1
|
Nita A, Abraham SP, Elrefaay ER, Fafilek B, Cizkova E, Ursachi VC, Gudernova I, Koudelka A, Dudeja P, Gregor T, Feketova Z, Rico G, Svozilova K, Celiker C, Czyrek AA, Barta T, Trantirek L, Wiedlocha A, Krejci P, Bosakova M. FGFR2 residence in primary cilia is necessary for epithelial cell signaling. J Cell Biol 2025; 224:e202311030. [PMID: 40257378 PMCID: PMC12010920 DOI: 10.1083/jcb.202311030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Eman R. Elrefaay
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Cizkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vlad Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gustavo Rico
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksandra A. Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprograming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Qin T, Zhang H, Zou Z. Unveiling cell-type-specific mode of evolution in comparative single-cell expression data. J Genet Genomics 2025:S1673-8527(25)00131-6. [PMID: 40345525 DOI: 10.1016/j.jgg.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
While methodology for determining the mode of evolution in coding sequences has been well established, evaluation of adaptation events in emerging types of phenotype data needs further development. Here we propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell expression data based on phenotypic evolution theory. After decomposing the gene expression variance into separate components, we use two strategies to identify genes exhibiting large between-taxon expression divergence and small within-cell-type expression noise in certain cell types, attributing this pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types, thus likely to have experienced more extensive adaptation. Reassuringly, at molecular sequence level, the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall, the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongjiu Zhang
- Microsoft Canada Development Centre, Vancouver, British Columbia, V5C 1G1, Canada
| | - Zhengting Zou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Diaz PJ, Shi Q, McNeish PY, Banerjee S. Tubulin Polymerization Promoting Proteins: Functional Diversity With Implications in Neurological Disorders. J Neurosci Res 2025; 103:e70044. [PMID: 40317801 PMCID: PMC12047068 DOI: 10.1002/jnr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Tubulin Polymerization Promoting Proteins (TPPPs) are highly conserved across species but remain poorly understood. There are three TPPP genes in humans, with only one homologous TPPP gene in invertebrates, such as Drosophila and C. elegans. The human TPPP (TPPP1/p25/p25α) is enriched in the brain and shares sequence similarities with the invertebrate TPPPs. TPPP/p25 associates with microtubules and plays a pivotal role in microtubule dynamics, bundling, and polymerization, thereby stabilizing the microtubular network. This is essential for cytoskeletal organization and proper functioning of neurons and glial cells, including axonal growth, regeneration, migration, trafficking, synapse formation, and myelination of axons. However, studies have also uncovered that besides its cytoplasmic/microtubular localization, TPPP/p25 is present in other subcellular compartments, including the mitochondria and nucleus, underscoring the presence of additional novel functions. At the molecular level, TPPP/p25 is predicted to exist as an intrinsically disordered protein and is implicated in neurological and neurodegenerative disorders, including Parkinson's and related disorders and Multiple Sclerosis. In this article, we provide a comprehensive overview of TPPP/p25, highlighting its evolutionary conservation, cellular and subcellular localization, established and emerging functions in the nervous system, interacting partners, potential clinical relevance to human neurological disorders, and conclude with unresolved questions and future areas of study.
Collapse
Affiliation(s)
- Paloma J. Diaz
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Qian Shi
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Center for Biomedical NeuroscienceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Priscilla Y. McNeish
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Swati Banerjee
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Center for Biomedical NeuroscienceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Perry and Ruby Stevens Parkinson's Disease Center of ExcellenceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| |
Collapse
|
4
|
Quansah E, Vatsa N, Ensink E, Brown J, Cave T, Aguileta M, Schulz E, Lindquist A, Gilliland C, Steiner JA, Escobar Galvis ML, Milčiūtė M, Henderson MX, Brundin P, Brundin L, Marshall LL, Gordevicius J. Tet2 loss and enhanced ciliogenesis suppress α-synuclein pathology. Acta Neuropathol Commun 2025; 13:71. [PMID: 40189544 PMCID: PMC11974201 DOI: 10.1186/s40478-025-01988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
There are no approved treatments that slow Parkinson's disease (PD) progression and therefore it is important to identify novel pathogenic mechanisms that can be targeted. Loss of the epigenetic marker, Tet2 appears to have some beneficial effects in PD models, but the underlying mechanism of action is not well understood. We performed an unbiased transcriptomic analysis of cortical neurons isolated from patients with PD to identify dysregulated pathways and determine their potential contributions to the disease process. We discovered that genes associated with primary cilia, non-synaptic sensory and signaling organelles, are upregulated in both early and late stage PD patients. Enhancing ciliogenesis in primary cortical neurons via sonic hedgehog signaling suppressed the accumulation of α-synuclein pathology in vitro. Interestingly, deletion of Tet2 in mice also enhanced the expression of primary cilia and sonic hedgehog signaling genes and reduced the accumulation of α-synuclein pathology and dopamine neuron degeneration in vivo. Our findings demonstrate the crucial role of TET2 loss in regulating ciliogenesis and potentially affecting the progression of PD pathology.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jaycie Brown
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Tyce Cave
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Aguileta
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Schulz
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Lindquist
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Carla Gilliland
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Patrik Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Lena Brundin
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | | |
Collapse
|
5
|
Treccarichi S, Vinci M, Musumeci A, Rando RG, Papa C, Saccone S, Federico C, Failla P, Ruggieri M, Calì F, Polizzi A, Praticò A. Investigating the Role of the Zinc Finger Protein ZC2HC1C on Autism Spectrum Disorder Susceptibility. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:574. [PMID: 40282865 PMCID: PMC12029121 DOI: 10.3390/medicina61040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Zinc finger proteins are important transcription factors that regulate gene expression and play a critical role in neurodevelopment including autism spectrum disorders (ASDs). They are involved in a variety of cellular processes, including cell proliferation, differentiation, and apoptosis. Materials and Methods: Whole-exome sequencing (WES) analysis on a patient diagnosed with ASD. Results: Sequencing identified a homozygous insertion causing a stop codon, resulting in the removal of several functional domains including the zinc finger C2HC/C3H type of the ZC2HC1C protein. To date, no MIM entry has been assigned to the detected gene. In silico predictions described the variant as likely pathogenic, indicating an autosomal recessive inheritance pattern. In this study, we hypothesize that this homozygous mutation disrupts protein function and may represent a susceptibility gene for autism. The parents and the patient's sister were healthy and carry the variant in the heterozygous condition. This gene is expressed in brain tissues showing high expression in both the choroid plexus (ChP) and midbrain, whose dysfunctions, as reported, may lead to ASD. Moreover, predictive pathway analyses indicated the probable involvement of this gene in primary cilia development. This process has been frequently linked to neurodevelopmental impairments, such as autism, as documented in previous studies. Conclusions: Further analyses are needed via in vitro functional assays or by ZC2HC1C gene knockout to validate its functional role.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Mirella Vinci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Antonino Musumeci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Rosanna Galati Rando
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Carla Papa
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (S.S.); (C.F.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (S.S.); (C.F.)
