1
|
Salmon-Cabrales IS, de la Garza-Kalife DA, García-González G, Estrada-Rodríguez AE, Jiménez-Gutiérrez MA, Santoyo-Suárez MG, Rodríguez-Núñez O, Garza-Treviño EN, Benítez-Chao DF, Padilla-Rivas GR, Islas JF. Exploring the Functionality of the Krüppel-like Factors in Kidney Development, Metabolism, and Diseases. Life (Basel) 2024; 14:1671. [PMID: 39768378 PMCID: PMC11728015 DOI: 10.3390/life14121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The kidneys contribute to the overall health of an organism by maintaining systemic homeostasis. This process involves various biological mechanisms, in which the Krüppel-like factors (KLFs), a family of transcription factors, are essential for regulating development, differentiation, proliferation, and cellular apoptosis. They also play a role in the metabolic regulation of essential nutrients, such as glucose and lipids. The dysregulation of these transcription factors is associated with the development of various pathologies, which can ultimately lead to renal fibrosis, severely compromising kidney function. In this context, the present article provides a comprehensive review of the existing literature, offering an enriching analysis of the findings related to the role of KLFs in nephrology, while also highlighting their potential therapeutic role in the treatment of renal diseases.
Collapse
Affiliation(s)
- Itzel S. Salmon-Cabrales
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - David A. de la Garza-Kalife
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Gabriel García-González
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Ana E. Estrada-Rodríguez
- Departmento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Marco Antonio Jiménez-Gutiérrez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Michelle G. Santoyo-Suárez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Oscar Rodríguez-Núñez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Diego F. Benítez-Chao
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (I.S.S.-C.); (D.A.d.l.G.-K.); (G.G.-G.); (M.A.J.-G.); (M.G.S.-S.); (O.R.-N.); (E.N.G.-T.); (D.F.B.-C.); (G.R.P.-R.)
| |
Collapse
|
2
|
Cai S, Zhu H, Chen L, Yu C, Su L, Chen K, Li Y. Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice. Chem Res Toxicol 2024; 37:1728-1737. [PMID: 39264844 DOI: 10.1021/acs.chemrestox.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Inflammation, oxidative stress, fibrosis, and ferroptosis play important roles in diabetic nephropathy development. Krüppel-like factor 4 (KLF4) is a transcriptional factor, which regulates multiple cell processes and is involved in diabetic nephropathy. Berberine has various biological activities, including anti-inflammation, antioxidative stress, and antiferroptosis. Berberine has been shown to inhibit diabetic nephropathy, but whether it involves KLF4 and ferroptosis remains unknown. We established a diabetic nephropathy mice model and administered berberine to the mice. The kidney function, renal structure and fibrosis, expression of KLF4 and DNA methylation enzymes, DNA methylation of the KLF4 promoter, mitochondria structure, and expression of oxidative stress and ferroptosis markers were analyzed. Berberine rescued kidney function and renal structure and prevented renal fibrosis in diabetic nephropathy mice. Berberine suppressed the expression of DNMT1 and DNMT2 and upregulated KLF4 expression by preventing KLF4 promoter methylation. Berberine inhibited the expression of oxidative stress and ferroptosis markers, maintained mitochondria structure, and prevented ferroptosis. Berberine ameliorates diabetic nephropathy by inhibiting Klf4 promoter methylation and ferroptosis.
Collapse
Affiliation(s)
- Shengyu Cai
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Huizheng Zhu
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Lingling Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Congcong Yu
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Liyuan Su
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Kaihua Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yousheng Li
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
3
|
Liu Y, Wang Y, Xu C, Zhang Y, Wang Y, Qin J, Lan HY, Wang L, Huang Y, Mak KK, Zheng Z, Xia Y. Activation of the YAP/KLF5 transcriptional cascade in renal tubular cells aggravates kidney injury. Mol Ther 2024; 32:1526-1539. [PMID: 38414248 PMCID: PMC11081877 DOI: 10.1016/j.ymthe.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
The Hippo/YAP pathway plays a critical role in tissue homeostasis. Our previous work demonstrated that renal tubular YAP activation induced by double knockout (dKO) of the upstream Hippo kinases Mst1 and Mst2 promotes tubular injury and renal inflammation under basal conditions. However, the importance of tubular YAP activation remains to be established in injured kidneys in which many other injurious pathways are simultaneously activated. Here, we show that tubular YAP was already activated 6 h after unilateral ureteral obstruction (UUO). Tubular YAP deficiency greatly attenuated tubular cell overproliferation, tubular injury, and renal inflammation induced by UUO or cisplatin. YAP promoted the transcription of the transcription factor KLF5. Consistent with this, the elevated expression of KLF5 and its target genes in Mst1/2 dKO or UUO kidneys was blocked by ablation of Yap in tubular cells. Inhibition of KLF5 prevented tubular cell overproliferation, tubular injury, and renal inflammation in Mst1/2 dKO kidneys. Therefore, our results demonstrate that tubular YAP is a key player in kidney injury. YAP and KLF5 form a transcriptional cascade, where tubular YAP activation induced by kidney injury promotes KLF5 transcription. Activation of this cascade induces tubular cell overproliferation, tubular injury, and renal inflammation.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Chunhua Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinzhong Qin
- The Key Laboratory of Model Animal for Disease Study of the Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kingston Kinglun Mak
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Kuo CH, Lee GH, Wu HL, Huang JY, Tang MJ. Breaking the symmetry of cell contractility drives tubulogenesis via CXCL1 polarization. Proc Natl Acad Sci U S A 2024; 121:e2315894121. [PMID: 38377213 PMCID: PMC10907267 DOI: 10.1073/pnas.2315894121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
The intricate interplay between biomechanical and biochemical pathways in modulating morphogenesis is an interesting research topic. How biomechanical force regulates epithelial cell tubulogenesis remains poorly understood. Here, we established a model of tubulogenesis by culturing renal proximal tubular epithelial cells on a collagen gel while manipulating contractile force. Epithelial cells were dynamically self-organized into tubule-like structures by augmentation of cell protrusions and cell-cell association. Reduction and asymmetric distribution of phosphorylated myosin light chain 2, the actomyosin contractility, in cells grown on soft matrix preceded tube connection. Notably, reducing matrix stiffness via sonication of collagen fibrils and inhibiting actomyosin contractility with blebbistatin promoted tubulogenesis, whereas inhibition of cytoskeleton polymerization suppressed it. CXC chemokine ligand 1 (CXCL1) expression was transcriptionally upregulated in cells undergoing tubulogenesis. Additionally, inhibiting actomyosin contractility facilitated CXCL1 polarization and cell protrusions preceding tube formation. Conversely, inhibiting the CXCL1-CXC receptor 1 pathway hindered cell protrusions and tubulogenesis. Mechanical property asymmetry with cell-collagen fibril interaction patterns at cell protrusions and along the tube structure supported the association of anisotropic contraction with tube formation. Furthermore, suppressing the mechanosensing machinery of integrin subunit beta 1 reduced CXCL1 expression, collagen remodeling, and impaired tubulogenesis. In summary, symmetry breaking of cell contractility on a soft collagen gel promotes CXCL1 polarization at cell protrusions which in turn facilitates cell-cell association and thus tubule connection.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
5
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
6
|
Ying S, Liu L, Luo C, Liu Y, Zhao C, Ge W, Wu N, Ruan Y, Wang W, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 induces TIMP3 expression by glomerular mesangial cells via TRAF6-dependent KLF5 K63-linked ubiquitination in rat Thy-1 nephritis. Int Immunopharmacol 2023; 124:110970. [PMID: 37748221 DOI: 10.1016/j.intimp.2023.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.
