1
|
Williams KJ. Eradicating Atherosclerotic Events by Targeting Early Subclinical Disease: It Is Time to Retire the Therapeutic Paradigm of Too Much, Too Late. Arterioscler Thromb Vasc Biol 2024; 44:48-64. [PMID: 37970716 DOI: 10.1161/atvbaha.123.320065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Recent decades have seen spectacular advances in understanding and managing atherosclerotic cardiovascular disease, but paradoxically, clinical progress has stalled. Residual risk of atherosclerotic cardiovascular disease events is particularly vexing, given recognized lifestyle interventions and powerful modern medications. Why? Atherosclerosis begins early in life, yet clinical trials and mechanistic studies often emphasize terminal, end-stage plaques, meaning on the verge of causing heart attacks and strokes. Thus, current clinical evidence drives us to emphasize aggressive treatments that are delayed until patients already have advanced arterial disease. I call this paradigm "too much, too late." This brief review covers exciting efforts that focus on preventing, or finding and treating, arterial disease before its end-stage. Also included are specific proposals to establish a new evidence base that could justify intensive short-term interventions (induction-phase therapy) to treat subclinical plaques that are early enough perhaps to heal. If we can establish that such plaques are actionable, then broad screening to find them in early midlife individuals would become imperative-and achievable. You have a lump in your coronaries! can motivate patients and clinicians. We must stop thinking of a heart attack as a disease. The real disease is atherosclerosis. In my opinion, an atherosclerotic heart attack is a medical failure. It is a manifestation of longstanding arterial disease that we had allowed to progress to its end-stage, despite knowing that atherosclerosis begins early in life and despite the availability of remarkably safe and highly effective therapies. The field needs a transformational advance to shift the paradigm out of end-stage management and into early interventions that hold the possibility of eradicating the clinical burden of atherosclerotic cardiovascular disease, currently the biggest killer in the world. We urgently need a new evidence base to redirect our main focus from terminal, end-stage atherosclerosis to earlier, and likely reversible, human arterial disease.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Department of Cardiovascular Sciences, Department of Medicine, Lewis Katz School of Medicine at Temple University, PA
| |
Collapse
|
2
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Carlos Kusano Bucalen F. Antioxidant and anti-atherosclerotic potential of Banana ( Musa spp): A review of biological mechanisms for prevention and protection against atherosclerosis. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:240-254. [PMID: 37655002 PMCID: PMC10465879 DOI: 10.22038/ajp.2022.20616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/28/2021] [Indexed: 09/02/2023]
Abstract
Objective To review the antioxidant and anti-atherosclerotic potential of whole banana, banana flour, and its bioactive compounds. Materials and Methods A non-systematic review of the literature covering the past 20 years, using the following databases and searching bases: PUBMED/MEDLINE: https://www.ncbi.nlm.nih.gov/pubmed/; Google Scholar: https://scholar.google.com.br/; and "Literatura Latinoamericana em Ciências da Saúde"/Latin American Literature in Life Sciences [LILACS]: http://lilacs.bvsalud.org/, was done. Studies with incomplete methodology and design were excluded. Results Bananas from different species are a good source of carbohydrates, dietary fiber, proteins, polyunsaturated fatty acids, potassium, carotenoids, flavonoids, vitamin C and E, phytosterols, gallocatechin, catechin, and other polyphenols. Some of these compounds play trigger important biological roles as antioxidants or anti-atherosclerotic and cardiovascular protective substances. This review summarizes and explains thirteen protective biological mechanisms of banana bioactive compounds and banana products. Conclusion Including banana and its products in dietary menus, in food products and nutraceuticals should improve cardiovascular health of the populations.
