1
|
Rebollada-Merino A, García-Seco T, Chinchilla B, Pérez-Sancho M, Domínguez L, Rodríguez-Bertos A. Immunopathology of early and advanced epididymis lesions caused by Brucella ovis in rams. Vet Immunol Immunopathol 2023; 261:110621. [PMID: 37348444 DOI: 10.1016/j.vetimm.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Ovine brucellosis is an infectious disease that causes alterations in the reproductive tract in ram and abortion in ewes. Their negative economic impact in ovine production warrants a thorough understanding the interactions between B. ovis and the host. Here, epididymis lesions of rams infected by B. ovis were histopathologically staged into early and advanced. Expression by immunohistochemistry of Brucella antigens, inflammatory cell markers (CD3, CD79αcy) and cytokines (IFN-γ, TNF-α, TGF-β1) was assessed in both stages. Early lesions were characterized by epithelial changes, interstitial inflammation, and mild fibrosis; whereas advanced lesions displayed caseous granulomas containing numerous macrophages, multinucleated giant cells, lymphocytes, and plasma cells. Expression of Brucella antigens were observed in both stages. The cellular response in B. ovis lesions were predominantly of T-cells (CD3+) whereas low numbers of B-cells and plasma cells (CD79αcy+) were present in both early and advanced lesions. IFN-γ was expressed by lymphocytes in early lesions suggesting that the adaptive immune response against B. ovis is initiated by Th1 cells, this response was also preserved in advanced stages. Expression of TNF-α was observed in neutrophils of epithelial microabscesses and intraepithelial T-cells of early lesions suggesting a promotion of neutrophil phagocytosis triggered by TNF-α. On the other hand, advanced lesions showed a reduction of TNF-α expression which may permit B. ovis persistence in granulomas. Lastly, TGF-β1 expression (fibroblast, macrophages and less in lymphocytes) were increased with time, suggesting that B. ovis promotes TGF-β1 secretion promoting chronicity of the lesions.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca Chinchilla
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
2
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
3
|
Mazzitelli I, Bleichmar L, Melucci C, Gerber PP, Toscanini A, Cuestas ML, Diaz FE, Geffner J. High Salt Induces a Delayed Activation of Human Neutrophils. Front Immunol 2022; 13:831844. [PMID: 35720394 PMCID: PMC9204211 DOI: 10.3389/fimmu.2022.831844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.
Collapse
Affiliation(s)
- Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Bleichmar
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Melucci
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Agustina Toscanini
- Microbiología y Parasitología Médica
Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Luján Cuestas
- Microbiología y Parasitología Médica
Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Erra Diaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Consejo Nacional de Investigaciones Cientìficas y Tecnològicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Jorge Geffner,
| |
Collapse
|
4
|
Guo W, Yin G, Liu H, Duan H, Huang Z. Analysis of vascular-associated factors and the prognosis of poorly differentiated hypopharyngeal carcinoma. Oncol Lett 2020; 20:271. [PMID: 32989405 PMCID: PMC7517535 DOI: 10.3892/ol.2020.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to analyze the characteristics of angiogenic factors in patients with hypopharyngeal cancer, and to study the effects of these factors on induction chemotherapy, patient prognosis and survival. Data from 60 eligible patients with hypopharyngeal cancer that were treated between January 2012 and December 2016 were collected retrospectively. The differential expression of angiogenic factors in tumor and peritumoral tissues was analyzed retrospectively to assess the association between five differentially expressed genes, including interleukin (IL)-1β, transforming growth factor (TGF)-β, matrix metalloproteinase-9 (MMP-9), angiopoietin-2 and interferon-inducible T-cell α chemoattractant, and clinicopathological characteristics in different types of chemotherapy-associated blood vessels within samples of poorly differentiated hypopharyngeal cancer. The