Collapse
Affiliation(s)
- Shuai Ying
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Longfei Liu
- Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Can Luo
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Microbiology and Immunology, Jiangsu Health Vocational College, Nanjing, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Ge
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Ningxia Wu
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Yuting Ruan
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Weiming Wang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China.
| | - Yingwei Wang
- Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China; Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Tao S, Tan X, Chai W, Peng X, Zheng W, Fu R, Deng M. Knockdown of KLF5 ameliorates renal fibrosis in MRL/lpr mice via inhibition of MX1 transcription. Immun Inflamm Dis 2023; 11:e937. [PMID: 37506140 PMCID: PMC10373570 DOI: 10.1002/iid3.937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE This study aims to elucidate the role of Kruppel-like factor (KLF5) and myxovirus resistance 1 (MX1) in the progression of renal fibrosis in lupus nephritis (LN). METHODS First, the expression of KLF5 and MX1 was assessed in the peripheral blood of LN patients and healthy participants. Next, the pathological changes in renal tissues were evaluated and compared in BALB/c and MRL/lpr mice, by detecting the expression of fibrosis marker proteins (transforming growth factor-β [TGF-β] and CTGF) and α-SMA, the content of urine protein, and the levels of serum creatinine, blood urea nitrogen, and serum double-stranded DNA antibody. In TGF-β1-induced HK-2 cells, the messenger RNA levels of KLF5 and MX1 were tested by qRT-PCR, and the protein expression of α-SMA, type I collagen (Col I), fibronectin (FN), and matrix metalloproteinase 9 (MMP9) was measured by western blot analysis. Moreover, the relationship between KLF5 and MX1 was predicted and verified. RESULTS In renal tissues of MRL/lpr mice and the peripheral blood of LN patients, KLF5 and MX1 were highly expressed. Pearson analysis revealed that KLF5 was positively correlated with MX1. Furthermore, KLF5 bound to MX1 promoter and promoted its transcription level. MRL/lpr mice showed substantial renal injury, accompanied by increased expression of α-SMA, TGF-β, CTGF, Col I, FN, and MMP9. Injection of sh-KLF5 or sh-MX1 alone in MRL/lpr mice reduced renal fibrosis in LN, while simultaneous injection of sh-KLF5 and ad-MX1 exacerbated renal injury and fibrosis. Furthermore, we obtained the same results in TGF-β1-induced HK-2 cells. CONCLUSION Knockdown of KLF5 alleviated renal fibrosis in LN through repressing the transcription of MX1.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Chen XQ, Ma J, Xu D, Xiang ZL. Comprehensive analysis of KLF2 as a prognostic biomarker associated with fibrosis and immune infiltration in advanced hepatocellular carcinoma. BMC Bioinformatics 2023; 24:270. [PMID: 37386390 PMCID: PMC10308631 DOI: 10.1186/s12859-023-05391-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE Most Hepatocellular carcinoma (HCC) patients are in advanced or metastatic stage at the time of diagnosis. Prognosis for advanced HCC patients is dismal. This study was based on our previous microarray results, and aimed to explore the promising diagnostic and prognostic markers for advanced HCC by focusing on the important function of KLF2. METHODS The Cancer Genome Atlas (TCGA), Cancer Genome Consortium database (ICGC), and the Gene Expression Comprehensive Database (GEO) provided the raw data of this study research. The cBioPortal platform, CeDR Atlas platform, and the Human Protein Atlas (HPA) website were applied to analyze the mutational landscape and single-cell sequencing data of KLF2. Basing on the results of single-cell sequencing analyses, we further explored the molecular mechanism of KLF2 regulation in the fibrosis and immune infiltration of HCC. RESULTS Decreased KLF2 expression was discovered to be mainly regulated by hypermethylation, and indicated a poor prognosis of HCC. Single-cell level expression analyses revealed KLF2 was highly expressed in immune cells and fibroblasts. The function enrichment analysis of KLF2 targets indicated the crucial association between KLF2 and tumor matrix. 33-genes related with cancer associated fibroblasts (CAFs) were collected to identify the significant association of KLF2 with fibrosis. And SPP1 was validated as a promising prognostic and diagnostic marker for advanced HCC patients. CXCR6 CD8+ T cells were noted as a predominant proportion in the immune microenvironment, and T cell receptor CD3D was discovered to be a potential therapeutic biomarker for HCC immunotherapy. CONCLUSION This study identified that KLF2 is an important factor promoting HCC progression by affecting the fibrosis and immune infiltration, highlighting its great potential as a novel prognostic biomarker for advanced HCC.
Collapse
Affiliation(s)
- Xue-Qin Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Ma
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Di Xu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Jiangxi, 343000, China.
| |
Collapse
|
9
|
Trinh A, Huang Y, Shao H, Ram A, Morival J, Wang J, Chung EJ, Downing TL. Targeting the ADPKD methylome using nanoparticle-mediated combination therapy. APL Bioeng 2023; 7:026111. [PMID: 37305656 PMCID: PMC10257530 DOI: 10.1063/5.0151408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DNA methylation aberrancies are found in autosomal dominant polycystic kidney disease (ADPKD), which suggests the methylome to be a promising therapeutic target. However, the impact of combining DNA methylation inhibitors (DNMTi) and ADPKD drugs in treating ADPKD and on disease-associated methylation patterns has not been fully explored. To test this, ADPKD drugs, metformin and tolvaptan (MT), were delivered in combination with DNMTi 5-aza-2'-deoxycytidine (Aza) to 2D or 3D cystic Pkd1 heterozygous renal epithelial cells (PKD1-Het cells) as free drugs or within nanoparticles to enable direct delivery for future in vivo applications. We found Aza synergizes with MT to reduce cell viability and cystic growth. Reduced representation bisulfite sequencing (RRBS) was performed across four groups: PBS, Free-Aza (Aza), Free-Aza+MT (F-MTAza), and Nanoparticle-Aza+MT (NP-MTAza). Global methylation patterns showed that while Aza alone induces a unimodal intermediate methylation landscape, Aza+MT recovers the bimodality reminiscent of somatic methylomes. Importantly, site-specific methylation changes associated with F-MTAza and NP-MTAza were largely conserved including hypomethylation at ADPKD-associated genes. Notably, we report hypomethylation of cancer-associated genes implicated in ADPKD pathogenesis as well as new target genes that may provide additional therapeutic effects. Overall, this study motivates future work to further elucidate the regulatory mechanisms of observed drug synergy and apply these combination therapies in vivo.
Collapse
Affiliation(s)
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Aparna Ram
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eun Ji Chung
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
10
|
Yang S, Xiang J, Ma C, Yang G, Wang X, Liu H, Fan G, Kang L, Liang Z. Sp1-like protein KLF13 acts as a negative feedback regulator of TGF-β signaling and fibrosis. Cell Rep 2023; 42:112367. [PMID: 37029927 DOI: 10.1016/j.celrep.2023.112367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Transforming growth factor β (TGF-β) is the primary factor that drives fibrosis in most forms of chronic kidney disease. The aim of this study was to identify endogenous regulators of TGF-β signaling and fibrosis. Here, we show that tubulointerstitial fibrosis is aggravated by global deletion of KLF13 and attenuated by adeno-associated virus-mediated KLF13 overexpression in renal tubular epithelial cells. KLF13 recruits a repressor complex comprising SIN3A and histone deacetylase 1 (HDAC1) to the TGF-β target genes, limiting the profibrotic effects of TGF-β. Temporary upregulation of TGF-β induces KLF13 expression, creating a negative feedback loop that triggers the anti-fibrotic effect of KLF13. However, persistent activation of TGF-β signaling reduces KLF13 levels through FBXW7-mediated ubiquitination degradation and HDAC-dependent mechanisms to inhibit KLF13 transcription and offset the anti-fibrotic effect of KLF13. Collectively, our data demonstrate a role of KLF13 in regulating TGF-β signaling and fibrosis.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xinyu Wang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hanyong Liu
- Department of Nephrology, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Hussien AA, Niederoest B, Bollhalder M, Goedecke N, Snedeker JG. The Stiffness-Sensitive Transcriptome of Human Tendon Stromal Cells. Adv Healthc Mater 2023; 12:e2101216. [PMID: 36509005 PMCID: PMC11468939 DOI: 10.1002/adhm.202101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular matrix stiffness is a major regulator of cellular states. Stiffness-sensing investigations are typically performed using cells that have acquired "mechanical memory" through prolonged conditioning in rigid environments, e.g., tissue culture plastic (TCP). This potentially masks the full extent of the matrix stiffness-driven mechanosensing programs. Here, a biomaterial composed of 2D mechanovariant silicone substrates with simplified and scalable surface biofunctionalization chemistry is developed to facilitate large-scale cell culture expansion processes. Using RNA sequencing, stiffness-mediated mechano-responses of human tendon-derived stromal cells are broadly mapped. Matrix elasticity (E.) approximating tendon microscale stiffness range (E. ≈ 35 kPa) distinctly favors transcriptional programs related to chromatin remodeling and Hippo signaling; whereas compliant stiffnesses (E. ≈ 2 kPa) are enriched in processes related to cell stemness, synapse assembly, and angiogenesis. While tendon stromal cells undergo dramatic phenotypic drift on conventional TCP, mechanovariant substrates abrogate this activation with tenogenic stiffnesses inducing a transcriptional program that strongly correlates with established tendon tissue-specific expression signature. Computational inference predicts that AKT1 and ERK1/2 are major stiffness-sensing signaling hubs. Together, these findings highlight how matrix biophysical cues may dictate the transcriptional identity of tendon cells, and how matrix mechano-reciprocity regulates diverse sets of previously underappreciated mechanosensitive processes in tendon fibroblasts.
