce tumor progression. These two pathologies will be used to exemplify that targeting the polarization of macrophages and microglia is a promising approach with a broad spectrum of applications deserving more attention.
Collapse
Affiliation(s)
- Thomas Kuntzel
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
| | - Dominique Bagnard
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
21
|
Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65872-65884. [PMID: 34322799 DOI: 10.1007/s11356-021-15664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the view that oxidative stress and brain demyelination play an important role in the pathogenesis of schizophrenia. Resveratrol is a powerful antioxidant with neuroprotective effects. This study aimed to assess the effect of resveratrol on schizophrenia-like behaviors and possible brain demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist, and the underlying neuroprotective mechanism. Resveratrol (40 mg/kg/day/, intraperitoneal) was administered to mice for 14 days. MK-801 (1 mg/kg/day, intraperitoneal) was injected into the mice 4 h after the resveratrol administration for 14 days. The open-field and elevated-plus maze tests were performed to detect behavior changes on the 15th day. Following the behavioral tests, the expression of the myelin basic protein (MBP) was measured with the real-time PCR (RT-PCR) method, while total oxidant capacity (TOS) and total antioxidant capacity (TAS), which are the biomarkers of oxidative damage, were measured with the ELISA method. Hematoxylin-eosin staining was also used to identify stereological and pathological changes in the brain. According to the results obtained, this study showed for the first time that resveratrol prevented glial cell infiltration induced in the brain by MK-801 and shrinkage of nerve cell nuclei in the hippocampus and corpus callosum. However, the resveratrol administrations did not correct behavioral disorders and demyelination of schizophrenia. Although resveratrol partially prevented oxidative damage in the brain in the mice that were injected with MK-801, it was determined that this effect was not statistically significant. These results showed that resveratrol administration partially protects tissues against MK-801-induced neurodegeneration, and resveratrol may be used in combination with different antioxidants or at different doses in future studies.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey.
| | | |
Collapse
|
22
|
Wu MY, Wang EJ, Feng D, Li M, Ye RD, Lu JH. Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharm Sin B 2021; 11:3364-3378. [PMID: 34900523 PMCID: PMC8642426 DOI: 10.1016/j.apsb.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Er-Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510000, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| |
Collapse
|
23
|
Modified Mediterranean Diet VS. Traditional Iranian Diet: Efficacy of Dietary Interventions on Dietary Inflammatory Index Score, Fatigue Severity and Disability in Multiple Sclerosis Patients. Br J Nutr 2021; 128:1274-1284. [PMID: 34392854 DOI: 10.1017/s000711452100307x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Current evidence suggests that adherence to the Mediterranean Diet (MeD) can reduce inflammation in chronic diseases; however, studies pertaining to Relapsing-Remitting Multiple Sclerosis (RRMS) are limited. Therefore, the aim of this study was to investigate the potential of the modified MeD (mMeD) in improving Dietary Inflammatory Index (DII) scores, disability, and fatigue severity, compared to Traditional Iranian Diet (TID), in RRMS patients. METHODS After initial screening (n=261), 180 RRMS patients were randomized to receive mMeD or TID (as control) for six months. DII score, Expanded Disability Status Scale (EDSS) and 21-item Modified Fatigue Impact Scale (MFIS) were evaluated at baseline and trial cessation. Multivariate analysis of covariance was conducted and adjusted for age, gender, body weight, body mass index, education level, supplement use, family history and duration of MS. RESULTS Of the 180 patients enrolled, 147 participants were included in the final analysis (n of mMeD=68; n of TID=79). Self-reported adherence was good (˜81%). Dietary intakes of 45 food parameters were assessed through the food frequency questionnaire. The mMeD significantly reduced DII scores after six months (2.38±0.21 to -1.87±0.86, P<0.001), but TID did not elicit any changes (2.21±0.44 to 2.14±1.01, P=0.771). Additionally, MFIS total score decreased significantly (72.4±17.2 to 63.9±14.2, P<0.001), whereas there was no considerable improvement for EDSS in the mMeD group. CONCLUSION Adherence to mMeD, for six months, improved dietary inflammatory status and fatigue severity in RRMS patients, however, the traditional Iranian diet did not positively impact dietary inflammation and MFIS score.