χ2 test or t-test was used to compare the frequency data, the Kaplan-Meier method was used for survival analysis and the log-rank test was used to compare the Kaplan-Meier curves. P<0.05 was considered to indicate a statistically significant difference. The results of the present study demonstrated that there was a significant difference in the expression levels of vascular-associated factors between hypopharyngeal carcinoma and peritumoral tissues. Additionally, the results revealed a significant difference in the overall survival and prognosis of patients with a decreased vascular classification compared with patients with an unchanged vascular classification, which was assessed using narrowband imaging (NBI) following induction chemotherapy (P<0.05). The results of single factor analysis indicated that IL-1β, TGF-β and MMP-9 were associated with decreased blood vessel classification (P<0.05). In conclusion, IL-1β, TGF-β and MMP-9 may be used as predictors of the effect of induction chemotherapy on poorly differentiated hypopharyngeal cancer. Therefore, when patients with advanced hypopharyngeal cancer undergo chemotherapy, NBI vascular examination and screening for associated vascular factors should be performed before and after chemotherapy. Alterations in vascular classification, assessed using NBI, and abnormal expression of vascular factors may also be used as reference factors for prognosis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongfei Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hanyuan Duan
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
5
|
Pesce Viglietti AI, Giambartolomei GH, Quarleri J, Delpino MV. Brucella abortus Infection Modulates 3T3-L1 Adipocyte Inflammatory Response and Inhibits Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:585923. [PMID: 33071987 PMCID: PMC7531218 DOI: 10.3389/fendo.2020.585923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Arriola Benitez PC, Pesce Viglietti AI, Elizalde MM, Giambartolomei GH, Quarleri JF, Delpino MV. Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection. Pathogens 2020; 9:527. [PMID: 32629846 PMCID: PMC7399813 DOI: 10.3390/pathogens9070527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and -II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| |
Collapse
|
7
|
Arriola Benitez PC, Pesce Viglietti AI, Gomes MTR, Oliveira SC, Quarleri JF, Giambartolomei GH, Delpino MV. Brucella abortus Infection Elicited Hepatic Stellate Cell-Mediated Fibrosis Through Inflammasome-Dependent IL-1β Production. Front Immunol 2020; 10:3036. [PMID: 32038610 PMCID: PMC6985094 DOI: 10.3389/fimmu.2019.03036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023] Open
Abstract
In human brucellosis, the liver is frequently affected. Brucella abortus triggers a profibrotic response on hepatic stellate cells (HSCs) characterized by inhibition of MMP-9 with concomitant collagen deposition and TGF-β1 secretion through type 4 secretion system (T4SS). Taking into account that it has been reported that the inflammasome is necessary to induce a fibrotic phenotype in HSC, we hypothesized that Brucella infection might create a microenvironment that would promote inflammasome activation with concomitant profibrogenic phenotype in HSCs. B. abortus infection induces IL-1β secretion in HSCs in a T4SS-dependent manner. The expression of caspase-1 (Casp-1), absent in melanoma 2 (AIM2), Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) was increased in B. abortus-infected HSC. When infection experiments were performed in the presence of glyburide, a compound that inhibits NLRP3 inflammasome, or A151, a specific AIM2 inhibitor, the secretion of IL-1β was significantly inhibited with respect to uninfected controls. The role of inflammasome activation in the induction of a fibrogenic phenotype in HSCs was determined by performing B. abortus infection experiments in the presence of the inhibitors Ac-YVAD-cmk and glyburide. Both inhibitors were able to reverse the effect of B. abortus infection on the fibrotic phenotype in HSCs. Finally, the role of inflammasome in fibrosis was corroborated in vivo by the reduction of fibrotic patches in liver from B. abortus-infected ASC, NLRP, AIM2, and cCasp-1/11 knock-out (KO) mice with respect to infected wild-type mice.
