1
|
Gluck L, Gerstein B, Kaunzner UW. Repair mechanisms of the central nervous system: From axon sprouting to remyelination. Neurotherapeutics 2025:e00583. [PMID: 40348704 DOI: 10.1016/j.neurot.2025.e00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lauren Gluck
- Montefiore Medical Center, 1250 Waters Place Tower 2, Bronx, NY 10461, USA.
| | - Brittany Gerstein
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| | - Ulrike W Kaunzner
- Weill-Cornell-Medicine, Department of Neurology, 1305 York Avenue, New York City, 10021, USA.
| |
Collapse
|
2
|
Oost W, Meilof JF, Baron W. Multiple sclerosis: what have we learned and can we still learn from electron microscopy. Cell Mol Life Sci 2025; 82:172. [PMID: 40266347 PMCID: PMC12018678 DOI: 10.1007/s00018-025-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease marked by the formation of demyelinated lesions in the central nervous system. MS lesions can undergo remyelination, temporarily alleviating symptoms, but as the disease advances, remyelination becomes less effective. Beyond lesions, normal-appearing brain tissue exhibits subtle alterations, potentially indicating a broader, diffuse pathology and/or increased susceptibility to lesion formation. The pathology of MS varies between grey and white matter lesions and their normal-appearing regions, which most likely relates to their distinct cellular composition. Despite insights gained from MRI studies, serum and blood analyses, and post-mortem tissue examination, the molecular mechanisms driving MS lesion formation and persistent demyelination remain poorly understood. Exploring less conventional methods, such as electron microscopy (EM), may provide valuable new insights. EM offers detailed, nanometre-scale structural analysis that may enhance findings from immunohistochemistry and 'omics' approaches on MS brain tissue. Although earlier EM studies from before the 1990's provided some foundational data, advancements in EM technology now enable more comprehensive and detailed structural analysis. In this review we outline the pathogenesis of MS, summarize current knowledge of its ultrastructural features, and highlight how cutting-edge EM techniques could uncover new insights into pathological processes, including lesion formation, remyelination failure and diffuse pathology, which may aid therapeutic development.
Collapse
Affiliation(s)
- Wendy Oost
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
- Department of Neurology, Martini Hospital, Groningen, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- MS Center Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
3
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
4
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Sánchez de la Torre A, Ezquerro-Herce S, Huerga-Gómez A, Sánchez-Martín E, Chara JC, Matute C, Monory K, Mato S, Lutz B, Guzmán M, Aguado T, Palazuelos J. CB 1 receptors in NG2 cells mediate cannabinoid-evoked functional myelin regeneration. Prog Neurobiol 2024; 243:102683. [PMID: 39528076 DOI: 10.1016/j.pneurobio.2024.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Defects in myelin homeostasis have been reported in many neuropathological conditions. Cannabinoid compounds have been shown to efficiently promote myelin regeneration in animal models of demyelination. However, it is still unknown whether this action relies mostly on a cell autonomous effect on oligodendroglial-lineage-NG2 cells. By using conditional genetic mouse models, here we found that cannabinoid CB1 receptors located on NG2 cells are required for oligodendroglial differentiation and myelin regeneration after demyelination. Selective CB1 receptor gene depletion in NG2 cells following toxin-induced demyelination disrupted oligodendrocyte regeneration and functional remyelination and exacerbated axonal damage. These deficits were rescued by pharmacological blockade of the RhoA/ROCK/Cofilin pathway. Conversely, tetrahydrocannabinol administration promoted oligodendrocyte regeneration and functional remyelination in wild-type but not Ng2-CB1-deficient mice. Overall, this study identifies CB1 receptors as essential modulators of remyelination and support the therapeutic potential of cannabinoids for promoting remyelination in neurological disorders.
Collapse
Affiliation(s)
- Aníbal Sánchez de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Sara Ezquerro-Herce
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain
| | - Ester Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; IIS Biobizkaia, Barakaldo 48903, Spain
| | - Juan Carlos Chara
- Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Susana Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Leioa 48940, Spain; Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz 55128, Germany
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain.
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain; Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid 28040, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28049, Spain.
| |
Collapse
|
6
|
He Y, Xu Z, He Y, Liu J, Li J, Wang S, Xiao L. Preventing production of new oligodendrocytes impairs remyelination and sustains behavioural deficits after demyelination. Biochem Biophys Res Commun 2024; 733:150592. [PMID: 39213705 DOI: 10.1016/j.bbrc.2024.150592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zhengtao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
8
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
9
|
He Y, Xie H, Xu Z, Zhang L, Feng Y, Long Y, Wang S, He Y, Li J, Zou Y, Zheng W, Xiao L. Rapid and prolonged response of oligodendrocyte lineage cells in standard acute cuprizone demyelination model revealed by in situ hybridization. Neurosci Lett 2024; 836:137869. [PMID: 38852766 DOI: 10.1016/j.neulet.2024.137869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Dietary administration of a copper chelator, cuprizone (CPZ), has long been reported to induce intense and reproducible demyelination of several brain structures such as the corpus callosum. Despite the widespread use of CPZ as an animal model for demyelinating diseases such as multiple sclerosis (MS), the mechanism by which it induces demyelination and then allows robust remyelination is still unclear. An intensive mapping of the cell dynamics of oligodendrocyte (OL) lineage during the de- and remyelination course would be particularly important for a deeper understanding of this model. Here, using a panel of OL lineage cell markers as in situ hybridization (ISH) probes, including Pdgfra, Plp, Mbp, Mog, Enpp6, combined with immunofluorescence staining of CC1, SOX10, we provide a detailed dynamic profile of OL lineage cells during the entire course of the model from 1, 2, 3.5 days, 1, 2, 3, 4,5 weeks of CPZ treatment, as well as after 1, 2, 3, 4 weeks of recovery from CPZ treatment. The result showed an unexpected early death of mature OLs and response of OL progenitor cells (OPCs) in vivo upon CPZ challenge, and a prolonged upregulation of myelin-forming OLs compared to the intact control even 4 weeks after CPZ withdrawal. These data may serve as a basic reference system for future studies of the effects of any intervention on de- and remyelination using the CPZ model, and imply the need to optimize the timing windows for the introduction of pro-remyelination therapies in demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Hua Xie
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - ZhengTao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Liuning Zhang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yuanyu Feng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yu Long
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yanping Zou
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Wei Zheng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Zhong Y, Stauss HJ. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024; 13:797. [PMID: 38786021 PMCID: PMC11119434 DOI: 10.3390/cells13100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.
