1
|
Ahmadi S, Alikamali M, Nezhadi J, Ghotaslou R. The relationship between gut microbiota and preterm premature rupture of membranes: Mechanisms of action and clinical applications. Microb Pathog 2025; 205:107673. [PMID: 40339623 DOI: 10.1016/j.micpath.2025.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Preterm Premature Rupture of Membrane (PPROM) constitutes a prevalent obstetric complication that markedly heightens the risk of neonatal mortality and low birth weight, while also potentially impacting the psychological well-being of the mother. Despite established associations between PPROM and various underlying medical conditions or lifestyle factor, a definitive treatment strategy continues to remain unattainable. Contemporary research indicates that dysbiosis of the gut microbiome may play a significant role in the pathogenesis of PPROM. Consequently, this study endeavors to gather recent findings related to the mechanisms underlying intestinal dysbiosis in relation to PPROM. It aims to offer novel insights into this critical issue. An increasing amount of evidence suggests that specific intestinal bacteria have the capacity to translocate into the vascular system and the amniotic cavity during pregnancy. This happens as a consequence of imbalances or dysbiosis within the gut microbiota. This translocation may be facilitated by the presence of bacteria within the amniotic cavity, modifications in the vaginal microbiota, and activation of the Hypothalamus-Pituitary-Adrenal (HPA) axis, which initiates a physiological cascade that accelerates the progression of PPROM. In light of these findings, the preservation of gut microbial homeostasis, particularly through the application of probiotics or dietary modifications, may serve to alleviate the detrimental effects of dysbiosis on PPROM.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Javad Nezhadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bush B, Richardson LS, Radnaa E, Behnia F, Jacob J, Lintao RCV, Menon R. Do progesterone receptor membrane components (PGRMC)s play a role in the chorions refractoriness to epithelial-to-mesenchymal transition (EMT)? J Reprod Immunol 2025; 169:104463. [PMID: 39999661 DOI: 10.1016/j.jri.2025.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Fetal membrane inflammation is one of the drivers of adverse pregnancy outcomes. One of the reported pathways of inflammation is epithelial-mesenchymal transition (EMT) of amniotic epithelial cells. EMT is resisted during gestation via signaling initiated by the binding of progesterone (P4) to progesterone receptor membrane components (PGRMC1/PGRMC2). The vulnerability of chorionic trophoblast cells (CTCs) to transition has not been studied. Here, we examined CTCs EMT in response to the stressors and the role of PGRMC1/PGRMC2. CTCs were treated with the autophagy inhibitor bafilomycin (Baf), transforming growth factor beta (TGF-β, EMT-inducer), and lipopolysaccharide (LPS) to simulate cellular stressors associated with an adverse pregnancy environment. The primary endpoints included morphological evidence of EMT, N-cadherin-to-E-cadherin ratio, vimentin/cytokeratin staining, pro-inflammatory cytokine and P4 production. PGRMC1/PGRMC2 knock-out (KO) CTCs were prepared using CRISPR/Cas9, and experiments were repeated to test the influence of the P4-PGRMC axis. Wild-type CTCs were resistant to cellular transitions, changes in P4 production, and shifts in the inflammatory status under normal, LPS, or TGF-β conditions. Autophagy inhibition tended to cause CTCs to transition (morphological changes; high N-cadherin-to-E-cadherin ratio [p < 0.05], no change in vimentin/cytokeratin), though a complete transition was not evident. Further, neither PGRMC1/PGRMC2 played a role in CTC cellular transitions, as their KO did not cause any major changes. Chorion cells resist EMT to minimize inflammation and to maintain their barrier functions regardless of the presence of PGRMC1/ PGRMC2. Cellular stressors or infectious antigens are likely to impact the amnion, where membrane weakening can be initiated.
Collapse
Affiliation(s)
- B Bush
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - L S Richardson
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - E Radnaa
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - F Behnia
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - J Jacob
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - R C V Lintao
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Institute of Reproductive Health, National Institutes of Health, University of the c Manila, Philippines
| | - R Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA.
| |
Collapse
|
3
|
Mushimiyimana I, Richardison L, Kammala AK, Menon R. Exposure to Extreme Heat Increases Preterm Birth Risk: Hypothetical Pathophysiological Mechanisms. Bioessays 2025:e70020. [PMID: 40357832 DOI: 10.1002/bies.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Preterm birth (PTB), delivery before 37 weeks of gestation, is the leading cause of neonatal mortality globally, accounting for nearly half of all neonatal deaths. While numerous established risk factors for PTB have been identified, ongoing research continues to elucidate additional contributing factors. Epidemiological studies increasingly demonstrate that elevated ambient temperature is an environmental risk factor for PTB, with odds increasing 16% during heat waves and 5% per 1°C temperature rise. This is particularly concerning given escalating global warming trends. While maternal heat susceptibility during pregnancy may be linked to compromised thermoregulation from gestational adaptations, the exact pathophysiological mechanisms leading to heat-associated PTB remain unclear, hindering therapeutic development. This review proposes multitudes potential pathophysiologic mechanisms leading to PTB that can be induced by heat. They include but are not limited to metabolic derangement, mitochondria dysfunction, inflammation, endothelial dysfunction, oxidative stress, and change in cell fate. These mechanisms are derived from integrated knowledge of pregnancy physiology, parturition processes, and temperature effects on physiological pathways. We also outline future experimental approaches to test these hypotheses.
Collapse
Affiliation(s)
- Isidore Mushimiyimana
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardison
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
4
|
Siwakoti RC, Rosario-Pabon Z, Vélez Vega CM, Hao W, Alshawabkeh A, Cordero JF, Watkins DJ, Meeker JD. Assessment of per- and polyfluoroalkyl substances (PFAS) exposure and associations with oxidative stress biomarkers among pregnant women from the PROTECT cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179130. [PMID: 40112543 PMCID: PMC11956163 DOI: 10.1016/j.scitotenv.2025.179130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals linked with adverse pregnancy outcomes, yet they remain understudied in Puerto Rico. Moreover, underlying biological mechanisms of PFAS are not fully understood, although oxidative stress and inflammation are suspected pathways. OBJECTIVES We aimed to characterize PFAS exposure among pregnant women in Puerto Rico and examine associations between early to mid-pregnancy PFAS concentrations and repeated measures of oxidative stress biomarkers. METHODS This study included 434 participants enrolled in the PROTECT birth cohort. We analyzed serum samples (∼18 weeks of gestation) for nine PFAS, while urinary oxidative stress biomarkers [8-isoprostaglandin F2α (8-IsoP), its metabolite (IsoP-M), and prostaglandin F₂α (PGF2α)] were measured up to three times during pregnancy. We examined associations between each PFAS and oxidative stress biomarker using linear mixed effects regression models and multivariable regression analyses, adjusting for maternal demographic, socioeconomic, and study-related factors. RESULTS PFOS, PFNA, PFHxS, and PFOA were detected in over 50 % of participants, with PFOS being the most dominant. The majority of participants had total PFAS levels above 2 ng/mL. In repeated measures analyses, an interquartile range increase in PFHxS was associated with a 5.35 % (95 % CI: 0.12, 10.86) rise in IsoP-M levels. In categorical analyses, moderate levels of PFOS and PFNA were positively associated with PGF2α, while higher PFDeA was suggestively linked to 8-IsoP and IsoP-M. CONCLUSIONS Despite relatively modest levels compared to the U.S. NHANES, certain PFAS were positively linked with oxidative stress or inflammation, highlighting the need for broader investigations to examine PFAS-related alteration of inflammatory processes during pregnancy.