Collapse
|
24
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Belmonte-Reche E, Peñalver P, Caro-Moreno M, Mateos-Martín ML, Adán N, Delgado M, González-Rey E, Morales JC. Silyl resveratrol derivatives as potential therapeutic agents for neurodegenerative and neurological diseases. Eur J Med Chem 2021; 223:113655. [PMID: 34175536 DOI: 10.1016/j.ejmech.2021.113655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Natural phenolic compounds found in food have demonstrated interesting preventive and therapeutic effects on a large variety of pathologies. Indeed, some of them, such as resveratrol (RES), have been examined in clinical trials. Nevertheless, their success has been scarce mainly due to their low bioavailability. In this study, we found serendipitously that O-silyl RES derivatives exerted a better neuroprotective activity than resveratrol itself and decided to explore them as potential drugs for neurodegenerative and neurological diseases. We have also designed and prepared a series of O-silyl RES prodrugs to improve their bioavailability. We found that di-triethylsilyl and di-triisopropylsilyl RES derivatives were better in vitro neuroprotective and anti-inflammatory agents than RES. Among these derivatives and their corresponding acyl-, glycosyl- and carbamoyl-prodrugs, 3,5-triethylsilyl-4'-(6″-octanoylglucopyranosyl) resveratrol 26 showed the best profile on toxicity and neuroprotective activity in zebra fish embryo. Compound 26 was also capable of reducing the loss of motor coordination in a 3-nitropropionic acid mice model of Huntington's disease, in a similar way to RES. However, 26 diminished pro-inflammatory cytokine IL-6 to a higher extent than RES and improved the latency to fall in the rotarod test by 10% with respect to RES. Finally, we investigated 26 and RES as potential treatments on an experimental autoimmune encephalomyelitis (EAE) multiple sclerosis mice model. We observed that, in a therapeutic regimen, 26 significantly diminished the progression of EAE severity and reduced the percentage of animals with moderate to severe clinical score, whereas RES showed no improvement.
Collapse
Affiliation(s)
- Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Marta Caro-Moreno
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - María Luisa Mateos-Martín
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Norma Adán
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Mario Delgado
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Elena González-Rey
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology and Department of Cellular Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
26
|
Yu P, Wang L, Tang F, Guo S, Liao H, Fan C, Yang Q. Resveratrol-mediated neurorestoration after cerebral ischemic injury - Sonic Hedgehog signaling pathway. Life Sci 2021; 280:119715. [PMID: 34116113 DOI: 10.1016/j.lfs.2021.119715] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022]
Abstract
AIMS Resveratrol pretreatment can decrease ischemic cerebral injury and enhance proliferation of neural stem cells via mediation of Sonic Hedgehog signaling. However, it is relatively little known about whether neurorestorative effects of resveratrol are mediated by Shh signaling in ischemic cerebral injury. The present study tests whether the Shh signaling pathway mediates resveratrol to promote neurorestoration of ischemic cerebral injury. MATERIALS AND METHODS Rats or neurons before middle cerebral artery occlusion/reperfusion (MCAO/R) or oxygen-glucose deprivation/reoxygenation (OGD/R) injury were pretreated with resveratrol. Immunohistochemistry is used to be determined BrdU+/DCX+, BrdU+/Nestin+ and BrdU+/NG2+ cell (markers of new proliferated neural stem/progenitor and oligodendrocyte precursor cell, respectively), BrdU+/MAP2+ and BrdU+/CNPase+ cell (markers of new mature neuron and oligodendrocyte, respectively), BrdU+/TUNEL+ cell (marker of apoptosis for new proliferated cell), SY, NF200, Iba-1 and GFAP (markers of synaptogenesis, axon, microglia and astrocyte, respectively). Shh and Gli-1 mRNAs were detected by RT-PCR assay. Iba-1, GFAP, Shh and Gli-1 proteins were detected by Western blot. KEY FINDINGS Resveratrol pretreatment significantly reduced neurological deficit scores, promoted proliferation, differentiation, migration and survival of neural stem/progenitor and oligodendrocyte precursor cells, inhibited astrocyte and microglia activation, strengthened synaptophysin and NF200 expression, at the same time, promoted neurite outgrowth of neurons. Meanwhile, expression levels of Shh and Gli-1 proteins were significantly increased and Gli-1 translocated into the nucleus. However, cyclopamine, a Smo inhibitor, canceled the above effects of resveratrol. CONCLUSIONS It may be mediated, at least partly, by the Shh signaling pathway that resveratrol pretreament promote neurorestoration of ischemic cerebral injury.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Physical Examination Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanren Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Guo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Liao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cengceng Fan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
28