Collapse
Affiliation(s)
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PP, UK;
| |
Collapse
|
11
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
12
|
Lombardi M, Scaroni F, Gabrielli M, Raffaele S, Bonfanti E, Filipello F, Giussani P, Picciolini S, de Rosbo NK, Uccelli A, Golia MT, D’Arrigo G, Rubino T, Hooshmand K, Legido-Quigley C, Fenoglio C, Gualerzi A, Fumagalli M, Verderio C. Extracellular vesicles released by microglia and macrophages carry endocannabinoids which foster oligodendrocyte differentiation. Front Immunol 2024; 15:1331210. [PMID: 38464529 PMCID: PMC10921360 DOI: 10.3389/fimmu.2024.1331210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.
Collapse
Affiliation(s)
- Marta Lombardi
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Federica Scaroni
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
| | - Martina Gabrielli
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Bonfanti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Fabia Filipello
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Italy
| | - Silvia Picciolini
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Nicole Kerlero de Rosbo
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
- TomaLab, Institute of Nanotechnology, CNR, Rome, Italy
| | - Antonio Uccelli
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Teresa Golia
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Giulia D’Arrigo
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Kourosh Hooshmand
- System Medicine, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- System Medicine, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- Fondazione Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Gualerzi
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Claudia Verderio
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Freudenstein D, Lippert M, Popp JS, Aprato J, Wegner M, Sock E, Haase S, Linker RA, González Alvarado MN. Endogenous Sox8 is a critical factor for timely remyelination and oligodendroglial cell repletion in the cuprizone model. Sci Rep 2023; 13:22272. [PMID: 38097655 PMCID: PMC10721603 DOI: 10.1038/s41598-023-49476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.
Collapse
Affiliation(s)
- David Freudenstein
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Magdalena Lippert
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Janina Sophie Popp
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jessica Aprato
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Stefanie Haase
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ralf A Linker
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - María Nazareth González Alvarado
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
14
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
15
|
Adams AA, Wood TL, Kim HA. Mature and Myelinating Oligodendrocytes Are Specifically Vulnerable to Mild Fluid Percussion Injury in Mice. Neurotrauma Rep 2023; 4:433-446. [PMID: 37435356 PMCID: PMC10331160 DOI: 10.1089/neur.2023.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Myelin loss and oligodendrocyte death are well documented in patients with traumatic brain injury (TBI), as well as in experimental animal models after moderate-to-severe TBI. In comparison, mild TBI (mTBI) does not necessarily result in myelin loss or oligodendrocyte death, but causes structural alterations in the myelin. To gain more insight into the impact of mTBI on oligodendrocyte lineage in the adult brain, we subjected mice to mild lateral fluid percussion injury (mFPI) and characterized the early impact (1 and 3 days post-injury) on oligodendrocytes in the corpus callosum using multiple oligodendrocyte lineage markers (platelet-derived growth factor receptor [PDGFR]-α, glutathione S-transferase [GST]-π, CC1, breast carcinoma-amplified sequence 1 [BCAS1], myelin basic protein [MBP], myelin-associated glycoprotein [MAG], proteolipid protein [PLP], and FluoroMyelin™). Two regions of the corpus callosum in relation to the impact site were analyzed: areas near (focal) and anterior (distal) to the impact site. mFPI did not result in oligodendrocyte death in either the focal or distal corpus callosum, nor impact on oligodendrocyte precursors (PDGFR-α+) and GST-π+ oligodendrocyte numbers. In the focal but not distal corpus callosum, mFPI caused a decrease in CC1+ as well as BCAS1+ actively myelinating oligodendrocytes and reduced FluoroMyelin intensity without altering myelin protein expression (MBP, PLP, and MAG). Disruption in node-paranode organization and loss of Nav1.6+ nodes were observed in both the focal and distal regions, even in areas without obvious axonal damage. Altogether, our study shows regional differences in mature and myelinating oligodendrocyte in response to mFPI. Further, mFPI elicits a widespread impact on node-paranode organization that affects regions both close to and remotely located from the site of injury.
Collapse
Affiliation(s)
- Alexandra A. Adams
- Department of Biological Sciences, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Haesun A. Kim
- Department of Biological Sciences, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
16
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
17
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Aber ER, Griffey CJ, Davies T, Li AM, Yang YJ, Croce KR, Goldman JE, Grutzendler J, Canman JC, Yamamoto A. Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death. Cell Rep 2022; 41:111480. [PMID: 36261002 PMCID: PMC9639605 DOI: 10.1016/j.celrep.2022.111480] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Although macroautophagy deficits are implicated across adult-onset neurodegenerative diseases, we understand little about how the discrete, highly evolved cell types of the central nervous system use macroautophagy to maintain homeostasis. One such cell type is the oligodendrocyte, whose myelin sheaths are central for the reliable conduction of action potentials. Using an integrated approach of mouse genetics, live cell imaging, electron microscopy, and biochemistry, we show that mature oligodendrocytes require macroautophagy to degrade cell autonomously their myelin by consolidating cytosolic and transmembrane myelin proteins into an amphisome intermediate prior to degradation. We find that disruption of autophagic myelin turnover leads to changes in myelin sheath structure, ultimately impairing neural function and culminating in an adult-onset progressive motor decline, neurodegeneration, and death. Our model indicates that the continuous and cell-autonomous maintenance of the myelin sheath through macroautophagy is essential, shedding insight into how macroautophagy dysregulation might contribute to neurodegenerative disease pathophysiology. Oligodendrocytes assemble myelin and support the axons they myelinate. Aber et al. report that oligodendrocytes coordinate autophagy and endocytosis to turn over myelin. The absence of oligodendroglial autophagy causes myelin abnormalities, behavioral dysfunction, glial and neurodegeneration, and death, demonstrating the importance of this process for a healthy CNS.