Collapse
Affiliation(s)
| | - Zaira Rosario-Pabon
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | - Carmen M Vélez Vega
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | - Wei Hao
- University of Michigan, Ann Arbor, MI 48105, USA
| | | | | | | | | |
Collapse
|
5
|
Sharma S, Vidal M, Paul S, Han A, Menon R, Richardson LS. The effect of Polybrominated diphenyl ethers at the fetal blood-brain-barrier: evaluation using a microphysiological system. Front Cell Dev Biol 2025; 13:1543710. [PMID: 40143972 PMCID: PMC11937018 DOI: 10.3389/fcell.2025.1543710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background Glutamate dysregulation leading to neuronal excitotoxicity and neuroinflammation are associated with neurological disorders, specifically autism spectrum disorders (ASD) in preterm neonates. The lack of physiologically relevant in vitro models has limited mechanistic understanding of glutamate dysregulation and neuroinflammation during pregnancy. This study evaluated the effect of environmental pollutant and flame retardant, Polybrominated Diphenyl Ethers (PBDE) 99 and 47, on cell viability, glutamate dysregulation, and neuroinflammation using a microphysiologic system (MPS) of human fetal blood-brain-barrier organ on a chip (FB-OOC). Methods The FB-OOC is composed of 3-cell culture chambers, connected by microchannels, containing 1) human brain microvessel endothelial cells (HBMEC), 2) human vascular pericytes (HBVP), and 3) a triculture of neurons, astrocytes, and microglia in a 5:2:1 ratio, respectively. To assess the effect of toxicants on glutamate dysregulation and neuroinflammation, control (standard media) endothelial cells were exposed to PBDE 99 and 47 (150 ng/mL). To mimic the passage of PBDE through the placenta, endothelial cells in FB-OOC were exposed to conditioned PDBE media (1:1) derived from a placenta-OOC. In parallel, triculture cells were directly treated in a 96-well plate. Dextran propagation over 72 h confirmed FB barrier function. The activation status of microglia was determined using immunocytochemistry for CD11 b and Iba1, respectively. Cell morphology (microscopy), cell cytotoxicity (Lactate Dehydrogenase and glutamate assays), and cytokines (multiplex assay) were measured. Results Physiologic FB-OOCs were characterized by 1) viable cell cultures expressing standard cell morphologies and cell-specific markers, 2) barrier formation confirmed by decreased dextran propagation over 72 h, and 3) baseline glutamate and pro-inflammatory cytokine production. On-chip PBDE and placenta-derived metabolites of PBDE treatment in the endothelial chamber induced cell cytotoxicity and significant upregulation of glutamate in the triculture but did not induce neuroinflammation nor microglia activation compared to the controls. Conversely, 2D triculture experiments showed direct PBDE treatment-induced significant neuroinflammation (TNF-α, GM-CSF, IL-8) compared to PBDE placenta-derived metabolites or controls. Conclusion This study established an FB model that recreated intercellular interactions. We report PBDE-induced glutamate dysregulation, often associated with the development of ASD, independent of neuroinflammation.
Collapse
Affiliation(s)
- Sourabh Sharma
- Division of Basic Science and Translational Research, OBGYN Department, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Manuel Vidal
- College of Medicine, San Beda University, Manila, Philippines
- Department of Chemistry, College of Science, De La Salle University Manila, Manila, Philippines
| | - Souvik Paul
- Division of Basic Science and Translational Research, OBGYN Department, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Arum Han
- Department of Electrical Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, OBGYN Department, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, OBGYN Department, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
6
|
Flores-Espinosa P, Menon R, Kammala A, Richardson LS. Lead exposure at the feto-maternal interface: a cause for concern for fetal membrane trophoblasts. Toxicol Sci 2025; 203:195-205. [PMID: 39579145 PMCID: PMC11775422 DOI: 10.1093/toxsci/kfae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
The integrity of fetal membranes enables biological functions that protect the fetus and maintain the pregnancy. Any compromise in fetal membrane function can predispose a pregnant woman to prelabor rupture of the membranes (pPROMs) and subsequently to preterm birth (PTB). Epidemiologic data suggest that lead exposure during pregnancy is one of several risk factors associated with PTB and pPROM. This heavy metal can cross placental and fetal membrane barriers, disrupting homeostasis in these tissues. Autophagy contributes to the maintenance of fetal membrane homeostasis during gestation, and dysfunctional autophagy is associated with pPROM. In this study, we determined the mechanistic impact of lead-induced cellular changes, autophagy, senescence, and inflammation in chorion trophoblast cells (CTCs) and amnion epithelial cells (AECs) of the fetal membranes. Lead exposure in CTCs induced autophagy dysfunction (increase in LC3B-II), augmented senescence (increased SA-β-galactosidase activity), and increased the release of inflammation. In AECs, lead exposure did effect autophagy, senescence, nor inflammation. The differential changes observed in CTCs and AECs after exposure to high lead concentrations may promote the weakening of fetal membranes and contribute to preterm rupture.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
- Laboratorio de Inmunología de la Unidad Feto-Placentaria, Department of Immunobiochemestry, Instituto Nacional de Perinatología I.E.R, Mexico City 11000, Mexico
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Ananth Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| |
Collapse
|
7
|
Georges HM, Norwitz ER, Abrahams VM. Predictors of Inflammation-Mediated Preterm Birth. Physiology (Bethesda) 2025; 40:0. [PMID: 39106300 DOI: 10.1152/physiol.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024] Open
Abstract
Preterm birth remains a worldwide health concern because of ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review discusses the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.
Collapse
Affiliation(s)
- Hanah M Georges
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
8
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Karabay G, Bayraktar B, Seyhanli Z, Cakir BT, Aktemur G, Sucu ST, Tonyali NV, Bucak M, Ayhan H, Dagdeviren G. Predictive value of inflammatory markers (NLR, PLR, MLR, SII, SIRI, PIV, IG, and MII) for latency period in Preterm premature rupture of membranes (PPROM) pregnancies. BMC Pregnancy Childbirth 2024; 24:564. [PMID: 39215242 PMCID: PMC11363661 DOI: 10.1186/s12884-024-06756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Our study aimed to investigate the value of inflammatory indices in predicting the latency period until birth in patients with preterm premature rupture of membranes (PPROM). METHODS This retrospective study was conducted on PPROM cases between 24 and 34 weeks of gestation at Ankara Etlik City Hospital Perinatology Department from October 2023 to April 2024. A total of 146 participants were divided into two groups: Group 1 included 73 patients who gave birth within 72 hours (h) of PPROM diagnosis, and Group 2 included 73 patients who gave birth after 72 h. RESULTS This study evaluated the prognostic significance of various inflammatory markers neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), systemic immune inflammation index (SII), systemic inflammatory response index (SIRI), pan-immune inflammation value (PIV), immature granulocytes (IG), multi-inflammatory index (MII)-1, MII-2, and MII-3 in predicting the latency period in patients with PPROM. Only MII-1, MII-2, and MII-3 reliably predicted labor within 72 h. The cut-off value for MII-1 was > 48.3, with a sensitivity of 57.7% and specificity of 57.3% (AUC: 0.598, 95% CI: 0.503-0.692, p = 0.042). For MII-2, the cut-off was > 1037.6, with a sensitivity of 57.7% and specificity of 57.3% (AUC: 0.611, 95% CI: 0.516-0.705, p = 0.021). MII-3 had a cut-off of > 10919.9, with a sensitivity of 53.5% and specificity of 52% (AUC: 0.595, 95% CI: 0.501-0.690, p = 0.046). CONCLUSION Our findings show that, among NLR, PLR, MLR, SII, SIRI, PIV, IG, MII-1, MII-2, and MII-3, only MII-1, MII-2, and MII-3 levels are statistically significant in predicting birth timing.
Collapse
Affiliation(s)
- Gulsan Karabay
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey.
| | - Burak Bayraktar
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey.
| | - Zeynep Seyhanli
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| | - Betul Tokgoz Cakir
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| | - Gizem Aktemur
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| | - Serap Topkara Sucu
- Department of Obstetrics and Gynecology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Nazan Vanli Tonyali
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| | - Mevlut Bucak
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| | - Hatice Ayhan
- Department of Obstetrics and Gynecology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Gulsah Dagdeviren
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara Etlik City Hospital, Ankara, 06170, Turkey
| |
Collapse
|
10
|
Richardson LS, Severino ME, Chauhan R, Zhang W, Kacerovsky M, Bhavnani SK, Menon R. Spatial transcriptomics of fetal membrane-Decidual interface reveals unique contributions by cell types in term and preterm births. PLoS One 2024; 19:e0309063. [PMID: 39159152 PMCID: PMC11332933 DOI: 10.1371/journal.pone.0309063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.
Collapse
Affiliation(s)
- Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mary Elise Severino
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Rahul Chauhan
- Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Weibin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Suresh K. Bhavnani
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
11
|
Ibrahim A, Khoo MI, Ismail EHE, Hussain NHN, Zin AAM, Noordin L, Abdullah S, Mahdy ZA, Lah NAZN. Oxidative stress biomarkers in pregnancy: a systematic review. Reprod Biol Endocrinol 2024; 22:93. [PMID: 39095896 PMCID: PMC11295331 DOI: 10.1186/s12958-024-01259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This systematic review explores the level of oxidative stress (OS) markers during pregnancy and their correlation with complications. Unlike previous studies, it refrains from directly investigating the role of OS but instead synthesises data on the levels of these markers and their implications for various pregnancy-related complications such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages. METHOD STUDY DESIGN: Utilizing a systematic review approach, we conducted a comprehensive search across databases, including MEDLINE, CINAHL (EBSCOhost), ScienceDirect, Web of Science, and SCOPUS. Our search encompassed all publication years in English. RESULTS After evaluating 54,173 records, 45 studies with a low risk of bias were selected for inclusion. This systematic review has underscored the importance of these markers in both physiological and pathological pregnancy states such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages. CONCLUSION This systematic review provides valuable insights into the role of OS in pregnancy and their connection to complications. These selected studies delved deeply into OS markers during pregnancy and their implications for associated complications. The comprehensive findings highlighted the significance of OS markers in both normal and pathological pregnancy conditions, paving the way for further research in this field.
