1
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
WU T, YANG X, ZHU H, GUO J, ZHU H, ZHANG P, WANG M, LIANG G, SUN H. Regulatory effects of the p38 mitogen-activated protein kinase-myosin light chain kinase pathway on the intestinal epithelial mechanical barrier and the mechanism of modified Pulsatilla decoction in the treatment of ulcerative colitis. J TRADIT CHIN MED 2024; 44:885-895. [PMID: 39380219 PMCID: PMC11462527 DOI: 10.19852/j.cnki.jtcm.20240806.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To investigate the mechanism of the protective effect of modified Pulsatilla decoction (, MPD) on the mechanical barrier of the ulcerative colitis (UC) intestinal epithelium in vitro and in vivo. METHODS We established an intestinal epithelial crypt cell line-6 cell barrier injury model by using lipopolysaccharide (LPS). The model was then treated with p38 mitogen-activated protein kinase-myosin light chain kinase (p38MAPK-MLCK) pathway inhibitors, p38MAPK-MLCK pathway silencing genes (si-p38MAPK, si-NF-κB, and si-MLCK), and MPD respectively. Transepithelial electronic resistance (TEER) measurements and permeability assays were performed to assess barrier function. Immunofluorescence staining of tight junctions (TJ) was performed. In in vivo experiment, dextran sodium sulfate-induced colitis rat model was conducted to evaluate the effect of MPD and mesalazine on UC. The rats were scored using the disease activity index based on their clinical symptoms. Transmission electron microscopy and hematoxylin-eosin staining were used to examine morphological changes in UC rats. Western blotting and real-time quantitative polymerase chain reaction were performed to examine the gene and protein expression of significant differential molecules. RESULTS In in vitro study, LPS-induced intestinal barrier dysfunction was inhibited by p38MAPK-MLCK pathway inhibitors and p38MAPK-MLCK pathway gene silencing. Silencing of p38MAPK-MLCK pathway genes decreased TJ expression. MPD treatment partly restored the LPS-induced decreased in TEER and increase in permeability. MPD increased the gene and protein expression of TJ, while down-regulated the LPS-induced high expression of p-p38MAPK and p-MLC. In UC model rats, MPD could ameliorate body weight loss and disease activity index, relieve colonic pathology, up-regulate TJ expression as well as decrease the expression of p-p38MAPK and p-MLC in UC rat colonic mucosal tissue. CONCLUSIONS The p38MAPK-MLCK signaling pathway can affect mechanical barrier function and TJ expression in the intestinal epithelium. MPD restores TJ expression and attenuates intestinal epithelial barrier damage by suppressing the p38MAPK-MLCK pathway.
Collapse
Affiliation(s)
- Tingting WU
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Xin YANG
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
- 2 Department of Internal Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Huiping ZHU
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Jinwei GUO
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Hui ZHU
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Peipei ZHANG
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Meng WANG
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Guoqiang LIANG
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
- 3 Suzhou Academy of Wumen Chinese Medicine, Suzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| | - Hongwen SUN
- 1 Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215003, China
| |
Collapse
|
3
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
4
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Zhou Y, Li Q, Wu Y, Zhang W, Ding L, Ji C, Li P, Chen T, Feng L, Tang BZ, Huang X. Synergistic Brilliance: Engineered Bacteria and Nanomedicine Unite in Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313953. [PMID: 38400833 DOI: 10.1002/adma.202313953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Engineered bacteria are widely used in cancer treatment because live facultative/obligate anaerobes can selectively proliferate at tumor sites and reach hypoxic regions, thereby causing nutritional competition, enhancing immune responses, and producing anticancer microbial agents in situ to suppress tumor growth. Despite the unique advantages of bacteria-based cancer biotherapy, the insufficient treatment efficiency limits its application in the complete ablation of malignant tumors. The combination of nanomedicine and engineered bacteria has attracted increasing attention owing to their striking synergistic effects in cancer treatment. Engineered bacteria that function as natural vehicles can effectively deliver nanomedicines to tumor sites. Moreover, bacteria provide an opportunity to enhance nanomedicines by modulating the TME and producing substrates to support nanomedicine-mediated anticancer reactions. Nanomedicine exhibits excellent optical, magnetic, acoustic, and catalytic properties, and plays an important role in promoting bacteria-mediated biotherapies. The synergistic anticancer effects of engineered bacteria and nanomedicines in cancer therapy are comprehensively summarized in this review. Attention is paid not only to the fabrication of nanobiohybrid composites, but also to the interpromotion mechanism between engineered bacteria and nanomedicine in cancer therapy. Additionally, recent advances in engineered bacteria-synergized multimodal cancer therapies are highlighted.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Lu Ding
- Department of Cardiology, Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Chenlin Ji
- School of Engineering, Westlake University, Hangzhou, 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330036, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| |
Collapse
|
6
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Ruiz-Triviño J, Álvarez D, Cadavid J. ÁP, Alvarez AM. From gut to placenta: understanding how the maternal microbiome models life-long conditions. Front Endocrinol (Lausanne) 2023; 14:1304727. [PMID: 38161976 PMCID: PMC10754986 DOI: 10.3389/fendo.2023.1304727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
The microbiome -defined as the microbiota (bacteria, archaea, lower and higher eukaryotes), their genomes, and the surrounding environmental conditions- has a well-described range of physiological functions. Thus, an imbalance of the microbiota composition -dysbiosis- has been associated with pregnancy complications or adverse fetal outcomes. Although there is controversy about the existence or absence of a microbiome in the placenta and fetus during healthy pregnancy, it is known that gut microbiota can produce bioactive metabolites that can enter the maternal circulation and may be actively or passively transferred through the placenta. Furthermore, the evidence suggests that such metabolites have some effect on the fetus. Since the microbiome can influence the epigenome, and modifications of the epigenome could be responsible for fetal programming, it can be experimentally supported that the maternal microbiome and its metabolites could be involved in fetal programming. The developmental origin of health and disease (DOHaD) approach looks to understand how exposure to environmental factors during periods of high plasticity in the early stages of life (e.g., gestational period) influences the program for disease risk in the progeny. Therefore, according to the DOHaD approach, the influence of maternal microbiota in disease development must be explored. Here, we described some of the diseases of adulthood that could be related to alterations in the maternal microbiota. In summary, this review aims to highlight the influence of maternal microbiota on both fetal development and postnatal life, suggesting that dysbiosis on this microbiota could be related to adulthood morbidity.
Collapse
Affiliation(s)
- Jonathan Ruiz-Triviño
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Daniel Álvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Ángela P. Cadavid J.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Angela M. Alvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| |
Collapse
|
8
|
Pai YC, Li YH, Turner JR, Yu LCH. Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation. J Crohns Colitis 2023; 17:1471-1488. [PMID: 37004200 PMCID: PMC10588795 DOI: 10.1093/ecco-jcc/jjad064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Factors that contribute to inflammatory bowel disease [IBD] pathogenesis include genetic polymorphisms, barrier loss, and microbial dysbiosis. A major knowledge gap exists in the origins of the colitogenic microbiome and its relationship with barrier impairment. Epithelial myosin light chain kinase [MLCK] is a critical regulator of the paracellular barrier, but the effects of MLCK activation on the intraepithelial bacteria [IEB] and dysbiosis are incompletely understood. We hypothesise that MLCK-dependent bacterial endocytosis promotes pathobiont conversion and shapes a colitogenic microbiome. METHODS To explore this, transgenic [Tg] mice with barrier loss induced by intestinal epithelium-specific expression of a constitutively active MLCK were compared with wild-type [WT] mice. RESULTS When progeny of homozygous MLCK-Tg mice were separated after weaning by genotype [Tg/Tg, Tg/WT, WT/WT], increased IEB numbers associated with dysbiosis and more severe colitis were present in Tg/Tg and Tg/WT mice, relative to WT/WT mice. Cohousing with MLCK-Tg mice induced dysbiosis, increased IEB abundance, and exacerbated colitis in WT mice. Conversely, MLCK-Tg mice colonised with WT microbiota at birth displayed increased Escherichia abundance and greater colitis severity by 6 weeks of age. Microarray analysis revealed circadian rhythm disruption in WT mice co-housed with MLCK-Tg mice relative to WT mice housed only with WT mice. This circadian disruption required Rac1/STAT3-dependent microbial invasion but not MLCK activity, and resulted in increased proinflammatory cytokines and glucocorticoid downregulation. CONCLUSIONS The data demonstrate that barrier dysfunction induces dysbiosis and expansion of invasive microbes that lead to circadian disruption and mucosal inflammation. These results suggest that barrier-protective or bacterium-targeted precision medicine approaches may be of benefit to IBD patients.