| | - Pinella Failla
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Martino Ruggieri
- Unit of Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Francesco Calì
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.T.); (M.V.); (A.M.); (R.G.R.); (C.P.); (P.F.)
| | - Agata Polizzi
- Department of Formative Process, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy;
| | - Andrea Praticò
- Deparment of Medicine and Surgery, University Kore of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| |
Collapse
|
6
|
Chen L, Zhao MF, Deng HW, Liao M, Fan LL, Zhong QB, Wang J, Li K, Wu ZH, Yin JY. A Novel Pathogenic Splicing Mutation of OFD1 is Responsible for a Boy with Joubert Syndrome Exhibiting Orofaciodigital Spectrum Anomalies, Polydactyly and Retinitis Pigmentosa. Pharmgenomics Pers Med 2025; 18:47-53. [PMID: 39925483 PMCID: PMC11804221 DOI: 10.2147/pgpm.s501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Joubert syndrome (JS) is an infrequent congenital neurodevelopmental ciliopathy, typically identified in children around the average age of 33 months. This disorder is characterized by developmental delay, cognitive impairment, and infantile hypotonia that may evolve into ataxia. Mutations in OFD1 results in Joubert syndrome with a variety of phenotypes. Here, we identified a child who presented with Joubert syndrome exhibiting orofaciodigital spectrum anomalies, polydactyly, and retinitis pigmentosa. Whole exome sequencing and Sanger sequencing revealed a splicing mutation (NM_003611.2, c.2387+1G>A) in the OFD1 gene of the patient and his mother. mRNA sequencing further confirmed this mutation. However, since the patient is homozygous and the mother is heterozygous, only the patient has the phenotype and the mother is normal. This mutation can lead to the loss of sixth coiled-coil domains of OFD1 protein, which further disrupt the ciliary signaling pathway and Hedgehog signaling pathway. This study presents a new case of JS and expands the mutant spectrum of OFD1, but also enhances our understanding of the mechanism by which OFD1 is associated with ciliosis.
Collapse
Affiliation(s)
- Liang Chen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Mei-Fang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, People’s Republic of China
| | - Hui-Wen Deng
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Min Liao
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, People’s Republic of China
| | - Qi-Bao Zhong
- Department of Facial Features, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Jun Wang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Ke Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Zheng-Hui Wu
- Department of Child Rehabilitation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| | - Jian-Yin Yin
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People’s Republic of China
| |
Collapse
|
7
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2025; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
8
|
Liu Y, McDaniel JA, Chen C, Yang L, Kipcak A, Savier EL, Erisir A, Cang J, Campbell JN. Co-Conservation of Synaptic Gene Expression and Circuitry in Collicular Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634521. [PMID: 39896595 PMCID: PMC11785205 DOI: 10.1101/2025.01.23.634521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The superior colliculus (SC), a midbrain sensorimotor hub, is anatomically and functionally similar across vertebrates, but how its cell types have evolved is unclear. Using single-nucleus transcriptomics, we compared the SC's molecular and cellular organization in mice, tree shrews, and humans. Despite over 96 million years of evolutionary divergence, we identified ~30 consensus neuronal subtypes, including Cbln2+ neurons that form the SC-pulvinar circuit in mice and tree shrews. Synapse-related genes were among the most conserved, unlike neocortex, suggesting co-conservation of synaptic genes and circuitry. In contrast, cilia-related genes diverged significantly across species, highlighting the potential importance of the neuronal primary cilium in SC evolution. Additionally, we identified a novel inhibitory SC neuron in tree shrews and humans but not mice. Our findings reveal that the SC has evolved by conserving neuron subtypes, synaptic genes, and circuitry, while diversifying ciliary gene expression and an inhibitory neuron subtype.
Collapse
Affiliation(s)
- Yuanming Liu
- Department of Biology, Charlottesville, VA 22904, USA
| | - John A McDaniel
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Chen Chen
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Lu Yang
- Department of Biology, Charlottesville, VA 22904, USA
| | - Arda Kipcak
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | | | - Alev Erisir
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - Jianhua Cang
- Department of Biology, Charlottesville, VA 22904, USA
- Department of Psychology University of Virginia, Charlottesville, VA 22904, USA
| | - John N Campbell
- Department of Biology, Charlottesville, VA 22904, USA
- Lead Contact
| |
Collapse
|
9
|
Rushforth R, Shamseldin HE, Costantino N, Michaels JR, Sawyer SL, Osmond M, Kurdi W, Abdulwahab F, DiStasio A, Boycott KM, Alkuraya FS, Stottmann RW. NUBP2 deficiency disrupts the centrosome-check point in the brain and causes primary microcephaly. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320041. [PMID: 39867373 PMCID: PMC11759615 DOI: 10.1101/2025.01.16.25320041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons. Premature differentiation of neurons is associated with defects in the centrosome and/or primary cilia. In this study, we report on the first patients identified with NUBP2 -deficiency and utilize a conditional mouse model to ascertain the molecular mechanisms associated with NUBP2 -deficient primary microcephaly. We identified homozygous NUBP2 variants in these patients who displayed profound primary microcephaly in addition to intrauterine growth restriction, cervical kyphosis, severe contractures of joints, and facial dysmorphia. We then generated a mouse model using Emx1-Cre to ablate Nubp2 from the forebrain. The mice presented with severe microcephaly starting at E18.5. Neurospheres generated from the forebrain of Emx1-Cre; Nubp2 flox/flox conditional deletion mice were used to support the pathogenicity of the patient variants. We show that loss of Nubp2 increases both canonical and non-canonical cell death, but that loss of p53 fails to rescue microcephaly in the mouse model. Examination of neurogenesis in Emx1-Cre; Nubp2 flox/flox mice revealed distinct alterations in proliferation and cellular migration accompanied by supernumerary centrosomes and cilia. We therefore propose that NUBP2 is a novel primary microcephaly-related gene and that the role of Nubp2 in centrosome and cilia regulation is crucial for proper neurogenesis.