Collapse
Affiliation(s)
- Etan R Aber
- Doctoral Program in Neurobiology and Behavior, Medical Scientist Training Program, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christopher J Griffey
- Doctoral Program in Neurobiology and Behavior, Medical Scientist Training Program, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Alice M Li
- Department of Neurology and Neuroscience, Yale University, New Haven, CT 06515, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Young Joo Yang
- Graduate Program in Pathobiology and Molecular Medicine, Columbia University, New York, NY 10032, USA
| | - Katherine R Croce
- Department of Neurology, Columbia University, New York, NY 10032, USA; Graduate Program in Pathobiology and Molecular Medicine, Columbia University, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jaime Grutzendler
- Department of Neurology and Neuroscience, Yale University, New Haven, CT 06515, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Vankriekelsvenne E, Chrzanowski U, Manzhula K, Greiner T, Wree A, Hawlitschka A, Llovera G, Zhan J, Joost S, Schmitz C, Ponsaerts P, Amor S, Nutma E, Kipp M, Kaddatz H. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 2022; 70:1170-1190. [PMID: 35246882 DOI: 10.1002/glia.24164] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.
Collapse
Affiliation(s)
| | - Uta Chrzanowski
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany.,Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Katerina Manzhula
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Theresa Greiner
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | | | - Gemma Llovera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jiangshan Zhan
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Sarah Joost
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
20
|
Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflamm Regen 2022; 42:7. [PMID: 35232486 PMCID: PMC8888026 DOI: 10.1186/s41232-022-00193-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
Glial cells play crucial roles in brain homeostasis and pathogenesis of central nervous system (CNS) injuries and diseases. However, the roles of these cells and the molecular mechanisms toward regeneration in the CNS have not been fully understood, especially the capacity of them toward demyelinating diseases. Therefore, there are still very limited therapeutic strategies to restore the function of adult CNS in diseases such as multiple sclerosis (MS). Remyelination, a spontaneous regeneration process in the CNS, requires the involvement of multiple cellular and extracellular components. Promoting remyelination by therapeutic interventions is a promising novel approach to restore the CNS function. Herein, we review the role of glial cells in CNS diseases and injuries. Particularly, we discuss the roles of glia and their functional interactions and regulatory mechanisms in remyelination, as well as the current therapeutic strategies for MS.
Collapse
Affiliation(s)
- Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
21
|
Jeffries MA, McLane LE, Khandker L, Mather ML, Evangelou AV, Kantak D, Bourne JN, Macklin WB, Wood TL. mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. J Neurosci 2021; 41:8321-8337. [PMID: 34417330 PMCID: PMC8496195 DOI: 10.1523/jneurosci.1377-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.
Collapse
Affiliation(s)
- Marisa A Jeffries
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Lauren E McLane
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Luipa Khandker
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Marie L Mather
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Divyangi Kantak
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
22
|
Franklin RJM, Frisén J, Lyons DA. Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Semin Cell Dev Biol 2021; 116:3-9. [PMID: 33082115 DOI: 10.1016/j.semcdb.2020.09.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
The biology of CNS remyelination has attracted considerable interest in recent years because of its translational potential to yield regenerative therapies for the treatment of chronic and progressive demyelinating diseases such as multiple sclerosis (MS). Critical to devising myelin regenerative therapies is a detailed understanding of how remyelination occurs. The accepted dogma, based on animal studies, has been that the myelin sheaths of remyelination are made by oligodendrocytes newly generated from adult oligodendrocyte progenitor cells in a classical regenerative process of progenitor migration, proliferation and differentiation. However, recent human and a growing number of animal studies have revealed a second mode of remyelination in which mature oligodendrocytes surviving within an area of demyelination are able to regenerate new myelin sheaths. This discovery, while opening up new opportunities for therapeutic remyelination, has also raised the question of whether there are fundamental differences in myelin regeneration between humans and some of the species in which experimental remyelination studies are conducted. Here we review how this second mode of remyelination can be integrated into a wider and revised framework for understanding remyelination in which apparent species differences can be reconciled but that also raises important questions for future research.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
23
|
Zou S, Hu B. In vivo imaging reveals mature Oligodendrocyte division in adult Zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:16. [PMID: 34075520 PMCID: PMC8169745 DOI: 10.1186/s13619-021-00079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Whether mature oligodendrocytes (mOLs) participate in remyelination has been disputed for several decades. Recently, some studies have shown that mOLs participate in remyelination by producing new sheaths. However, whether mOLs can produce new oligodendrocytes by asymmetric division has not been proven. Zebrafish is a perfect model to research remyelination compared to other species. In this study, optic nerve crushing did not induce local mOLs death. After optic nerve transplantation from olig2:eGFP fish to AB/WT fish, olig2+ cells from the donor settled and rewrapped axons in the recipient. After identifying these rewrapping olig2+ cells as mOLs at 3 months posttransplantation, in vivo imaging showed that olig2+ cells proliferated. Additionally, in vivo imaging of new olig2+ cell division from mOLs was also captured within the retina. Finally, fine visual function was renewed after the remyelination program was completed. In conclusion, our in vivo imaging results showed that new olig2+ cells were born from mOLs by asymmetric division in adult zebrafish, which highlights the role of mOLs in the progression of remyelination in the mammalian CNS.