Collapse
Affiliation(s)
- Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Jerrold R Turner
- Brigham's Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| |
Collapse
|
9
|
Mödl B, Awad M, Zwolanek D, Scharf I, Schwertner K, Milovanovic D, Moser D, Schmidt K, Pjevac P, Hausmann B, Krauß D, Mohr T, Svinka J, Kenner L, Casanova E, Timelthaler G, Sibilia M, Krieger S, Eferl R. Defects in microvillus crosslinking sensitize to colitis and inflammatory bowel disease. EMBO Rep 2023; 24:e57084. [PMID: 37691494 PMCID: PMC10561180 DOI: 10.15252/embr.202357084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Monira Awad
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Daniela Zwolanek
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Irene Scharf
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Katharina Schwertner
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Danijela Milovanovic
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Doris Moser
- Department of Cranio‐Maxillofacial and Oral SurgeryMedical University of ViennaViennaAustria
| | - Katy Schmidt
- Cell Imaging & Ultrastructure ResearchUniversity of ViennaViennaAustria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Dana Krauß
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Jasmin Svinka
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Lukas Kenner
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
- Department of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emilio Casanova
- Center of Physiology and Pharmacology, Institute of PharmacologyMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Sigurd Krieger
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Robert Eferl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| |
Collapse
|
10
|
Nighot M, Liao PL, Morris N, McCarthy D, Dharmaprakash V, Ullah Khan I, Dalessio S, Saha K, Ganapathy AS, Wang A, Ding W, Yochum G, Koltun W, Nighot P, Ma T. Long-Term Use of Proton Pump Inhibitors Disrupts Intestinal Tight Junction Barrier and Exaggerates Experimental Colitis. J Crohns Colitis 2023; 17:565-579. [PMID: 36322638 PMCID: PMC10115233 DOI: 10.1093/ecco-jcc/jjac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Proton pump inhibitors [PPIs] are widely used to treat a number of gastro-oesophageal disorders. PPI-induced elevation in intragastric pH may alter gastrointestinal physiology. The tight junctions [TJs] residing at the apical intercellular contacts act as a paracellular barrier. TJ barrier dysfunction is an important pathogenic factor in inflammatory bowel disease [IBD]. Recent studies suggest that PPIs may promote disease flares in IBD patients. The role of PPIs in intestinal permeability is not clear. AIM The aim of the present study was to study the effect of PPIs on the intestinal TJ barrier function. METHODS Human intestinal epithelial cell culture and organoid models and mouse IBD models of dextran sodium sulphate [DSS] and spontaneous enterocolitis in IL-10-/- mice were used to study the role of PPIs in intestinal permeability. RESULTS PPIs increased TJ barrier permeability via an increase in a principal TJ regulator, myosin light chain kinase [MLCK] activity and expression, in a p38 MAPK-dependent manner. The PPI-induced increase in extracellular pH caused MLCK activation via p38 MAPK. Long-term PPI administration in mice exaggerated the increase in intestinal TJ permeability and disease severity in two independent models of DSS colitis and IL-10-/- enterocolitis. The TJ barrier disruption by PPIs was prevented in MLCK-/- mice. Human database studies revealed increased hospitalizations associated with PPI use in IBD patients. CONCLUSIONS Our results suggest that long-term use of PPIs increases intestinal TJ permeability and exaggerates experimental colitis via an increase in MLCK expression and activity.
Collapse
Affiliation(s)
- Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Pei-Luan Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Nathan Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dennis McCarthy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Viszwapriya Dharmaprakash
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Inam Ullah Khan
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Huang CY, Chen JK, Kuo WT. Glutamine induces remodeling of tight junctions in Caco-2 colorectal cancer cell. Med Oncol 2023; 40:32. [PMID: 36460896 PMCID: PMC9718866 DOI: 10.1007/s12032-022-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
Malignant cells often exhibit significant metabolic alterations, including the utilization of different nutrients to meet energetic and biosynthetic demands. Recent studies have shown that glutamine can support primary colorectal tumor growth and also serve as an alternate energy source during distant metastasis under glucose-limited conditions. However, the overall effects of glutamine on cancer cell physiology are not completely understood. In this study, we investigated how glutamine impacts epithelial integrity in colorectal cancer cells under glucose deprivation. Human colorectal cancer (Caco-2) cells were grown to confluency in transwells and cultured in glucose/pyruvate-free DMEM with various glutamine concentrations (0-50 mM). Cell viability was assessed, and monolayer integrity was examined in terms of transepithelial resistance (TER) and paracellular permeability. Tight junction (TJ) component proteins were examined by immunofluorescence staining and Western blotting. A dose-dependent decrease in TER was observed in Caco-2 cells, but paracellular permeability was not affected after 24 h incubation with glutamine. At the same time, the TJ proteins, zonula occludens (ZO)-1 and Claudin-1, showed lateral undulations and punctate staining patterns accompanied by enlargement of cellular and nuclear sizes. Furthermore, decreased protein levels of ZO-1, but not claudin-1, were found in detergent-insoluble cellular fractions. Notably, the decreased TER and alterations in TJ structure were not associated with cell viability changes. Moreover, the addition of glutamate, which is produced by the first step of glutamine catabolism, had no impact on TER. Our results suggested that the enteral glutamine may play an important role in the regulation of TJ dynamics in colorectal cancer cells.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd, South Dist, Taichung, Taiwan
| | - Ji-Kai Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd, South Dist, Taichung, Taiwan
| | - Wei-Ting Kuo
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan ,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Mödl B, Schmidt K, Moser D, Eferl R. The intermicrovillar adhesion complex in gut barrier function and inflammation. EXPLORATION OF DIGESTIVE DISEASES 2022; 1:72-79. [PMID: 39092422 PMCID: PMC7616328 DOI: 10.37349/edd.2022.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 08/04/2024]
Abstract
The surface of intestinal epithelial cells is covered by the brush border, which consists of densely packed cellular extrusions called microvilli. Until recently, microvilli have not been known to be interconnected. In 2014, a protein complex, called the intermicrovillar adhesion complex (IMAC) which is located at the tips of the microvilli and responsible for the regular spatial organization of the brush border, was identified. Deletion of IMAC components such as cadherin-related family member-2 (CDHR2) in mice resulted in microvillus disorganization and fanning, a structural aberration that is also found in the brush border of patients with inflammatory bowel disease. The etiology of inflammatory bowel disease has been primarily associated with dysfunctional mucosal immunity, but the discovery of the IMAC may encourage theories of an epithelial origin. Here, possible effects of the brush border on the gut barrier function and intestinal inflammation are discussed proposing that the IMAC protects against inflammation through its microvillus cross-linking function.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090Vienna, Austria
| | - Katy Schmidt
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, 1090Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090Vienna, Austria
| |
Collapse
|
13
|
Factors Affecting Spontaneous Endocytosis and Survival of Probiotic Lactobacilli in Human Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10061142. [PMID: 35744660 PMCID: PMC9230732 DOI: 10.3390/microorganisms10061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains—Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG—in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.