Collapse
Affiliation(s)
- Ferrari Carlos Kusano Bucalen
- Institute of Biological and Health Sciences (ICBS), Federal University of Mato Grosso (UFMT), Barra do Garças, Brazil
| |
Collapse
|
4
|
Ramasamy R, Shekhtman A, Schmidt AM. The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms23094579. [PMID: 35562970 PMCID: PMC9102165 DOI: 10.3390/ijms23094579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA;
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Correspondence:
| |
Collapse
|
5
|
Bouchareychas L, Duong P, Phu TA, Alsop E, Meechoovet B, Reiman R, Ng M, Yamamoto R, Nakauchi H, Gasper WJ, Van Keuren-Jensen K, Raffai RL. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis. iScience 2021; 24:102847. [PMID: 34381972 PMCID: PMC8333149 DOI: 10.1016/j.isci.2021.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Laura Bouchareychas
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Phat Duong
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Eric Alsop
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Bessie Meechoovet
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Rebecca Reiman
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Warren J. Gasper
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| | | | - Robert L. Raffai
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| |
Collapse
|
6
|
Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab 2021; 33:1519-1545. [PMID: 34289375 PMCID: PMC8411849 DOI: 10.1016/j.cmet.2021.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Despite the decades-old knowledge that diabetes mellitus is a major risk factor for cardiovascular disease, the reasons for this association are only partially understood. While this association is true for both type 1 and type 2 diabetes, different pathophysiological processes may be responsible. Lipids and other risk factors are indeed important, whereas the role of glucose is less clear. This lack of clarity stems from clinical trials that do not unambiguously show that intensive glycemic control reduces cardiovascular events. Animal models have provided mechanisms that link diabetes to increased atherosclerosis, and evidence consistent with the importance of factors beyond hyperglycemia has emerged. We review clinical, pathological, and animal studies exploring the pathogenesis of atherosclerosis in humans living with diabetes and in mouse models of diabetes. An increased effort to identify risk factors beyond glucose is now needed to prevent the increased cardiovascular disease risk associated with diabetes.
Collapse
Affiliation(s)
- Robert H Eckel
- Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
López-Díez R, Egaña-Gorroño L, Senatus L, Shekhtman A, Ramasamy R, Schmidt AM. Diabetes and Cardiovascular Complications: The Epidemics Continue. Curr Cardiol Rep 2021; 23:74. [PMID: 34081211 PMCID: PMC8173334 DOI: 10.1007/s11886-021-01504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The cardiovascular complications of type 1 and 2 diabetes are major causes of morbidity and mortality. Extensive efforts have been made to maximize glycemic control; this strategy reduces certain manifestations of cardiovascular complications. There are drawbacks, however, as intensive glycemic control does not impart perennial protective benefits, and these efforts are not without potential adverse sequelae, such as hypoglycemic events. RECENT FINDINGS Here, the authors have focused on updates into key areas under study for mechanisms driving these cardiovascular disorders in diabetes, including roles for epigenetics and gene expression, interferon networks, and mitochondrial dysfunction. Updates on the cardioprotective roles of the new classes of hyperglycemia-targeting therapies, the sodium glucose transport protein 2 inhibitors and the agonists of the glucagon-like peptide 1 receptor system, are reviewed. In summary, insights from ongoing research and the cardioprotective benefits of the newer type 2 diabetes therapies are providing novel areas for therapeutic opportunities in diabetes and CVD.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, Science Building, Room 615, New York, NY 10016 USA
| |
Collapse
|
8
|
Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. IMMUNOMETABOLISM 2021; 3:e210024. [PMID: 34178389 PMCID: PMC8232874 DOI: 10.20900/immunometab20210024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michaele B. Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Henry H. Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robin Wilson
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Paul F. Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Abstract
The development of potent cholesterol-reducing medications in the last decade of the twentieth century has altered the approach to prevention and treatment of cardiovascular disease (CVD). Initial experience with statins, and more recently with the addition of PCSK9 inhibitors, has proven that human CVD, like that in animal models, can be halted and regressed. Available clinical data show that the lower the achieved level of low-density lipoprotein cholesterol, the greater the regression of disease. Investigative studies are now aimed to understand those factors that both accelerate and impede this healing process. Some of these are likely to be modifiable, and the future of atherosclerotic CVD treatment is likely to be early screening, use of measures to repair atherosclerotic arteries, and prevention of most CVD events.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| | - Gaurav Sharma
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
10
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
11
|
Josefs T, Barrett TJ, Brown EJ, Quezada A, Wu X, Voisin M, Amengual J, Fisher EA. Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight 2020; 5:134796. [PMID: 32191637 DOI: 10.1172/jci.insight.134796] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophil extracellular traps (NETs) promote inflammation and atherosclerosis progression. NETs are increased in diabetes and impair the resolution of inflammation during wound healing. Atherosclerosis resolution, a process resembling wound healing, is also impaired in diabetes. Thus, we hypothesized that NETs impede atherosclerosis resolution in diabetes by increasing plaque inflammation. Indeed, transcriptomic profiling of plaque macrophages from NET+ and NET- areas in low-density lipoprotein receptor-deficient (Ldlr-/-) mice revealed inflammasome and glycolysis pathway upregulation, indicating a heightened inflammatory phenotype. We found that NETs declined during atherosclerosis resolution, which was induced by reducing hyperlipidemia in nondiabetic mice, but they persisted in diabetes, exacerbating macrophage inflammation and impairing resolution. In diabetic mice, deoxyribonuclease 1 treatment reduced plaque NET content and macrophage inflammation, promoting atherosclerosis resolution after lipid lowering. Given that humans with diabetes also exhibit impaired atherosclerosis resolution with lipid lowering, these data suggest that NETs contribute to the increased cardiovascular disease risk in this population and are a potential therapeutic target.