Collapse
Affiliation(s)
- Amro A. Hussien
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Barbara Niederoest
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Maja Bollhalder
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Nils Goedecke
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Jess G. Snedeker
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| |
Collapse
|
12
|
Lee GH, Cheon J, Kim D, Jun HS. Lysophosphatidic Acid Promotes Epithelial-Mesenchymal Transition in Kidney Epithelial Cells via the LPAR1/MAPK-AKT/KLF5 Signaling Pathway in Diabetic Nephropathy. Int J Mol Sci 2022; 23:ijms231810497. [PMID: 36142408 PMCID: PMC9500642 DOI: 10.3390/ijms231810497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a differentiation process associated with fibrogenesis in diabetic nephropathy (DN). Lysophosphatidic acid (LPA) is a small, naturally occurring glycerophospholipid implicated in the pathogenesis of DN. In this study, we investigated the role of LPA/LPAR1 signaling in the EMT of tubular cells as well as the underlying mechanisms. We observed a decrease in E-cadherin and an increase in vimentin expression levels in the kidney tubules of diabetic db/db mice, and treatment with ki16425 (LPAR1/3 inhibitor) inhibited the expression of these EMT markers. Ki16425 treatment also decreased the expression levels of the fibrotic factors fibronectin and alpha-smooth muscle actin (α-SMA) in db/db mice. Similarly, we found that LPA decreased E-cadherin expression and increased vimentin expression in HK-2 cells, which was reversed by treatment with ki16425 or AM095 (LPAR1 inhibitor). In addition, the expression levels of fibronectin and α-SMA were increased by LPA, and this effect was reversed by treatment with ki16425 and AM095 or by LPAR1 knockdown. Moreover, LPA induced the expression of the transcription factor, Krüppel-like factor 5 (KLF5), which was decreased by AM095 treatment or LPAR1 knockdown. The expression levels of EMT markers and fibrotic factors induced by LPA were decreased upon KLF5 knockdown in HK-2 cells. Inhibition of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and serine-threonine kinase (AKT) pathways decreased LPA-induced expression of KLF5 and EMT markers. In conclusion, these data suggest that LPA contributes to the pathogenesis of diabetic nephropathy by inducing EMT and renal tubular fibrosis via regulation of KLF5 through the LPAR1.
Collapse
Affiliation(s)
- Geon-Ho Lee
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Jayeon Cheon
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6056; Fax: +82-32-899-6057
| |
Collapse
|
13
|
KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis 2022; 13:435. [PMID: 35508454 PMCID: PMC9068714 DOI: 10.1038/s41419-022-04886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) was considered as a telomere-mediated disease. TERT and TERC correlated with telomere length. Although telomerase gene mutations were associated with IPF, majority patients did not carry mutations. The mechanism by which telomerase expression was regulated in IPF are still unclear. In this study, we aimed to delineate the mechanisms that how TERT protein expression were regulated in alveolar epithelial cells (AECs) in pulmonary fibrosis. Here, we found that P16, P21 and fibrosis markers (αSMA and Collagen-I) were prominently increased in lung tissues of IPF patients and bleomycin-induced mouse models, while the expression of KLF4 and TERT were decreased in AECs. In vivo experiments, AAV-6 vectors mediated KLF4 over-expression with specific SP-C promoter was constructed. Over-expression of KLF4 in AECs could protect TERT expression and suppress the development of pulmonary fibrosis in bleomycin-induced mouse models. In the mechanism exploration of TERT regulation, KLF4 and TERT were both down-regulated in bleomycin-induced senescent MLE-12 and BEAS-2B cells. Compared with control group, small-interfering RNA targeting KLF4 significantly reduced the TERT expression and telomerase activity, while overexpression of KLF4 can increased the expression of TERT and telomerase activity in senescent AECs. Furthermore, ChIP showed that KLF4 protein could bind to the TERT promoter region in MLE-12 cells, suggesting that KLF4 could implicate in pathogenesis of lung fibrosis through regulating TERT transcription in AECs. Taken together, this study identified that KLF4 might be a promising potential target for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF.
Collapse
|
14
|
Barker CG, Petsalaki E, Giudice G, Sero J, Ekpenyong EN, Bakal C, Petsalaki E. Identification of phenotype-specific networks from paired gene expression-cell shape imaging data. Genome Res 2022; 32:750-765. [PMID: 35197309 PMCID: PMC8997347 DOI: 10.1101/gr.276059.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
Collapse
Affiliation(s)
- Charlie George Barker
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Eirini Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Julia Sero
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emmanuel Nsa Ekpenyong
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
15
|
Li ZL, Wang B, Lv LL, Tang TT, Wen Y, Cao JY, Zhu XX, Feng ST, Crowley SD, Liu BC. FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling. Acta Pharmacol Sin 2021; 42:2106-2119. [PMID: 33658705 PMCID: PMC8633347 DOI: 10.1038/s41401-021-00617-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/17/2021] [Indexed: 02/02/2023]
Abstract
Incomplete recovery from episodes of acute kidney injury (AKI) can predispose patients to develop chronic kidney disease (CKD). Although hypoxia-inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia/ischemia, the role of HIF-1α in CKD progression following incomplete recovery from AKI is poorly understood. Here, we investigated this issue using moderate and severe ischemia/reperfusion injury (I/RI) mouse models. We found that the outcomes of AKI were highly associated with the time course of tubular HIF-1α expression. Sustained activation of HIF-1α, accompanied by the development of renal fibrotic lesions, was found in kidneys with severe AKI. The AKI to CKD progression was markedly ameliorated when PX-478 (a specific HIF-1α inhibitor, 5 mg· kg-1·d-1, i.p.) was administered starting on day 5 after severe I/RI for 10 consecutive days. Furthermore, we demonstrated that HIF-1α C-terminal transcriptional activation domain (C-TAD) transcriptionally stimulated KLF5, which promoted progression of CKD following severe AKI. The effect of HIF-1α C-TAD activation on promoting AKI to CKD progression was also confirmed in in vivo and in vitro studies. Moreover, we revealed that activation of HIF-1α C-TAD resulted in the loss of FIH-1, which was the key factor governing HIF-1α-driven AKI to CKD progression. Overexpression of FIH-1 inhibited HIF-1α C-TAD and prevented AKI to CKD progression. Thus, FIH-1-modulated HIF-1α C-TAD activation was the key mechanism of AKI to CKD progression by transcriptionally regulating KLF5 pathway. Our results provide new insights into the role of HIF-1α in AKI to CKD progression and also the potential therapeutic strategy for the prevention of renal diseases progression.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xiao-Xiao Zhu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Song-Tao Feng
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University, Durham VA Medical Centers, Durham, NC, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| |
Collapse
|
16
|
Histamine Deficiency Promotes Myofibroblasts Transformation from HDC-Expressing CD11b + Myeloid Cells in Injured Hearts Post Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:621-634. [PMID: 34734351 DOI: 10.1007/s12265-021-10172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
Myocardial infarction (MI) is a significant contributor to the development of heart failure. Histidine decarboxylase (HDC), the unique enzyme that converts L-histidine to histamine, is highly expressed in CD11b+ immature myeloid cells. However, the relationship between HDC-expressing macrophages and cardiac myofibroblasts remains to be explained. Here, we demonstrate that the GFP (green fluorescent protein)-labeled HDC+CD11b+ myeloid precursors and their descendants could differentiate into fibroblast-like cells in myocardial interstitium. Furthermore, we prove that CD11b+Ly6C+ monocytes/macrophages, but not CD11b+Ly6G+ granulocytes, are identified as the main cellular source for bone marrow-derived myofibroblast transformation, which could be regulated via histamine H1 and H2 receptor-dependent signaling pathways. Using HDC knockout mice, we find that histamine deficiency promotes myofibroblast transformation from Ly6C+ macrophages and cardiac fibrosis partly through upregulating the expression of Krüppel-like factor 5 (KLF5). Taken together, our data uncover a central role of HDC in regulating bone marrow-derived macrophage-to-myofibroblast transformation but also identify a histamine receptor (HR)-KLF5 related signaling pathway that mediates myocardial fibrosis post-MI. CD11b+Ly6C+ monocytes/macrophages are the main cellular source for bone marrow-derived myofibroblast transformation. Histamine inhibits myofibroblasts transformation via H1R and H2R-dependent signaling pathways, and ameliorates cardiac fibrosis partly through upregulating KLF5 expression.