Collapse
Affiliation(s)
- Abubakar Ibrahim
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Engku Husna Engku Ismail
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nik Hazlina Nik Hussain
- Women's Health Development Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Liza Noordin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sarimah Abdullah
- Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Zaleha Abdullah Mahdy
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nik Ahmad Zuky Nik Lah
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia.
| |
Collapse
|
12
|
Kim S, Lam PY, Richardson LS, Menon R, Han A. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biomed Microdevices 2024; 26:32. [PMID: 38963644 PMCID: PMC11624963 DOI: 10.1007/s10544-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Kahouadji S, Giguère Y, Lambert S, Forest JC, Bernard N, Blanchon L, Marceau G, Durif J, Pereira B, Gallot D, Sapin V, Bouvier D. CX3CL1/Fractalkine as a biomarker for early pregnancy prediction of preterm premature rupture of membranes. Clin Chem Lab Med 2024; 62:1101-1108. [PMID: 38278625 PMCID: PMC11056942 DOI: 10.1515/cclm-2023-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES The objective of our study was to evaluate serum CX3CL1/Fractalkine, a monocyte/macrophage chemoattractant expressed in cytotrophoblasts and decidual cells, as a predictive biomarker for the occurrence of preterm premature rupture of membranes (PPROM). METHODS A case-control study of 438 pregnancies including 82 PPROM cases and 64 preterm labor with intact membranes cases with blood samples collected at first trimester, second trimester and delivery was conducted. The predictive ability of CX3CL1 and maternal risk factors for the occurrence of PPROM was assessed by receiver operating characteristic curve analysis. A second, independent cohort was prospectively constituted to confirm the case-control study results. RESULTS First trimester CX3CL1 was significantly increased in PPROM cases when compared to matched controls. Multivariate regression analysis highlighted a significant difference for CX3CL1 measured during the first trimester (p<0.001). Alone, CX3CL1 predicts PPROM with a 90 % sensitivity and a specificity around 40 %. The area under the receiver operating characteristic curve for PPROM prediction were 0.64 (95% confidence interval: 0.57-0.71) for first trimester CX3CL1, and 0.61 (95% confidence interval: 0.54-0.68) for maternal risk factors (body mass index<18.5 kg/m2, nulliparity, tobacco use and the absence of high school diploma). The combination of CX3CL1 and maternal risk factors significantly improved the area under the curve: 0.72 (95% confidence interval: 0.66-0.79) (p<0.001). The results were confirmed on a second independent cohort. CONCLUSIONS CX3CL1 is a promising blood biomarker in the early (first trimester) prediction of PPROM.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Yves Giguère
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Salomé Lambert
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Claude Forest
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Nathalie Bernard
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
| | - Loïc Blanchon
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Gallot
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
- Department of Obstetrics and Gynecology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
14
|
Severino ME, Richardson LS, Kacerovsky M, Menon R. Histologic Evidence of Epithelial-Mesenchymal Transition and Autophagy in Human Fetal Membranes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:684-692. [PMID: 38320630 PMCID: PMC11074980 DOI: 10.1016/j.ajpath.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.
Collapse
Affiliation(s)
- Mary E Severino
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas; College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas.
| |
Collapse
|
15
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
16
|
Li MD, Lu JW, Zhang F, Lei WJ, Pan F, Lin YK, Ling LJ, Myatt L, Wang WS, Sun K. ADAMTS4 is a crucial proteolytic enzyme for versican cleavage in the amnion at parturition. Commun Biol 2024; 7:301. [PMID: 38461223 PMCID: PMC10924920 DOI: 10.1038/s42003-024-06007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.
Collapse
Affiliation(s)
- Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
17
|
Vergote S, Robmann S, Van Der Merwe J, Richter J, Deprest J, Mazza E. Preterm membranes are mechanically more resistant than term membranes. Prenat Diagn 2024; 44:317-324. [PMID: 38168862 DOI: 10.1002/pd.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/29/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To compare the biomechanical properties of fetal preterm membranes (20 + 0 weeks to 30 + 0 weeks) to those of the term (37 + 0 to 41 + 0 weeks). METHOD Amnion and chorion were manually separated and samples were cut to the required geometry. Rectangular samples with (mode 1) and without (uniaxial) a notch, were tested for tearing energy, critical elongation, and tangent stiffness. Suture retention and inter-suture distance testing investigated the effect of suture placement. RESULTS From the 15 preterm and 10 term placentas studied, no notable differences were observed in uniaxial testing. Mode 1 fracture testing showed a difference in tearing energy between the preterm and term chorion (0.025 ± 0.005 vs. 0.017 ± 0.005 J/m-1 ; p = 0.027) but not in the amnion (0.030 ± 0.017 vs. 0.029 ± 0.009 J/m-1 ; p = 0.895). Both preterm amnion and chorion showed a higher critical elongation compared with term (1.229 ± 0.057 vs. 1.166 ± 0.046; p = 0.019 and 1.307 ± 0.049 vs. 1.218 ± 0.058; p = 0.012). Preterm amnion had a higher suture retention strength than its term counterpart (0.189 ± 0.065 vs. 0.121 ± 0.031 N; p = 0.023). In inter-suture distance tests, no significant interaction was observed beyond 3 mm, but the preterm chorion showed less interaction at 1-2 mm distances. CONCLUSION Preterm membranes have equivalent or superior tensile properties to term membranes. The chorion appears to contribute to the mechanical integrity of fetal membranes, particularly in preterm stages.
Collapse
Affiliation(s)
- Simen Vergote
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Serjosha Robmann
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Johannes Van Der Merwe
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jute Richter
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Institute for Women's Health, University College London, London, UK
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Severino MEL, Richardson L, Kammala AK, Radnaa E, Khanipov K, Dalmacio LMM, Mysorekar IU, Kacerovsky M, Menon R. Autophagy Determines Distinct Cell Fates in Human Amnion and Chorion Cells. AUTOPHAGY REPORTS 2024; 3:2306086. [PMID: 38370394 PMCID: PMC10871702 DOI: 10.1080/27694127.2024.2306086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Human fetal membranes (amniochorion) that line the intrauterine cavity consist of two distinct cell layers; single-layer amnion epithelial cells (AEC) and multilayer chorion trophoblast cells (CTC). These layers are connected through a collagen-rich extracellular matrix. Cellular remodeling helps support membrane growth and integrity during gestation and helps to maintain pregnancy. Preterm prelabor rupture of the human amniochorionic (fetal) membrane (pPROM) is antecedent to 40% of all spontaneous preterm birth. Oxidative stress (OS) induced activation of the p38 MAPK due to various maternal risk exposures and the amniochorion cells' senescence are reported pathological features of pPROM. Our transcriptomics analysis implicated dysregulated autophagy and epithelial-mesenchymal transition (EMT) in fetal membranes from pPROM. The molecular interplay between OS-induced p38 MAPK activation, autophagy, and EMT was investigated in AECs and CTCs to better understand the involvement of autophagy and EMT. We report the differential impact of OS on the autophagic machinery in AECs and CTCs, resulting in distinct cell fates. In AECs, OS-induced p38 MAPK activation causes autophagosome accumulation and reduced autophagic flux mediated by decreased ULK1 activity and kinase activity, leading to senescence. In CTCs, induction of autophagy has a limited effect; however, inhibition of autophagy led to SQSTM1-mediated EMT of trophoblast cells. Autophagy, EMT, and senescence were associated with proinflammatory changes. Thus, AECs and CTCs respond differently to OS via differential autophagy response, partly mediated via p38 MAPK. Besides senescence, OS-induced autophagy dysregulation in amniochorion cells may play a mechanistic role in pPROM pathophysiology.
Collapse
Affiliation(s)
- Mary Elise L. Severino
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren Richardson
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Texas, USA
| | | | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
20
|
Dal Y, Karagün Ş, Akkuş F, Çolak H, Aytan H, Coşkun A. In premature rupture of membranes, maternal serum delta neutrophil index may be a predictive factor for histological chorioamnionitis and affect fetal inflammatory markers: A retrospective cross-sectional study. Am J Reprod Immunol 2024; 91:e13823. [PMID: 38406995 DOI: 10.1111/aji.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
PROBLEM We aimed to investigate the predictive value of delta neutrophil index (DNI) for histological choriomanionitis (HCAM) and the effect of maternal inflammatory markers on neonatal outcomes and fetal inflammatory parameters. METHOD OF STUDY In this retrospective cross-sectional study, 68 pregnant women without HCAM (group 1) and 46 pregnant women diagnosed with HCAM (group 2) were divided into two groups. Demographic stories of the groups; maternal hematological parameters; maternal DNI and systemic inflammatory index (SII) values; outcomes of newborns; fetal inflammatory markers were recorded and compared between groups. RESULTS Maternal DNI, and SII levels were significantly higher in group 2 (p value < .05 for all). Admission to the neonatal unit (NICU) was higher in group 2 than in group 1 (p = .0001). We found that fetal inflammatory markers were significantly higher in group 2 (p values .001 for CRP, .0001 for DNI, and .002 for leukocyte). Maternal DNI was determined to be significantly diagnostic at a value of ≥1.3 in HCAM (p = .001). We observed that SII had a significant predictive value of 953036.6 (p = .019) for NICU admission. There is also a positive correlation between fetal inflammatory markers and maternal inflammatory markers. CONCLUSIONS We found that maternal inflammatory markers are high in HCAM, maternal DNI can predict patients who will develop HCAM, maternal SII value can predict NICU admission, fetal inflammatory markers are high in HCAM, and these markers are affected by maternal inflammatory markers.