Collapse
|
14
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|
15
|
Wauters L, Ceulemans M, Schol J, Farré R, Tack J, Vanuytsel T. The Role of Leaky Gut in Functional Dyspepsia. Front Neurosci 2022; 16:851012. [PMID: 35422683 PMCID: PMC9002356 DOI: 10.3389/fnins.2022.851012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with functional dyspepsia (FD) complain of epigastric symptoms with no identifiable cause. Increased intestinal permeability has been described in these patients, especially in the proximal small bowel or duodenum, and was associated with mucosal immune activation and symptoms. In this review, we discuss duodenal barrier function, including techniques currently applied in FD research. We summarize the available data on duodenal permeability in FD and factors associated to increased permeability, including mucosal eosinophils, mast cells, luminal and systemic factors. While the increased influx of antigens into the duodenal mucosa could result in local immune activation, clinical evidence for a causal role of permeability is lacking in the absence of specific barrier-protective treatments. As both existing and novel treatments, including proton pump inhibitors (PPI) and pre- or probiotics may impact duodenal barrier function, it is important to recognize and study these alterations to improve the knowledge and management of FD.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lucas Wauters,
| | - Matthias Ceulemans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jolien Schol
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr 2021; 8:717925. [PMID: 34513903 PMCID: PMC8427160 DOI: 10.3389/fnut.2021.717925] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
An increased intestinal permeability has been described in various gastrointestinal and non-gastrointestinal disorders. Nevertheless, the concept and definition of intestinal permeability is relatively broad and includes not only an altered paracellular route, regulated by tight junction proteins, but also the transcellular route involving membrane transporters and channels, and endocytic mechanisms. Paracellular intestinal permeability can be assessed in vivo by using different molecules (e.g., sugars, polyethylene glycols, 51Cr-EDTA) and ex vivo in Ussing chambers combining electrophysiology and probes of different molecular sizes. The latter is still the gold standard technique for assessing the epithelial barrier function, whereas in vivo techniques, including putative blood biomarkers such as intestinal fatty acid-binding protein and zonulin, are broadly used despite limitations. In the second part of the review, the current evidence of the role of impaired barrier function in the pathophysiology of selected gastrointestinal and liver diseases is discussed. Celiac disease is one of the conditions with the best evidence for impaired barrier function playing a crucial role with zonulin as its proposed regulator. Increased permeability is clearly present in inflammatory bowel disease, but the question of whether this is a primary event or a consequence of inflammation remains unsolved. The gut-liver axis with a crucial role in impaired intestinal barrier function is increasingly recognized in chronic alcoholic and metabolic liver disease. Finally, the current evidence does not support an important role for increased permeability in bile acid diarrhea.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Jan Tack
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Ricard Farre
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Yu LCH, Wei SC, Li YH, Lin PY, Chang XY, Weng JP, Shue YW, Lai LC, Wang JT, Jeng YM, Ni YH. Invasive Pathobionts Contribute to Colon Cancer Initiation by Counterbalancing Epithelial Antimicrobial Responses. Cell Mol Gastroenterol Hepatol 2021; 13:57-79. [PMID: 34418587 PMCID: PMC8600093 DOI: 10.1016/j.jcmgh.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Microbiota dysbiosis and mucosa-associated bacteria are involved in colorectal cancer progression. We hypothesize that an interaction between virulent pathobionts and epithelial defense promotes tumorigenesis. METHODS Chemical-induced CRC mouse model was treated with antibiotics at various phases. Colonic tissues and fecal samples were collected in a time-serial mode and analyzed by gene microarray and 16S rRNA sequencing. Intraepithelial bacteria were isolated using a gentamicin resistance assay, and challenged in epithelial cultures. RESULTS Our study showed that antibiotic treatment at midphase but not early or late phase reduced mouse tumor burden, suggesting a time-specific host-microbe interplay. A unique antimicrobial transcriptome profile showing an inverse relationship between autophagy and oxidative stress genes was correlated with a transient surge in microbial diversity and virulence emergence in mouse stool during cancer initiation. Gavage with fimA/fimH/htrA-expressing invasive Escherichia coli isolated from colonocytes increased tumor burden in recipient mice, whereas inoculation of bacteria deleted of htrA or triple genes did not. The invasive E.coli suppressed epithelial autophagy activity through reduction of microtubule-associated protein 1 light-chain 3 transcripts and caused dual oxidase 2-dependent free radical overproduction and tumor cell hyperproliferation. A novel alternating spheroid culture model was developed for sequential bacterial challenge to address the long-term changes in host-microbe interaction for chronic tumor growth. Epithelial cells with single bacterial encounter showed a reduction in transcript levels of autophagy genes while those sequentially challenged with invasive E.coli showed heightened autophagy gene expression to eliminate intracellular microbes, implicating that bacteria-dependent cell hyperproliferation could be terminated at late phases. Finally, the presence of bacterial htrA and altered antimicrobial gene expression were observed in human colorectal cancer specimens. CONCLUSIONS Invasive pathobionts contribute to cancer initiation during a key time frame by counterbalancing autophagy and oxidative stress in the colonic epithelium. Monitoring gut microbiota and antimicrobial patterns may help identify the window of opportunity for intervention with bacterium-targeted precision medicine.
Collapse
Affiliation(s)
| | - Shu-Chen Wei
- Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Po-Yu Lin
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Xin-Yu Chang
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Jui-Ping Weng
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Yin-Wen Shue
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jin-Town Wang
- Department of Internal Medicine, Taipei, Taiwan, Republic of China,Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yung-Ming Jeng
- Department of Pathology, Taipei, Taiwan, Republic of China
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, Republic of China,Correspondence Address correspondence to: Yen-Hsuan Ni, MD, PhD, Department of Pediatrics, National Taiwan University College of Medicine and Hospital, 7 Chung-Shan South Road, Taipei, Taiwan, Republic of China. fax: (886) 2-23938871.
| |
Collapse
|
18
|
Huang YJ, Lee TC, Pai YC, Lin BR, Turner JR, Yu LCH. A novel tumor suppressor role of myosin light chain kinase splice variants through downregulation of the TEAD4/CD44 axis. Carcinogenesis 2021; 42:961-974. [PMID: 34000008 PMCID: PMC8283729 DOI: 10.1093/carcin/bgab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Myosin light chain kinase (MLCK) regulates actinomyosin contraction. Two splice variants of long MLCK are expressed in epithelial cells and divergently regulate gut barrier functions; reduced MLCK levels in human colorectal cancers (CRC) with unclarified significance have been reported. CRC are solid tumors clonally sustained by stem cells highly expressing CD44 and CD133. The aim was to investigate the role of MLCK splice variants in CRC tumorigenesis. We found lower MLCK1/2 and higher CD44 expression in human CRC, but no change in CD133 or LGR5. Large-scale bioinformatics showed an inverse relationship between MYLK and CD44 in human sample gene datasets. A 3-fold increased tumor burden was observed in MLCK(-/-) mice compared with wild-type (WT) mice in a chemical-induced CRC model. Primary tumorspheres derived from the MLCK(-/-) mice displayed larger sizes and higher CD44 transcript levels than those from the WT mice. Bioinformatics revealed binding of TEAD4 (a transcriptional enhancer factor family member in the Hippo pathway) to CD44 promoter, which was confirmed by luciferase reporter assay. Individually expressing MLCK1 and MLCK2 variants in the MLCK-knockout (KO) Caco-2 cells inhibited the nuclear localization of TEAD4 cofactors, VGLL3 and YAP1, respectively, and both variants reduced the CD44 transcription. Accelerated cell cycle transit was observed in the MLCK-KO cells, whereby expression of MLCK1/2 variants counterbalanced the cell hyperproliferation. In conclusion, MLCK1/2 variants are novel tumor suppressors by downregulating the TEAD4/CD44 axis via reducing nuclear translocation of distinct transcriptional coactivators. The reduction of epithelial MLCKs, especially isoform 2, may drive cancer stemness and tumorigenesis.