Collapse
|
10
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2025; 240:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Zhao Z, Geng Y, Ni Q, Chen Y, Cao Y, Lu Y, Wang H, Wang R, Sun W. IFT80 promotes early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway. Oral Dis 2024; 30:4558-4572. [PMID: 38287672 DOI: 10.1111/odi.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation as the essential functional component of primary cilia. The effects of IFT80 on early bone healing of extraction sockets have not been well studied. To investigate whether deletion of Ift80 in alveolar bone-derived mesenchymal stem cells (aBMSCs) affected socket bone healing, we generated a mouse model of specific knockout of Ift80 in Prx1 mesenchymal lineage cells (Prx1Cre;IFT80f/f). Our results demonstrated that deletion of IFT80 in Prx1 lineage cells decreased the trabecular bone volume, ALP-positive osteoblastic activity, TRAP-positive osteoclastic activity, and OSX-/COL I-/OCN-positive areas in tooth extraction sockets of Prx1Cre; IFT80f/f mice compared with IFT80f/f littermates. Furthermore, aBMSCs from Prx1Cre; IFT80f/f mice showed significantly decreased osteogenic markers and downregulated migration and proliferation capacity. Importantly, the overexpression of TAZ recovered significantly the expressions of osteogenic markers and migration capacity of aBMSCs. Lastly, the local administration of lentivirus for TAZ enhanced the expression of RUNX2 and OSX and promoted early bone healing of extraction sockets from Prx1Cre; IFT80f/f mice. Thus, IFT80 promotes osteogenesis and early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yanan Cao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yahui Lu
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
13
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Liu XY, Song X, Czosnyka M, Robba C, Czosnyka Z, Summers JL, Yu HJ, Gao GY, Smielewski P, Guo F, Pang MJ, Ming D. Congenital hydrocephalus: a review of recent advances in genetic etiology and molecular mechanisms. Mil Med Res 2024; 11:54. [PMID: 39135208 PMCID: PMC11318184 DOI: 10.1186/s40779-024-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
The global prevalence rate for congenital hydrocephalus (CH) is approximately one out of every five hundred births with multifaceted predisposing factors at play. Genetic influences stand as a major contributor to CH pathogenesis, and epidemiological evidence suggests their involvement in up to 40% of all cases observed globally. Knowledge about an individual's genetic susceptibility can significantly improve prognostic precision while aiding clinical decision-making processes. However, the precise genetic etiology has only been pinpointed in fewer than 5% of human instances. More occurrences of CH cases are required for comprehensive gene sequencing aimed at uncovering additional potential genetic loci. A deeper comprehension of its underlying genetics may offer invaluable insights into the molecular and cellular basis of this brain disorder. This review provides a summary of pertinent genes identified through gene sequencing technologies in humans, in addition to the 4 genes currently associated with CH (two X-linked genes L1CAM and AP1S2, two autosomal recessive MPDZ and CCDC88C). Others predominantly participate in aqueduct abnormalities, ciliary movement, and nervous system development. The prospective CH-related genes revealed through animal model gene-editing techniques are further outlined, focusing mainly on 4 pathways, namely cilia synthesis and movement, ion channels and transportation, Reissner's fiber (RF) synthesis, cell apoptosis, and neurogenesis. Notably, the proper functioning of motile cilia provides significant impulsion for cerebrospinal fluid (CSF) circulation within the brain ventricles while mutations in cilia-related genes constitute a primary cause underlying this condition. So far, only a limited number of CH-associated genes have been identified in humans. The integration of genotype and phenotype for disease diagnosis represents a new trend in the medical field. Animal models provide insights into the pathogenesis of CH and contribute to our understanding of its association with related complications, such as renal cysts, scoliosis, and cardiomyopathy, as these genes may also play a role in the development of these diseases. Genes discovered in animals present potential targets for new treatments but require further validation through future human studies.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- Medical School, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Xin Song
- Medical School, Tianjin University, Tianjin, 300072, China
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, 16132, Genoa, Italy
| | - Zofia Czosnyka
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Jennifer Lee Summers
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Hui-Jie Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guo-Yi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Fang Guo
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Mei-Jun Pang
- Medical School, Tianjin University, Tianjin, 300072, China.
| | - Dong Ming
- Medical School, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
15
|
Sarić N, Ishibashi N. The role of primary cilia in congenital heart defect-associated neurological impairments. Front Genet 2024; 15:1460228. [PMID: 39175754 PMCID: PMC11338889 DOI: 10.3389/fgene.2024.1460228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Congenital heart disease (CHD) has, despite significant improvements in patient survival, increasingly become associated with neurological deficits during infancy that persist into adulthood. These impairments afflict a wide range of behavioral domains including executive function, motor learning and coordination, social interaction, and language acquisition, reflecting alterations in multiple brain areas. In the past few decades, it has become clear that CHD is highly genetically heterogeneous, with large chromosomal aneuploidies and copy number variants (CNVs) as well as single nucleotide polymorphisms (SNPs) being implicated in CHD pathogenesis. Intriguingly, many of the identified loss-of-function genetic variants occur in genes important for primary cilia integrity and function, hinting at a key role for primary cilia in CHD. Here we review the current evidence for CHD primary cilia associated genetic variants, their independent functions during cardiac and brain development and their influence on behavior. We also highlight the role of environmental exposures in CHD, including stressors such as surgical factors and anesthesia, and how they might interact with ciliary genetic predispositions to determine the final neurodevelopmental outcome. The multifactorial nature of CHD and neurological impairments linked with it will, on one hand, likely necessitate therapeutic targeting of molecular pathways and neurobehavioral deficits shared by disparate forms of CHD. On the other hand, strategies for better CHD patient stratification based on genomic data, gestational and surgical history, and CHD complexity would allow for more precise therapeutic targeting of comorbid neurological deficits.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
- Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Children's National Heart Center, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
16
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Soni V, LoTurco JJ. KATNAL2 mutations link ciliary dysfunction to hydrocephalus and autism. Proc Natl Acad Sci U S A 2024; 121:e2410761121. [PMID: 39008680 PMCID: PMC11287267 DOI: 10.1073/pnas.2410761121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Affiliation(s)
- Videep Soni
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06266
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06266
| |
Collapse
|
18
|
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina ML, Desmet N, Dang HQ, Fields J, Nelson-Williams C, Zhang J, Mekbib KY, Dennis E, Mehta NH, Duy PQ, Shimelis H, Walsh LK, Marlier A, Deniz E, Lake EMR, Constable RT, Hoffman EJ, Lifton RP, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper SL, Jin SC, Kahle KT, Luikart BW. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proc Natl Acad Sci U S A 2024; 121:e2314702121. [PMID: 38916997 PMCID: PMC11228466 DOI: 10.1073/pnas.2314702121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Junghoon Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Mackenzi L. Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Nicole Desmet
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Huy Q. Dang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Neel H. Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Phan Q. Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Hermela Shimelis
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Lauren K. Walsh
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Arnaud Marlier
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT06510
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - Ellen J. Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Child Study Center, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Allan Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Andres Moreno-De-Luca
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA17821
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, LondonWC1N 1AX, United Kingdom
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| |
Collapse
|
19
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
20
|
Recinos Y, Bao S, Wang X, Phillips BL, Yeh YT, Weyn-Vanhentenryck SM, Swanson MS, Zhang C. Lineage-specific splicing regulation of MAPT gene in the primate brain. CELL GENOMICS 2024; 4:100563. [PMID: 38772368 PMCID: PMC11228892 DOI: 10.1016/j.xgen.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Divergence of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is widespread in mammals, including primates, but the underlying mechanisms and functional impact are poorly understood. Here, we modeled cassette exon inclusion in primate brains as a quantitative trait and identified 1,170 (∼3%) exons with lineage-specific splicing shifts under stabilizing selection. Among them, microtubule-associated protein tau (MAPT) exons 2 and 10 underwent anticorrelated, two-step evolutionary shifts in the catarrhine and hominoid lineages, leading to their present inclusion levels in humans. The developmental-stage-specific divergence of exon 10 splicing, whose dysregulation can cause frontotemporal lobar degeneration (FTLD), is mediated by divergent distal intronic MBNL-binding sites. Competitive binding of these sites by CRISPR-dCas13d/gRNAs effectively reduces exon 10 inclusion, potentially providing a therapeutically compatible approach to modulate tau isoform expression. Our data suggest adaptation of MAPT function and, more generally, a role for AS in the evolutionary expansion of the primate brain.