Collapse
Affiliation(s)
- Yusuf Dal
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Şebnem Karagün
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Fatih Akkuş
- Department of Obstetrics and Gynecology, Division of Perinatology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Hatun Çolak
- Department of Obstetrics and Gynecology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Hakan Aytan
- Department of Obstetrics and Gynecology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ayhan Coşkun
- Department of Obstetrics and Gynecology, Division of Perinatology, Mersin University Faculty of Medicine, Mersin, Turkey
| |
Collapse
|
21
|
Seltenrich N. Channels of Communication: Extracellular Vesicles in Environmental Stress and Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:14002. [PMID: 38271057 PMCID: PMC10810299 DOI: 10.1289/ehp14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Extracellular vesicles offer great promise for revealing mechanisms and serving as biomarkers in studies of exposure effects on neurological, respiratory, reproductive, and other physiological systems-and they require only a simple blood draw.
Collapse
|
22
|
Lis N, Lamnisos D, Bograkou-Tzanetakou A, Hadjimbei E, Tzanetakou IP. Preterm Birth and Its Association with Maternal Diet, and Placental and Neonatal Telomere Length. Nutrients 2023; 15:4975. [PMID: 38068836 PMCID: PMC10708229 DOI: 10.3390/nu15234975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Preterm birth (PTB), a multi-causal syndrome, is one of the global epidemics. Maternal nutrition, but also neonatal and placental telomere length (TL), are among the factors affecting PTB risk. However, the exact relationship between these factors and the PTB outcome, remains obscure. The aim of this review was to investigate the association between PTB, maternal nutrition, and placental-infant TL. Observational studies were sought with the keywords: maternal nutrition, placental TL, newborn, TL, and PTB. No studies were found that included all of the keywords simultaneously, and thus, the keywords were searched in dyads, to reach assumptive conclusions. The findings show that maternal nutrition affects PTB risk, through its influence on maternal TL. On the other hand, maternal TL independently affects PTB risk, and at the same time PTB is a major determinant of offspring TL regulation. The strength of the associations, and the extent of the influence from covariates, remains to be elucidated in future research. Furthermore, the question of whether maternal TL is simply a biomarker of maternal nutritional status and PTB risk, or a causative factor of PTB, to date, remains to be answered.
Collapse
Affiliation(s)
- Nikoletta Lis
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
- Maternity Clinic, Cork University Maternity Hospital, T12 YE02 Cork, Ireland
| | - Demetris Lamnisos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
| | | | - Elena Hadjimbei
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Irene P. Tzanetakou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
23
|
Sun H, Su X, Mao J, Du Q. Impact of pre-pregnancy weight on the risk of premature rupture of membranes in Chinese women. Heliyon 2023; 9:e21971. [PMID: 38027997 PMCID: PMC10661500 DOI: 10.1016/j.heliyon.2023.e21971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The objective of this study was to investigate the influence of pre-pregnancy body mass index (BMI) on the incidence of premature rupture of membranes (PROM) among Chinese women. Methods This was a hospital-based retrospective cohort study of 75,760 Chinese women who had live singleton births between 2016 and 2020. In this study, we utilized logistic regression analysis to estimate the association between pre-pregnancy BMI and PROM based on gestational age. Results Prior to pregnancy, being overweight or obese was found to be significantly associated with an increased risk of preterm premature rupture of membranes (PPROM), as evidenced by adjusted odds ratios and 95 % confidence intervals of 1.336 (1.173-1.522) and 1.411 (1.064-1.872), respectively. Those with PPROM were divided into three groups according to gestational age: 22-27, 28-31, and 32-36 weeks. Women who were overweight or obese prior to pregnancy had a higher likelihood of experiencing PROM between 22 and 27 weeks of gestation. This finding remained consistent even after controlling for potential confounding factors, such as gestational diabetes mellitus (GDM), gestational hypertension, preeclampsia, hydramnios, cervical abnormalities, and a history of preterm birth. Conclusion Our research findings indicate that being overweight or obese before pregnancy is linked to a higher likelihood of experiencing PPROM. Therefore, achieving optimal weight before pregnancy is important to prevent PPROM and its associated complications.
Collapse
Affiliation(s)
- Hanxiang Sun
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiujuan Su
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Wang J, Xu J, Chao B, Liu H, Xie L, Qi H, Luo X. Hydrogen sulfide inhibits the rupture of fetal membranes throngh anti-aging pathways. Placenta 2023; 143:22-33. [PMID: 37793324 DOI: 10.1016/j.placenta.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION To investigate the relationship between hydrogen sulfide(H2S) and the senescence level of the fetal membranes, and to elucidate how H2S affects the integrity of the fetal membranes. METHODS The H2S and the senescence levels of fetal membranes, and the expressions of H2S synthase CBS and CSE were detected in the preterm (PT) group and the preterm premature ruptured membranes (pPROM) group. The effects of H2S donors and knockdown of CBS on the senescence level of amniotic epithelial cells, and the expression level of matrix metalloproteinases (MMPs) and epithelial-mesenchymal translation (EMT) were observed. RESULTS The level of H2S in the fetal membranes in the pPROM group is significantly lower than that in the PT group matched for gestational age. The level of H2S is negatively correlated with the senescence level of fetal membranes. Treatment with H2S donors reduced cell senescence and MMPs expression, but did not affect EMT. CBS siRNA transfection accelerated the senescence of amniotic epithelial cells, and promoted the expression of MMPs and EMT occurrence, but l-cysteine could reverse these effects. DISCUSSION Our study suggests that H2S, through its anti-aging effect, can influence the expression of MMPs and EMT, thereby contributing to the maintenance of fetal membrane integrity.
Collapse
Affiliation(s)
- Jie Wang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Jiacheng Xu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bingdi Chao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongli Liu
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lumei Xie
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xin Luo
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Mikkelsen E, Huppertz B, Singh R, Ravn K, Hatt L, Kruhøffer M, Urrabaz-Garza R, Uldbjerg N, Menon R, Steiniche T. mRNA and Protein Expression in Human Fetal Membrane Cells: Potential Biomarkers for Preterm Prelabor Rupture of the Fetal Membranes? Int J Mol Sci 2023; 24:15826. [PMID: 37958809 PMCID: PMC10650701 DOI: 10.3390/ijms242115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Clinically, unique markers in fetal membrane cells may contribute to the search for biomarkers for preterm prelabor rupture of the fetal membranes (pPROM) in maternal blood. pPROM is associated with overwhelming inflammation and premature cellular senescence causing "biological microfractures" of the fetal membranes. We hypothesize that these pathological processes are associated with the shedding of fetal membrane cells into the maternal circulation. The aim of this study was to identify markers expressed exclusively in fetal membrane cells to facilitate their isolation, characterization, and determination of biomarker potential in maternal blood. We have (1), by their transcriptomic profile, identified markers that are upregulated in amnion and chorion tissue compared to maternal white blood cells, and (2), by immunohistochemistry, confirmed the localization of the differentially expressed proteins in fetal membranes, placenta, and the placental bed of the uterus. RNA sequencing revealed 31 transcripts in the amnion and 42 transcripts in the chorion that were upregulated. Among these, 22 proteins were evaluated by immunohistochemistry. All but two transcripts were expressed both on mRNA and protein level in at least one fetal membrane cell type. Among these remaining 20 proteins, 9 proteins were not significantly expressed in the villous and extravillous trophoblasts of the placenta.
Collapse
Affiliation(s)
- Emmeli Mikkelsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
| | - Ripudaman Singh
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | - Katarina Ravn
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | - Lotte Hatt
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | | | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA (R.M.)
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA (R.M.)
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Histopathology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| |
Collapse
|
26
|
Bento GFC, Richardson L, da Silva MG, Tantengco OAG, Menon R. Modeling an ascending infection by Ureaplasma parvum and its cell signaling and inflammatory response at the feto-maternal interface. Am J Reprod Immunol 2023; 90:e13770. [PMID: 37766409 PMCID: PMC10571092 DOI: 10.1111/aji.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.