Collapse
Affiliation(s)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marco Tulio R. Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Giambartolomei GH, Delpino MV. Immunopathogenesis of Hepatic Brucellosis. Front Cell Infect Microbiol 2019; 9:423. [PMID: 31956605 PMCID: PMC6951397 DOI: 10.3389/fcimb.2019.00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023] Open
Abstract
The hepatic immune system can induce rapid and controlled responses to pathogenic microorganisms and tumor cells. Accordingly, most of the microorganisms that reach the liver through the blood are eliminated. However, some of them, including Brucella spp., take advantage of the immunotolerant capacity of the liver to persist in the host. Brucella has a predilection for surviving in the reticuloendothelial system, with the liver being the largest organ of this system in the human body. Therefore, its involvement in brucellosis is practically invariable. In patients with active brucellosis, the liver is commonly affected, and the most frequent clinical manifestation is hepatosplenomegaly. The molecular mechanisms implicated in liver damage have been recently elucidated. It has been demonstrated how Brucella interacts with hepatocytes inducing its death by apoptosis. The inflammatory microenvironment and the direct effect of Brucella on hepatic stellate cells (HSC) induce their activation and turn these cells from its quiescent form to their fibrogenic phenotype. This HSC activation induced by Brucella infection relies on the presence of a functional type IV secretion system and the effector protein BPE005 through a mechanism involved in the activation of the autophagic pathway. Finally, the molecular mechanisms of liver brucellosis observed so far are shedding light on how the interaction of Brucella with liver cells may play an important role in the discovery of new targets to control the infection. In this review, we report the current understanding of the interaction between liver structural cells and immune system cells during Brucella infection.
Collapse
Affiliation(s)
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Miraglia MC, Rodriguez AM, Barrionuevo P, Rodriguez J, Kim KS, Dennis VA, Delpino MV, Giambartolomei GH. Brucella abortus Traverses Brain Microvascular Endothelial Cells Using Infected Monocytes as a Trojan Horse. Front Cell Infect Microbiol 2018; 8:200. [PMID: 29963502 PMCID: PMC6011031 DOI: 10.3389/fcimb.2018.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023] Open
Abstract
Neurobrucellosis is an inflammatory disease caused by the invasion of Brucella spp. to the central nervous system (CNS). The pathogenesis of the disease is not well characterized; however, for Brucella to gain access to the brain parenchyma, traversing of the blood-brain barrier (BBB) must take place. To understand the CNS determinants of the pathogenesis of B. abortus, we have used the in vitro BBB model of human brain microvascular endothelial cells (HBMEC) to study the interactions between B. abortus and brain endothelial cells. In this study, we showed that B. abortus is able to adhere and invade HBMEC which was dependent on microtubules, microfilaments, endosome acidification and de novo protein synthesis. After infection, B. abortus rapidly escapes the endosomal compartment of HBMEC and forms a replicative Brucella-containing vacuole that involves interactions with the endoplasmic reticulum. Despite the ability of B. abortus to invade and replicate in HBMEC, the bacterium was unable by itself to traverse HBMEC, but could traverse polarized HBMEC monolayers within infected monocytes. Importantly, infected monocytes that traversed the HBMEC monolayer were a bacterial source for de novo infection of glial cells. This is the first demonstration of the mechanism whereby B. abortus is able to traverse the BBB and infect cells of the CNS. These results may have important implications in our understanding of the pathogenesis of neurobrucellosis.
Collapse
Affiliation(s)
- María C. Miraglia
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana M. Rodriguez
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Julia Rodriguez
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kwang S. Kim
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, Dennis VA, Comerci DJ, Giambartolomei GH, Delpino MV. Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infect Immun 2018; 86:e00522-17. [PMID: 28993461 PMCID: PMC5736806 DOI: 10.1128/iai.00522-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 01/18/2023] Open
Abstract
The liver is frequently affected in patients with active brucellosis. The present study demonstrates that Brucella abortus infection induces the activation of the autophagic pathway in hepatic stellate cells to create a microenvironment that promotes a profibrogenic phenotype through the induction of transforming growth factor-β1 (TGF-β1), collagen deposition, and inhibition of matrix metalloproteinase-9 (MMP-9) secretion. Autophagy was revealed by upregulation of the LC3II/LC3I ratio and Beclin-1 expression as well as inhibition of p62 expression in infected cells. The above-described findings were dependent on the type IV secretion system (VirB) and the secreted BPE005 protein, which were partially corroborated using the pharmacological inhibitors wortmannin, a phosphatidyl inositol 3-kinase inhibitor, and leupeptin plus E64 (inhibitors of lysosomal proteases). Activation of the autophagic pathway in hepatic stellate cells during Brucella infection could have an important contribution to attenuating inflammatory hepatic injury by inducing fibrosis. However, with time, B. abortus infection induced Beclin-1 cleavage with concomitant cleavage of caspase-3, indicating the onset of apoptosis of LX-2 cells, as was confirmed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay and Hoechst staining. These results demonstrate that the cross talk of LX-2 cells and B. abortus induces autophagy and fibrosis with concomitant apoptosis of LX-2 cells, which may explain some potential mechanisms of liver damage observed in human brucellosis.