Collapse
Affiliation(s)
- Yen-Ju Huang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Tsung-Chun Lee
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC.,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Been-Ren Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Jerrold R Turner
- Brigham's Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| |
Collapse
|
19
|
Pai YC, Weng LT, Wei SC, Wu LL, Shih DQ, Targan SR, Turner JR, Yu LCH. Gut microbial transcytosis induced by tumor necrosis factor-like 1A-dependent activation of a myosin light chain kinase splice variant contributes to IBD. J Crohns Colitis 2020; 15:jjaa165. [PMID: 32770194 PMCID: PMC7904084 DOI: 10.1093/ecco-jcc/jjaa165] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by abnormal host-microbe interactions. Proinflammatory cytokine IFNγ and a novel TNF superfamily member, TL1A, have been implicated in epithelial barrier dysfunction. The divergent regulatory mechanisms of transcellular versus paracellular hyperpermeability remain poorly understood. Intestinal epithelia express two splice variants of long myosin light chain kinase (MLCK), of which the full-length MLCK1 differ from the shorter isoform MLCK2 by a Src kinase phosphorylation site. The aim was to investigate the roles of MLCK splice variants in gut barrier defects under proinflammatory stress. Upregulated expression of TL1A, IFNγ, and two MLCK variants was observed in human IBD biopsy specimens. The presence of intraepithelial bacteria preceded tight junction (TJ) damage in dextran sodium sulfate-treated and TL1A-transgenic mouse models. Lack of barrier defects was observed in long MLCK(-/-) mice. TL1A induced MLCK-dependent terminal web (TW) contraction, brush border fanning, and transepithelial bacterial internalization. The bacterial taxa identified in the inflamed colonocytes included Escherichia, Enterococcus, Staphylococcus,and Lactobacillus. Recombinant TL1A and IFNγ at low doses induced PI3K/Akt/MLCK2-dependent bacterial endocytosis, whereas high-dose IFNγ caused TJ opening via the iNOS/Src/MLCK1 axis. Bacterial internalization was recapitulated in MLCK-knockout cells individually expressing MLCK2 but not MLCK1. Immunostaining showed different subcellular sites of phosphorylated MLC localized to the TJ and TW in the MLCK1- and MLCK2-expressing cells, respectively. In conclusion, proinflammatory cytokines induced bacterial influx through transcellular and paracellular routes via divergent pathways orchestrated by distinct MLCK isoforms. Bacterial transcytosis induced by TL1A may be an alternative route causing symptom flares in IBD.
Collapse
Affiliation(s)
- Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Ting Weng
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ling Wu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physiology, Yang-Ming University, Taipei, Taiwan
| | - David Q Shih
- Inflammatory Bowel and Immunobiology Research Institute, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen R Targan
- Inflammatory Bowel and Immunobiology Research Institute, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Jerrold R Turner
- Brigham’s Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
20
|
Chen X, Li P, Liu M, Zheng H, He Y, Chen MX, Tang W, Yue X, Huang Y, Zhuang L, Wang Z, Zhong M, Ke G, Hu H, Feng Y, Chen Y, Yu Y, Zhou H, Huang L. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 2020; 69:513-522. [PMID: 31900289 DOI: 10.1136/gutjnl-2019-319101] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pre-eclampsia (PE) is one of the malignant metabolic diseases that complicate pregnancy. Gut dysbiosis has been identified for causing metabolic diseases, but the role of gut microbiome in the pathogenesis of PE remains unknown. DESIGN We performed a case-control study to compare the faecal microbiome of PE and normotensive pregnant women by 16S ribosomal RNA (rRNA) sequencing. To address the causative relationship between gut dysbiosis and PE, we used faecal microbiota transplantation (FMT) in an antibiotic-treated mouse model. Finally, we determined the microbiome translocation and immune responses in human and mouse placental samples by 16S rRNA sequencing, quantitative PCR and in situ hybridisation. RESULTS Patients with PE showed reduced bacterial diversity with obvious dysbiosis. Opportunistic pathogens, particularly Fusobacterium and Veillonella, were enriched, whereas beneficial bacteria, including Faecalibacterium and Akkermansia, were markedly depleted in the PE group. The abundances of these discriminative bacteria were correlated with blood pressure (BP), proteinuria, aminotransferase and creatinine levels. On successful colonisation, the gut microbiome from patients with PE triggered a dramatic, increased pregestational BP of recipient mice, which further increased after gestation. In addition, the PE-transplanted group showed increased proteinuria, embryonic resorption and lower fetal and placental weights. Their T regulatory/helper-17 balance in the small intestine and spleen was disturbed with more severe intestinal leakage. In the placenta of both patients with PE and PE-FMT mice, the total bacteria, Fusobacterium, and inflammatory cytokine levels were significantly increased. CONCLUSIONS This study suggests that the gut microbiome of patients with PE is dysbiotic and contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Xia Chen
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Pan Li
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Huimin Zheng
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mu-Xuan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenli Tang
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yongxin Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Guibao Ke
- Department of Internal Medicine, Affiliated Hospital, Chengdu University, Chengdu, Sichuan, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yinglin Feng
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yun Chen
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Huang S, Fu Y, Xu B, Liu C, Wang Q, Luo S, Nong F, Wang X, Huang S, Chen J, Zhou L, Luo X. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153179. [PMID: 32062328 DOI: 10.1016/j.phymed.2020.153179] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intestinal epithelial barrier dysfunction, which involves myosin light chain kinase (MLCK) activation, contributes to the occurrence and progression of inflammation in inflammatory bowel disease (IBD). Wogonoside helps maintain intestinal homeostasis in mice with dextran sulfate sodium (DSS)-induced colitis, but it is unclear whether it modulates intestinal barrier function. PURPOSE Here, we demonstrate that wogonoside protects against intestinal barrier dysfunction in colitis via the MLCK/pMLC2 pathway both in vivo and in vitro. METHODS Caco-2 cell monolayers treated with the proinflammatory cytokine TNF-α showed barrier dysfunction and were assessed in the absence and presence of wogonoside for various physiological, morphological, and biochemical parameters. Colitis was induced by 3% DSS in mice, which were used as an animal model to explore the pharmacodynamics of wogonoside. We detected MLCK/pMLC2 pathway proteins via western blot analysis, assessed the cytokines IL-13 and IFN-γ via ELISA, tested bacterial translocation via fluorescence in situ hybridization (FISH) and a proper sampling of secondary lymphoid organs for bacterial culture. In addition, the docking affinity of wogonoside and MLCK was observed with DS2.5 software. RESULTS Wogonoside alleviated the disruption of transepithelial electrical resistance (TER) in TNF-α exposured Caco-2 cell; FITC-dextran hyperpermeability; loss of the tight junction (TJ) proteins occludin, ZO-1 and claudin-1 in Caco-2 cell monolayers; and bacterial translocation in colitic mice. Moreover, wogonoside reduced the levels of the proinflammatory cytokines IL-13 and IFN-γ to maintain intestinal immune homeostasis. Transmission electron microscopy (TEM) confirmed that wogonoside ameliorated the destruction of intestinal epithelial TJs. Wogonoside not only inhibited the cytoskeletal F-actin rearrangement induced by TNF-α, stabilized the cytoskeletal structure, suppressed MLCK protein expression, and reduced MLC2 phosphorylation. In addition, the results of molecular docking analysis showed that wogonoside had a high affinity for MLCK and formed hydrogen bonds with the amino acid residue LYS261 and π bonds with LYS229. CONCLUSION Collectively, our study indicates that wogonoside alleviates colitis by protecting against intestinal barrier dysfunction, and the potential mechanism may involve regulation of TJs via the MLCK/pMLC2 signaling pathway. Meanwhile, our study also explains the success of S. baicalensis in the treatment of ulcerative colitis (UC).