Collapse
Affiliation(s)
- Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, São Paulo State University, São Paulo, Brazil
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | | | - Ourlad Alzeus G. Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| |
Collapse
|
27
|
Kalia V, Baccarelli AA, Happel C, Hollander JA, Jukic AM, McAllister KA, Menon R, Merrick BA, Milosavljevic A, Ravichandran LV, Roth ME, Subramanian A, Tyson FL, Worth L, Shaughnessy DT. Seminar: Extracellular Vesicles as Mediators of Environmental Stress in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:104201. [PMID: 37861803 PMCID: PMC10588739 DOI: 10.1289/ehp12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), membrane-bound particles containing a variety of RNA types, DNA, proteins, and other macromolecules, are now appreciated as an important means of communication between cells and tissues, both in normal cellular physiology and as a potential indicator of cellular stress, environmental exposures, and early disease pathogenesis. Extracellular signaling through EVs is a growing field of research for understanding fundamental mechanisms of health and disease and for the potential for biomarker discovery and therapy development. EVs are also known to play important roles in mediating the effects of exposure to environmental stress. OBJECTIVES This seminar addresses the application of new tools and approaches for EV research, developed in part through the National Institutes of Health (NIH) Extracellular RNA Communication Program, and reflects presentations and discussions from a workshop held 27-28 September 2021 by the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS) on "Extracellular Vesicles, Exosomes, and Cell-Cell Signaling in Response to Environmental Stress." The panel of experts discussed current research on EVs and environmental exposures, highlighted recent advances in EV isolation and characterization, and considered research gaps and opportunities toward identifying and characterizing the roles for EVs in environmentally related diseases, as well as the current challenges and opportunities in this field. DISCUSSION The authors discuss the application of new experimental models, particularly organ-on-chip (OOC) systems and in vitro approaches and how these have the potential to extend findings in population-based studies of EVs in exposure-related diseases. Given the complex challenges of identifying cell-specific EVs related to environmental exposures, as well as the general heterogeneity and variability in EVs in blood and other accessible biological samples, there is a critical need for rigorous reporting of experimental methods and validation studies. The authors note that these efforts, combined with cross-disciplinary approaches, would ensure that future research efforts in environmental health studies on EV biomarkers are rigorous and reproducible. https://doi.org/10.1289/EHP12980.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Jonathan A. Hollander
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Anne Marie Jukic
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Kimberly A. McAllister
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bruce A. Merrick
- Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Lingamanaidu V. Ravichandran
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Matthew E. Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anita Subramanian
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Frederick L. Tyson
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Leroy Worth
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Daniel T. Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Richardson L, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J 2023; 37:e23000. [PMID: 37249377 PMCID: PMC10259454 DOI: 10.1096/fj.202300531r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Nina Truong
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA5
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
30
|
Mu Y, Hu A, Kan H, Li Y, He Y, Fan W, Liu H, Li Q, Zheng Y. Preterm Prelabor Rupture of Membranes Linked to Vaginal Bacteriome of Pregnant Females in the Early Second Trimester: a Case-Cohort Design. Reprod Sci 2023; 30:2324-2335. [PMID: 36725814 PMCID: PMC9891760 DOI: 10.1007/s43032-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023]
Abstract
Preterm prelabor rupture of membranes (PPROM) is a major cause of spontaneous preterm birth (sPTB), one of the greatest challenges facing obstetrics with complicated pathogenesis. This case-cohort study investigated the association between vaginal bacteriome of singleton pregnant females in the early second trimester and PPROM. The study included 35,255 and 180 pregnant females with PPROM as cases and term-birth without prelabor rupture of membranes (TWPROM) and term prelabor rupture of membranes (TPROM) pregnant females as controls, respectively. Using 16S rRNA sequencing, the vaginal microbiome traits were analyzed. Females with PPROM had higher alpha and beta diversity (P < 0.05) than TWPROM and TPROM. The presence of L. mulieris was associated with a decreased risk of PPROM (adjusted odds ratio [aOR] = 0.35; 95% confidence interval [CI]: 0.17-0.72) compared with TWPROM. Meanwhile, the presence of Megasphaera genus (aOR = 2.27; 95% CI: 1.09-4.70), Faecalibacterium genus (aOR = 3.29; 95% CI: 1.52-7.13), Bifidobacterium genus (aOR = 3.26; 95% CI: 1.47-7.24), Xanthomonadales genus (aOR = 2.76; 95% CI: 1.27-6.01), Gammaproteobacteria class (aOR = 2.36; 95% CI: 1.09-5.14), and Alphaproteobacteria class (aOR = 2.45; 95% CI: 1.14-5.26) was associated with an increased risk of PPROM compared with TWPROM. Our results indicated that the risk of PPROM can decrease with vaginal L. mulieris but increase with high alpha or beta diversity, and several vaginal bacteria in pregnant females may be involved in the occurrence of PPROM.
Collapse
Affiliation(s)
- Yutong Mu
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Anqun Hu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Hui Kan
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yijie Li
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yining He
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Biostatistics Office, Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Wei Fan
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Haiyan Liu
- Biostatistics Office, Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
- Department of Blood Transfusion, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Qing Li
- Department of Obstetrics and Gynecology, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Yingjie Zheng
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Pizzuti V, Paris F, Marrazzo P, Bonsi L, Alviano F. Mitigating Oxidative Stress in Perinatal Cells: A Critical Step toward an Optimal Therapeutic Use in Regenerative Medicine. Biomolecules 2023; 13:971. [PMID: 37371551 DOI: 10.3390/biom13060971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
32
|
Zavatta A, Parisi F, Mandò C, Scaccabarozzi C, Savasi VM, Cetin I. Role of Inflammaging on the Reproductive Function and Pregnancy. Clin Rev Allergy Immunol 2023; 64:145-160. [PMID: 35031955 PMCID: PMC8760119 DOI: 10.1007/s12016-021-08907-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
During female lifetime and pregnancy, inflammation and cellular senescence are implicated in physiological processes, from ovulation and menstruation, to placental homeostasis and delivery. Several lifestyles, nutritional, and environmental insults, as well as long-lasting pregestational inflammatory diseases may lead to detrimental effects in promoting and sustaining a chronic excessive inflammatory response and inflammaging, which finally contribute to the decay of fertility and pregnancy outcome, with a negative effect on placental function, fetal development, and future health risk profile in the offspring. Maladaptation to pregnancy and obstetric disease may in turn increase maternal inflammaging in a feedback loop, speeding up aging processes and outbreak of chronic diseases. Maternal inflammaging may also impact, through transgenerational effects, on future adult health. Hence, efficacious interventions should be implemented by physicians and healthcare professionals involved in prevention activities to reduce the modifiable factors contributing to the inflammaging process in order to improve public health.
Collapse
Affiliation(s)
- Alice Zavatta
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Francesca Parisi
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy
| | - Chiara Mandò
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy
| | - Chiara Scaccabarozzi
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Valeria M Savasi
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy
- Department of Woman Mother and Neonate 'L. Sacco' Hospital, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Irene Cetin
- Department of Woman Mother and Neonate 'V. Buzzi' Children Hospital, ASST Fatebenefratelli Sacco, 20154, Milan, Italy.
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", University of Milan, 20157, Milan, Italy.
| |
Collapse
|
33
|
Truong N, Menon R, Richardson L. The Role of Fetal Membranes during Gestation, at Term, and Preterm Labor. PLACENTA AND REPRODUCTIVE MEDICINE 2023; 2:4. [PMID: 38304894 PMCID: PMC10831903 DOI: 10.54844/prm.2022.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
During pregnancy, the fetal membranes (i.e., amniochorionic membranes) surround the intrauterine cavity and provide mechanical, immune, and endocrine support to protect the fetus. Though they are a vital component of the intrauterine cavity, the fetal membranes are largely overlooked as an extension of the placenta, leading to a poor understanding of their role during gestation, parturition, or preterm birth. The fetal membranes are comprised of fetal cellular and stromal layers and line up with maternal decidua forming the feto-maternal interface during pregnancy. This interface plays a large role during pregnancy and the induction of term or preterm parturition (e.g., labor). Here we summarize the function of the fetal membranes focusing on their role during gestation at term, and during preterm births.
Collapse
Affiliation(s)
- Nina Truong
- The University of Texas Medical Branch John Sealy School of Medicine at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
34
|
Goldman B, Radnaa E, Kechichian T, Menon R. Silencing P38 MAPK reduces cellular senescence in human fetal chorion trophoblast cells. Am J Reprod Immunol 2023; 89:e13648. [PMID: 36334089 PMCID: PMC9771926 DOI: 10.1111/aji.13648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
PROBLEM Amniochorion senescence generates mechanistic signals to initiate parturition. Activation of p38 mitogen-activated kinase (MAPK) in fetal amnion cells is a key mediator of senescence as well as epithelial-mesenchymal transition (EMT) of amnion cells. However, the impact of p38 MAPK in chorion trophoblast cells (CTCs) is unclear. We tested if eliminating p38 will reduce oxidative stress (OS) induced cell fates like cellular senescence, EMT, and inflammation induced by these processes in CTCs. METHODS p38MAPK in CTCs was silenced using CRISPR/Cas9. OS was evoked by cigarette smoke extract (CSE) exposure. EMT was evoked by transforming growth factor (TGF)-ß treatment. Cell cycle, senescence, EMT, and inflammation were analyzed. RESULTS CSE-induced changes in the cell cycle were not seen in p38KO CTCs compared to WT cells. OS induced by CSE evoked senescence and senescence-associated secretory phenotype (SASP as indicated by IL-6 and IL-8 increase) in WT but not in p38MAPK KO CTCs. No changes were noted in HLA-G expression regardless of the status of p38MAPK. Neither CSE nor TGF-ß evoked EMT in either WT or p38 KO CTCs. CONCLUSION Senescence and senescence-associated inflammation in human fetal CTCs are mediated by p38MAPK. Compared to amnion epithelial cells, CTCs are resistant to EMT. This refractoriness may help them to maintain the barrier functions at the choriodecidual interface.