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Huang Y, Zhu X, Chen K, Lang H, Zhang Y, Hou P, Ran L, Zhou M, Zheng J, Yi L, Mi M, Zhang Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY) 2020; 11:2217-2240. [PMID: 30988232 PMCID: PMC6519996 DOI: 10.18632/aging.101910] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Background: The concept of sarcopenic obesity refers to low muscle mass coupled with high adiposity in older adults. Sarcopenic obesity is a new medical challenge that imposes tremendous financial burdens on healthcare authorities worldwide. This study investigated the effects of resveratrol on high-fat diet-induced sarcopenic obesity in aged rats and palmitate acid-induced muscle atrophy in L6 myotubes and explored the underlying mechanisms. Results: In vivo, resveratrol prevented muscle loss and myofiber size decrease, improved grip strength and abolished excessive fat accumulation. In vitro, resveratrol inhibited the palmitate acid-mediated reductions in myosin heavy chain content and myotube diameter. Moreover, resveratrol ameliorated mitochondrial dysfunction and oxidative stress, leading to an improvement in protein metabolism and contributing to the prevention of muscle atrophy. Furthermore, the protective effects of resveratrol on mitochondrial function, oxidative stress and muscle atrophy were abolished by PKA siRNA, LKB1 siRNA and AMPK siRNA transfection in vitro. Conclusions: Resveratrol prevented high-fat diet-induced muscle atrophy in aged rats by reversing mitochondrial dysfunction and oxidative stress, which was partially mediated by the PKA/LKB1/AMPK pathway. These findings indicate that resveratrol might have potential uses for the prevention and treatment of sarcopenic obesity.
Collapse
Affiliation(s)
- Yujie Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Xiaohui Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Jiawei Zheng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| |
Collapse
|
30
|
Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 2020; 873:172973. [DOI: 10.1016/j.ejphar.2020.172973] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
|
31
|
Gianchecchi E, Fierabracci A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants (Basel) 2020; 9:91. [PMID: 31978952 PMCID: PMC7070243 DOI: 10.3390/antiox9020091] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the interest in natural compounds exerting immunoregulatory effects has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant, immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative, pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important consequences for the health of the patients affected. The aim of the present review is to focus on the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| |
Collapse
|
32
|
Marx W, Hockey M, McGuinness AJ, Lane M, Christodoulou J, van der Mei I, Berk M, Dean OM, Taylor B, Broadley S, Lechner-Scott J, Jacka FN, Lucas RM, Ponsonby AL. The effect of emerging nutraceutical interventions for clinical and biological outcomes in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2020; 37:101486. [PMID: 31707234 DOI: 10.1016/j.msard.2019.101486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Due to the considerable burden of multiple sclerosis (MS)-related symptoms and the need to identify effective interventions to prevent disease progression, various nutraceutical interventions have been trialed as adjunctive treatments. The aim of this review was to investigate the efficacy and safety of nutraceutical interventions for clinical and biological outcomes in people with MS. METHODS In accordance with PRISMA reporting guidelines, a systematic literature search was conducted using three electronic literature databases. Risk of bias was assessed using the Jadad scale. RESULTS Thirty-seven randomized controlled trials, investigating fourteen nutraceuticals, were included in the review. Trials that investigated alpha lipoic acid (n = 4/6), ginkgo biloba (n = 3/5), vitamin A (n = 2/2), biotin (n = 1/2), carnitine (n = 1/2), green tea (n = 1/2), coenzyme Q10 (n = 1/1), probiotics (n = 1/1), curcumin (n = 1/1), Andrographis paniculata (n = 1/1), ginseng (n = 1/1), and lemon verbena (n = 1/1) were reported to improve biological (e.g. MRI brain volume change, antioxidant capacity) and/or clinical (e.g. fatigue, depression, Expanded Disability Status Scale) outcomes in multiple sclerosis compared to control. However, most trials were relatively small (average study sample size across included studies, n = 55) and there were few replicate studies per nutraceutical to validate the reported results. Furthermore, some nutraceuticals (e.g. green tea and inosine) should be used with caution due to reported adverse events. Risk of bias across most studies was low, with 31 studies receiving a score between 4 and 5 (out of 5) on the Jadad Scale. CONCLUSION The existing literature provides preliminary support for the use of a number of nutraceutical interventions in MS. However, sufficiently powered long-term trials are required to expand the currently limited literature and to investigate unexplored nutraceuticals that may target relevant pathways involved in MS such as the gut microbiome and mitochondrial dysfunction. Prospero ID: CRD42018111736.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Australia.