Collapse
Affiliation(s)
- Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yajun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feifei Nong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Knoop KA, Kulkarni DH, McDonald KG, Gustafsson JK, Davis JE, Floyd AN, Newberry RD. In vivo labeling of epithelial cell-associated antigen passages in the murine intestine. Lab Anim (NY) 2020; 49:79-88. [PMID: 32042160 DOI: 10.1038/s41684-019-0438-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The intestinal immune system samples luminal contents to induce adaptive immune responses that include tolerance in the steady state and protective immunity during infection. How luminal substances are delivered to the immune system has not been fully investigated. Goblet cells have an important role in this process by delivering luminal substances to the immune system through the formation of goblet cell-associated antigen passages (GAPs). Soluble antigens in the intestinal lumen are transported across the epithelium transcellularly through GAPs and delivered to dendritic cells for presentation to T cells and induction of immune responses. GAPs can be identified and quantified by using the ability of GAP-forming goblet cells to take up fluorescently labeled dextran. Here, we describe a method to visualize GAPs and other cells that have the capacity to take up luminal substances by intraluminal injection of fluorescent dextran in mice under anesthesia, tissue sectioning for slide preparation and imaging with fluorescence microscopy. In contrast to in vivo two-photon imaging previously used to identify GAPs, this technique is not limited by anatomical constraints and can be used to visualize GAP formation throughout the length of the intestine. In addition, this method can be combined with common immunohistochemistry protocols to visualize other cell types. This approach can be used to compare GAP formation following different treatments or changes to the luminal environment and to uncover how sampling of luminal substances is altered in pathophysiological conditions. This protocol requires 8 working hours over 2-3 d to be completed.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jazmyne E Davis
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandria N Floyd
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
23
|
|
24
|
Baxter MFA, Dridi S, Koltes DA, Latorre JD, Bottje WG, Greene ES, Bickler SW, Kim JH, Merino-Guzman R, Hernandez-Velasco X, Anthony NB, Hargis BM, Tellez-Isaias G. Evaluation of Intestinal Permeability and Liver Bacterial Translocation in Two Modern Broilers and Their Jungle Fowl Ancestor. Front Genet 2019; 10:480. [PMID: 31164906 PMCID: PMC6536657 DOI: 10.3389/fgene.2019.00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to evaluate the of intestinal permeability and liver bacterial translocation (BT) across a modern commercial broiler, a commercial broiler of 1995 genetics, and an unselected Jungle Fowl line. Modern 2015 (MB2015) broiler chicken, random bred line initiated from 1995 (RB1995), and the Giant Jungle fowl (JF). Chickens were randomly allocated to four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial [corn-corn (C-C)]; (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet [rye-corn (R-C)]; (3) a malnutrition rye-diet that was fed throughout the trial [rye-rye (R-R)]; and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase [corn-rye (C-R)]. Paracellular permeability was evaluated using fluorescein isothiocyanate dextran (FITC-D). Liver BT was also evaluated. MB2015 and RB1995 consuming the rye-based diet showed increase serum levels of FITC-D when compared to the corn-fed chickens (P < 0.05). Overall, MB2015 appeared to have higher enteric permeability than the JF. To our knowledge, this would be the first paper to evaluate the effect of compensatory growth on intestinal permeability and liver BT. Further studies to evaluate microbiome and inflammatory markers in these chicken models are currently being evaluated.
Collapse
Affiliation(s)
- Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Dawn A. Koltes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G. Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Stephen W. Bickler
- Division of Pediatric Surgery, Rady Children’s Hospital-University of California, San Diego, San Diego, CA, United States
| | - Jae H. Kim
- Division of Neonatology, University of California, San Diego, San Diego, CA, United States
| | - Ruben Merino-Guzman
- College of Veterinary Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Nicholas B. Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
25
|
Braun DJ, Bachstetter AD, Sudduth TL, Wilcock DM, Watterson DM, Van Eldik LJ. Genetic knockout of myosin light chain kinase (MLCK210) prevents cerebral microhemorrhages and attenuates neuroinflammation in a mouse model of vascular cognitive impairment and dementia. GeroScience 2019; 41:671-679. [PMID: 31104189 PMCID: PMC6885026 DOI: 10.1007/s11357-019-00072-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) is critical in maintenance of brain homeostasis, and loss of its functional integrity is a key feature across a broad range of neurological insults. This includes both acute injuries such as traumatic brain injury and stroke, as well as more chronic pathologies associated with aging, such as vascular cognitive impairment and dementia (VCID). A specific form of myosin light chain kinase (MLCK210) is a major regulator of barrier integrity in general, including the BBB. Studies have demonstrated the potential of MLCK210 as a therapeutic target for peripheral disorders involving tissue barrier dysfunction, but less is known about its potential as a target for chronic neurologic disorders. We report here that genetic knockout (KO) of MLCK210 protects against cerebral microhemorrhages and neuroinflammation induced by chronic dietary hyperhomocysteinemia. Overall, the results are consistent with an accumulating body of evidence supporting MLCK210 as a potential therapeutic target for tissue barrier dysfunction and specifically implicate it in BBB dysfunction and neuroinflammation in a model of VCID.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
26
|
Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci. Infect Immun 2018; 86:IAI.00674-18. [PMID: 30224553 DOI: 10.1128/iai.00674-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Enterococci are Gram-positive commensals of the mammalian intestinal tract and harbor intrinsic resistance to broad-spectrum cephalosporins. Disruption of colonization resistance in humans by antibiotics allows enterococci to proliferate in the gut and cause disseminated infections. In this study, we used Enterococcus faecalis (EF)-colonized mice to study the dynamics of enterococci, commensal microbiota, and the host in response to systemic ceftriaxone administration. We found that the mouse model recapitulates intestinal proliferation and dissemination of enterococci seen in humans. Employing a ceftriaxone-sensitive strain of enterococci (E. faecalis JL308), we showed that increased intestinal abundance is critical for the systemic dissemination of enterococci. Investigation of the impact of ceftriaxone on the mucosal barrier defenses and integrity suggested that translocation of enterococci across the intestinal mucosa was not associated with intestinal pathology or increased permeability. Ceftriaxone-induced alteration of intestinal microbial composition was associated with transient increase in the abundance of multiple bacterial operational taxonomic units (OTUs) in addition to enterococci, for example, lactobacilli, which also disseminated to the extraintestinal organs. Collectively, these results emphasize that ceftriaxone-induced disruption of colonization resistance and alteration of mucosal homeostasis facilitate increased intestinal abundance of a limited number of commensals along with enterococci, allowing their translocation and systemic dissemination in a healthy host.
Collapse
|
27
|
Yu LCH. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 2018; 25:79. [PMID: 30413188 PMCID: PMC6234774 DOI: 10.1186/s12929-018-0483-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the "common ground hypothesis", which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Suite 1020, #1 Jen-Ai Rd. Sec. 1, Taipei, 100, Taiwan, Republic of China.