Collapse
Affiliation(s)
- Tatjana Josefs
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Emily J Brown
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Alexandra Quezada
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Xiaoyun Wu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Maud Voisin
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA.,Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Yu X, Guan W, Zhang Y, Deng Q, Li J, Ye H, Deng S, Han W, Yu Y. Large-scale gene analysis of rabbit atherosclerosis to discover new biomarkers for coronary artery disease. Open Biol 2020; 9:180238. [PMID: 30958112 PMCID: PMC6367139 DOI: 10.1098/rsob.180238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is the pathological basis of coronary artery disease (CAD) and causes high mortality. Thus, early detection is thought to be crucial in reducing the risk of CAD. Uncovering the mechanisms of the progression and regression of atherosclerosis will provide insights into discovering novel biomarkers to identify subjects at risk for CAD and improve prevention. We established atherosclerosis progression and regression in a rabbit model. Then, we extracted mRNA of the abdominal aorta from control, model and recovery groups to perform gene chip analysis. Candidate biomarkers were screened by large-scale gene analysis and validated in patients with CAD or with CAD recovery by ELISA. The differentially expressed genes in the progression and regression of atherosclerosis were mainly enriched in four clusters. Genes associated with inflammation and extracellular matrix were returned to normal or close-to-normal levels much earlier than genes associated with metabolism and sarcoplasmic proliferation, and they were maintained downregulated or upregulated after feeding a normal diet. We then selected four candidate biomarkers and found that lipoprotein lipase (LPL), bone morphogenetic protein 7 and somatostatin concentrations could indicate CAD diagnosis. In addition, LPL and macrophage cationic peptide 2 can be indicators of the prognosis of CAD. Molecular changes during the progression and regression of atherosclerosis in rabbits were revealed, and candidate regulators were identified. The identified factors could be used as novel biomarkers and targets for improving the diagnosis and prognosis of human CAD in the future.
Collapse
Affiliation(s)
- Xiaolan Yu
- 1 Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Wen Guan
- 3 Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University , GuangZhou , People's Republic of China
| | - Yang Zhang
- 1 Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Qing Deng
- 1 Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jingjing Li
- 2 Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hao Ye
- 2 Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Shaorong Deng
- 2 Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Wei Han
- 2 Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yan Yu
- 1 Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
13
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
14
|
Barrett TJ, Distel E, Murphy AJ, Hu J, Garshick MS, Ogando Y, Liu J, Vaisar T, Heinecke JW, Berger JS, Goldberg IJ, Fisher EA. Apolipoprotein AI) Promotes Atherosclerosis Regression in Diabetic Mice by Suppressing Myelopoiesis and Plaque Inflammation. Circulation 2019; 140:1170-1184. [PMID: 31567014 PMCID: PMC6777860 DOI: 10.1161/circulationaha.119.039476] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Despite robust cholesterol lowering, cardiovascular disease risk remains increased in patients with diabetes mellitus. Consistent with this, diabetes mellitus impairs atherosclerosis regression after cholesterol lowering in humans and mice. In mice, this is attributed in part to hyperglycemia-induced monocytosis, which increases monocyte entry into plaques despite cholesterol lowering. In addition, diabetes mellitus skews plaque macrophages toward an atherogenic inflammatory M1 phenotype instead of toward the atherosclerosis-resolving M2 state typical with cholesterol lowering. Functional high-density lipoprotein (HDL), typically low in patients with diabetes mellitus, reduces monocyte precursor proliferation in murine bone marrow and has anti-inflammatory effects on human and murine macrophages. Our study aimed to test whether raising functional HDL levels in diabetic mice prevents monocytosis, reduces the quantity and