Collapse
|
17
|
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A 2021; 118:2102895118. [PMID: 34426497 DOI: 10.1073/pnas.2102895118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle-selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse- and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63 These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Collapse
|
18
|
Zhao X, Fu J, Hu B, Chen L, Wang J, Fang J, Ge C, Lin H, Pan K, Fu L, Wang L, Du J, Xu W. Serine Metabolism Regulates YAP Activity Through USP7 in Colon Cancer. Front Cell Dev Biol 2021; 9:639111. [PMID: 34055773 PMCID: PMC8152669 DOI: 10.3389/fcell.2021.639111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic reprogramming is a vital factor in the development of many types of cancer, including colon cancer. Serine metabolic reprogramming is a major feature of tumor metabolism. Yes-associated protein (YAP) participates in organ size control and tumorigenesis. However, the relationship between YAP and serine metabolism in colon cancer is unclear. In this study, RNA sequencing and metabolomics analyses indicated significant enrichment of the glycine, serine, and threonine metabolism pathways in serine starvation-resistant cells. Short-term serine deficiency inhibited YAP activation, whereas a prolonged response dephosphorylated YAP and promoted its activity. Mechanistically, USP7 increases YAP stability under increased serine conditions by regulating deubiquitination. Verteporfin (VP) effectively inhibited the proliferation of colon cancer cells and organoids and could even modulate serine metabolism by inhibiting USP7 expression. Clinically, YAP was significantly activated in colon tumor tissues and positively correlated with the expression of phosphoglycerate dehydrogenase (PHGDH) and USP7. Generally, our study uncovered the mechanism by which serine metabolism regulates YAP via USP7 and identified the crucial role of YAP in the regulation of cell proliferation and tumor growth; thus, VP may be a new treatment for colon cancer.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lin Chen
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Huancheng, Jinhua, China
| | - Chenyang Ge
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haiping Lin
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Kailing Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Liang Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.,Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinlin Du
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
19
|
Li J, Liu L, Zhou W, Cai L, Xu Z, Rane MJ. Roles of Krüppel-like factor 5 in kidney disease. J Cell Mol Med 2021; 25:2342-2355. [PMID: 33523554 PMCID: PMC7933973 DOI: 10.1111/jcmm.16332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription factor Krüppel-like factor 5 (KLF5) is a member of the Krüppel-like factors' (KLFs) family. KLF5 regulates a number of cellular functions, such as apoptosis, proliferation and differentiation. Therefore, KLF5 can play a role in many diseases, including, cancer, cardiovascular disease and gastrointestinal disorders. An important role for KLF5 in the kidney was recently reported, such that KLF5 regulated podocyte apoptosis, renal cell proliferation, tubulointerstitial inflammation and renal fibrosis. In this review, we have summarized the available information in the literature with a brief description on how transcriptional, post-transcriptional and post-translational modifications of KLF5 modulate its function in a variety of organs including the kidney with a focus of its importance on the pathogenesis of various kidney diseases. Furthermore, we also have outlined the current and possible mechanisms of KLF5 activation in kidney diseases. These studies suggest a need for more systemic investigations, particularly for generation of animal models with renal cell-specific deletion or overexpression of KLF5 gene to examine direct contributions of KLF5 to various kidney diseases. This will promote further experimentation in the development of therapies to prevent or treat various kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Liang Liu
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Wen‐Qian Zhou
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Gao Xu
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
| | - Madhavi J. Rane
- Department of MedicineDivision of NephrologyDepartment of Biochemistry and Molecular GeneticsUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
20
|
Gao L, Yang X, Li Y, Wang Z, Wang S, Tan S, Chen A, Cao P, Shao J, Zhang Z, Zhang F, Zheng S. Curcumol inhibits KLF5-dependent angiogenesis by blocking the ROS/ERK signaling in liver sinusoidal endothelial cells. Life Sci 2021; 264:118696. [PMID: 33157090 DOI: 10.1016/j.lfs.2020.118696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS Liver fibrosis is a difficult problem in the medical field. We previously reported that curcumol, a bioactive substance, may inhibit the pathological angiogenesis of liver sinusoidal endothelial cells (LSECs) and play a good anti-hepatic fibrosis effect. However, the mechanism of curcumol inhibiting angiogenesis in LSEC needs to be further clarified. Here, we focus on how curcumol inhibits LSEC angiogenesis in liver fibrosis. MATERIALS AND METHODS Primary rat LSECs were cultured in vitro, and various molecular experiments including real-time PCR, western blot, immunofluorescence, tube formation assay and transwell migration assay were used to clarify the potential mechanism of curcumol. Carbon tetrachloride (CCl4) was applied to create a mouse liver fibrosis model. Blood and livers were taken to elucidate the efficacy of curcumol in vivo. KEY FINDINGS We found that curcumol could effectively inhibit LSEC angiogenesis in vitro. Interestingly, this process may depend on curcumol's inhibition of the expression of transcription factor KLF5. Mice experiment also showed that curcumol could alleviate chronic liver injury by reducing KLF5 expression. In addition, we suggested that curcumol could reduce the production of mitochondrial ROS and improve mitochondrial morphology in LSEC. More importantly, we proved that curcumol could suppress KLF5-mediated LSEC angiogenesis by inhibiting ROS/ERK signaling. SIGNIFICANCE We suggested that transcription factor KLF5 could be considered as a new target molecule of curcumol in improving liver fibrosis, and pointed out that curcumol targeted ROS/ERK-mediated KLF5 expression could inhibit LSEC angiogenesis. This provided a new theoretical basis for curcumol to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Liyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, USA
| | - Peng Cao
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
21
|
Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020; 10:biom10081093. [PMID: 32708046 PMCID: PMC7465975 DOI: 10.3390/biom10081093] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis. In an inflammatory context, LOX plays a role in diminishing pluripotent mesenchymal cell pools which are relevant to the pathology of diabetes, osteoporosis and rheumatoid arthritis. Most of these conditions involve mechanisms with complex cell and tissue type-specific interactions of LOX with signaling pathways, not only as a regulatory target, but also as an active player, including LOX-mediated alterations of cell surface receptor functions and mutual regulatory activities within signaling loops. In this review, we aim to provide insight into the diverse ways in which LOX participates in signaling events, and explore the mechanistic details and functional significance of the regulatory and cross-regulatory interactions of LOX with the EGFR, PDGF, VEGF, TGF-β, mechano-transduction, inflammatory and steroid signaling pathways.