| |
Collapse
|
28
|
Lee T, Huang Y, Lu Y, Yeh Y, Yu LC. Hypoxia-induced intestinal barrier changes in balloon-assisted enteroscopy. J Physiol 2018; 596:3411-3424. [PMID: 29178568 PMCID: PMC6068115 DOI: 10.1113/jp275277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Balloon-assisted enteroscopy (BAE) is an emerging standard procedure by utilizing distensible balloons to facilitate deep endoscopy in the small and large intestine. Sporadic cases of bacteraemia were found after BAE. Balloon distension by BAE caused gut tissue hypoxia. The impact of balloon distension-induced hypoxia on intestinal barriers remains unclear. Murine models of BAE by colonic balloon distension showed that short- and long-term hypoxia evoked opposite effects on epithelial tight junctions (TJs). Short-term hypoxia fortified TJ integrity, whereas long-term hypoxia caused damage to barrier function. Our data showed for the first time the molecular mechanisms and signalling pathways of epithelial barrier fortification and TJ reorganization by short-term hypoxia for the maintenance of gut homeostasis. The findings suggest avoiding prolonged balloon distension during BAE to reduce the risk of hypoxia-induced gut barrier dysfunction. ABSTRACT Balloon-assisted enteroscopy (BAE) is an emerging standard procedure that uses distensible balloons to facilitate deep endoscopy. Intestines are known to harbour an abundant microflora. Whether balloon distension causes perturbation of blood flow and gut barrier dysfunction, and elicits risk of bacterial translocation remains unknown. Our aims were to (1) conduct a prospective study to gather microbiological and molecular evidence of bacterial translocation by BAE in patients, (2) establish a murine model of colonic balloon distension to investigate tissue hypoxia and intestinal barrier, and (3) assess the effect of short- and long-term hypoxia on epithelial permeability using cell lines. Thirteen patients were enrolled for BAE procedures, and blood samples were obtained before and after BAE for paired comparison. Four of the 13 patients (30.8%) had positive bacterial DNA in blood after BAE. Post-BAE endotoxaemia was higher than the pre-BAE level. Nevertheless, no clinical symptom of sepsis or fever was reported. To mimic clinical BAE, mice were subjected to colonic balloon distension. Local tissue hypoxia was observed during balloon inflation, and reoxygenation after deflation. A trend of increased gut permeability was seen after long-term distension, whereas a significant reduction of permeability was observed by short-term distension in the proximal colon. Human colonic epithelial Caco-2 cells exposed to hypoxia for 5-20 min exhibited increased tight junctional assembly, while those exposed to longer hypoxia displayed barrier disruption. In conclusion, sporadic cases of bacteraemia were found after BAE, without septic symptoms. Short-term hypoxia by balloon distension yielded a protective effect whereas long-term hypoxia caused damage to the gut barrier.
Collapse
Affiliation(s)
- Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwanROC
| | - Yi‐Chen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yen‐Zhen Lu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yu‐Chang Yeh
- Department of AnesthesiologyNational Taiwan University HospitalTaipeiTaiwanROC
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| |
Collapse
|
29
|
Yu LCH, Wei SC, Ni YH. Impact of microbiota in colorectal carcinogenesis: lessons from experimental models. Intest Res 2018; 16:346-357. [PMID: 30090033 PMCID: PMC6077307 DOI: 10.5217/ir.2018.16.3.346] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
A role of gut microbiota in colorectal cancer (CRC) growth was first suggested in germ-free rats almost 50 years ago, and the existence of disease-associated bacteria (termed pathobionts) had becoming increasingly evident from experimental data of fecal transplantation, and microbial gavage or monoassociation. Altered bacterial compositions in fecal and mucosal specimens were observed in CRC patients compared to healthy subjects. Microbial fluctuations were found at various cancer stages; an increase of bacterial diversity was noted in the adenoma specimens, while a reduction of bacterial richness was documented in CRC samples. The bacterial species enriched in the human cancerous tissues included Escherichia coli, Fusobacterium nucleatum, and enterotoxigenic Bacteroides fragilis. The causal relationship of gut bacteria in tumorigenesis was established by introducing particular bacterial strains in in situ mouse CRC models. Detailed experimental protocols of bacterial gavage and the advantages and caveats of different experimental models are summarized in this review. The microbial genotoxins, enterotoxins, and virulence factors implicated in the mechanisms of bacteria-driven tumorigenesis are described. In conclusion, intestinal microbiota is involved in colon tumorigenesis. Bacteria-targeting intervention would be the next challenge for CRC.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel) 2018; 10:toxins10070298. [PMID: 30029474 PMCID: PMC6071212 DOI: 10.3390/toxins10070298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The kidneys are key contributors to body homeostasis, by virtue of controlled excretion of excessive fluid, electrolytes, and toxic waste products. The syndrome of uremia equals the altered physiology due to irreversible loss of kidney function that is left uncorrected for, despite therapeutic intervention(s). The intestines and its microbial content are prime contributors to this syndrome. The intestinal barrier separates the self (or the so-called “milieu intérior”) from the environment. In the large intestine, the intestinal barrier keeps apart human physiology and the microbiota. The enterocytes and the extracellular mucin layer functions form a complex multilayered structure, facilitating complex bidirectional metabolic and immunological crosstalk. The current review focuses on the intestinal barrier in chronic kidney disease (CKD). Loss of kidney function results in structural and functional alterations of the intestinal barrier, contribution to the syndrome of uremia.
Collapse
|
31
|
Meijers B, Jouret F, Evenepoel P. Linking gut microbiota to cardiovascular disease and hypertension: Lessons from chronic kidney disease. Pharmacol Res 2018; 133:101-107. [DOI: 10.1016/j.phrs.2018.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/02/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
|
32
|
Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med 2017; 49:e370. [PMID: 28857085 PMCID: PMC5579512 DOI: 10.1038/emm.2017.122] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic high-salt diet-associated renal injury is a key risk factor for the development of hypertension. However, the mechanism by which salt triggers kidney damage is poorly understood. Our study investigated how high salt (HS) intake triggers early renal injury by considering the ‘gut-kidney axis’. We fed mice 2% NaCl in drinking water continuously for 8 weeks to induce early renal injury. We found that the ‘quantitative’ and ‘qualitative’ levels of the intestinal microflora were significantly altered after chronic HS feeding, which indicated the occurrence of enteric dysbiosis. In addition, intestinal immunological gene expression was impaired in mice with HS intake. Gut permeability elevation and enteric bacterial translocation into the kidney were detected after chronic HS feeding. Gut bacteria depletion by non-absorbable antibiotic administration restored HS loading-induced gut leakiness, renal injury and systolic blood pressure elevation. The fecal microbiota from mice fed chronic HS could independently cause gut leakiness and renal injury. Our current work provides a novel insight into the mechanism of HS-induced renal injury by investigating the role of the intestine with enteric bacteria and gut permeability and clearly illustrates that chronic HS loading elicited renal injury and dysfunction that was dependent on the intestine.
Collapse
|
33
|
Effects of Dexmedetomidine on Intestinal Microcirculation and Intestinal Epithelial Barrier in Endotoxemic Rats. Anesthesiology 2017; 125:355-67. [PMID: 27111533 DOI: 10.1097/aln.0000000000001135] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dexmedetomidine reduces cytokine production in septic patients and reduces inflammation and mortality in experimental models of endotoxemia and sepsis. This study investigated whether dexmedetomidine attenuates endothelial dysfunction, intestinal microcirculatory dysfunction, and intestinal epithelial barrier disruption in endotoxemic rats. METHODS Ninety-two male Wistar rats were randomly assigned to the following four groups: (1) Sham; (2) lipopolysaccharide, received IV lipopolysaccharide 15 and 10 mg/kg at 0 and 120 min; (3) dexmedetomidine, received IV dexmedetomidine for 240 min; and (4) lipopolysaccharide + dexmedetomidine, received both lipopolysaccharide and dexmedetomidine. Sidestream dark-field videomicroscope, tissue oxygen monitor, and full-field laser perfusion image were used to investigate the microcirculation of the terminal ileum. Serum endocan level was measured. The Ussing chamber permeability assay, lumen-to-blood gadodiamide passage by magnetic resonance imaging, and bacterial translocation were conducted to determine epithelial barrier function. Mucosal apoptotic levels and tight junctional integrity were also examined. RESULTS The density of perfused small vessels in mucosa, serosal muscular layer, and Peyer patch in the lipopolysaccharide + dexmedetomidine group was higher than that of the lipopolysaccharide group. Serum endocan level was lower in the lipopolysaccharide + dexmedetomidine group than in the lipopolysaccharide group. Mucosal ratio of cleaved to full-length occludin and spleen bacterial counts were significantly lower in the lipopolysaccharide + dexmedetomidine group than in the lipopolysaccharide group. CONCLUSION The study finding suggests that dexmedetomidine protects against intestinal epithelial barrier disruption in endotoxemic rats by attenuating intestinal microcirculatory dysfunction and reducing mucosal cell death and tight junctional damage. (Anesthesiology 2016; 125:355-67).