| | - Meghan Hockey
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Amelia J McGuinness
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa Lane
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Australia; University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Gold Coast, Queensland Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University Newcastle, Australia; Department of Neurology, John Hunter Hospital, Hunter New England Health, Newcastle, Australia
| | - Felice N Jacka
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australia; Centre for Ophthalmology and Visual Sciences, University of Western Australia, Perth, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Australia; National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australia
| | | |
Collapse
|
33
|
Evans E, Piccio L, Cross AH. Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review. JAMA Neurol 2019; 75:1013-1021. [PMID: 29710293 DOI: 10.1001/jamaneurol.2018.0611] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Surveys of patients with multiple sclerosis report that most are interested in modifying their diet and using supplements to potentially reduce the severity and symptoms of the disease. This review provides an updated overview of the current state of evidence for the role that vitamins and dietary supplements play in multiple sclerosis and its animal models, with an emphasis on recent studies, and addresses biological plausibility and safety issues. Observations Several vitamins and dietary supplements have been recently explored both in animal models and by patients with multiple sclerosis. Most human trials have been small or nonblinded, limiting their generalizability. Biotin and vitamin D are currently being tested in large randomized clinical trials. Smaller trials are ongoing or planned for other supplements such as lipoic acid and probiotics. The results of these studies may help guide clinical recommendations. Conclusions and Relevance At the present time, the only vitamin with sufficient evidence to support routine supplementation for patients with multiple sclerosis is vitamin D. Vitamin deficiencies should be avoided. It is important for clinicians to know which supplements their patients are taking and to educate patients on any known efficacy data, along with any potential medication interactions and adverse effects of individual supplements. Given that dietary supplements and vitamins are not subject to the same regulatory oversight as prescription pharmaceuticals in the United States, it is recommended that vitamins and supplements be purchased from reputable manufacturers with the United States Pharmacopeia designation.