Collapse
Affiliation(s)
- Yocelyn Recinos
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Suying Bao
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xiaojian Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brittany L Phillips
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yow-Tyng Yeh
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Liu Z, Sa G, Zhang Z, Wu Q, Zhou J, Yang X. Regulatory role of primary cilia in oral and maxillofacial development and disease. Tissue Cell 2024; 88:102389. [PMID: 38714113 DOI: 10.1016/j.tice.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Qingwei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuewen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
22
|
Zhang X, Yao S, Zhang L, Yang L, Yang M, Guo Q, Li Y, Wang Z, Lei B, Jin X. Mechanisms underlying morphological and functional changes of cilia in fibroblasts derived from patients bearing ARL3 T31A and ARL3 T31A/C118F mutations. FASEB J 2024; 38:e23519. [PMID: 38457249 DOI: 10.1096/fj.202301906r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
ARL3 is essential for cilia development, and mutations in ARL3 are closely associated with ciliopathies. In a previous study, we observed distinct phenotypes of retinal dystrophy in patients with heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, indicating that different mutation types may exert diverse effects on their functions. Here, we generated transformed immortal fibroblast cells from patients carrying heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, and systematically evaluated their cilia morphology and function, which were further validated in ARPE-19 cells. Results showed that both ARL3T31A and ARL3T31A/C118F mutations led to a decrease in cilium formation. The ARL3T31A/C118F mutations caused significantly elongated cilia and impaired retrograde transport, whereas the ARL3T31A mutation did not induce significant changes in fibroblasts. RNA-sequencing results indicated that compared to ARL3T31A , ARL3T31A/C118F fibroblasts exhibited a higher enrichment of biological processes related to neuron projection development, tissue morphogenesis, and extracellular matrix (ECM) organization, with noticeable alterations in pathways such as ECM-receptor interaction, focal adhesion, and TGF-β signaling. Similar changes were observed in the proteomic results in ARPE-19 cells. Core regulated genes including IQUB, UNC13D, RAB3IP, and GRIP1 were specifically downregulated in the ARL3T31A/C118F group, and expressions of IQUB, NPM2, and SLC38A4 were further validated. Additionally, IQUB showed a rescuing effect on the overlong cilia observed in ARL3T31A/C118F fibroblasts. Our results not only enhance our understanding of ARL3-related diseases but also provide new insights into the analysis of heterozygous and compound heterozygous mutations in genetics.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Shun Yao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lujia Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yan Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongfeng Wang
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
25
|
Ning K, Tran M, Kowal TJ, Mesentier-Louro LA, Sendayen BE, Wang Q, Lo CH, Li T, Majumder R, Luo J, Hu Y, Liao YJ, Sun Y. Compartmentalized ciliation changes of oligodendrocytes in aged mouse optic nerve. J Neurosci Res 2024; 102:e25273. [PMID: 38284846 PMCID: PMC10827352 DOI: 10.1002/jnr.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rishab Majumder
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jian Luo
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
26
|
Tansathitaya V, Sarasin W, Phakham T, Sawaswong V, Chanchaem P, Payungporn S. Exercise Alters FBF1-Regulated Novel-miRNA-1135 Associated with Hydrolethalus Syndrome 1 in Rheumatoid Arthritis: A Preliminary Study. Microrna 2024; 13:225-232. [PMID: 38963098 PMCID: PMC11774306 DOI: 10.2174/0122115366294831240606115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Hydrolethalus Syndrome 1 (HYDS1) is a rare disorder that occurs commonly in Finnish infants but originates from the mother. This autosomal recessive syndrome is associated with the FBF1, which is usually expressed in the centriole. The FBF1 is an inheritable arthritis disease phenotype that includes rheumatoid arthritis. Several studies have investigated males with FBF1 mutation carriers also related to arthritis diseases, including those under rheumatoid arthritis conditions, which revealed the possibility of conferring the gene mutation to the next generation of offspring. Nonetheless, there are some complications of FBF1 mutation with target miRNAs that can be affected by exercise. OBJECTIVE The objective of this study was to evaluate the different exercises that can be utilized to suppress the FBF1 mutation targeted by Novel-rno-miRNAs-1135 as a biomarker and assess the effectiveness of exercise in mitigating the FBF1 mutation. METHODS Four exercise interventional groups were divided into exercise and non-exercise groups. One hundred microliter pristane-induced arthritis (PIA) was injected at the dorsal region of the tails of rodents and introduced to the two PIA interventional groups. On day fortyfive, all animals were euthanized, and total RNA was extracted from the blood samples of rodents, while polymerase chain reaction (PCR) was amplified by using 5-7 primers. Computerization was used for miRNA regulation and analysis of target gene candidates. RESULTS The novel-rno-miRNA-1135 was downregulated to FBF1 in exercise groups. The exercise was found to have no significant impact in terms of change in novel-rno-miRNA-1135 regulation of FBF1 expression. CONCLUSION Exercise has no impact on novel-rno-miRNA-1135 targeted for FBF1 in autosomal recessive disease.