Collapse
Affiliation(s)
- Brett Goldman
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
35
|
Yang J, Chu M, Gong C, Gong X, Han B, Chen L, Wang J, Bai Z, Zhang Y. Ambient fine particulate matter exposures and oxidative protein damage in early pregnant women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120604. [PMID: 36347414 DOI: 10.1016/j.envpol.2022.120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The association between oxidative protein damage in early pregnant women and ambient fine particulate matter (PM2.5) is unknown. We estimated the effect of PM2.5 exposures within seven days before blood collection on serum 3-nitrotyrosine (3-NT) and advanced oxidation protein products (AOPP) in 100 women with normal early pregnancy (NEP) and 100 women with clinically recognized early pregnancy loss (CREPL). Temporally-adjusted land use regression model was applied for estimation of maternal daily PM2.5 exposure. Daily nitrogen dioxide (NO2) exposure of each participant was estimated using city-level concentrations of NO2. Single-day lag effect of PM2.5 was analyzed using multivariable linear regression model. Net cumulative effect and distributed lag effect of PM2.5 and NO2 within seven days were analyzed using distributed lag non-linear model. In all 200 subjects, the serum 3-NT were significantly increased with the single-day lag effects (4.72%-8.04% increased at lag 0-2), distributed lag effects (2.32%-3.49% increased at lag 0-2), and cumulative effect within seven days (16.91% increased). The single-day lag effects (7.41%-10.48% increased at lag 0-1), distributed lag effects (3.42%-5.52% increased at lag 0-2), and cumulative effect within seven days (24.51% increased) of PM2.5 significantly increased serum 3-NT in CREPL group but not in NEP group. The distributed lag effects (2.62%-4.54% increased at lag 0-2) and cumulative effect within seven days (20.25% increased) of PM2.5 significantly increased serum AOPP in early pregnant women before the coronavirus disease (COVID-19) pandemic but not after that, similarly to the effects of NO2 exposures. In conclusion, PM2.5 exposures were associated with oxidative stress to protein in pregnant women in the first trimester, especially in CREPL women. Analysis of NO2 exposures suggested that combustion PM2.5 was the crucial PM2.5 component. Wearing masks may be potentially preventive in PM2.5 exposure and its related oxidative protein damage.
Collapse
Affiliation(s)
- Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
36
|
DEMİR SC, ARSLAN E, ILGAZ NS, ÖKSÜZ H, ÖZPAK L, YILMAZ MB, AKCABAY Ç. Molecular investigation of mechanisms considered to cause preterm premature membrane rupture. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1136127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: The aim of this study was to investigate the mRNA expression level of p16, CDK4, CDK6, Cyclin D, RB1, and E2F genes in preterm premature rupture of membrane (PPROM) cases and their roles in etiopathogenesis of PPROM.
Materials and Methods: Twenty-one pregnancies with PPROM before 34th gestational weeks (study group) were compared with twenty pregnancies with no complication, who gave birth after 37th gestational-week (control group). Both groups chorioamniotic membranes were compared for mRNA expression of p16, cyclin D, CDK4, CDK6, RB1 and E2F genes.
Results: The mRNA expression levels of p16, cyclin D, CDK4, CDK6, RB1and E2F genes decreased in the PPROM group compared to control group at a statistically significant level.
Conclusion: Our findings have shown that oxidative stress may not act on the p16 pathway in these cases. In order to understand the molecular mechanism of PPROM, biomarkers of oxidative stress and aging should be evaluated together with other pathways related to aging and oxidative stress in future studies.
Collapse
|
37
|
Radnaa E, Richardson L, Goldman B, Burks J, Baljinnyam T, Vora N, Zhang HJ, Bonney E, Han A, Menon R. Stress signaler p38 mitogen-activated kinase activation: a cause for concern? Clin Sci (Lond) 2022; 136:1591-1614. [PMID: 36250628 PMCID: PMC9664350 DOI: 10.1042/cs20220491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) induced activation of p38 mitogen-activated kinase (MAPK) and cell fate from p38 signaling was tested using the human fetal membrane's amnion epithelial cells (AEC). We created p38 KO AEC using the CRISPR/Cas9 approach and tested cell fate in response to OS on an AEC-free fetal membrane extracellular matrix (ECM). Screening using image CyTOF indicated OS causing epithelial-mesenchymal transition (EMT). Further testing revealed p38 deficiency prevented AEC senescence, EMT, cell migration, and inflammation. To functionally validate in vitro findings, fetal membrane-specific conditional KO (cKO) mice were developed by injecting Cre-recombinase encoded exosomes intra-amniotically into p38αloxP/loxP mice. Amnion membranes from p38 cKO mice had reduced senescence, EMT, and increased anti-inflammatory IL-10 compared with WT animals. Our study suggested that overwhelming activation of p38 in response to OS inducing risk exposures can have an adverse impact on cells, cause cell invasion, inflammation, and ECM degradation detrimental to tissue homeostasis.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Brett Goldman
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Jared K. Burks
- Flow Cytometry and Cellular Imaging Core Facility, Department of Leukemia, M.D. Anderson Cancer Center, Texas, U.S.A. 77030
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A. 77555
| | - Natasha Vora
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| | - Hui-juan Zhang
- Department of Pathology, The International Peace Maternity and Child Health Hospital, University School of Medicine, Shanghai, China. 200030
| | - Elizabeth A. Bonney
- Department of Obstetrics and Gynecology, The University of Vermont, Burlington, VT, U.S.A. 05405ghout all figures, the following notations were
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, U.S.A. 77843
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, U.S.A
| |
Collapse
|
38
|
Hromadnikova I, Kotlabova K, Krofta L. Novel First-Trimester Prediction Model for Any Type of Preterm Birth Occurring before 37 Gestational Weeks in the Absence of Other Pregnancy-Related Complications Based on Cardiovascular Disease-Associated MicroRNAs and Basic Maternal Clinical Characteristics. Biomedicines 2022; 10:biomedicines10102591. [PMID: 36289853 PMCID: PMC9599357 DOI: 10.3390/biomedicines10102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of the study was to establish an efficient first-trimester predictive model for any type of preterm birth before 37 gestational weeks (spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM)) in the absence of other pregnancy-related complications, such as gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age. The retrospective study was performed in the period from 11/2012 to 3/2020. Peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group with 80 singleton term pregnancies was selected on the basis of equal sample-storage time. A combination of only six microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p; AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut-off > 0.652) could predict preterm delivery before 37 gestational weeks in early stages of gestation in 52.83% of pregnancies with a 10.0% FPR. This predictive model for preterm birth based on aberrant microRNA expression profile was further improved via implementation of maternal clinical characteristics (maternal age and BMI at early stages of gestation, infertility treatment with assisted reproductive technology, occurrence of preterm delivery before 37 gestational weeks in previous pregnancy(ies), and presence of any kind of autoimmune disease (rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, type 1 diabetes mellitus, or other autoimmune disease)). With this model, 69.81% of pregnancies destined to deliver before 37 gestational weeks were identified with a 10.0% FPR at early stages of gestation. When other clinical variables as well as those mentioned above—such as positive first-trimester screening for early preeclampsia with onset before 34 gestational weeks and/or fetal growth restriction with onset before 37 gestational weeks using the Fetal Medicine Foundation algorithm, as well as positive first-trimester screening for spontaneous preterm birth with onset before 34 gestational weeks using the Fetal Medicine Foundation algorithm—were added to the predictive model for preterm birth, the predictive power was even slightly increased to 71.70% with a 10.0% FPR. Nevertheless, we prefer to keep the first-trimester screening for any type of preterm birth occurring before 37 gestational weeks in the absence of other pregnancy-related complications as simple as possible.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Correspondence: ; Tel.: +420-296511336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic
| |
Collapse
|
39
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
40
|
Harris SM, Colacino J, Buxton M, Croxton L, Nguyen V, Loch-Caruso R, Bakulski KM. A Data Mining Approach Reveals Chemicals Detected at Higher Levels in Non-Hispanic Black Women Target Preterm Birth Genes and Pathways. Reprod Sci 2022; 29:2001-2012. [PMID: 35107823 PMCID: PMC9288534 DOI: 10.1007/s43032-022-00870-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Preterm birth occurs disproportionately in the USA non-Hispanic Black population. Black women also face disproportionate exposure to certain environmental chemicals. The goal of this study was to use publicly available toxicogenomic data to identify chemical exposures that may contribute to preterm birth disparities. We tested 19 chemicals observed at higher levels in the blood or urine of non-Hispanic Black women compared to non-Hispanic White women. We obtained chemical-gene interactions from the Comparative Toxicogenomics Database and a list of genes involved in preterm birth from the Preterm Birth Database. We tested chemicals for enrichment with preterm birth genes using chi-squared tests. We then conducted pathway enrichment analysis for the preterm birth genes using DAVID software and identified chemical impacts on genes involved in these pathways. Genes annotated to all 19 chemicals were enriched with preterm birth genes (FDR-adjusted p value < 0.05). Preterm birth enriched chemicals that were detected at the highest levels in non-Hispanic Black women included methyl mercury, methylparaben, propylparaben, diethyl phthalate, dichlorodiphenyldichloroethylene, and bisphenol S. The preterm birth genes were enriched for pathways including "inflammatory response" (FDR-adjusted p value = 3 × 10-19), "aging" (FDR-adjusted p value = 4 × 10-8) and "response to estradiol" (FDR-adjusted p value = 2 × 10-4). Chemicals enriched with preterm birth genes impacted genes in all three pathways. This study adds to the body of knowledge suggesting that exposures to environmental chemicals contribute to racial disparities in preterm birth and that multiple chemicals drive these effects. These chemicals affect genes involved in biological processes relevant to preterm birth such as inflammation, aging, and estradiol pathways.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Justin Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Miatta Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Croxton
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Vy Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Eastman AJ, Noble KN, Pensabene V, Aronoff DM. Leveraging bioengineering to assess cellular functions and communication within human fetal membranes. J Matern Fetal Neonatal Med 2022; 35:2795-2807. [PMID: 32787482 PMCID: PMC7878582 DOI: 10.1080/14767058.2020.1802716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/09/2023]
Abstract
The fetal membranes enclose the growing fetus and amniotic fluid. Preterm prelabor rupture of fetal membranes is a leading cause of preterm birth. Fetal membranes are composed of many different cell types, both structural and immune. These cells must coordinate functions for tensile strength and membrane integrity to contain the growing fetus and amniotic fluid. They must also balance immune responses to pathogens with maintaining maternal-fetal tolerance. Perturbation of this equilibrium can lead to preterm premature rupture of membranes without labor. In this review, we describe the formation of the fetal membranes to orient the reader, discuss some of the common forms of communication between the cell types of the fetal membranes, and delve into the methods used to tease apart this paracrine signaling within the membranes, including emerging technologies such as organ-on-chip models of membrane immunobiology.