Collapse
Affiliation(s)
- Suqi Zou
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
24
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
25
|
Sun Y, Ji J, Zha Z, Zhao H, Xue B, Jin L, Wang L. Effect and Mechanism of Catalpol on Remyelination via Regulation of the NOTCH1 Signaling Pathway. Front Pharmacol 2021; 12:628209. [PMID: 33708131 PMCID: PMC7940842 DOI: 10.3389/fphar.2021.628209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Promoting the differentiation of oligodendrocyte precursor cells (OPCs) is important for fostering remyelination in multiple sclerosis. Catalpol has the potential to promote remyelination and exert neuroprotective effects, but its specific mechanism is still unclear. Recent studies have shown that the NOTCH1 signaling pathway is involved in mediating OPC proliferation and differentiation. In this study, we elucidated that catalpol promoted OPC differentiation in vivo and vitro and explored the regulatory role of catalpol in specific biomolecular processes. Following catalpol administration, better and faster recovery of body weight and motor balance was observed in mice with cuprizone (CPZ)-induced demyelination. Luxol fast blue staining (LFB) and transmission electron microscopy (TEM) showed that catalpol increased the myelinated area and improved myelin ultrastructure in the corpus callosum in demyelinated mice. In addition, catalpol enhanced the expression of CNPase and MBP, indicating that it increased OPC differentiation. Additionally, catalpol downregulated the expression of NOTCH1 signaling pathway-related molecules, such as JAGGED1, NOTCH1, NICD1, RBPJ, HES5, and HES1. We further demonstrated that in vitro, catalpol enhanced the differentiation of OPCs into OLs and inhibited NOTCH1 signaling pathway activity. Our data suggested that catalpol may promote OPC differentiation and remyelination through modulation of the NOTCH1 pathway. This study provides new insight into the mechanism of action of catalpol in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Zheng Zha
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Core Facility Center, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol 2021; 268:30-44. [PMID: 31190170 PMCID: PMC7815564 DOI: 10.1007/s00415-019-09421-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve conduction and prevents neurodegeneration. The biology of remyelination-centred on the activation, migration, proliferation and differentiation of oligodendrocyte progenitors-has been increasingly clearly defined and druggable targets have now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the latest research that has given new insights into this process. We also discuss the translation of this research into clinical trials, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Lohrberg M, Winkler A, Franz J, van der Meer F, Ruhwedel T, Sirmpilatze N, Dadarwal R, Handwerker R, Esser D, Wiegand K, Hagel C, Gocht A, König FB, Boretius S, Möbius W, Stadelmann C, Barrantes-Freer A. Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathol Commun 2020; 8:224. [PMID: 33357244 PMCID: PMC7761156 DOI: 10.1186/s40478-020-01105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.
Collapse
|
29
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
30
|
Remyelination-Promoting DNA Aptamer Conjugate Myaptavin-3064 Binds to Adult Oligodendrocytes In Vitro. Pharmaceuticals (Basel) 2020; 13:ph13110403. [PMID: 33228043 PMCID: PMC7699424 DOI: 10.3390/ph13110403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
We previously applied Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology to identify myelin-specific DNA aptamers, using crude mouse central nervous system myelin as bait. This selection identified a 40-nucleotide aptamer (LJM-3064). Multiple biotinylated LJM-3064 molecules were conjugated to a streptavidin core to mimic a multimeric immunoglobulin M (IgM) antibody, generating 3064-BS-streptavidin (Myaptavin-3064). We previously showed that Myaptavin-3064 induces remyelination in the Theiler’s murine encephalomyelitis virus (TMEV) model of chronic spinal cord demyelination. While details of target binding and the mechanism of action remain unclear, we hypothesized that Myaptavin-3064 induces remyelination by binding to oligodendrocytes (OLs). We now report the results of binding assays using the human oligodendroglioma (HOG) cell line, applying both flow cytometry and immunocytochemistry (IC) to assay aptamer conjugate binding to cells. IC assays were applied to compare aptamer conjugate binding to primary embryonic mouse mixed cortical cultures and primary adult rat mixed glial cultures. We show that Myaptavin-3064 binds to HOG cells, with increased binding upon differentiation. In contrast, a negative control aptamer conjugate, 3060-BS, which did not promote central nervous system (CNS) remyelination, does not bind to HOG cells. Myaptavin-3064 did not bind to lung (L2) or kidney (BHK) cell lines. Total internal reflection fluorescence (TIRF) imaging indicates that Myaptavin-3064 binds at the cell membrane of live cells. In addition to HOG cells, Myaptavin-3064 binds to adult rat OLs, but not to embryonic mouse mixed cortical cultures. These data support the hypothesis that Myaptavin-3064 binds to a surface molecule on both rodent and human OLs in a manner that triggers a remyelination signal pathway.
Collapse
|
31
|
Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 2020; 140:359-375. [PMID: 32710244 PMCID: PMC7424408 DOI: 10.1007/s00401-020-02189-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is the most frequent demyelinating disease and a leading cause for disability in young adults. Despite significant advances in immunotherapies in recent years, disease progression still cannot be prevented. Remyelination, meaning the formation of new myelin sheaths after a demyelinating event, can fail in MS lesions. Impaired differentiation of progenitor cells into myelinating oligodendrocytes may contribute to remyelination failure and, therefore, the development of pharmacological approaches which promote oligodendroglial differentiation and by that remyelination, represents a promising new treatment approach. However, this generally accepted concept has been challenged recently. To further understand mechanisms contributing to remyelination failure in MS, we combined detailed histological analyses assessing oligodendroglial cell numbers, presence of remyelination as well as the inflammatory environment in different MS lesion types in white matter with in vitro experiments using induced-pluripotent stem cell (iPSC)-derived oligodendrocytes (hiOL) and supernatants from polarized human microglia. Our findings suggest that there are multiple reasons for remyelination failure in MS which are dependent on lesion stage. These include lack of myelin sheath formation despite the presence of mature oligodendrocytes in a subset of active lesions as well as oligodendroglial loss and a hostile tissue environment in mixed active/inactive lesions. Therefore, we conclude that better in vivo and in vitro models which mimic the pathological hallmarks of the different MS lesion types are required for the successful development of remyelination promoting drugs.