Collapse
|
22
|
Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, Song J. Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis. Circulation 2020; 142:384-400. [PMID: 32431172 DOI: 10.1161/circulationaha.119.043545] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Myocarditis can develop into dilated cardiomyopathy, which may require heart transplantation. The immunological network of myocarditis phases remains unknown. This study aimed to investigate the immunological network during the transition from myocarditis to cardiomyopathy and to identify the genes contributing to the inflammatory response to myocarditis. METHODS Mice were treated with myosin heavy chain-α peptides to generate an experimental autoimmune myocarditis (EAM) model. We performed single-cell RNA sequencing analysis of Cd45+ cells extracted from mouse hearts during different EAM phases, including normal control, acute inflammatory, subacute inflammatory, and myopathy phases. Human heart tissues were collected from the surgically removed hearts of patients who had undergone heart transplantation. RESULTS We identified 26 cell subtypes among 34 665 cells. Macrophages constituted the main immune cell population at all disease phases (>60%), and an inflammation-associated macrophage cluster was identified in which the expression of Hif1a-regulated genes was upregulated. The neutrophil population was increased after the induction of EAM, and neutrophils then released Il-1 to participate in the EAM process. T cells were observed at the highest percentage at the subacute inflammatory phase. T-helper 17 cells, in which the expression of Hif1a-regulated genes was upregulated, constituted the main T-cell population detected at the acute inflammatory phase, whereas regulatory T cells were the main T-cell population detected at the subacute inflammatory phase, and γδ T cells releasing Il-17 were the main T-cell population observed at the myopathy phase. Moreover, the Hif1a expression level correlated with the extent of inflammation. In addition, PX-478 could alleviate the inflammatory responses of the different EAM phases. Last, HIF1A was expressed at higher levels in patients with acute autoimmune myocarditis than in patients with dilated cardiomyopathy and healthy control subjects. CONCLUSIONS We present here a comprehensive single-cell landscape of the cardiac immune cells in different EAM phases. In addition, we elucidate the contribution of Hif1a to the inflammatory response through the regulation of immune cell activity, particularly of macrophage cluster 2 and T-helper 17 cells. Moreover, an Hif1a inhibitor alleviated inflammatory cell infiltration of the EAM model and may serve as a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| | - Gang Hu
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, China (G.H.)
| | - Qingtao Hu
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.).,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Y.C.)
| | - Yiqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.).,National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Linlin Gao
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Guangzhou, China (P.-C.Y.)
| | - Yu Zhang
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.).,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China (Y.Z.)
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.L.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| |
Collapse
|
23
|
Ou C, Sun Z, He X, Li X, Fan S, Zheng X, Peng Q, Li G, Li X, Ma J. Targeting YAP1/LINC00152/FSCN1 Signaling Axis Prevents the Progression of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901380. [PMID: 32042551 PMCID: PMC7001651 DOI: 10.1002/advs.201901380] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/13/2019] [Indexed: 05/24/2023]
Abstract
As a transcription coactivator, Yes-associated protein 1 (YAP1)'s role in tumorigenesis is well established. However, the mechanism of YAP1-regulating long noncoding RNAs (lncRNA) in tumors is still largely unknown. Here, a YAP1 target gene, long intergenic noncoding RNA 00152 (LINC00152), which is highly expressed in colorectal cancer (CRC), is identified. The oncogenic functions of LINC00152 in CRC are demonstrated by a panel of in vitro and in vivo experiments. Further studies reveal the potential downstream mechanisms of LINC00152, which can act as a competing endogenous RNA sponging with miR-632 and miR-185-3p to regulate Fascin actin-bundling protein 1 (FSCN1) expression and thus promote the malignant proliferation and metastasis in CRC cells. Targeting the YAP1/LINC00152/FSCN1 axis inhibits the progression of CRC. This finding provides a new regulatory model of the "YAP1-lncRNA" in CRC, which gives rise to a new perspective, "YAP1/LINC00152/miR-632-miR-185-3p/FSCN1," to explore the cancer-promoting mechanism of YAP1 involved in CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Zhenqiang Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- Department of Anorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Xiaoyun He
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
| | - Xiaoling Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
| | - Songqing Fan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Xiang Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
| | - Qiu Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
| | - Guiyuan Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
| | - Xiayu Li
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Jian Ma
- Xiangya HospitalDepartment of PathologyCancer Research InstituteCentral South UniversityChangshaHunan410008China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationCentral South UniversityChangsha410078China
- NHC Key Laboratory of CarcinogenesisCentral South UniversityChangsha410078China
- Hunan Key Laboratory of Nonresolving Inflammation and CancerDepartment of GastroenterologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| |
Collapse
|
24
|
Jin L, Ye H, Pan M, Chen Y, Ye B, Zheng Y, Huang W, Pan S, Shi Z, Zhang J. Kruppel-like factor 4 improves obesity-related nephropathy through increasing mitochondrial biogenesis and activities. J Cell Mol Med 2019; 24:1200-1207. [PMID: 31800161 PMCID: PMC6991690 DOI: 10.1111/jcmm.14628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity is positively linked to multiple metabolic complications including renal diseases. Several studies have demonstrated Kruppel‐like factor 4 (KLF4) participated in renal dysfunction and structural disorders in acute kidney injuries, but whether it affected the process of chronic kidney diseases was unknown. Therefore, present study was to disclose the role of renal KLF4 in dietary‐induced renal injuries and underlying mechanisms in obesity. Through utilizing high‐fat diet‐fed mice and human renal biopsies, we provided the physiological roles of KLF4 in protecting against obesity‐related nephropathy. Decreased levels of renal KLF4 were positively correlated with dietary‐induced renal dysfunction, including increased levels of creatinine and blood urea nitrogen. Overexpression of renal KLF4 suppressed inflammatory response in palmitic acid‐treated mouse endothelial cells. Furthermore, overexpressed KLF4 also attenuated dietary‐induced renal functional disorders, abnormal structural remodelling and inflammation. Mechanistically, KLF4 maintained renal mitochondrial biogenesis and activities to combat obesity‐induced mitochondrial dysfunction. In clinical renal biopsies and plasma, the renal Klf4 level was negatively associated with circulating levels of creatinine but positively associated with renal creatinine clearance. In conclusions, the present findings firstly supported that renal KLF4 played an important role in combating obesity‐related nephropathy, and KLF4/mitochondrial function partially determined the energy homeostasis in chronic kidney diseases.