Collapse
Affiliation(s)
- Alison J. Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen N. Noble
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37202 USA
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Possible Involvement of miR-98 in the Regulation of PGRMC1 During Decidualization. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human endometrial stromal cells (ESCs) differentiate into decidual cells for embryo implantation during the mid-secretory phase of the menstrual cycle. Decidualization is characterized by enhanced production of insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL) by ESCs and their morphological transformation into polygonal cells. Progesterone (P4) receptor membrane component 1 (PGRMC1) is a member of a P4-binding complex implicated in function in female reproduction. In this study, we explored the mechanisms that regulate PGRMC1 during decidualization of human ESCs. Immunohistochemical analysis of endometrial samples showed that PGRMC1 was expressed in endometrial glandular and luminal epithelial cells and stromal cells throughout the menstrual cycle; however, the protein level in stroma was reduced in the secretory phase. Incubation of ESCs with dibutyryl (db)-cAMP and P4 in vitro, which induces decidualization, decreased the PGRMC1 protein abundance. Further, treatment with a PGRMC1-targeting siRNA or PGRMC1 inhibitor (AG-205) promoted mRNA expression of the db-cAMP/P4- and db-cAMP-induced decidual markers IGFBP1 and PRL. Moreover, the microRNA miR-98, a potential repressor of PGRMC1, was upregulated during decidualization, and transfection of ESCs with a miR-98 mimic decreased the PGRMC1 protein level. These findings suggest that miR-98-mediated downregulation of endometrial PGRMC1 may promote decidualization for the establishment of pregnancy.
Collapse
|
43
|
Cetin O, Karaman E, Alisik M, Erel O, Kolusari A, Sahin HG. The evaluation of maternal systemic thiol/disulphide homeostasis for the short-term prediction of preterm birth in women with threatened preterm labour: a pilot study. J OBSTET GYNAECOL 2022; 42:1972-1977. [PMID: 35648800 DOI: 10.1080/01443615.2022.2056829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate maternal systemic thiol/disulphide homeostasis (TDH) for the short-term prediction of preterm birth in women with threatened preterm labour (TPL). This prospective study included 75 pregnant women whose pregnancies were complicated by TPL. Thirty-seven of them delivered within 7 days and 38 of them delivered beyond 7 days. Maternal serum samples were collected at the day of diagnosis and the TDH was measured. The maternal disulphide level was significantly higher in pregnant women who delivered within 7 days (25.0 ± 9.8 μmol/L vs 19.4 ± 9.8 μmol/L, p: .015). The threshold value of 22.1 μmol/L for maternal disulphide level predicted delivery within 7 days with 62.2% sensitivity and 60.5% specificity (area under curve 0.651, confidence interval 0.53-0.78). The likelihood ratios for short cervix (≤25 mm) and maternal disulphide level (≥22 μmol/L) to predict delivery within 7 days was found to be 8.7 and 7.3, respectively. The likelihood ratio of combining two tests to predict delivery within 7 days was found to be 11.4. The maternal TDH, which is an indicator of oxidative stress status in maternal compartment, is disturbed in TPL cases who delivered within 7 days. Elevated maternal disulphide level along with cervical length screening predicts a short latency period in pregnancies with TPL. IMPACT STATEMENTWhat is already known on this subject? Spontaneous preterm delivery is one of the major complication of pregnancy and the common cause of neonatal morbidity and mortality. Threatened preterm labour (TPL) is also a frequent complaint in obstetric emergency care units in all around the world. Triaging women with TPL is mandatory for planning further management therapies, since the most of them will eventually deliver at term. Only the measurement of cervical length in symptomatic women has moderate accuracy in predicting preterm delivery. Short cervix is described as an independent predictor of preterm delivery in women with TPL, its predictive accuracy as a single measurement is relatively limited. On this account, several potential markers like foetal fibronectin in the cervicovaginal fluid, salivary oestriol, prolactin in vaginal discharge, maternal serum calponin and interleukin-6 in the amniotic fluid were examined to predict preterm delivery in previous studies. However, none of them represented an excessive predictive accuracy like high sensitivity, PPV or NPV.What do the results of this study add? We report a method which has higher diagnostic and predictive performance to identifying TPL women with high risk of preterm delivery. According to the current literature, there are accumulated data about the correlation between oxidative stress (OS) and preterm delivery regardless of the amniotic membrane status. However, it is still debated whether OS is a trigger or a consequence of preterm delivery. Our study provides evidence for the first time that maternal serum thiol/disulphide homeostasis, which is an indicator of OS in maternal compartment, is disturbed in TPL cases who delivered within 7 days. The high disulphide level in maternal serum, along with cervical length measurement (short cervix) accurately predicts a short latency period in TPL cases.What are the implications of these findings for clinical practice and/or further research? This novel test combination (maternal serum disulphide level and cervical length measurement) could be used clinically to triage pregnant women presenting with TPL, avoiding overtreatment, unnecessary hospitalisations and increased medical costs. The future research would be addressed on reducing maternal OS by using new antioxidant treatment strategies to improve perinatal and long-term childhood outcomes.