Collapse
|
32
|
Bacmeister CM, Barr HJ, McClain CR, Thornton MA, Nettles D, Welle CG, Hughes EG. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat Neurosci 2020; 23:819-831. [PMID: 32424285 PMCID: PMC7329620 DOI: 10.1038/s41593-020-0637-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/07/2020] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here, we report that while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases OPC differentiation, oligodendrocyte generation, and myelin sheath remodeling in the forelimb motor cortex. Immediately followingdemyelination, neurons exhibit hyperexcitability, learning is impaired, and behavioral intervention provides no benefit to remyelination. However, partial remyelination restores neuronal and behavioral function allowing learning to enhance oligodendrogenesis, remyelination of denuded axons, and the ability of surviving oligodendrocytes to generate new myelinsheaths. Previously considered controversial, we show that sheath generation by mature oligodendrocytes is not only possible but also increases myelin pattern preservation following demyelination, presenting a new target for therapeutic interventions. Together, our findings demonstrate that precisely-timed motor learning improves recovery from demyelinating injury via enhanced remyelination from new and surviving oligodendrocytes.
Collapse
Affiliation(s)
- Clara M Bacmeister
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Helena J Barr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Crystal R McClain
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dailey Nettles
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cristin G Welle
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
33
|
Gingele S, Stangel M. Emerging myelin repair agents in preclinical and early clinical development for the treatment of multiple sclerosis. Expert Opin Investig Drugs 2020; 29:583-594. [PMID: 32348161 DOI: 10.1080/13543784.2020.1762567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Remyelination is a highly effective regenerative process that can restore axon function, prevent axonal loss, and reverse clinical deficits after demyelination. Hence, the promotion of remyelination is a logical goal in patients with multiple sclerosis (MS) in which remyelination is often insufficient. However, despite great progress regarding the development of immunomodulatory therapies for MS and an abundance of promising evidence from preclinical experiments so far, no therapy has convincingly demonstrated clinically significant remyelination properties. Therefore, enhancing myelin repair is an urgent and unmet need in MS. AREAS COVERED We searched clinicaltrials.gov and pubmed.ncbi.nlm.nih.gov and focused on therapeutic agents in development from the preclinical stage to clinical phase II. We selected agents for which data are available from in vitro experiments and at least one toxic demyelination animal model that reached at least phase I in clinical development in MS patients. EXPERT OPINION The evidence to promote remyelination is very promising for several agents, some of which possess anti-muscarinergic properties. Since remyelination is a complex process that involves various coordinated steps, a combination of different therapeutic approaches addressing different aspects of this regenerative mechanism may be reasonable. Furthermore, suitable surrogate markers of remyelination are necessary for proof-of-concept clinical trials.
Collapse
Affiliation(s)
- Stefan Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School , Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
34
|
Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int J Mol Sci 2020; 21:ijms21093163. [PMID: 32365806 PMCID: PMC7246940 DOI: 10.3390/ijms21093163] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.
Collapse
|
35
|
Zhang W, Zhang X, Zhang L, Xu D, Cheng N, Tang Y, Peng Y. Astrocytes increase exosomal secretion of oligodendrocyte precursor cells to promote their proliferation via integrin β4-mediated cell adhesion. Biochem Biophys Res Commun 2020; 526:341-348. [PMID: 32220495 DOI: 10.1016/j.bbrc.2020.03.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
Many degenerative diseases of the central nervous system (CNS) are associated with demyelination. Oligodendrocyte precursor cells (OPCs) are potential stem cells that can differentiate into oligodendrocytes (OLs) and promote myelination. Promoting the proliferation of OPCs is key to stimulating remyelination and treating neurodegenerative diseases. Herein, we report that astrocytes (ASTs) could increase exosomal secretion of OPCs to promote their proliferation via ITGB4-mediated cell adhesion. Our results demonstrate that ASTs can regulate the proliferation of OPCs through ITGB4-mediated exosomal secretion. OPC proliferation is significantly increased after direct-contact culture with ASTs. Gene ontology (GO) and KEGG pathway analyses reveal that ITGB4/extracellular exosome are closely related to OPC proliferation. siRNA ITGB4 decreases exosomal secretion and OPC proliferation. ITGB4/exosomes remarkably promote OPC transition from G1 to S phase. Furthermore, exosomes can alleviate the inhibitory effect of ITGB4 knockdown on OPC proliferation. Collectively, ASTs regulate OPC exosomal secretion via ITGB4, which could be a valuable approach for promoting OPC proliferation. This strategy may represent a potential treatment for neurological diseases caused by demyelination.
Collapse
Affiliation(s)
- Wenjin Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaoyan Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dan Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - NanNan Cheng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Peng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
36
|
Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochem Res 2020; 45:630-642. [PMID: 31997102 PMCID: PMC7058689 DOI: 10.1007/s11064-020-02967-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes (OLs) generate myelin membranes for the rapid propagation of electrical signals along axons in the central nervous system (CNS) and provide metabolites to support axonal integrity and function. Differentiation of OLs from oligodendrocyte progenitor cells (OPCs) is orchestrated by a multitude of intrinsic and extrinsic factors in the CNS. Disruption of this process, or OL loss in the developing or adult brain, as observed in various neurological conditions including hypoxia/ischemia, stroke, and demyelination, results in axonal dystrophy, neuronal dysfunction, and severe neurological impairments. While much is known regarding the intrinsic regulatory signals required for OL lineage cell progression in development, studies from pathological conditions highlight the importance of the CNS environment and external signals in regulating OL genesis and maturation. Here, we review the recent findings in OL biology in the context of the CNS physiological and pathological conditions, focusing on extrinsic factors that facilitate OL development and regeneration.