Collapse
Affiliation(s)
- Lingwei Jin
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanyang Ye
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Pan
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bairu Ye
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenwen Huang
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shufang Pan
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Shi
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Gong J, Zhan H, Li Y, Zhang W, Jin J, He Q. Krüppel‑like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep 2019; 20:3240-3248. [PMID: 31432191 PMCID: PMC6755248 DOI: 10.3892/mmr.2019.10585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is diagnosed increasingly frequently and represents a serious threat to human health. Krüppel‑like factor 4 (KLF4) has aroused attention due to its potential effect on podocytes and in ameliorating proteinuria associated with glomerulopathy. The purpose of the present study was to investigate the potential role of KLF4 in DKD. It was hypothesized that KLF4 impacts diabetic nephropathy by mediating the podocyte autophagic process. A KLF4 plasmid vector was constructed, and podocytes were transfected and incubated with DKD mice serum for in vitro experiments. A db/db spontaneous DKD mouse model was also established for in vivo study. After treatment, the level of serum creatinine (Scr), blood urea nitrogen (BUN), and 24‑h urinary protein was determined. Immunofluorescence and periodic acid‑Schiff staining, western blotting, flow cytometry and a TUNEL assay were performed to observe changes in glomerular morphology and the level of apoptosis, cytoskeleton proteins, epithelial‑mesenchymal transition (EMT) biomarkers, autophagic proteins and mTOR pathway proteins in each group. KLF4 overexpression significantly reduced the level of urinary albumin, Scr, BUN and attenuated mesangial matrix expansion, as well as mesangial cell proliferation in DKD mice. KLF4 overexpression also inhibited podocyte apoptosis and downregulated vimentin and α‑smooth muscle actin, and upregulated E‑cadherin and nephrin, both in vivo and in vitro. Moreover, the microtubule associated protein 1 light chain 3α (LC3)‑II/LC3‑I ratio and LC3‑II fluorescence was significantly increased in the vector‑KLF4 group compared to the negative control vector group both in vivo and in vitro. Finally, a decrease in the level of phosphorylated (p)‑mTOR and p‑S6K protein expression was observed following KLF4 overexpression in vitro. The present findings suggested that KLF4 plays a renoprotective role in DKD, which is associated with the activation of podocyte autophagy, and may be involved in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Huifang Zhan
- Department of Emergency, Zhejiang University Hospital, Hangzhou, Zhejiang 310058, P.R. China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Wei Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
26
|
Li ZL, Lv LL, Wang B, Tang TT, Feng Y, Cao JY, Jiang LQ, Sun YB, Liu H, Zhang XL, Ma KL, Tang RN, Liu BC. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway. FASEB J 2019; 33:12630-12643. [PMID: 31451021 DOI: 10.1096/fj.201901087rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor (PHI) has revolutionized the treatment strategy for renal anemia. However, the presence of multiple transcription targets of HIF raises safety concerns regarding HIF-PHI. Here, we explored the dose-dependent effect of MK-8617 (MK), a kind of HIF-PHI, on renal fibrosis. MK was administered by oral gavage to mice for 12 wk at doses of 1.5, 5, and 12.5 mg/kg. In vitro, the human proximal tubule epithelial cell line HK-2 was treated with increasing doses of MK administration. Transcriptome profiling was performed, and fibrogenesis was evaluated. The dose-dependent biphasic effects of MK on tubulointerstitial fibrosis (TIF) were observed in chronic kidney disease mice. Accordingly, high-dose MK treatment could significantly enhance TIF. Using RNA-sequencing, combined with in vivo and in vitro experiments, we found that Krüppel-like factor 5 (KLF5) expression level was significantly increased in the proximal tubular cells, which could be transcriptionally regulated by HIF-1α with high-dose MK treatment but not low-dose MK. Furthermore, our study clarified that HIF-1α-KLF5-TGF-β1 signaling activation is the potential mechanism of high-dose MK-induced TIF, as knockdown of KLF5 reduced TIF in vivo. Collectively, our study demonstrates that high-dose MK treatment initiates TIF by activating HIF-1α-KLF5-TGF-β1 signaling. These findings provide novel insights into TIF induction by high-dose MK (HIF-PHI), suggesting that the safety dosage window needs to be emphasized in future clinical applications.-Li, Z.-L., Lv, L.-L., Wang, B., Tang, T.-T., Feng, Y., Cao, J.-Y., Jiang, L.-Q., Sun, Y.-B., Liu, H., Zhang, X.-L., Ma, K.-L., Tang, R.-N., Liu, B.-C. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Li-Qiong Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan-Bei Sun
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
27
|
Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine 2019; 40:743-750. [PMID: 30662001 PMCID: PMC6414320 DOI: 10.1016/j.ebiom.2019.01.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dysregulated Krϋppel-like factor (KLF) gene expression appears in many disease-associated pathologies. In this review, we discuss physiological functions of KLFs in the kidney with a focus on potential pharmacological modulation/therapeutic applications of these KLF proteins. KLF2 is critical to maintaining endothelial barrier integrity and preventing gap formations and in prevention of glomerular endothelial cell and podocyte damage in diabetic mice. KLF4 is renoprotective in the setting of AKI and is a critical regulator of proteinuria in mice and humans. KLF6 expression in podocytes preserves mitochondrial function and prevents podocyte apoptosis, while KLF5 expression prevents podocyte apoptosis by blockade of ERK/p38 MAPK pathways. KLF15 is a critical regulator of podocyte differentiation and is protective against podocyte injury. Loss of KLF4 and KLF15 promotes renal fibrosis, while fibrotic kidneys have increased KLF5 and KLF6 expression. For therapeutic modulation of KLFs, continued screening of small molecules will promote drug discoveries targeting KLF proteins.
Collapse
Affiliation(s)
- Madhavi J Rane
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Cheng Z, Zou X, Jin Y, Gao S, Lv J, Li B, Cui R. The Role of KLF 4 in Alzheimer's Disease. Front Cell Neurosci 2018; 12:325. [PMID: 30297986 PMCID: PMC6160590 DOI: 10.3389/fncel.2018.00325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a member of the family of zinc-finger transcription factors, is widely expressed in range of tissues that play multiple functions. Emerging evidence suggest KLF4’s critical regulatory effect on the neurophysiological and neuropathological processes of Alzheimer’s disease (AD), indicating that KLF4 might be a potential therapeutic target of neurodegenerative diseases. In this review, we will summarize relevant studies and illuminate the regulatory role of KLF4 in the neuroinflammation, neuronal apoptosis, axon regeneration and iron accumulation to clarify KLF4’s status in the pathogenesis of AD.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Hishikawa A, Hayashi K, Itoh H. Transcription Factors as Therapeutic Targets in Chronic Kidney Disease. Molecules 2018; 23:molecules23051123. [PMID: 29747407 PMCID: PMC6100497 DOI: 10.3390/molecules23051123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022] Open
Abstract
The growing number of patients with chronic kidney disease (CKD) is recognized as an emerging problem worldwide. Recent studies have indicated that deregulation of transcription factors is associated with the onset or progression of kidney disease. Several clinical trials indicated that regression of CKD may be feasible via activation of the transcription factor nuclear factor erythroid-2 related factor 2 (Nrf2), which suggests that transcription factors may be potential drug targets for CKD. Agents stabilizing hypoxia-inducible factor (HIF), which may be beneficial for renal anemia and renal protection, are also now under clinical trial. Recently, we have reported that the transcription factor Kruppel-like factor 4 (KLF4) regulates the glomerular podocyte epigenome, and that the antiproteinuric effect of the renin–angiotensin system blockade may be partially mediated by KLF4. KLF4 is one of the Yamanaka factors that induces iPS cells and is reported to be involved in epigenetic remodeling. In this article, we summarize the transcription factors associated with CKD and particularly focus on the possibility of transcription factors being novel drug targets for CKD through epigenetic modulation.
Collapse
Affiliation(s)
- Akihito Hishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
30
|
Wei X, Ye J, Shang Y, Chen H, Liu S, Liu L, Wang R. Ascl2 activation by YAP1/KLF5 ensures the self-renewability of colon cancer progenitor cells. Oncotarget 2017; 8:109301-109318. [PMID: 29312609 PMCID: PMC5752522 DOI: 10.18632/oncotarget.22673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Achaete scute-like 2 (Ascl2) is the Wnt signaling target, its regulation by other signaling is undefined. Now we demonstrated that CD133+/CD44+ cell population from HT-29 or Caco-2 cells exhibited cancer stem cell (CSC) properties with highly expressed Ascl2, which is related to the Hippo signaling pathway. YAP1 interference in CD133+/CD44+ HT-29 or Caco-2 cells reduced their proliferation, colony-forming ability and tumorsphere formation in vitro and inhibited the ‘stemness’-associated genes and Ascl2 expression. Enforcing YAP1 expression in HT-29 or Caco-2 cells triggered the opposite changes. Ascl2 interference reversed the phenotype of YAP1-enforced expressed HT-29 or Caco-2 cells. Krüppel-like factor 5 (KLF5) protein, not KLF5 mRNA levels, were increased due to YAP1 overexpression which is reported to prevent KLF5 degradation. Co-immunoprecipitation (Co-IP) assays demonstrated that YAP1 bound with KLF5 in HT-29 and Caco-2 cells. Luciferase and chromatin immunoprecipitation (ChIP) assays indicated that both YAP1 and KLF5 bound to the first two loci with GC-boxes in Ascl2 promoter and induced Ascl2 transcription. The decreased Ascl2 transcription by YAP1 interference required an intact KLF5 binding site (GC-box) within Ascl2 promoter, KLF5 knockdown reduced YAP1 binding and Ascl2 luciferase reporter activity upon YAP1 overexpression. Positive correlation among YAP1 and Ascl2 mRNA levels was observed in colorectal cancer (CRC) samples. Thus, our study demonstrated that Ascl2, a fate decider of CRC progenitor cells can be activated by the Hippo signaling pathway in CRC progenitor cells, and ensured their self-renewability.