Collapse
|
34
|
Tumor Necrosis Factor α-Dependent Neutrophil Priming Prevents Intestinal Ischemia/Reperfusion-Induced Bacterial Translocation. Dig Dis Sci 2017; 62:1498-1510. [PMID: 28144894 DOI: 10.1007/s10620-017-4468-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) causes barrier impairment and bacterial influx. Protection against I/R injury in sterile organs by hypoxic preconditioning (HPC) had been attributed to erythropoietic and angiogenic responses. Our previous study showed attenuation of intestinal I/R injury by HPC for 21 days in a neutrophil-dependent manner. AIM To investigate the underlying mechanisms of neutrophil priming by HPC, and explore whether adoptive transfer of primed neutrophils is sufficient to ameliorate intestinal I/R injury. METHODS Rats raised in normoxia (NM) and HPC for 3 or 7 days were subjected to sham operation or superior mesenteric artery occlusion for I/R challenge. Neutrophils isolated from rats raised in NM or HPC for 21 days were intravenously injected into naïve controls prior to I/R. RESULTS Similar to the protective effect of HPC-21d, I/R-induced mucosal damage was attenuated by HPC-7d but not by HPC-3d. Naïve rats reconstituted with neutrophils of HPC-21d rats showed increase in intestinal phagocytic infiltration and myeloperoxidase activity, and barrier protection against I/R insult. Elevated free radical production, and higher bactericidal and phagocytic activity were observed in HPC neutrophils compared to NM controls. Moreover, increased serum levels of tumor necrosis factor α (TNFα) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were seen in HPC rats. Naïve neutrophils incubated with HPC serum or recombinant TNFα, but not CINC-1, exhibited heightened respiratory burst and bactericidal activity. Lastly, neutrophil priming effect was abolished by neutralization of TNFα in HPC serum. CONCLUSIONS TNFα-primed neutrophils by HPC act as effectors cells for enhancing barrier integrity under gut ischemia.
Collapse
|
35
|
Xiong Y, Wang C, Shi L, Wang L, Zhou Z, Chen D, Wang J, Guo H. Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases. Front Pharmacol 2017; 8:292. [PMID: 28588494 PMCID: PMC5440522 DOI: 10.3389/fphar.2017.00292] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023] Open
Abstract
Myosin light chain kinase (MLCK) induces contraction of the perijunctional apical actomyosin ring in response to phosphorylation of the myosin light chain. Abnormal expression of MLCK has been observed in respiratory diseases, pancreatitis, cardiovascular diseases, cancer, and inflammatory bowel disease. The signaling pathways involved in MLCK activation and triggering of endothelial barrier dysfunction are discussed in this review. The pharmacological effects of regulating MLCK expression by inhibitors such as ML-9, ML-7, microbial products, naturally occurring products, and microRNAs are also discussed. The influence of MLCK in inflammatory diseases starts with endothelial barrier dysfunction. The effectiveness of anti-MLCK treatment may depend on alleviation of that primary pathological mechanism. This review summarizes evidence for the potential benefits of anti-MLCK agents in the treatment of inflammatory disease and the importance of avoiding treatment-related side effects, as MLCK is widely expressed in many different tissues.
Collapse
Affiliation(s)
- Yongjian Xiong
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chenou Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liqiang Shi
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Zijuan Zhou
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Huishu Guo
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
36
|
Khapchaev AY, Shirinsky VP. Myosin Light Chain Kinase MYLK1: Anatomy, Interactions, Functions, and Regulation. BIOCHEMISTRY (MOSCOW) 2017; 81:1676-1697. [PMID: 28260490 DOI: 10.1134/s000629791613006x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.
Collapse
Affiliation(s)
- A Y Khapchaev
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | |
Collapse
|
37
|
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan (PGN)-conserved motifs in cytosol and stimulates host immune response. The association of NOD2 mutations with a number of inflammatory pathologies, including Crohn disease (CD), Graft-versus-host disease (GVHD), and Blau syndrome, highlights its pivotal role in host–pathogen interactions and inflammatory response. Stimulation of NOD2 by its ligand (muramyl dipeptide) activates pro-inflammatory pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), and Caspase-1. A loss of NOD2 function may result in a failure in the control of microbial infection, thereby initiating systemic responses and aberrant inflammation. Because the ligand of Nod2 is conserved in both gram-positive and gram-negative bacteria, NOD2 detects a wide variety of microorganisms. Furthermore, current literature evidences that NOD2 is also able to control viruses’ and parasites’ infections. In this review, we present and discuss recent developments about the role of NOD2 in shaping the gut commensal microbiota and pathogens, including bacteria, viruses, and parasites, and the mechanisms by which Nod2 mutations participate in disease occurrence.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Pierre Hugot
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- * E-mail: (JPH); (FB)
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- * E-mail: (JPH); (FB)
| |
Collapse
|
38
|
de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017; 8:253-267. [PMID: 28609252 PMCID: PMC5479392 DOI: 10.1080/19490976.2017.1293224] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The history of fecal microbiota transplantation (FMT) dates back even to ancient China. Recently, scientific studies have been looking into FMT as a promising treatment of various diseases, while in the process teaching us about the interaction between the human host and its resident microbial communities. Current research focuses mainly on Clostridium difficile infections, however interest is rising in other areas such as inflammatory bowel disease (IBD) and the metabolic syndrome. With regard to the latter, the intestinal microbiota might be causally related to the progression of insulin resistance and diabetes. FMT in metabolic syndrome has proven to be an intriguing method to study the role of the gut microbiota and open the way to new therapies by dissecting in whom insulin resistance is driven by microbiota. In this article we review the history of FMT, the present evidence on its role in the pathophysiology of metabolic syndrome and its efficacy, limitations and future prospects.
Collapse
Affiliation(s)
- P. F. de Groot
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M. N. Frissen
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - N. C. de Clercq
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - M. Nieuwdorp
- Department of Internal and Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands,Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands,ICAR, VU University Medical Center, Amsterdam, The Netherlands,CONTACT M. Nieuwdorp , Department of Internal and Vascular Medicine, Academic Medical Center Meibergdreef 9, room F4–159.2, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
39
|
Huang C, Kuo W, Huang C, Lee T, Chen C, Peng W, Lu K, Yang C, Yu LC. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischaemic gut. J Physiol 2017; 595:505-521. [PMID: 27121603 PMCID: PMC5233659 DOI: 10.1113/jp272208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria-derived septic complications. Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive. A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes. Pyruvate suppressed epithelial cell death in an ATP-independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut. Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti-necroptotic role of glycolytic pyruvate under ischaemic stress. ABSTRACT Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor-interacting protein kinase (RIP)-dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium-glucose transporter 1 ameliorated ischaemia/reperfusion-induced epithelial injury, partly via anti-apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1-dependent epithelial necroptosis and villus destruction accompanied by a reduction in crypt proliferation. Enteral glucose uptake decreased epithelial cell death and increased crypt proliferation, and ameliorated mucosal histological damage. Instillation of cell-permeable pyruvate suppressed epithelial cell death in an ATP-independent manner and improved the villus morphology but failed to maintain crypt function. Conversely, the administration of liposomal ATP partly restored crypt proliferation but did not reduce epithelial necroptosis and histopathological injury. Lastly, glucose and pyruvate attenuated mucosal-to-serosal macromolecular flux and prevented enteric bacterial translocation upon blood reperfusion. In conclusion, glucose metabolites protect against ischaemic injury through distinct modes and sites, including inhibition of epithelial necroptosis by pyruvate and the promotion of crypt proliferation by ATP.