Collapse
|
37
|
Lavon I, Leykin I, Charbit H, Binyamin O, Brill L, Ovadia H, Vaknin-Dembinsky A. QKI-V5 is downregulated in CNS inflammatory demyelinating diseases. Mult Scler Relat Disord 2019; 39:101881. [PMID: 31835207 DOI: 10.1016/j.msard.2019.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuromyelitis-optica (NMO) and multiple-sclerosis (MS) are inflammatory- demyelinating-diseases of the central-nervous-system (CNS). In a previous study, we identified 17 miRNAs that were significantly upregulated in the peripheral blood of patients with NMO, relative to healthy controls (HCs). Target gene analysis have demonstrated that QKI is targeted by 70% of the upregulated miRNAs. QKI gene encodes for a RNA-binding-protein that plays a central role in myelination. QKI variants 5, 6, 7 (QKI-V5, QKI-V6, QKI-V7) are generated via alternative splicing. Given the role played by QKI in myelination we aimed to study the expression levels of QKI variants in the circulation of patients with NMO and MS and in the circulation and brain tissue of mice-model to CNS-inflammatory-demyelinating-disease. METHODS RNA and protein expression levels of QKI variants QKI-V5, QKI-V6 and QKI-V7 were determined in the blood of patients with NMO (n = 23) or MS (n = 13). The effect of sera from patients on the expression of QKI in normal peripheral-blood-mononuclear-cells (PBMCs) or glial cells was explored. The mog-experimental-autoimmune-encephalomyelitis (EAE) mouse model was used to study the correlation between the changes in the expression levels of QKI in the blood to those in the brain. RESULTS RNA and protein expression of QKI-V5 was decreased in the peripheral blood of patients with NMO and multiple-sclerosis. Incubation of normal peripheral-blood-mononuclear-cells or glial cells with sera of patients significantly reduced the expression of QKI-V5. The blood and brain of EAE mice exhibited a corresponding decrease in QKI-V5 expression. CONCLUSION The downregulation in the expression of QKI-V5 in the blood of patients with CNS-inflammatory-demyelinating-diseases and in the brain and blood of EAE mice is likely caused by a circulating factor and might promote re-myelination by regulation of myelin-associated genes. Key words: QKI variants, Multiple sclerosis (MS), Neuromyelitis optica (NMO), Astrocytes, Demyelination.
Collapse
Affiliation(s)
- Iris Lavon
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel.
| | - Ina Leykin
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel
| | - Hanna Charbit
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Livnat Brill
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Haim Ovadia
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
38
|
Neumann B, Segel M, Chalut KJ, Franklin RJM. Remyelination and ageing: Reversing the ravages of time. Mult Scler 2019; 25:1835-1841. [PMID: 31687878 PMCID: PMC7682531 DOI: 10.1177/1352458519884006] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022]
Abstract
Remyelination is a neuroprotective regenerative response to demyelination that restores saltatory conduction and decreases the vulnerability of axons to irreversible degeneration. It is a highly efficient process: however, as with all regenerative processes, its efficiency declines with ageing. Here we argue that this age-related decline in remyelination has a major impact on the natural history of multiple sclerosis (MS), a disease often of several decades' duration. We describe recent work on (1) how ageing changes the function of oligodendrocyte progenitor cells (OPCs), the cells primarily responsible for generating new myelin-forming oligodendrocytes in remyelination, (2) how these changes are induced by age-related changes in the OPC niche and (3) how these changes can be reversed, thereby opening up the possibility of therapeutically maintaining remyelination efficiency throughout the disease, preserving axonal health and treating the progressive phase of MS.
Collapse
Affiliation(s)
- Bjoern Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Michael Segel
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Robin JM Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8:cells8111424. [PMID: 31726662 PMCID: PMC6912544 DOI: 10.3390/cells8111424] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
Collapse
|
40
|
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Front Mol Neurosci 2019; 12:225. [PMID: 31616249 PMCID: PMC6764409 DOI: 10.3389/fnmol.2019.00225] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
In diseases such as multiple sclerosis (MS), inflammation can injure the myelin sheath that surrounds axons, a process known as demyelination. The spontaneous regeneration of myelin, called remyelination, is associated with restoration of function and prevention of axonal degeneration. Boosting remyelination with therapeutic intervention is a promising new approach that is currently being tested in several clinical trials. The endogenous regulation of remyelination is highly dependent on the immune response. In this review article, we highlight the cell biology of remyelination and its regulation by innate immune cells. For the purpose of this review, we discuss the roles of microglia, and also astrocytes and oligodendrocyte progenitor cells (OPCs) as they are being increasingly recognized to have immune cell functions.