Collapse
Affiliation(s)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Karina Herrmann
- Instituto de Investigaciones Biotecnológicas, Dr. Rodolfo A. Ugalde (IIB-INTECH), CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, USA
| | - Diego José Comerci
- Instituto de Investigaciones Biotecnológicas, Dr. Rodolfo A. Ugalde (IIB-INTECH), CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Díaz FE, Dantas E, Cabrera M, Benítez CA, Delpino MV, Duette G, Rubione J, Sanjuan N, Trevani AS, Geffner J. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile. Cell Death Dis 2016; 7:e2437. [PMID: 27787523 PMCID: PMC5133997 DOI: 10.1038/cddis.2016.337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/03/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis, limiting their deleterious potential. However, this tightly regulated cell death program can be modulated by pathogen-associated molecular patterns (PAMPs), danger-associated molecular pattern (DAMPs), and inflammatory cytokines. We have previously reported that low pH, a hallmark of inflammatory processes and solid tumors, moderately delays neutrophil apoptosis. Here we show that fever-range hyperthermia accelerates the rate of neutrophil apoptosis at neutral pH but markedly increases neutrophil survival induced by low pH. Interestingly, an opposite effect was observed in lymphocytes; hyperthermia plus low pH prevents lymphocyte activation and promotes the death of lymphocytes and lymphoid cell lines. Analysis of the mechanisms through which hyperthermia plus low pH increased neutrophil survival revealed that hyperthermia further decreases cytosolic pH induced by extracellular acidosis. The fact that two Na+/H+ exchanger inhibitors, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and amiloride, reproduced the effects induced by hyperthermia suggested that it prolongs neutrophil survival by inhibiting the Na+/H+ antiporter. The neutrophil anti-apoptotic effect induced by PAMPs, DAMPs, and inflammatory cytokines usually leads to the preservation of the major neutrophil effector functions such as phagocytosis and reactive oxygen species (ROS) production. In contrast, our data revealed that the anti-apoptotic effect induced by low pH and hyperthermia induced a functional profile characterized by a low phagocytic activity, an impairment in ROS production and a high ability to suppress T-cell activation and to produce the angiogenic factors VEGF, IL-8, and the matrix metallopeptidase 9 (MMP-9). These results suggest that acting together fever and local acidosis might drive the differentiation of neutrophils into a profile able to promote both cancer progression and tissue repair during the late phase of inflammation, two processes that are strongly dependent on the local production of angiogenic factors by infiltrating immune cells.
Collapse
Affiliation(s)
- Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Dantas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maia Cabrera
- Instituto de Investigaciones Farmacológicas (ININFA), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Constanza A Benítez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Duette
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norberto Sanjuan
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía S Trevani
- Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun 2016; 84:598-606. [PMID: 26667834 PMCID: PMC4730569 DOI: 10.1128/iai.01227-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Rey Serantes
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH-UNSAM-CONICET), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Karina Herrmann
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH-UNSAM-CONICET), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego José Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH-UNSAM-CONICET), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Lv P, Meng Q, Liu J, Wang C. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1. Yonsei Med J 2015; 56:1572-81. [PMID: 26446639 PMCID: PMC4630045 DOI: 10.3349/ymj.2015.56.6.1572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/08/2014] [Accepted: 12/15/2014] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. MATERIALS AND METHODS Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl₄) three times weekly for 8 weeks. Then CCl₄ was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. RESULTS Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. CONCLUSION Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats.
Collapse
Affiliation(s)
- Peng Lv
- Department of Gastroenterology, Jining First People's Hospital, Jining, China.
| | - Qingshun Meng
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| | - Jie Liu
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| | - Chuanfang Wang
- Department of Gastroenterology, Jining First People's Hospital, Jining, China
| |
Collapse
|