Collapse
Affiliation(s)
- Vimolmas Tansathitaya
- College of Sports Science and Technology, Mahidol University, Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Thailand
| | - Witchana Sarasin
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 road, Pathumwan, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Research Unit for Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathum Wan, Bangkok, 10330, Thailand
| |
Collapse
|
27
|
Loukil A, Ebright E, Uezu A, Gao Y, Soderling SH, Goetz SC. Identification of new ciliary signaling pathways in the brain and insights into neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572700. [PMID: 38187761 PMCID: PMC10769350 DOI: 10.1101/2023.12.20.572700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain. Most neurons have a primary cilium; however, it is still unclear how this organelle modulates brain architecture and function, given the lack of any systemic dissection of neuronal ciliary signaling. Here, we present the first in vivo glance at the molecular composition of cilia in the mouse brain. We have adapted in vivo BioID (iBioID), targeting the biotin ligase BioID2 to primary cilia in neurons. We identified tissue-specific signaling networks enriched in neuronal cilia, including Eph/Ephrin and GABA receptor signaling pathways. Our iBioID ciliary network presents a wealth of neural ciliary hits that provides new insights into neurological disorders. Our findings are a promising first step in defining the fundamentals of ciliary signaling and their roles in shaping neural circuits and behavior. This work can be extended to pathological conditions of the brain, aiming to identify the molecular pathways disrupted in the brain cilium. Hence, finding novel therapeutic strategies will help uncover and leverage the therapeutic potential of the neuronal cilium.
Collapse
Affiliation(s)
- Abdelhalim Loukil
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emma Ebright
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
28
|
Moraes de Lima Perini M, Pugh JN, Scott EM, Bhula K, Chirgwin A, Reul ON, Berbari NF, Li J. Primary cilia in osteoblasts and osteocytes are required for skeletal development and mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.570609. [PMID: 38318207 PMCID: PMC10843151 DOI: 10.1101/2023.12.15.570609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Primary cilia have been involved in the development and mechanosensation of various tissue types, including bone. In this study, we explored the mechanosensory role of primary cilia in bone growth and adaptation by examining two cilia specific genes, IFT88 and MKS5, required for proper cilia assembly and function. To analyze the role of primary cilia in osteoblasts, Osx1-GFP:Cre mice were bred with IFT88 LoxP/LoxP to generate mice with a conditional knockout of primary cilia in osteoblasts. A significant decrease in body weight was observed in both male (p=0.0048) and female (p=0.0374) conditional knockout (cKO) mice compared to the wild type (WT) controls. The femurs of cKO mice were significantly shorter than that of the WT mice of both male (p=0.0003) and female (p=0.0019) groups. Histological analysis revealed a significant difference in MAR (p=0.0005) and BFR/BS (p<0.0001) between female cKO and WT mice. The BFR/BS of male cKO mice was 58.03% lower compared to WT mice. To further investigate the role of primary cilia in osteocytes, Dmp1-8kb-Cre mice were crossed with MKS5 LoxP/LoxP to generate mice with defective cilia in osteocytes. In vivo axial ulnar loading was performed on 16-week-old mice for 3 consecutive days. The right ulnae were loaded for 120 cycles/day at a frequency of 2Hz with a peak force of 2.9N for female mice and 3.2N for male mice. Load-induced bone formation was measured using histomorphometry. The relative values of MS/BS, MAR and BFR/BS (loaded ulnae minus nonloaded ulnae) in male MKS5 cKO mice were decreased by 24.88%, 46.27% and 48.24%, respectively, compared to the controls. In the female groups, the rMS/BS was 52.5% lower, the rMAR was 27.58% lower, and the rBFR/BS was 41.54% lower in MKS5 cKO mice than the WT group. Histological analysis indicated that MKS5 cKO mice showed significantly decreased response to mechanical loading compared to the controls. Taken together, these data highlight a critical role of primary cilia in bone development and mechanotransduction, suggesting that the presence of primary cilia in osteoblasts play an important role in skeletal development, and primary cilia in osteocytes mediate mechanically induced bone formation.
Collapse
|
29
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Morris DC, Zacharek A, Zhang ZG, Chopp M. Extracellular vesicles-Mediators of opioid use disorder? Addict Biol 2023; 28:e13353. [PMID: 38017641 DOI: 10.1111/adb.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Opioid use disorder (OUD) is a growing health emergency in the United States leading to an epidemic of overdose deaths. OUD is recognized as an addictive brain disorder resulting in psychological, cognitive and behavioural dysfunction. These observed clinical dysfunctions are a result of cellular changes that occur in the brain. Derangements in inflammation, neurogenesis and synaptic plasticity are observed in the brains of OUD patients. The mechanisms of these derangements are unclear; however, extracellular vesicles (EVs), membrane bound particles containing protein, nucleotides and lipids are currently being investigated as agents that invoke these cellular changes. The primary function of EVs is to facilitate intercellular communication by transfer of cargo (protein, nucleotides and lipids) between cells; however, changes in this cargo have been observed in models of OUD suggesting that EVs may be agents promoting the observed cellular derangements. This review summarizes evidence that altered cargo of EVs, specifically protein and miRNA, in models of OUD promote impairments in neurons, astrocytes and microglial cells. These findings support the premise that opioids alter EVs to detrimentally affect neuro-cellular function resulting in the observed addictive, psychological and neurocognitive deficits in OUD patients.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Michigan State University, College of Human Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Zheng G Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
31
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
32
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
33
|
Ghaffari S, Bouchonville KJ, Saleh E, Schmidt RE, Offer SM, Sinha S. BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures. Genome Biol 2023; 24:178. [PMID: 37537644 PMCID: PMC10399072 DOI: 10.1186/s13059-023-03007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Differential gene expression in bulk transcriptomics data can reflect change of transcript abundance within a cell type and/or change in the proportions of cell types. Expression deconvolution methods can help differentiate these scenarios. BEDwARS is a Bayesian deconvolution method designed to address differences between reference signatures of cell types and corresponding true signatures underlying bulk transcriptomic profiles. BEDwARS is more robust to noisy reference signatures and outperforms leading in-class methods for estimating cell type proportions and signatures. Application of BEDwARS to dihydropyridine dehydrogenase deficiency identified the possible involvement of ciliopathy and impaired translational control in the etiology of the disorder.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ehsan Saleh
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, 3108 U.A. Whitaker Bldg., 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
34
|
Tauqeer Z, O'Neil EC, Brucker AJ, Aleman TS. NPHP1 FULL DELETION CAUSES NEPHRONOPHTHISIS AND A CONE-ROD DYSTROPHY. Retin Cases Brief Rep 2023; 17:352-358. [PMID: 36913617 DOI: 10.1097/icb.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe in detail the structural and functional phenotypes of a patient with cone-rod dystrophy associated with a full deletion of the NPHP1 gene. METHODS A 30-year-old man with a history of end-stage renal disease presented with progressive vision loss in early adulthood prompting evaluation for retinal disease. Ophthalmic evaluation was performed including visual fields, electroretinography, spectral domain optical coherence tomography and short-wavelength and near-infrared fundus autofluorescence imaging. RESULTS The visual acuity was 20/60 in each eye. Fundus examination revealed a subtle bull's-eye maculopathy confirmed with fundus autofluorescence. Spectral domain optical coherence tomography demonstrated perifoveal loss of the outer retinal layers with structural preservation further peripherally. Static perimetry confirmed the loss of cone greater than rod sensitivities in a manner that colocalized to structural findings. Electroretinography revealed decreased cone- and rod-mediated responses. Genetic testing confirmed a homozygous whole-gene deletion of the NPHP1 gene. CONCLUSION NPHP1 -associated retinal degeneration may present as a cone-rod dystrophy in addition to the previously reported rod-predominant phenotypes and can notably be associated with systemic abnormalities, including renal disease. Our work further expands on the growing literature describing the retinal disease associated with systemic ciliopathies.