Collapse
Affiliation(s)
- Charbel S. Baaklini
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalil S. Rawji
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, United States
| | - Madelene F. S. Ho
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
41
|
Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 2019; 16:165. [PMID: 31399117 PMCID: PMC6688239 DOI: 10.1186/s12974-019-1552-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association of gut microbiota and diseases of the central nervous system (CNS), including multiple sclerosis (MS), has attracted much attention. Although a previous analysis of MS gut microbiota revealed a reduction in species producing short-chain fatty acids (SCFAs), the influence of these metabolites on demyelination and remyelination, the critical factors of MS pathogenesis, remains unclear. METHODS To investigate the relationship between demyelination and gut microbiota, we administered a mixture of non-absorbing antibiotics or SCFAs to mice with cuprizone-induced demyelination and evaluated demyelination and the accumulation of microglia. To analyze the direct effect of SCFAs on demyelination or remyelination, we induced demyelination in an organotypic cerebellar slice culture using lysolecithin and analyzed the demyelination and maturation of oligodendrocyte precursor cells with or without SCFA treatment. RESULTS The oral administration of antibiotics significantly enhanced cuprizone-induced demyelination. The oral administration of butyrate significantly ameliorated demyelination, even though the accumulation of microglia into demyelinated lesions was not affected. Furthermore, we showed that butyrate treatment significantly suppressed lysolecithin-induced demyelination and enhanced remyelination in an organotypic slice culture in the presence or absence of microglia, suggesting that butyrate may affect oligodendrocytes directly. Butyrate treatment facilitated the differentiation of immature oligodendrocytes. CONCLUSIONS We revealed that treatment with butyrate suppressed demyelination and enhanced remyelination in an organotypic slice culture in association with facilitating oligodendrocyte differentiation. Our findings shed light on a novel mechanism of interaction between the metabolites of gut microbiota and the CNS and may provide a strategy to control demyelination and remyelination in MS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Yasunobu Hoshino
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Miho Mizuno
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
42
|
Pfeiffer F, Frommer-Kaestle G, Fallier-Becker P. Structural adaption of axons during de- and remyelination in the Cuprizone mouse model. Brain Pathol 2019; 29:675-692. [PMID: 31106489 DOI: 10.1111/bpa.12748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple Sclerosis is an autoimmune disorder causing neurodegeneration mostly in young adults. Thereby, myelin is lost in the inflammatory lesions leaving unmyelinated axons at a high risk to degenerate. Oligodendrocyte precursor cells maintain their regenerative capacity into adulthood and are able to remyelinate axons if they are properly activated and differentiate. Neuronal activity influences the success of myelination indicating a close interplay between neurons and oligodendroglia. The myelination profile determines the distribution of voltage-gated ion channels along the axon. Here, we analyze the distribution of the sodium channel subunit Nav1.6 and the ultrastructure of axons after cuprizone-induced demyelination in transgenic mice expressing GFP in oligodendroglial cells. Using this mouse model, we found an increased number of GFP-expressing oligodendroglial cells compared to untreated mice. Analyzing the axons, we found an increase in the number of nodes of Ranvier in mice that had received cuprizone. Furthermore, we found an enhanced portion of unmyelinated axons showing vesicles in the cytoplasm. These vesicles were labeled with VGlut1, indicating that they are involved in axonal signaling. Our results highlight the flexibility of axons towards changes in the glial compartment and depict the structural changes they undergo upon myelin removal. These findings might be considered if searching for new neuroprotective therapies that aim at blocking neuronal activity in order to avoid interfering with the process of remyelination.
Collapse
Affiliation(s)
- Friederike Pfeiffer
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | | | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Wilbanks B, Maher LJ, Rodriguez M. Glial cells as therapeutic targets in progressive multiple sclerosis. Expert Rev Neurother 2019; 19:481-494. [PMID: 31081705 DOI: 10.1080/14737175.2019.1614443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis is a serious demyelinating disease of the central nervous system (CNS) with treatments generally restricted to immunosuppression to reduce attack rate and for symptom management. Glial cells may be useful targets for future CNS regenerative therapies to reverse disease. Areas covered: In this review, the authors cover currently available multiple sclerosis treatments and examine potential upcoming therapies targeting glial cells. The potential for new therapeutic approaches in the treatment of progressive multiple sclerosis is examined. Expert opinion: Microglia, astrocytes, and oligodendrocytes are each promising targets for the disease-altering treatment of multiple sclerosis. Though challenging, the opportunities presented have great potential for CNS regeneration and further investigation of glial cells in therapy is warranted. Patient-specific combinatorial therapy targeting the three glial cell types is expected to be the future of MS treatment.
Collapse
Affiliation(s)
- Brandon Wilbanks
- a Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - L J Maher
- a Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Moses Rodriguez
- b Departments of Neurology and Immunology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
44
|
Dimas P, Montani L, Pereira JA, Moreno D, Trötzmüller M, Gerber J, Semenkovich CF, Köfeler HC, Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 2019; 8:44702. [PMID: 31063129 PMCID: PMC6504237 DOI: 10.7554/elife.44702] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/27/2019] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLs) support neurons and signal transmission in the central nervous system (CNS) by enwrapping axons with myelin, a lipid-rich membrane structure. We addressed the significance of fatty acid (FA) synthesis in OLs by depleting FA synthase (FASN) from OL progenitor cells (OPCs) in transgenic mice. While we detected no effects in proliferation and differentiation along the postnatal OL lineage, we found that FASN is essential for accurate myelination, including myelin growth. Increasing dietary lipid intake could partially compensate for the FASN deficiency. Furthermore, FASN contributes to correct myelin lipid composition and stability of myelinated axons. Moreover, we depleted FASN specifically in adult OPCs to examine its relevance for remyelination. Applying lysolecithin-induced focal demyelinating spinal cord lesions, we found that FA synthesis is essential to sustain adult OPC-derived OLs and efficient remyelination. We conclude that FA synthesis in OLs plays key roles in CNS myelination and remyelination.
Collapse
Affiliation(s)
- Penelope Dimas
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Laura Montani
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Daniel Moreno
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | - Joanne Gerber
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University Medical School, St. Louis, United States
| | - Harald C Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Ueli Suter
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Affiliation(s)
- Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | |
Collapse
|
46
|
Foster AY, Bujalka H, Emery B. Axoglial interactions in myelin plasticity: Evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia 2019; 67:2038-2049. [PMID: 31038804 DOI: 10.1002/glia.23629] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/10/2022]
Abstract
Myelin is a critical component of the vertebrate nervous system, both increasing the conduction velocity of myelinated axons and allowing for metabolic coupling between the myelinating cells and axons. An increasing number of studies demonstrate that myelination is not simply a developmentally hardwired program, but rather that new myelinating oligodendrocytes can be generated throughout life. The generation of these oligodendrocytes and the formation of myelin are influenced both during development and adulthood by experience and levels of neuronal activity. This led to the concept of adaptive myelination, where ongoing activity-dependent changes to myelin represent a form of neural plasticity, refining neuronal functioning, and circuitry. Although human neuroimaging experiments support the concept of dynamic changes within specific white matter tracts relevant to individual tasks, animal studies have only just begun to probe the extent to which neuronal activity may alter myelination at the level of individual circuits and axons. Uncovering the role of adaptive myelination requires a detailed understanding of the localized interactions that occur between active axons and myelinating cells. In this review, we focus on recent animal studies that have begun to investigate the interactions between active axons and myelinating cells and review the evidence for-and against-the ability of neuronal activity to alter myelination at an axon-specific level.