Collapse
Affiliation(s)
- Ching‐Ying Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Wei‐Ting Kuo
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chung‐Yen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Chin‐Tin Chen
- Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Hao Peng
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Kuo‐Shyan Lu
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chung‐Yi Yang
- Department of Medical Imaging, E‐Da HospitalI‐Shou UniversityKaohsiungTaiwan
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
40
|
Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability. Gastroenterol Res Pract 2016; 2016:7374197. [PMID: 27746814 PMCID: PMC5056309 DOI: 10.1155/2016/7374197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn's disease (CD), ulcerative colitis (UC), celiac disease, and irritable bowel syndrome (IBS). Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK-) and myosin light chain kinase- (MLCK-) mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.
Collapse
|
41
|
Aryl Hydrocarbon Receptor Activation in Intestinal Obstruction Ameliorates Intestinal Barrier Dysfunction Via Suppression of MLCK-MLC Phosphorylation Pathway. Shock 2016; 46:319-28. [DOI: 10.1097/shk.0000000000000594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Wasielewski H, Alcock J, Aktipis A. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Ann N Y Acad Sci 2016; 1372:20-8. [DOI: 10.1111/nyas.13118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Joe Alcock
- Department of Emergency Medicine University of New Mexico Albuquerque New Mexico
| | - Athena Aktipis
- Department of Psychology Arizona State University Tempe Arizona
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This article evaluates the current status of the gut barrier in gastrointestinal disorders. RECENT FINDINGS The gut barrier is a complex, multicomponent, interactive, and bidirectional entity that includes, but is not restricted to, the epithelial cell layer. Intestinal permeability, the phenomenon most readily and commonly studied, reflects just one (albeit an important one) function of the barrier that is intimately related to and interacts with luminal contents, including the microbiota. The mucosal immune response also influences barrier integrity; effects of inflammation per se must be accounted for in the interpretation of permeability studies in disease states. SUMMARY Although several aspects of barrier function can be assessed in man, one must be aware of exactly what a given test measures, as well as of its limitations. The temptation to employ results from a test of paracellular flux to imply a role for barrier dysfunction in disorders thought to be based on bacterial or macromolecular translocation must be resisted. Although changes in barrier function have been described in several gastrointestinal disorders, their primacy remains to be defined. At present, few studies support efficacy for an intervention that improves barrier function in altering the natural history of a disease process.
Collapse
|
44
|
Abstract
There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.
Collapse
Affiliation(s)
- Ricard Farré
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - María Vicario
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
45
|
Tyska MJ. Brush Border Destruction by Enterohemorrhagic Escherichia coli (EHEC): New Insights From Organoid Culture. Cell Mol Gastroenterol Hepatol 2015; 2:7-8. [PMID: 28174702 PMCID: PMC4980709 DOI: 10.1016/j.jcmgh.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Matthew J. Tyska
- Correspondence Address correspondence to: Matthew J. Tyska, PhD, Department of Cell and Developmental Biology, Vanderbilt Epithelial Biology Center, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, Tennessee 37240-7935.Department of Cell and Developmental BiologyVanderbilt Epithelial Biology CenterVanderbilt University School of Medicine3154 MRB IIIPMB 407935465 21st Avenue SouthNashvilleTennessee 37240-7935
| |
Collapse
|
46
|
Abstract
Epithelial cells from diverse tissues, including the enterocytes that line the intestinal tract, remodel their apical surface during differentiation to form a brush border: an array of actin-supported membrane protrusions known as microvilli that increases the functional capacity of the tissue. Although our understanding of how epithelial cells assemble, stabilize, and organize apical microvilli is still developing, investigations of the biochemical and physical underpinnings of these processes suggest that cells coordinate cytoskeletal remodeling, membrane-cytoskeleton cross-linking, and extracellular adhesion to shape the apical brush border domain.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520 Department of Molecular, Cellular and Developmental Biology, Department of Cell Biology, and Department of Pathology, Yale University, New Haven, CT 06520
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
47
|
Yu LCH. Commensal bacterial internalization by epithelial cells: An alternative portal for gut leakiness. Tissue Barriers 2015; 3:e1008895. [PMID: 26451337 DOI: 10.1080/21688370.2015.1008895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
Co-existing paracellular and transcellular barrier defect in intestinal epithelium was documented in inflammatory bowel disease, celiac disease, and intestinal obstruction. Mechanisms regarding tight junction disruption have been extensively studied; however, limited progress has been made in research on bacterial transcytosis. Densely packed brush border (BB), with cholesterol-based lipid rafts in the intermicrovillous membrane invagination, serves as an ultrastructural barrier to prevent direct contact of luminal microbes with the cellular soma. Evidence in in vitro epithelial cell cultures and in vivo animal models of bowel obstruction and antibiotic-resistant bacterial infection had indicated that nonpathogenic, noninvasive enteric bacteria may hijack the lipid raft-mediated endocytic pathways. Our studies have shown that low dose interferon-gamma (IFNγ) causes long myosin light chain kinase (MLCK)-dependent terminal web (TW) contraction and BB fanning, allowing bacteria to pass through the consequently widened intermicrovillous cleft to be endocytosed via caveolin-associated lipid rafts. Activation of intracellular innate immune receptors by bacteria-containing endosomes may further induce inflammatory and oxidative stress, leading to secondary tight junction damage. The finding of bacterial internalization preceding tight junction damage suggests that abnormal bacterial uptake by epithelial cells may contribute to the initiation or relapse of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology; National Taiwan University ; Taipei, Taiwan, Republic of China
| |
Collapse
|
48
|
Yu LCH, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G824-35. [PMID: 25059827 PMCID: PMC4214854 DOI: 10.1152/ajpgi.00070.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antibiotic usage promotes intestinal colonization of antibiotic-resistant bacteria. However, whether resistant bacteria gain dominance in enteric microflora or disseminate to extraintestinal viscera remains unclear. Our aim was to investigate temporal diversity changes in microbiota and transepithelial routes of bacterial translocation after antibiotic-resistant enterobacterial colonization. Mice drinking water with or without antibiotics were intragastrically gavaged with ampicillin-resistant (Amp-r) nonpathogenic Escherichia coli (E. coli) and given normal water afterward. The composition and spatial distribution of intestinal bacteria were evaluated using 16S rDNA sequencing and fluorescence in situ hybridization. Bacterial endocytosis in epithelial cells was examined using gentamicin resistance assay and transmission electromicroscopy. Paracellular permeability was assessed by tight junctional immunostaining and measured by tissue conductance and luminal-to-serosal dextran fluxes. Our results showed that antibiotic treatment enabled intestinal colonization and transient dominance of orally acquired Amp-r E. coli in mice. The colonized Amp-r E. coli peaked on day 3 postinoculation and was competed out after 1 wk, as evidenced by the recovery of commensals, such as Escherichia, Bacteroides, Lachnospiraceae, Clostridium, and Lactobacillus. Mucosal penetration and extraintestinal dissemination of exogenous and endogenous enterobacteria were correlated with abnormal epithelial transcytosis but uncoupled with paracellular tight junctional damage. In conclusion, antibiotic-induced enteric dysbiosis predisposes to exogenous infection and causes systemic dissemination of both antibiotic-resistant and commensal enterobacteria through transcytotic routes across epithelial layers. These results may help explain the susceptibility to sepsis in antibiotic-resistant enteric bacterial infection.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Yi-An Shih
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Li-Ling Wu
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Yang-Ding Lin
- 2Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Wei-Ting Kuo
- 1Graduate Institute of Physiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan;
| | - Wei-Hao Peng
- 3Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Kuo-Shyan Lu
- 3Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan;
| | - Shu-Chen Wei
- 4Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; and
| | | | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan;
| |
Collapse
|