Collapse
Affiliation(s)
| | - Erin C O'Neil
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tomas S Aleman
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Smits DJ, Schot R, Popescu CA, Dias KR, Ades L, Briere LC, Sweetser DA, Kushima I, Aleksic B, Khan S, Karageorgou V, Ordonez N, Sleutels FJGT, van der Kaay DCM, Van Mol C, Van Esch H, Bertoli-Avella AM, Roscioli T, Mancini GMS. De novo MCM6 variants in neurodevelopmental disorders: a recognizable phenotype related to zinc binding residues. Hum Genet 2023:10.1007/s00439-023-02569-7. [PMID: 37198333 DOI: 10.1007/s00439-023-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristiana A Popescu
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
| | - Lesley Ades
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Itaru Kushima
- Medical Genomics Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | - Frank J G T Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Daniëlle C M van der Kaay
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Morgenroth A, Baazaoui F, Hosseinnejad A, Schäfer L, Vogg A, Singh S, Mottaghy FM. Neural Stem Cells as Carriers of Nucleoside-Conjugated Nanogels: A New Approach toward Cell-Mediated Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21792-21803. [PMID: 37127284 PMCID: PMC10176478 DOI: 10.1021/acsami.2c23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neural stem cells (NSCs) present attractive natural drug delivery systems (DDSs). Their migratory potential enables crossing of the blood-brain barrier and efficient and selective accumulation near malignant cells. Here, we present the potential of NSCs as DDSs for nucleoside analogue-conjugated nanogels (NGs). Two different approaches were investigated: the intracellular loading and extracellular cell surface decoration with NGs. For both designs, the tumor-specific migratory potentials of NSCs remained unchanged; however, the intracellular loading showed a shorter NG retention. The cell surface decoration protocol yielded a high loading capacity of 100% after 1 h and a prolonged drug retention. A redox-sensitive linker between NGs and the nucleoside analogue 5-ethynyl-2'-deoxycytidine (EdC) allowed a tumor environment-specific drug release and its efficient and preferential incorporation into the DNA of the tumor cells. Interestingly, the tumor-trafficking potentials of NSCs were significantly potentiated by irradiation of tumor cells. In conclusion, this study indicates the potentials of cell surface-decorated NSCs as DDSs for tumor-specific release, cellular uptake, and incorporation of EdC into DNA.
Collapse
Affiliation(s)
| | - Fatima Baazaoui
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Aisa Hosseinnejad
- DWI - Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany
| | - Laura Schäfer
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Vogg
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Smriti Singh
- DWI - Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
- Department of Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, Netherlands
| |
Collapse
|
37
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
38
|
Garau J, Charras A, Varesio C, Orcesi S, Dragoni F, Galli J, Fazzi E, Gagliardi S, Pansarasa O, Cereda C, Hedrich CM. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol 2023; 249:109299. [PMID: 36963449 DOI: 10.1016/j.clim.2023.109299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.
Collapse
Affiliation(s)
- Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
39
|
Galvano E, Pandit H, Sepulveda J, Ng CAS, Becher MK, Mandelblatt JS, Van Dyk K, Rebeck GW. Behavioral and transcriptomic effects of the cancer treatment tamoxifen in mice. Front Neurosci 2023; 17:1068334. [PMID: 36845433 PMCID: PMC9951777 DOI: 10.3389/fnins.2023.1068334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Tamoxifen is a common treatment for estrogen receptor-positive breast cancer. While tamoxifen treatment is generally accepted as safe, there are concerns about adverse effects on cognition. Methods We used a mouse model of chronic tamoxifen exposure to examine the effects of tamoxifen on the brain. Female C57/BL6 mice were exposed to tamoxifen or vehicle control for six weeks; brains of 15 mice were analyzed for tamoxifen levels and transcriptomic changes, and an additional 32 mice were analyzed through a battery of behavioral tests. Results Tamoxifen and its metabolite 4-OH-tamoxifen were found at higher levels in the brain than in the plasma, demonstrating the facile entry of tamoxifen into the CNS. Behaviorally, tamoxifen-exposed mice showed no impairment in assays related to general health, exploration, motor function, sensorimotor gating, and spatial learning. Tamoxifen-treated mice showed a significantly increased freezing response in a fear conditioning paradigm, but no effects on anxiety measures in the absence of stressors. RNA sequencing analysis of whole hippocampi showed tamoxifen-induced reductions in gene pathways related to microtubule function, synapse regulation, and neurogenesis. Discussion These findings of the effects of tamoxifen exposure on fear conditioning and on gene expression related to neuronal connectivity suggest that there may be CNS side effects of this common breast cancer treatment.