Collapse
Affiliation(s)
- Antoinette Y Foster
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Helena Bujalka
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
47
|
Mironova YA, Lin JP, Kalinski AL, Huffman LD, Lenk GM, Havton LA, Meisler MH, Giger RJ. Protective role of the lipid phosphatase Fig4 in the adult nervous system. Hum Mol Genet 2019; 27:2443-2453. [PMID: 29688489 DOI: 10.1093/hmg/ddy145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The signaling lipid phosphatidylinositol 3,5-bisphosphate, PI(3,5)P2, functions in vesicular trafficking through the endo-lysosomal compartment. Cellular levels of PI(3,5)P2 are regulated by an enzyme complex comprised of the kinase PIKFYVE, the phosphatase FIG4, and the scaffold protein VAC14. Mutations of human FIG4 cause inherited disorders including Charcot-Marie-Tooth disease type 4J, polymicrogyria with epilepsy, and Yunis-Varón syndrome. Constitutive Fig4-/- mice exhibit intention tremor, spongiform degeneration of neural tissue, hypomyelination, and juvenile lethality. To determine whether PI(3,5)P2 is required in the adult, we generated Fig4flox/-; CAG-creER mice and carried out tamoxifen-induced gene ablation. Global ablation in adulthood leads to wasting, tremor, and motor impairment. Death follows within 2 months of tamoxifen treatment, demonstrating a life-long requirement for Fig4. Histological examinations of the sciatic nerve revealed profound Wallerian degeneration of myelinated fibers, but not C-fiber axons in Remak bundles. In optic nerve sections, myelinated fibers appear morphologically intact and carry compound action potentials at normal velocity and amplitude. However, when iKO mice are challenged with a chemical white matter lesion, repair of damaged CNS myelin is significantly delayed, demonstrating a novel role for Fig4 in remyelination. Thus, in the adult PNS Fig4 is required to protect myelinated axons from Wallerian degeneration. In the adult CNS, Fig4 is dispensable for fiber stability and nerve conduction, but is required for the timely repair of damaged white matter. The greater vulnerability of the PNS to Fig4 deficiency in the mouse is consistent with clinical observations in patients with Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Miriam H Meisler
- Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Milbreta U, Lin J, Pinese C, Ong W, Chin JS, Shirahama H, Mi R, Williams A, Bechler ME, Wang J, Ffrench-Constant C, Hoke A, Chew SY. Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Mol Ther 2019; 27:411-423. [PMID: 30611662 PMCID: PMC6369635 DOI: 10.1016/j.ymthe.2018.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination. We show that miR-219/miR-338 promoted primary rat OL differentiation and myelination in vitro. Using spinal cord injury as a proof-of-concept, we further demonstrate that miR-219/miR-338 could also be delivered non-virally in vivo using an aligned fiber-hydrogel scaffold to enhance remyelination after a hemi-incision injury at C5 level of Sprague-Dawley rats. Specifically, miR-219/miR-338 mimics were incorporated as complexes with the carrier, TransIT-TKO (TKO), together with neurotrophin-3 (NT-3) within hybrid scaffolds that comprised poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP)-aligned fibers and collagen hydrogel. After 1, 2, and 4 weeks post-treatment, animals that received NT-3 and miR-219/miR-338 treatment preserved a higher number of Olig2+ oligodendroglial lineage cells as compared with those treated with NT-3 and negative scrambled miRs (Neg miRs; p < 0.001). Additionally, miR-219/miR-338 increased the rate and extent of differentiation of OLs. At the host-implant interface, more compact myelin sheaths were observed when animals received miR-219/miR-338. Similarly within the scaffolds, miR-219/miR-338 samples contained significantly more myelin basic protein (MBP) signals (p < 0.01) and higher myelination index (p < 0.05) than Neg miR samples. These findings highlight the potential of this platform to promote remyelination within the CNS.
Collapse
Affiliation(s)
- Ulla Milbreta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Coline Pinese
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Artificial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier 34093, France
| | - William Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Hitomi Shirahama
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Williams
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Marie E Bechler
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Jun Wang
- China School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Charles Ffrench-Constant
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
49
|
Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen Receptors. J Neurosci 2019; 39:2184-2194. [PMID: 30696729 DOI: 10.1523/jneurosci.1530-18.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies. We have identified a compelling remyelinating agent, bazedoxifene (BZA), a European Medicines Agency (EMA)-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents and other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs) and coculture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independently of its presumed target, the ER, in both in vitro and in vivo systems. Using a massive computational data integration approach, we independently identify six possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3β-hydroxysteroid-Δ8,Δ7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENT Therapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represent a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable European Medicines Agency-approved (U.S. Food and Drug Administration-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM), bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, which were developed as nuclear ER-α and ER-β agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo and highlight EBP, an enzyme in the cholesterol biosynthesis pathway that could potentially act as a target for SERMs.
Collapse
|
50
|
Bijland S, Thomson G, Euston M, Michail K, Thümmler K, Mücklisch S, Crawford CL, Barnett SC, McLaughlin M, Anderson TJ, Linington C, Brown ER, Kalkman ER, Edgar JM. An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 2019; 8:117. [PMID: 31069065 PMCID: PMC6489523 DOI: 10.12688/f1000research.16802.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/23/2022] Open
Abstract
The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.
Collapse
Affiliation(s)
- Silvia Bijland
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gemma Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Euston
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Kyriakos Michail
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Steve Mücklisch
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin L Crawford
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T James Anderson
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Eric R Kalkman
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|