Collapse
Affiliation(s)
- Xiaolong Wei
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Ye
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haoyuan Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanxi Liu
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Liu
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongquan Wang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Lin L, Han Q, Xiong Y, Li T, Liu Z, Xu H, Wu Y, Wang N, Liu X. Krüpple-like-factor 4 Attenuates Lung Fibrosis via Inhibiting Epithelial-mesenchymal Transition. Sci Rep 2017; 7:15847. [PMID: 29158503 PMCID: PMC5696468 DOI: 10.1038/s41598-017-14602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 09/26/2017] [Indexed: 12/03/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Krüpple-like-factor 4 (KLF4), has been suggested to play an important role in the phenotype transition. However, its function in pulmonary fibrosis and EMT of human alveolar epithelial cells (AECs) remains unclear. This study aimed to examine the role of KLF4 in pulmonary fibrosis and EMT. Decreased expression of KLF4 was first observed in human IPF lung tissues and models of bleomycin-induced pulmonary fibrosis. Transgenic mice with overexpression of KLF4 were subjected to bleomycin-induced pulmonary fibrosis model and showed attenuated lung fibrosis and EMT compared to wild type group. Furthermore, the effects overexpression and knockdown of KLF4 on TGF-β1-induced EMT were examined in AECs. Adenovirus-mediated overexpression of KLF4 attenuated TGF-β1-induced EMT and activation of Smad2/3 and Dvl in AECs. Conversely, knockdown of KLF4 promoted the activation of pathways above mentioned and TGF-β1-induced EMT. Our results demonstrates that KLF4 plays an important role in bleomycin-induced lung fibrosis through suppressing TGFβ1-induced EMT. Thus, it may serve as a potential target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Lianjun Lin
- The Geriatrics Department, Peking University First Hospital, Beijing, China
| | - Qian Han
- The Geriatrics Department, Peking University First Hospital, Beijing, China
| | - Yan Xiong
- The Pathology Department, Peking University First Hospital, Beijing, China
| | - Ting Li
- The Pathology Department, Peking University First Hospital, Beijing, China
| | - Zhonghui Liu
- The Geriatrics Department, Peking University First Hospital, Beijing, China
| | - Huiying Xu
- The Geriatrics Department, Peking University First Hospital, Beijing, China
| | - Yanping Wu
- The Geriatrics Department, Peking University First Hospital, Beijing, China
| | - Nanping Wang
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China.
| | - Xinmin Liu
- The Geriatrics Department, Peking University First Hospital, Beijing, China.
| |
Collapse
|
32
|
Yang B, Sun H, Song F, Wu Y, Wang J. Yes-associated protein 1 promotes the differentiation and mineralization of cementoblast. J Cell Physiol 2017; 233:2213-2224. [DOI: 10.1002/jcp.26089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Fangfang Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
33
|
Caveolin-1 Controls Hyperresponsiveness to Mechanical Stimuli and Fibrogenesis-Associated RUNX2 Activation in Keloid Fibroblasts. J Invest Dermatol 2017; 138:208-218. [PMID: 28899682 DOI: 10.1016/j.jid.2017.05.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022]
Abstract
Keloids are pathological scars characterized by excessive extracellular matrix production that are prone to form in body sites with increased skin tension. CAV1, the principal coat protein of caveolae, has been associated with the regulation of cell mechanics, including cell softening and loss of stiffness sensing ability in NIH3T3 fibroblasts. Although CAV1 is present in low amounts in keloid fibroblasts (KFs), the causal association between CAV1 down-regulation and its aberrant responses to mechanical stimuli remain unclear. In this study, atomic force microscopy showed that KFs were softer than normal fibroblasts with a loss of stiffness sensing. The decrease of CAV1 contributed to the hyperactivation of fibrogenesis-associated RUNX2, a transcription factor germane to osteogenesis/chondrogenesis, and increased migratory ability in KFs. Treatment of KFs with trichostatin A, which increased the acetylation level of histone H3, increased CAV1 and decreased RUNX2 and fibronectin. Trichostatin A treatment also resulted in cell stiffening and decreased migratory ability in KFs. Collectively, these results suggest a role for CAV1 down-regulation in linking the aberrant responsiveness to mechanical stimulation and extracellular matrix accumulation with the progression of keloids, findings that may lead to new developments in the prevention and treatment of keloid scarring.
Collapse
|
34
|
Ou C, Sun Z, Li X, Li X, Ren W, Qin Z, Zhang X, Yuan W, Wang J, Yu W, Zhang S, Peng Q, Yan Q, Xiong W, Li G, Ma J. MiR-590-5p, a density-sensitive microRNA, inhibits tumorigenesis by targeting YAP1 in colorectal cancer. Cancer Lett 2017; 399:53-63. [PMID: 28433598 DOI: 10.1016/j.canlet.2017.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 04/09/2017] [Indexed: 02/08/2023]
Abstract
YAP1, a transcription co-activator, mediates the biological functions of the Hippo pathway. YAP1 inactivation is involved in cell-cell contact inhibition. In various tumors, YAP1 is upregulated through multiple mechanisms, and it functions as an oncogene. Here, we provided evidence that YAP1 influenced multiple signaling pathways in colorectal cancer (CRC) cells. We reported that miR-590-5p directly targets YAP1 and inhibits tumorigenesis in CRC cells both in vitro and in vivo xenograft model. We analyzed different cell densities and found that increased density caused increased expression of miR-590-5p, and decreased expression of its precursors (pri- and pre-miR-590). Increasing cancer cell density upregulated the expression of a RNase III endonuclease, DICER1. DICER1 increased miR-590 biogenesis and inhibited YAP1. In DICER1-defective CRC cells, addition of pre-miR-590 did not inhibit YAP1 expression. Analyses of clinical data demonstrated that the DICER1-miR-590-5p-YAP1 axis was dysregulated in CRC specimens and affected patient survival. Cell-cell contact inhibition is crucial to prevent uncontrolled cell proliferation. Identification of this cell density-sensitive, DICER1-miR-590-5p-YAP1 axis may provide a basis for developing new biomarkers or targeted therapies for CRC.
Collapse
Affiliation(s)
- Chunlin Ou
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenqiang Sun
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Gastrointestinal Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Weiguo Ren
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zailong Qin
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xuemei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jia Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Wentao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shiwen Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Qiu Peng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Qun Yan
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.
| | - Jian Ma
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
35
|
Kim D, You E, Jeong J, Ko P, Kim JW, Rhee S. DDR2 controls the epithelial-mesenchymal-transition-related gene expression via c-Myb acetylation upon matrix stiffening. Sci Rep 2017; 7:6847. [PMID: 28754957 PMCID: PMC5533734 DOI: 10.1038/s41598-017-07126-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/23/2017] [Indexed: 02/03/2023] Open
Abstract
Increasing matrix stiffness caused by the extracellular matrix (ECM) deposition surrounding cancer cells is accompanied by epithelial-mesenchymal transition (EMT). Here, we show that expression levels of EMT marker genes along with discoidin domain receptor 2 (DDR2) can increase upon matrix stiffening. DDR2 silencing by short hairpin RNA downregulated EMT markers. Promoter analysis and chromatin immunoprecipitation revealed that c-Myb and LEF1 may be responsible for DDR2 induction during cell culture on a stiff matrix. Mechanistically, c-Myb acetylation by p300, which is upregulated on the stiff matrix, seems to be necessary for the c-Myb-and-LEF1-mediated DDR2 expression. Finally, we found that the c-Myb-DDR2 axis is crucial for lung cancer cell line proliferation and expression of EMT marker genes in a stiff environment. Thus, our results suggest that DDR2 regulation by p300 expression and/or c-Myb acetylation upon matrix stiffening may be necessary for regulation of EMT and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
36
|
Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu XY, Pang Z, Chen GQ, Huang L, Zhao KW. DNMT1-maintained hypermethylation of Krüppel-like factor 5 involves in the progression of clear cell renal cell carcinoma. Cell Death Dis 2017; 8:e2952. [PMID: 28749461 PMCID: PMC5550868 DOI: 10.1038/cddis.2017.323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major subtype of renal cell carcinoma (RCC) that is resistant to conventional radiation and chemotherapy. It is a challenge to explore effective therapeutic targets and drugs for this kind of cancer. Transcription factor Krüppel-like factor 5 (KLF5) exerts diverse functions in various tumor types. By analyzing cohorts of the Cancer Genome Atlas (TCGA) data sets, we find that KLF5 expression is suppressed in ccRCC patients and higher level of KLF5 expression is associated with better prognostic outcome. Our further investigations demonstrate that KLF5 genomic loci are hypermethylated at proximal exon 4 and suppression of DNA methyltransferase 1 (DNMT1) expression by ShRNAs or a methylation inhibitor 5-Aza-CdR can recover KLF5 expression. Meanwhile, there is a negative correlation between expressions of KLF5 and DNMT1 in ccRCC tissues. Ectopic KLF5 expression inhibits ccRCC cell proliferation and migration/invasion in vitro and decreases xenograft growth and metastasis in vivo. Moreover, 5-Aza-CdR, a chemotherapy drug as DNMTs' inhibitor that can induce KLF5 expression, suppresses ccRCC cell growth, while knockdown of KLF5 abolishes 5-Aza-CdR-induced growth inhibition. Collectively, our data demonstrate that KLF5 inhibits ccRCC growth as a tumor suppressor and highlight the potential of 5-Aza-CdR to release KLF5 expression as a therapeutic modality for the treatment of ccRCC.