Collapse
Affiliation(s)
- Elena Galvano
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Harshul Pandit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Jordy Sepulveda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Christi Anne S. Ng
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Melanie K. Becher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Jeanne S. Mandelblatt
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Kathleen Van Dyk
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
40
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
41
|
Spoto G, Pironti E, Amore G, Prato A, Scuderi A, Colucci PV, Ceravolo I, Farello G, Salpietro V, Iapadre G, Rosa GD, Dicanio D. Alström's Syndrome: Neurological Manifestations and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:018-022. [DOI: 10.1055/s-0042-1759538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAlström syndrome (ALMS) is a rare ciliopathy with pleiotropic and wide spectrum of clinical features. It is autosomal recessively inherited and associated with mutations in ALMS1, a gene involved in cilia functioning. High clinical heterogeneity is the main feature of ALMS. Cone-rod dystrophy with blindness, hearing loss, obesity, insulin resistance and hyperinsulinemia, type 2 diabetes mellitus, hypertriglyceridemia, endocrine abnormalities, cardiomyopathy, and renal, hepatic, and pulmonary anomalies are the most common signs and symptoms.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Erica Pironti
- Unit of Child Neurology and Psychiatry, Department of Woman-Child, OspedaliRiuniti, University of Foggia, Foggia, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Pia V. Colucci
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito, L'Aquila, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
42
|
Akula SK, Marciano JH, Lim Y, Exposito-Alonso D, Hylton NK, Hwang GH, Neil JE, Dominado N, Bunton-Stasyshyn RK, Song JHT, Talukdar M, Schmid A, Teboul L, Mo A, Shin T, Finander B, Beck SG, Yeh RC, Otani A, Qian X, DeGennaro EM, Alkuraya FS, Maddirevula S, Cascino GD, Giannini C, Undiagnosed Diseases Network, Burrage LC, Rosenfield JA, Ketkar S, Clark GD, Bacino C, Lewis RA, Segal RA, Bazan JF, Smith KA, Golden JA, Cho G, Walsh CA. TMEM161B regulates cerebral cortical gyration, Sonic Hedgehog signaling, and ciliary structure in the developing central nervous system. Proc Natl Acad Sci U S A 2023; 120:e2209964120. [PMID: 36669111 PMCID: PMC9942790 DOI: 10.1073/pnas.2209964120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.
Collapse
Affiliation(s)
- Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Jack H. Marciano
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Youngshin Lim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Norma K. Hylton
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Grace H. Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | | | - Janet H. T. Song
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Aloisia Schmid
- Department of Physics/Electron Microscopy Core, Northeastern University, Boston, MA02115
| | - Lydia Teboul
- Mary Lyon Centre, United Kingdom Medical Research Council Harwell, Didcot, Oxfordshire,OX11 0RD, UK
| | - Alisa Mo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Benjamin Finander
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Samantha G. Beck
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Aoi Otani
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Xuyu Qian
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Ellen M. DeGennaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN55905
| | | | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Jill A. Rosenfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Gary D. Clark
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Carlos Bacino
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Richard A. Lewis
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rosalind A. Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - J. Fernando Bazan
- Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, 9052Ghent, Belgium
| | - Kelly A. Smith
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Ginam Cho
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
43
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
44
|
Habif JC, Xie C, de Celis C, Ukhanov K, Green WW, Moretta JC, Zhang L, Campbell RJ, Martens JR. The role of a ciliary GTPase in the regulation of neuronal maturation of olfactory sensory neurons. Development 2023; 150:286702. [PMID: 36661357 PMCID: PMC10110495 DOI: 10.1242/dev.201116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.
Collapse
Affiliation(s)
- Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jordan C Moretta
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Characterization of Primary Cilia Formation in Human ESC-Derived Retinal Organoids. Stem Cells Int 2023; 2023:6494486. [PMID: 36684387 PMCID: PMC9859708 DOI: 10.1155/2023/6494486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Primary cilia are conserved organelles found in polarized mammalian cells that regulate neuronal growth, migration, and differentiation. Proper cilia formation is essential during eye development. Our previous reports found that both amacrine and retinal ganglion cells (RGCs) contain primary cilia in primate and rodent retinas. However, whether primary cilia are present in the inner retina of human retinal organoids remains unknown. The purpose of this study is to characterize the primary cilia distribution in human embryonic stem cell (hESC-derived retinal organoid development. Materials and Methods Retinal organoids were differentiated from a hESC line, harvested at various developmental timepoints (day 44-day 266), and immunostained with antibodies for primary cilia, including Arl13b (for the axoneme), AC3, and Centrin3 (for the basal body). AP2α, Prox1, GAD67, Calretinin, GFAP, PKCα, and Chx10 antibodies as well as Brn3b-promoted tdTomato expression were used to visualize retinal cell types. Results A group of ciliated cells were present in the inner aspects of retinal organoids from day 44 to day 266 in culture. Ciliated Chx10-positive retinal progenitor cells, GFAP-positive astrocytes, and PKCα-positive rod-bipolar cells were detected later during development (day 176 to day 266). Ciliation persisted during all stages of retinal developmental in AP2α-positive amacrine cells, but it was decreased in Brn3b-positive retinal ganglion cells (RGCs) at later time points. Additionally, AC3-positive astrocytes significantly decreased during the later stages of organoid formation. Conclusions Amacrine cells in retinal organoids retain cilia throughout development, whereas RGC ciliation gradually and progressively decreases with organoid maturation.
Collapse
|
46
|
Munch TN, Hedley PL, Hagen CM, Bækvad-Hansen M, Geller F, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Werge TM, Melbye M, Hougaard DM, Larsen LA, Christensen ST, Christiansen M. The genetic background of hydrocephalus in a population-based cohort: implication of ciliary involvement. Brain Commun 2023; 5:fcad004. [PMID: 36694575 PMCID: PMC9866251 DOI: 10.1093/braincomms/fcad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Hydrocephalus is one of the most common congenital disorders of the central nervous system and often displays psychiatric co-morbidities, in particular autism spectrum disorder. The disease mechanisms behind hydrocephalus are complex and not well understood, but some association with dysfunctional cilia in the brain ventricles and subarachnoid space has been indicated. A better understanding of the genetic aetiology of hydrocephalus, including the role of ciliopathies, may bring insights into a potentially shared genetic aetiology. In this population-based case-cohort study, we, for the first time, investigated variants of postulated hydrocephalus candidate genes. Using these data, we aimed to investigate potential involvement of the ciliome in hydrocephalus and describe genotype-phenotype associations with an autism spectrum disorder. One-hundred and twenty-one hydrocephalus candidate genes were screened in a whole-exome-sequenced sub-cohort of the Lundbeck Foundation Initiative for Integrative Psychiatric Research study, comprising 72 hydrocephalus patients and 4181 background population controls. Candidate genes containing high-impact variants of interest were systematically evaluated for their involvement in ciliary function and an autism spectrum disorder. The median age at diagnosis for the hydrocephalus patients was 0 years (range 0-27 years), the median age at analysis was 22 years (11-35 years), and 70.5% were males. The median age for controls was 18 years (range 11-26 years) and 53.3% were males. Fifty-two putative hydrocephalus-associated variants in 34 genes were identified in 42 patients (58.3%). In hydrocephalus cases, we found increased, but not significant, enrichment of high-impact protein altering variants (odds ratio 1.51, 95% confidence interval 0.92-2.51, P = 0.096), which was driven by a significant enrichment of rare protein truncating variants (odds ratio 2.71, 95% confidence interval 1.17-5.58, P = 0.011). Fourteen of the genes with high-impact variants are part of the ciliome, whereas another six genes affect cilia-dependent processes during neurogenesis. Furthermore, 15 of the 34 genes with high-impact variants and three of eight genes with protein truncating variants were associated with an autism spectrum disorder. Because symptoms of other diseases may be neglected or masked by the hydrocephalus-associated symptoms, we suggest that patients with congenital hydrocephalus undergo clinical genetic assessment with respect to ciliopathies and an autism spectrum disorder. Our results point to the significance of hydrocephalus as a ciliary disease in some cases. Future studies in brain ciliopathies may not only reveal new insights into hydrocephalus but also, brain disease in the broadest sense, given the essential role of cilia in neurodevelopment.