Collapse
Affiliation(s)
- Emily Evans
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Laura Piccio
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Anne H Cross
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
34
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
35
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [PMID: 30268770 DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
37
|
Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A Review of Herbal Therapy in Multiple Sclerosis. Adv Pharm Bull 2018; 8:575-590. [PMID: 30607330 PMCID: PMC6311642 DOI: 10.15171/apb.2018.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis is a complex autoimmune disorder which characterized by demyelination and axonal loss in the central nervous system (CNS). Several evidences indicate that some new drugs and stem cell therapy have opened a new horizon for multiple sclerosis treatment, but current therapies are partially effective or not safe in the long term. Recently, herbal therapies represent a promising therapeutic approach for multiple sclerosis disease. Here, we consider the potential benefits of some herbal compounds on different aspects of multiple sclerosis disease. The medicinal plants and their derivatives; Ginkgo biloba, Zingiber officinale, Curcuma longa, Hypericum perforatum, Valeriana officinalis, Vaccinium macrocarpon, Nigella sativa,Piper methysticum, Crocus sativus, Panax ginseng, Boswellia papyrifera, Vitis vinifera, Gastrodia elata, Camellia sinensis, Oenothera biennis, MS14 and Cannabis sativa have been informed to have several therapeutic effects in MS patients.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Young Researchers and Elite Club, Behshahr Branch, Islamic Azad University, Behshahr, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Cellular and Molecular Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
38
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
39
|
Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis. Neurosci Res 2018; 131:1-9. [DOI: 10.1016/j.neures.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
40
|
Grist JJ, Marro BS, Skinner DD, Syage AR, Worne C, Doty DJ, Fujinami RS, Lane TE. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol 2018; 48:1199-1210. [PMID: 29697856 PMCID: PMC6033633 DOI: 10.1002/eji.201747442] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/17/2018] [Accepted: 04/20/2018] [Indexed: 01/12/2023]
Abstract
Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline‐inducible promoter active within glial fibrillary acidic protein‐positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1‐mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan J Grist
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Brett S Marro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Dominic D Skinner
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Amber R Syage
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Colleen Worne
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Daniel J Doty
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, UT, USA
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, UT, USA
| |
Collapse
|
41
|
Omura S, Sato F, Martinez NE, Range T, Ekshyyan L, Minagar A, Alexander JS, Tsunoda I. Immunoregulation of Theiler's virus-induced demyelinating disease by glatiramer acetate without suppression of antiviral immune responses. Arch Virol 2018; 163:1279-1284. [PMID: 29362931 PMCID: PMC6276114 DOI: 10.1007/s00705-018-3729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
Abstract
While most disease-modifying drugs (DMDs) regulate multiple sclerosis (MS) by suppressing inflammation, they can potentially suppress antiviral immunity, causing progressive multifocal leukoencephalopathy (PML). The DMD glatiramer acetate (GA) has been used for MS patients who are at high risk of PML. We investigated whether GA is safe for use in viral infections by using a model of MS induced by infection with Theiler's murine encephalomyelitis virus (TMEV). Treatment of TMEV-infected mice with GA neither enhanced viral loads nor suppressed antiviral immune responses, while it resulted in an increase in the Foxp3/Il17a ratio and IL-4/IL-10 production. This is the first study to suggest that GA could be safe for MS patients with a proven viral infection.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Tierra Range
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Lesya Ekshyyan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - J Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
42
|
Sato F, Kawai E, Martinez NE, Omura S, Park AM, Takahashi S, Yoh K, Tsunoda I. T-bet, but not Gata3, overexpression is detrimental in a neurotropic viral infection. Sci Rep 2017; 7:10496. [PMID: 28874814 PMCID: PMC5585213 DOI: 10.1038/s41598-017-10980-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023] Open
Abstract
Intracerebral Theiler's murine encephalomyelitis virus (TMEV) infection in mice induces inflammatory demyelination in the central nervous system. Although C57BL/6 mice normally resistant to TMEV infection with viral clearance, we have previously demonstrated that RORγt-transgenic (tg) C57BL/6 mice, which have Th17-biased responses due to RORγt overexpression in T cells, became susceptible to TMEV infection with viral persistence. Here, using T-bet-tg C57BL/6 mice and Gata3-tg C57BL/6 mice, we demonstrated that overexpression of T-bet, but not Gata3, in T cells was detrimental in TMEV infection. Unexpectedly, T-bet-tg mice died 2 to 3 weeks after infection due to failure of viral clearance. Here, TMEV infection induced splenic T cell depletion, which was associated with lower anti-viral antibody and T cell responses. In contrast, Gata3-tg mice remained resistant, while Gata3-tg mice had lower IFN-γ and higher IL-4 production with increased anti-viral IgG1 responses. Thus, our data identify how overexpression of T-bet and Gata3 in T cells alters anti-viral immunity and confers susceptibility to TMEV infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Investigative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
43
|
Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants (Basel) 2017; 6:antiox6030065. [PMID: 28820437 PMCID: PMC5618093 DOI: 10.3390/antiox6030065] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers, leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However, Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease. Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2 in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation in each cell type in prominent neurodegenerative diseases and normal aging in human brain and animal models of neurodegeneration, the response to pharmacological and genetic modulation of Nrf2, and clinical trials involving Nrf2-modifying drugs.