Collapse
Affiliation(s)
- Rong-Jie Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Wei He
- Department of Pathology, Ren-Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Bo Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Ye Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhi Pang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ke-Wen Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
37
|
Beamish JA, Chen E, Putnam AJ. Engineered extracellular matrices with controlled mechanics modulate renal proximal tubular cell epithelialization. PLoS One 2017; 12:e0181085. [PMID: 28715434 PMCID: PMC5513452 DOI: 10.1371/journal.pone.0181085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is common and associated with significant morbidity and mortality. Recovery from many forms of AKI involves the proliferation of renal proximal tubular epithelial cells (RPTECs), but the influence of the microenvironment in which this recovery occurs remains poorly understood. Here we report the development of a poly(ethylene glycol) (PEG) hydrogel platform to study the influence of substrate mechanical properties on the proliferation of human RPTECs as a model for recovery from AKI. PEG diacrylate based hydrogels were generated with orthogonal control of mechanics and cell-substrate interactions. Using this platform, we found that increased substrate stiffness promotes RPTEC spreading and proliferation. RPTECs showed similar degrees of apoptosis and Yes-associated protein (YAP) nuclear localization regardless of stiffness, suggesting these were not key mediators of the effect. However, focal adhesion formation, cytoskeletal organization, focal adhesion kinase (FAK) activation, and extracellular signal-regulated kinase (ERK) activation were all enhanced with increasing substrate stiffness. Inhibition of ERK activation substantially attenuated the effect of stiffness on proliferation. In long-term culture, hydrogel stiffness promoted the formation of more complete epithelial monolayers with tight junctions, cell polarity, and an organized basement membrane. These data suggest that increased stiffness potentially may have beneficial consequences for the renal tubular epithelium during recovery from AKI.
Collapse
Affiliation(s)
- Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evan Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
38
|
Yao Q, Song R, Ao L, Cleveland JC, Fullerton DA, Meng X. Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Am J Physiol Cell Physiol 2017; 312:C697-C706. [PMID: 28356268 DOI: 10.1152/ajpcell.00292.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
Abstract
Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. Diseased aortic valves are characterized by sclerosis (fibrosis) and nodular calcification. Sclerosis, an early pathological change, is caused by aortic valve interstitial cell (AVIC) proliferation and overproduction of extracellular matrix (ECM) proteins. However, the mechanism of aortic valve sclerosis remains unclear. Recently, we observed that diseased human aortic valves overexpress growth factor neurotrophin 3 (NT3). In the present study, we tested the hypothesis that NT3 is a profibrogenic factor to human AVICs. AVICs isolated from normal human aortic valves were cultured in M199 growth medium and treated with recombinant human NT3 (0.10 µg/ml). An exposure to NT3 induced AVIC proliferation, upregulated the production of collagen and matrix metalloproteinase (MMP), and augmented collagen deposition. These changes were abolished by inhibition of the Trk receptors. NT3 induced Akt phosphorylation and increased cyclin D1 protein levels in a Trk receptor-dependent fashion. Inhibition of Akt abrogated the effect of NT3 on cyclin D1 production. Furthermore, inhibition of either Akt or cyclin D1 suppressed NT3-induced cellular proliferation and MMP-9 and collagen production, as well as collagen deposition. Thus, NT3 upregulates cellular proliferation, ECM protein production, and collagen deposition in human AVICs. It exerts these effects through the Trk-Akt-cyclin D1 cascade. NT3 is a profibrogenic mediator in human aortic valve, and overproduction of NT3 by aortic valve tissue may contribute to the mechanism of valvular sclerosis.
Collapse
Affiliation(s)
- Qingzhou Yao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | | | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
39
|
Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37. [PMID: 28237823 DOI: 10.1016/j.gene.2017.02.025] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
40
|
Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol 2016; 312:F259-F265. [PMID: 27852611 DOI: 10.1152/ajprenal.00550.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/27/2023] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York;
| | - Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
41
|
Papeta N, Patel A, D’Agati VD, Gharavi AG. Refinement of the HIVAN1 Susceptibility Locus on Chr. 3A1-A3 via Generation of Sub-Congenic Strains. PLoS One 2016; 11:e0163860. [PMID: 27736906 PMCID: PMC5063463 DOI: 10.1371/journal.pone.0163860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023] Open
Abstract
HIV-1 transgenic mice on the FVB/NJ background (TgFVB) represent a validated model of HIV-associated nephropathy (HIVAN). A major susceptibility locus, HIVAN1, was previously mapped to chromosome 3A1-A3 in a cross between TgFVB and CAST/EiJ (CAST) strains, and introgression of a 51.9 Mb segment encompassing HIVAN1 from CAST into TgFVB resulted in accelerated development of nephropathy. We generated three sub-congenic strains carrying CAST alleles in the proximal or distal regions of the HIVAN1 locus (Sub-II, 3.02–38.93 Mb; Sub-III, 38.45–55.1 Mb and Sub-IV, 47.7–55.1 Mb, build 38). At 5–10 weeks of age, histologic injury and proteinuria did not differ between HIV-1 transgenic Sub-II and TgFVB mice. In contrast, HIV-1 transgenic Sub-III and Sub-IV mice displayed up to 4.4 fold more histopathologic injury and 6-fold more albuminuria compared to TgFVB mice, similar in severity to the full-length congenic mice. The Sub-IV segment defines a maximal 7.4 Mb interval for HIVAN1, and encodes 31 protein coding genes: 15 genes have missense variants differentiating CAST from FVB, and 14 genes show differential renal expression. Of these, Frem1, Foxo1, and Setd7 have been implicated in the pathogenesis of nephropathy. HIVAN1 congenic kidneys are histologically normal without the HIV-1 transgene, yet their global transcriptome is enriched for molecular signatures of apoptosis, adenoviral infection, as well as genes repressed by histone H3 lysine 27 trimethylation, a histone modification associated with HIV-1 life cycle. These data refine HIVAN1to 7.4 Mb and identify latent molecular derangements that may predispose to nephropathy upon exposure to HIV-1.
Collapse
Affiliation(s)
- Natalia Papeta
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Ami Patel
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University, New York, New York, United States of America
| | - Ali G. Gharavi
- Department of Medicine, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Ke B, Zhang A, Wu X, Fang X. The Role of Krüppel-like Factor 4 in Renal Fibrosis. Front Physiol 2015; 6:327. [PMID: 26617530 PMCID: PMC4641914 DOI: 10.3389/fphys.2015.00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) caused by renal fibrosis is an important public health concern. It is therefore necessary to understand the molecular pathogenesis of renal fibrosis in order to develop novel therapeutic strategies. KLF4 is the most extensively studied factor among the various members of the Krüppel-like factor (KLF) family of zinc finger-containing transcription factors. Many studies have demonstrated that KLF4 inhibits the activation of myofibroblasts and exerts an inhibitory effect on fibrosis. However, other studies have indicated that KLF4 may promote renal fibrosis. These controversial results suggest that KLF4 may be crucially involved in the development of renal fibrosis, although the underlying mechanism(s) remain unclear. Here, we summarize the recent progress made in understanding the role of KLF4 in renal fibrosis. Together, these findings suggest that KLF4 may participate in the development of renal fibrosis, but that its inhibition of fibrosis is greater than its promotion of the condition, which suggests that KLF4 may serve as a novel therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Afei Zhang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xianfeng Wu
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| |
Collapse
|