Collapse
Affiliation(s)
- Tina N Munch
- Correspondence to: Tina Nørgaard Munch, MD Associate Professor, Department of Neurosurgery 6031 Copenhagen University Hospital, Inge Lehmanns Vej 6 DK-2100 Copenhagen Ø, Denmark E-mail:
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Brazen Bio, Los Angeles, 90502 CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Center for Genomics and Personalized Medicine, Aarhus University, DK-8000 Aarhus, Denmark,Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0473, Norway,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Department of Biomedical Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Jung HJ, Yeo S, Jang J, Pleasure S, Choe Y. Brain heterotopia formation by ciliopathic breakdown of neuroepithelial and blood-cerebrospinal fluid barriers. Brain Pathol 2023:e13148. [PMID: 36623505 DOI: 10.1111/bpa.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The developmental functions of primary cilia and the downstream signaling pathways have been widely studied; however, the roles of primary cilia in the developing neurovascular system are not clearly understood. In this study, we found that ablation of genes encoding ciliary transport proteins such as intraflagellar transport homolog 88 (Ift88) and kinesin family member 3a (Kif3a) in cortical radial progenitors led to periventricular heterotopia during late mouse embryogenesis. Conditional mutation of primary cilia unexpectedly caused breakdown of both the neuroepithelial lining and the blood-choroid plexus barrier. Choroidal leakage was partially caused by enlargement of the choroid plexus in the cilia mutants. We found that the choroid plexus expressed platelet-derived growth factor A (Pdgf-A) and that Pdgf-A expression was ectopically increased in cilia-mutant embryos. Cortices obtained from embryos in utero electroporated with Pdgfa mimicked periventricular heterotopic nodules of the cilia mutant. These results suggest that defective ciliogenesis in both cortical progenitors and the choroid plexus leads to breakdown of cortical and choroidal barriers causing forebrain neuronal dysplasia, which may be related to developmental cortical malformation.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, South Korea
| | | | - Samuel Pleasure
- Department of Neurology, Program in Neuroscience, Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, California, USA
| | | |
Collapse
|
48
|
Prato A, Scuderi A, Amore G, Spoto G, Salpietro V, Ceravolo A, Farello G, Iapadre G, Pironti E, Dicanio D, Rosa GD. Epilepsy in Joubert Syndrome: A Still Few Explored Matter. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1759540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractEpilepsy is rarely associated with Joubert's syndrome and related disorders (JSRD), being reported only in 3% of cases. Few patients have been described, moreover, with poor evidences of specific seizures' semiology or standard of practice for pharmacological treatment. Epilepsy is likely to be related to brain malformations in ciliopathies. Beyond the typical hindbrain malformation, the molar tooth sign, other cerebral anomalies variably reported in JSRD, such as generalized polymicrogyria, hamartomas, periventricular nodular heterotopia, and hippocampal defects, have been described. Herein, we aimed to revise the main clinical and etiopathogenetic characteristics of epilepsy associated with JSRD.
Collapse
Affiliation(s)
- Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito, L'Aquila, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
49
|
Sailer SA, Burkhalter MD, Philipp M. Cholesterol and Phosphoinositides in Cilia Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:121-142. [PMID: 36988879 DOI: 10.1007/978-3-031-21547-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cilia are evolutionarily conserved organelles that can be found on virtually every cell. They appear as hair-like structures emanating from the cellular surface either as single or as bundles of cilia. There, they sense external stimuli and translate them into intracellular signals. Motile cilia beat for the generation of locomotion of unicellular organisms or fluid flow in certain body cavities of vertebrate organisms. Defects in cilia are detrimental and account for the development of ciliopathies, one of the fastest-growing family of afflictions. In the past decade, membrane lipids, such as cholesterol and phosphoinositides, have emerged as essential elements in both the signal transduction via cilia and the building of cilia itself. Here, we summarize the current knowledge on the impact of cholesterol and phosphoinositides on cilium biology.
Collapse
Affiliation(s)
- Steffen-Alexander Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J Dev Biol 2022; 10:54. [PMID: 36547476 PMCID: PMC9782889 DOI: 10.3390/jdb10040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are specialized, microtubule-based structures projecting from the surface of most mammalian cells. These organelles are thought to primarily act as signaling hubs and sensors, receiving and integrating extracellular cues. Several important signaling pathways are regulated through the primary cilium including Sonic Hedgehog (Shh) and Wnt signaling. Therefore, it is no surprise that mutated genes encoding defective proteins that affect primary cilia function or structure are responsible for a group of disorders collectively termed ciliopathies. The severe neurologic abnormalities observed in several ciliopathies have prompted examination of primary cilia structure and function in other brain disorders. Recently, neuronal primary cilia defects were observed in monogenic neurodevelopmental disorders that were not traditionally considered ciliopathies. The molecular mechanisms of how these genetic mutations cause primary cilia defects and how these defects contribute to the neurologic manifestations of these disorders remain poorly understood. In this review we will discuss monogenic neurodevelopmental disorders that exhibit cilia deficits and summarize findings from studies exploring the role of primary cilia in the brain to shed light into how these deficits could contribute to neurologic abnormalities.
Collapse
Affiliation(s)
- Vasiliki Karalis
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kathleen E. Donovan
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|