Collapse
Affiliation(s)
- Orkun Cetin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Balikesir University, Balıkesir, Turkey
| | - Erbil Karaman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Murat Alisik
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ali Kolusari
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Hanım Guler Sahin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
44
|
Hromadnikova I, Kotlabova K, Krofta L. First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers. Int J Mol Sci 2022; 23:ijms23073951. [PMID: 35409311 PMCID: PMC8999783 DOI: 10.3390/ijms23073951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p < 0.001, 74.53% sensitivity, 75.00% specificity, cut off > 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut off > 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296511336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic;
| |
Collapse
|
45
|
Kim MA, Lee EJ, Yang W, Shin HY, Kim YH, Kim JH. Identification of a novel gene signature in second-trimester amniotic fluid for the prediction of preterm birth. Sci Rep 2022; 12:3085. [PMID: 35361790 PMCID: PMC8971495 DOI: 10.1038/s41598-021-04709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Preterm birth affects approximately 5% to 7% of live births worldwide and is the leading cause of neonatal morbidity and mortality. Amniotic fluid supernatant (AFS) contains abundant cell-free nucleic acids (cfNAs) that can provide genetic information associated with pregnancy complications. In the current study, cfNAs of AFS in the early second-trimester before the onset of symptoms of preterm birth were analyzed, and we compared gene expression levels between spontaneous preterm birth (n = 5) and term birth (n = 5) groups using sequencing analysis. Differential expression analyses detected 24 genes with increased and 6 genes with decreased expression in the preterm birth group compared to term birth. Upregulated expressions of RDH14, ZNF572, VOPP1, SERPINA12, and TCF15 were validated in an extended AFS sample by quantitative PCR (preterm birth group, n = 21; term birth group, n = 40). Five candidate genes displayed a significant increase in mRNA expression in immortalized trophoblast HTR-8/SVneo cell with H2O2 treatment. Moreover, the expression of five candidate genes was increased to more than twofold by pretreatment with lipopolysaccharide in HTR-8/SVneo cells. Changes in gene expression between preterm birth and term birth is strongly correlated with oxidative stress and infection during pregnancy. Specific expression patterns of genes could be used as potential markers for the early identification of women at risk of having a spontaneous preterm birth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Bhunia S, O'Brien S, Ling Y, Huang Z, Wu P, Yang Y. New approaches suggest term and preterm human fetal membranes may have distinct biomechanical properties. Sci Rep 2022; 12:5109. [PMID: 35332209 PMCID: PMC8948223 DOI: 10.1038/s41598-022-09005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabour rupture of membranes is the leading cause of preterm birth and its associated infant mortality and morbidity. However, its underlying mechanism remains unknown. We utilized two novel biomechanical assessment techniques, ball indentation and Optical Coherence Elastography (OCE), to compare the mechanical properties and behaviours of term (≥ 37 weeks) and preterm (33-36 weeks) human fetal membranes from ruptured and non-ruptured regions. We defined the expression levels of collagen, sulfated glycosaminoglycans (sGAG), matrix metalloproteinase (MMP-9, MMP-13), fibronectin, and interleukin-1β (IL-1β) within membranes by biochemical analysis, immunohistochemical staining and Western blotting, both with and without simulated fetal movement forces on membrane rupture with a new loading system. Preterm membranes showed greater heterogeneity in mechanical properties/behaviours between ruptured and non-ruptured regions compared with their term counterparts (displacement rate: 36% vs. 15%; modulus: 125% vs. 34%; thickness: 93% vs. 30%; collagen content: 98% vs. 29%; sGAG: 85% vs 25%). Furthermore, simulated fetal movement forces triggered higher MMP-9, MMP-13 and IL-1β expression in preterm than term membranes, while nifedipine attenuated the observed increases in expression. In conclusion, the distinct biomechanical profiles of term and preterm membranes and the abnormal biochemical expression and activation by external forces in preterm membranes may provide insights into mechanisms of preterm rupture of membranes.
Collapse
Affiliation(s)
- Sudeshna Bhunia
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Shaughn O'Brien
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK.,Academic Department of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, ST4 6QG, UK
| | - Yuting Ling
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Pensée Wu
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK. .,Academic Department of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, ST4 6QG, UK. .,School of Medicine, Keele University, Staffordshire, ST5 5BG, UK.
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
47
|
Menon R. Fetal inflammatory response at the fetomaternal interface: A requirement for labor at term and preterm. Immunol Rev 2022; 308:149-167. [PMID: 35285967 DOI: 10.1111/imr.13075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Pizzuti V, Abruzzo PM, Chatgilialoglu A, Zia S, Marrazzo P, Petrocelli G, Zannini C, Marchionni C, Poggi P, Simonazzi G, Canaider S, Alviano F, Facchin F, Bonsi L. A Tailored Lipid Supplement Restored Membrane Fatty Acid Composition and Ameliorates In Vitro Biological Features of Human Amniotic Epithelial Cells. J Clin Med 2022; 11:jcm11051236. [PMID: 35268327 PMCID: PMC8911266 DOI: 10.3390/jcm11051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | | | | | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Giovannamaria Petrocelli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-ELDOR Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Paola Poggi
- Remembrane S.r.l., 40026 Imola, Italy; (A.C.); (P.P.)
| | - Giuliana Simonazzi
- Obstetric Unit, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi, University of Bologna, 40126 Bologna, Italy;
| | - Silvia Canaider
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Correspondence:
| | - Federica Facchin
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| |
Collapse
|
49
|
Giannubilo SR, Licini C, Picchiassi E, Tarquini F, Coata G, Fantone S, Tossetta G, Ciavattini A, Castellucci M, Giardina I, Gesuita R, Marzioni D. First trimester HtrA1 maternal plasma level and spontaneous preterm birth. J Matern Fetal Neonatal Med 2022; 35:780-784. [PMID: 32102578 DOI: 10.1080/14767058.2020.1732345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES High temperature requirement A1 (HtrA1) is a serine protease detected in maternal plasma and in placental tissues during normal gestation and in various pathological conditions. The purpose of this study was to determine whether the maternal plasma concentration of HtrA1 in first trimester, alone or combined with other maternal factors, can be used to identify women at risk for spontaneous preterm birth (SPTB). STUDY DESIGN This is a cohort study on pregnant women at 12 weeks of gestation recruited between 2014 and 2016 and prospectively followed until delivery. One hundred and fifty-nine women were included in the study: 140 women delivered at term and 19 (11.9%) delivered spontaneously preterm. Plasma samples were assessed for HtrA1 by ELISA and data were compared between women which delivered at term with women which delivered preterm. A multiple logistic regression analysis was used to estimate the independent effect of women's characteristics on the probability of a SPTB. RESULTS SPTB was significantly associated with log HtrA1 values at 12 weeks of gestation, BMI before pregnancy and physical activity. In particular, the probability of a SPTB increases of 79% for every added unit of log HtrA1, while decreases of 18% for every added unit of BMI. In addition, physical activity was found as an important protective factor. The ROC curve showed that the model had a good accuracy in predicting SPTB, with an AUC equal to 0.83 (95%CI: 0.73-0.91). CONCLUSIONS Maternal plasma HtrA1 may be considered a marker of SPTB. In addition, our model indicates two factors that could be modified to reduce the risk of SPTB, i.e. BMI before pregnancy and maternal physical activity.
Collapse
Affiliation(s)
- Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy
| | - Caterina Licini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Picchiassi
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Federica Tarquini
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Giuliana Coata
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Ciavattini
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy
| | - Mario Castellucci
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Irene Giardina
- Centre of Perinatal and Reproductive Medicine, Department of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
50
|
Zhou Y, Liu Y, Zhang Y, Zhang Y, Wu W, Fan J. Identifying Non-Linear Association Between Maternal Free Thyroxine and Risk of Preterm Delivery by a Machine Learning Model. Front Endocrinol (Lausanne) 2022; 13:817595. [PMID: 35282469 PMCID: PMC8907667 DOI: 10.3389/fendo.2022.817595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Preterm delivery (PTD) is the primary cause of mortality in infants. Mounting evidence indicates that thyroid dysfunction might be associated with an increased risk of PTD, but the dose-dependent association between the continuous spectrum maternal free thyroxine (FT4) and PTD is still not well-defined. This study aimed to further investigate this relationship using a machine learning-based model. METHODS A hospital-based cohort study was conducted from January 2014 to December 2018 in Shanghai, China. Pregnant women who delivered singleton live births and had first-trimester thyroid function data available were included. The generalized additive models with penalized cubic regression spline were applied to explore the non-linear association between maternal FT4 and risk of PTD and also subtypes of PTD. The time-to-event method and multivariable Cox proportional hazard model were further applied to analyze the association of abnormally high and low maternal FT4 concentrations with the timing of PTD. RESULTS A total of 65,565 singleton pregnancies with completed medical records and no known thyroid disease before pregnancy were included for final analyses. There was a U-shaped dose-dependent relationship between maternal FT4 in the first trimester and PTD (p <0.001). Compared with the normal range of maternal FT4, increased risk of PTD was identified in both low maternal FT4 (<11.7 pmol/L; adjusted hazard ratio [HR] 1.34, 95% CI [1.13-1.59]) and high maternal FT4 (>19.7 pmol/L; HR 1.41, 95% CI [1.13-1.76]). The association between isolated hypothyroxinemia and PTD was mainly associated with spontaneous PTD (HR 1.33, 95% CI [1.11-1.59]) while overt hyperthyroidism may be attributable to iatrogenic PTD (HR 1.51, 95% CI [1.18-1.92]) when compared with euthyroid women. Additionally, mediation analysis identified that an estimated 11.80% of the association between overt hyperthyroidism and iatrogenic PTD risk was mediated via the occurrence of hypertensive disorders in pregnancy (p <0.001). CONCLUSIONS We revealed a U-shaped association between maternal FT4 and PTD for the first time, exceeding the clinical definition of maternal thyroid function test abnormalities. Our findings provide insights towards the need to establish optimal range of maternal FT4 concentrations for preventing adverse outcomes in pregnancy.
Collapse
Affiliation(s)
- Yulai Zhou
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yindi Liu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yuan Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yong Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Weibin Wu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- *Correspondence: Weibin Wu, ; Jianxia Fan,
| | - Jianxia Fan
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- *Correspondence: Weibin Wu, ; Jianxia Fan,
| |
Collapse
|