inflammation of plaque macrophages, and enhances atherosclerosis regression after cholesterol lowering. METHODS Aortic arches containing plaques developed in Ldlr-/- mice were transplanted into either wild-type, diabetic wild-type, or diabetic mice transgenic for human apolipoprotein AI, which have elevated functional HDL. Recipient mice all had low levels of low-density lipoprotein cholesterol to promote plaque regression. After 2 weeks, plaques in recipient mouse aortic grafts were examined. RESULTS Diabetic wild-type mice had impaired atherosclerosis regression, which was normalized by raising HDL levels. This benefit was linked to suppressed hyperglycemia-driven myelopoiesis, monocytosis, and neutrophilia. Increased HDL improved cholesterol efflux from bone marrow progenitors, suppressing their proliferation and monocyte and neutrophil production capacity. In addition to reducing circulating monocytes available for recruitment into plaques, in the diabetic milieu, HDL suppressed the general recruitability of monocytes to inflammatory sites and promoted plaque macrophage polarization to the M2, atherosclerosis-resolving state. There was also a decrease in plaque neutrophil extracellular traps, which are atherogenic and increased by diabetes mellitus. CONCLUSIONS Raising apolipoprotein AI and functional levels of HDL promotes multiple favorable changes in the production of monocytes and neutrophils and in the inflammatory environment of atherosclerotic plaques of diabetic mice after cholesterol lowering and may represent a novel approach to reduce cardiovascular disease risk in people with diabetes mellitus.
Collapse
Affiliation(s)
- Tessa J. Barrett
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Emilie Distel
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| | - Michael S. Garshick
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Yoscar Ogando
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jianhua Liu
- Department of Surgery, Mount Sinai School of Medicine, New York, NY, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle
| | - Jay W. Heinecke
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle
| | - Jeffrey S. Berger
- Department of Medicine, Divisions of Cardiology and Hematology, Department of Surgery, Division of Vascular Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Microbiology and Immunology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Parsons C, Agasthi P, Mookadam F, Arsanjani R. Reversal of coronary atherosclerosis: Role of life style and medical management. Trends Cardiovasc Med 2018; 28:524-531. [DOI: 10.1016/j.tcm.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/26/2022]
|
16
|
Yuan C, Hu J, Parathath S, Grauer L, Cassella CB, Bagdasarov S, Goldberg IJ, Ramasamy R, Fisher EA. Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes 2018; 67:1880-1891. [PMID: 29891593 PMCID: PMC6110315 DOI: 10.2337/db18-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
Abstract
Guidelines to reduce cardiovascular risk in diabetes include aggressive LDL lowering, but benefits are attenuated compared with those in patients without diabetes. Consistent with this, we have reported in mice that hyperglycemia impaired atherosclerosis regression. Aldose reductase (AR) is thought to contribute to clinical complications of diabetes by directing glucose into pathways producing inflammatory metabolites. Mice have low levels of AR, thus raising them to human levels would be a more clinically relevant model to study changes in diabetes under atherosclerosis regression conditions. Donor aortae from Western diet-fed Ldlr-/- mice were transplanted into normolipidemic wild-type, Ins2Akita (Akita+/- , insulin deficient), human AR (hAR) transgenic, or Akita+/- /hAR mice. Akita+/- mice had impaired plaque regression as measured by changes in plaque size and the contents of CD68+ cells (macrophages), lipids, and collagen. Supporting synergy between hyperglycemia and hAR were the even more pronounced changes in these parameters in Akita+/- /hAR mice, which had atherosclerosis progression in spite of normolipidemia. Plaque CD68+ cells from the Akita+/- /hAR mice had increased oxidant stress and expression of inflammation-associated genes but decreased expression of anti-inflammatory genes. In summary, hAR expression amplifies impaired atherosclerosis regression in diabetic mice, likely by interfering with the expected reduction in plaque macrophage inflammation.