Collapse
|
44
|
Park AM, Omura S, Fujita M, Sato F, Tsunoda I. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2017; 8:215-232. [PMID: 29158778 PMCID: PMC5693366 DOI: 10.1111/cen3.12401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alteration of microbiota has been associated with intestinal, inflammatory, and neurological diseases. Abundance of "good bacteria" such as Bifidobacterium, or their products have been generally believed to be beneficial for any diseases, while "bad bacteria" such as pathogenic Helicobacter pylori are assumed to be always detrimental for hosts. However, this is not the case when we compare and contrast the association of the gut microbiota with two neurological diseases, multiple sclerosis (MS) and Alzheimer's disease (AD). Following H. pylori infection, pro-inflammatory T helper (Th)1 and Th17 immune response are initially induced to eradicate bacteria. However, H. pylori evades the host immune response by inducing Th2 cells and regulatory T cells (Tregs) that produce anti-inflammatory interleukin (IL)-10. Suppression of anti-bacterial Th1/Th17 cells by Tregs may enhance gastric H. pylori propagation, followed by a cascade reaction involving vitamin B12 and folic acid malabsorption, plasma homocysteine elevation, and reactive oxygen species induction. This can damage the blood-brain barrier (BBB), leading to accumulation of amyloid-β in the brain, a hallmark of AD. On the other hand, this suppression of pro-inflammatory Th1/Th17 responses to H. pylori has protective effects on the hosts, since it prevents uncontrolled gastritis as well as suppresses the induction of encephalitogenic Th1/Th17 cells, which can mediate neuroinflammation in MS. The above scenario may explain why chronic H. pylori infection is positively associated with AD, while it is negatively associated with MS. Lastly, we list "10 pitfalls of microbiota studies", which will be useful for evaluating and designing clinical and experimental microbiota studies.
Collapse
Affiliation(s)
- Ah-Mee Park
- Corresponding author: Ah-Mee Park, Ph.D. and Ikuo Tsunoda, M.D., Ph.D., Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan, Tel: +81-72-366-0221, , ,
| | | | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| |
Collapse
|
45
|
Martín-Álvarez R, Paúl-Fernández N, Palomo V, Gil C, Martínez A, Mengod G. A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J Chem Neuroanat 2017; 80:27-36. [DOI: 10.1016/j.jchemneu.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
|
46
|
Long X, Xie J, Zhao K, Li W, Tang W, Chen S, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice. Med Microbiol Immunol 2016; 205:459-70. [PMID: 27329138 DOI: 10.1007/s00430-016-0459-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/24/2016] [Indexed: 01/18/2023]
Abstract
RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.
Collapse
Affiliation(s)
- Xiaoru Long
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Keting Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Tang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Sisi Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Lijia Wang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
47
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
48
|
Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv Virol 2015; 2015:184241. [PMID: 26693226 PMCID: PMC4676993 DOI: 10.1155/2015/184241] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound.
Collapse
|
49
|
Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem Int 2015; 95:46-54. [PMID: 26522689 DOI: 10.1016/j.neuint.2015.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/08/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation.
Collapse
|
50
|
Paraboschi EM, Cardamone G, Rimoldi V, Gemmati D, Spreafico M, Duga S, Soldà G, Asselta R. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes. Int J Mol Sci 2015; 16:23463-81. [PMID: 26437396 PMCID: PMC4632709 DOI: 10.3390/ijms161023463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Giulia Cardamone
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Donato Gemmati
- Center Haemostasis & Thrombosis, Department of Medical Sciences, Corso Giovecca 203, University of Ferrara, Ferrara 44121, Italy.
| | - Marta Spreafico
- Department of Transfusion Medicine and Hematology, Azienda Ospedaliera della Provincia di Lecco, Alessandro Manzoni Hospital, Via dell'Eremo 9/11, Lecco 23900, Italy.
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|