Collapse
MESH Headings
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Aorta/physiopathology
- Aorta/transplantation
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diet, Western/adverse effects
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Humans
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidative Stress
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/physiopathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Chujun Yuan
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY
| | - Saj Parathath
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Lisa Grauer
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Courtney Blachford Cassella
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Svetlana Bagdasarov
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ira J Goldberg
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ravichandran Ramasamy
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Edward A Fisher
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
17
|
Ceron CS, Baligand C, Joshi S, Wanga S, Cowley PM, Walker JP, Song SH, Mahimkar R, Baker AJ, Raffai RL, Wang ZJ, Lovett DH. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F1166-F1183. [PMID: 28331061 PMCID: PMC5495883 DOI: 10.1152/ajprenal.00461.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - Sunil Joshi
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Shaynah Wanga
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Patrick M Cowley
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Joy P Walker
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Sang Heon Song
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Anthony J Baker
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Zhen J Wang
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California;
| |
Collapse
|
18
|
Liu C, Zhang Y, Ding D, Li X, Yang Y, Li Q, Zheng Y, Wang D, Ling W. Cholesterol efflux capacity is an independent predictor of all-cause and cardiovascular mortality in patients with coronary artery disease: A prospective cohort study. Atherosclerosis 2015; 249:116-24. [PMID: 27088866 DOI: 10.1016/j.atherosclerosis.2015.10.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/13/2015] [Accepted: 10/31/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although diminished cholesterol efflux capacity is positively related with prevalent coronary artery disease, its prognostic value for incident cardiovascular events remains a topic of debate. This work aims to investigate the association between cholesterol efflux capacity and all-cause and cardiovascular mortality in patients with coronary artery disease. METHODS AND RESULTS We measured cholesterol efflux capacity at baseline in 1737 patients with coronary artery disease from the Guangdong Coronary Artery Disease Cohort. During 6645 person-years of follow-up, 166 deaths were registered, 122 of which were caused by cardiovascular diseases. After multivariate adjustment for factors related to cardiovascular diseases, the hazard ratios of cholesterol efflux capacity in the fourth quartile compared with those in the bottom quartile were 0.24 (95% confidence intervals 0.13-0.44) for all-cause mortality (P < 0.001), and 0.17 (95% confidence intervals 0.08-0.39) for cardiovascular mortality (P < 0.001). Adding cholesterol efflux capacity to a model containing traditional cardiovascular risk factors significantly increases its discriminatory power and predictive ability for all-cause (area under receiver operating characteristic curve 0.79 versus 0.76, P = 0.001; net reclassification improvement 14.5%, P = 0.001; integrated discrimination improvement 0.016, P < 0.001) and cardiovascular (area under receiver operating characteristic curve 0.81 versus 0.78, P = 0.001; net reclassification improvement 18.4%, P < 0.001; integrated discrimination improvement 0.015, P < 0.001) death, respectively. CONCLUSIONS Cholesterol efflux capacity may serve as an independent measure for predicting all-cause and cardiovascular mortality in patients with coronary artery disease.
Collapse
Affiliation(s)
- Chaoqun Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Zhang
- Department of Cardiology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangdong, China
| | - Ding Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinrui Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunou Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanzhu Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Willecke F, Yuan C, Oka K, Chan L, Hu Y, Barnhart S, Bornfeldt KE, Goldberg IJ, Fisher EA. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice. PLoS One 2015; 10:e0128996. [PMID: 26046657 PMCID: PMC4457481 DOI: 10.1371/journal.pone.0128996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/04/2015] [Indexed: 12/23/2022] Open
Abstract
We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ)-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Cholesterol, Dietary/administration & dosage
- Collagen/genetics
- Collagen/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors
- Hyperglycemia/complications
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Hyperglycemia/therapy
- Insulin Resistance
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plaque, Atherosclerotic/complications
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/therapy
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Streptozocin
Collapse
Affiliation(s)
- Florian Willecke
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Chujun Yuan
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - Lawrence Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Shelley Barnhart
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington 98109, United States of America
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington 98109, United States of America
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York 10016, United States of America
- * E-mail: (EAF); (IJG)
| | - Edward A. Fisher
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
- * E-mail: (EAF); (IJG)
| |
Collapse
|